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Abstract
Embedded Domain Specific Languages(DSL) are used in various
programming tasks, such as SQL in database applications and reg-
ular expressions in pattern matching. Embedding DSL programs as
strings in the host language that are interpreted at runtime make it
extremely difficult to statically check for errors in the embedded
programs. One solution is using specialized checkers, but the pro-
gramming and integration of these checkers into the software devel-
opment process is not easy. Another emerging paradigm is to ex-
tend the host language with support for the DSL, such as LINQ[8].
However, this requires modification of the compiler which is some-
times even more difficult, especially when the source code of the
compiler is not available. Embedding a DSL into a host language
using nested functions or constructors or combinators has been
studied extensively[6]. However, method chaining style embedding
seems to be largely ignored, probably because most of the research
is done in a functional setting. As the object-oriented programming
languages become more and more mature in their type systems,
method chaining style may become a viable alternative as it seems
to be very natural in object-oriented programming languages and
widely accepted in practice[7]. In this paper, we explore the idea
of type-level programming to embed DSLs into a strongly typed
host language in the method chaining style. We use Scala[1, 4] to
demonstrate our ideas, but these ideas should be easily applicable
in other object-oriented programming languages such as Java. The
ideas are partially implemented in an ongoing project – the EriLex
parser generator.
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1. Introduction
Embedded Domain Specific Languages (DSL) are used in various
programming tasks, such as SQL in database applications and regu-
lar expressions in pattern matching. However, code written in these
DSLs is usually embedded as a string in the host language and are
interpreted at runtime. Consequently, the errors in the embedded
code are not detected until runtime. One solution is checking stat-
ically for errors in the embedded code using specialized checkers.
However, programming and integration of these checkers into the
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software development process is not easy for programmers. An-
other emerging paradigm is to extend the host language with sup-
port for the DSL, such as LINQ. However, this requires modifica-
tion of the compiler which is sometimes even more difficult, espe-
cially when the source code of the compiler is not available. In this
paper, we explore the idea of method chaining style embedding of
DSLs into a strongly typed object-oriented programming language.

The idea of embedding a DSL into the host language using con-
structs of the host language is not new. Libraries that use this tech-
nique include various monadic parser libraries that embed BNF-
like DSLs, software engineering libraries such as jMock and Hi-
bernate Criteria Query, etc. The contribution of this paper is that we
present a general framework for method chaining style embedding
of DSLs into a strongly typed object-oriented programming lan-
guage. We consider both the grammar and typing of the embedded
language. There are several advantages to this idea in general: first,
it uses the type checker of host language to check the grammar and
typing of the embedded language without extra tools, which makes
it less error-prone; second, given that some advanced integrated de-
velopment environments such as Netbeans and Eclipse provide se-
mantics based assistance, the embedded program can take advan-
tage of these tools provided for the host language.

There are at least two styles of embedding a DSL. One of
them embeds a DSL into a host language using nested functions
or constructors or combinators, which we call the functional nest-
ing style(FNS). FNS has been studied extensively[6]. In FNS, most
terms in the object language are represented by terms in the host
language, such as combinators or inductively defined data types.
In contrast, the method chaining style(MCS) encodes most terms
of the object language as methods in the host language, which are
sometimes partial or second-class constructs in the host language,
such as in Java. However there are a number of advantages in the
MCS. First, sometimes the embedding of MCS is much more com-
pact then that of FNS in an object-oriented programming language.
For example to embed

i f x then 1 e l s e 0

in Java using FNS, we would write code that looks like:

new I f ( new Var ( "X" ) , new Con ( 1 ) , new Con ( 0 ) )

which is very difficult to read because of all the parentheses and
keywords. Even using case classes in Scala the encoding is still a
little difficult to read, because the role of Var("X"), Con(1), and
Con(0) are not clear from the representation.

I f ( Var ( "X" ) , Con ( 1 ) , Con ( 0 ) )

Adding constructors for then and else would further "clog" the
code.

On the other hand, in MCS, we could write



I f ( ) . v a r ( "X" ) . Then ( ) . con ( 1 ) . E l s e ( ) . con ( 0 )

in Java and

I f ( ) va rx ( "X" ) Then ( ) con ( 1 ) E l s e ( ) con ( 0 )

in Scala1, which is much easier to read.
Another advantage is that MCS makes only limited use of host

language delimiters in the object language compared to FNS. for
example, if we want to encode

app f app f X

in FNS, the encoding may look like

App ( Var ( " f " ) , App ( Var ( " f " ) , Var ( "X" ) )

in Scala, which uses parenthesis in the host language to delimit
the pair, even when in the object language it may be clear that app
associates to the right. In the functional programming style, usually
something like

app ( v a r f ) ( app ( v a r f ) ( v a r X) )

is necessary because unless given special rules for the app function
in the host language,

app ( v a r f ) app ( v a r f ) ( v a r X)

would be a totally different expression. In MCS, we can encode it
in Scala as

app ( ) va rx ( " f " ) app ( ) v a r ( " f " ) v a r ( "X" )

which is much less relying on the host language.
The idea presented in this paper is implemented in an ongoing

project – the EriLex2 parser generator.
The paper is organized as follows: Section 2 reviews various

concepts related to pushdown automata and introduces an embed-
ding of a special class of automata into the types of Scala; Section
3 discusses practical aspects of implementing these types; Section
4 extends the embedding to deal with typing; Section 5 dicucsses
related work; Section 6 discusses extensions to this framework.

2. Embedding Realtime Deterministic Pushdown
Automata in Scala

Most of the definitions of grammars and automata in this section
are based on [11].

Definition 2.1. A (context-free) grammar(CFG) G is a quadruple
(AG,ZG, zG,PG), where AG is a finite set of terminals, ZG is a finite
set of nonterminals, PG a finite set of productions, and zG is the start
symbol. The language of a context-free grammar, written L(G), is
the set of all finite length strings generated by zG, which is usually
called a context-free language(CFL).

Let a, a1, a2 . . . range over AG, z, z1, z2 . . . range over ZG,
an = an

1 . . . a
n
n, i

n = in1 . . . i
n
n, . . . range over AG

n, variables
zn = zn

1 . . . z
n
n, . . . range over ZG

n. Most CFG can be converted
to certain equivalent normal forms. One of them is the Greibach
normal form(GNF). There are usually two different definitions of
GNF. One of them includes the production zG → ε. We use the
following definition.

Definition 2.2. A CFG G is in the Greibach normal form is if all
productions in PG are of the form z→ azn where n ∈ N.

Theorem 2.3. (Greibach) Every CFL L where the empty string
ε /∈ L can be generated by a CFG in the Greibach normal form.

1 Here we use varx instead of var because the latter is a keyword in Scala.
2 http://erilex.kenai.com

Given a CFL G, a parse tree tree(as1 . . . sn) of a string as1 . . . sn

is a tree defined inductively

tree(as1 . . . sn) = z(a, tree(s1), . . . , tree(sn))

where z → az1 . . . zn ∈ PG and sk is generated by zk for all k ∈
{1, . . . , n}. The strings sk are called substrings. Let tn = tn

1 . . . t
n
n

range over n subtrees and a pattern matching on trees is written
z(atn). CFLs can be accepted by pushdown automata. Languages
of CFG in GNF can be accepted by a special class of pushdown
automata.

Definition 2.4. A realtime pda over an input alphabet A is
(Q,Z, i,K,A, T ), where Q is a finite set of states, Z a stack
alphabet, T a finite subset of A × Q × Z × Z∗ × Q which is
called the transition rules, i an initial configuration, and K a set of
accepting configurations. a realtime pda is deterministic, or a dpda,
if and only if T is a function A×Q× Z → Z∗ ×Q.

The different between a realtime pda and a pda is that realtime
pdas do not have ε-rules. Because any proper context-free language
that does not contains ε can be generated by a CFG in GNF without
ε-productions, the languages accepted by realtime pdas differ from
those accepted by pdas only in whether ε may be included, which
is not a significant restriction in DSL design.

What is interesting is the difference between realtime determin-
istic pda and deterministic pda. Although dpda is strictly less pow-
erful than pda, it has been shown that languages generated by dpda
are exactly LR(k), which contains most programming languages.
Therefore, dpda is powerful enough for our purpose. But realtime
dpda is strictly less powerful than dpda. There are languages that
are accepted by some dpda but no realtime dpda. For example, the
language L = {<p {n>p |p, n > 0} ∪ {<p {n}n|p, n > 0},
which is a modification of an example in [11], can be accepted by
a dpda but no realtime dpda. The problem is that in order to make
sure that at lease one of “>” or “}” matches with “<” or “{”, we
need to push state symbols on the stack to match the number of
“<”’s and “{”’s. If “>” is encountered, we need to remove those
symbols that are generated by “{”. However, this is a very rare
situation in language design, because here we want to design a lan-
guage that does not keep all brackets matched on purpose. If the ob-
ject language has a universal hierarchy of programming constructs
in which programming constructs in the lower level are strictly and
properly contained (i.e. no overlapping boundary) by programming
constructs in the higher level, as in Java where the delimiter such
as "{" and "}" are used verbosely, then realtime dpda is expressive
enough because the number of pops is always bounded. We work
with dpda in the following sections.

Next, we look at how to embed a realtime dpda in Scala. Before
proceeding to define the embedding, we first present an equivalent
form of definition of a realtime dpda.

Definition 2.5. A stateless realtime dpda(slrpda) A over an input
alphabet A is (Z, zA,A, T ), where Z is a stack alphabet, T a
function A × Z → Z∗ which is called the transition rules, and zA
an initial configuration, with ε as an accepting configuration. The
language accepted by A is the set of all strings over A accepted by
it.

It is easy to see that we can construct an equivalent slrpda from
every realtime dpda by encoding the current state in the top stack
symbol.

Let A be a slrpda. We assume that a name embedding function
e : A ∪ Z → ScalaName that maps injectively slrpda symbols to
valid Scala names is predefined. We write e(a) as ea, and e(z) as
ez.

To simplify the presentation, we may write a Scala class

class c{def1 def2 . . . defn}



as

class c{def1}, class c{def2}, . . . , class c{defn}

where c is a class signature and def1, def2, . . . , defn are method
definitions. When combining class c1{def1}, . . . , class cn{defn}
where c1, . . . , cn all have the same type constructor, back to
class c{def1 def2 . . . defn}, we may need to rename the type pa-
rameters in c1, . . . , cn, which can be done using simultaneous uni-
fication. For example, classA[τ1]{def1}, . . . , classA[τn]{defn}
are combined to class A[τ ]{def1, . . . , defn}. For succinctness,
we write type Null as ⊥.

Definition 2.6. The embedding of an slrpda A = (Z, zA,A, T ),
written enA

L (A, e), is a set of classes with the name of ez for all
z ∈ Z.

enA
L (A, e) = {abstract class ez[κ]{

def ea() : ez1 [. . . ezn [κ]]}
|(a, z, z1 . . . zn) ∈ T }

The embedding of an input string an, written enA
S (an), is the

method chain

enA
S (an, e) = ean

1
() . . . ean

n
()

The well-formness is summarized in the following theorem.

Theorem 2.7. If A is a slrpda and impzT
is an implementation of

ezT , then an ∈ L(A) if and only if new impzT
[⊥]()enS(an, e) has

type ⊥ in Scala.

Proof. (Sketch) [4] did not deal with generics, but we can still
use the (METHOD) rule, by viewing the type metavariables as also
ranging over constructed types. Given a sequence of input an, we
construct a sequence of configurations of the slrpda. Also, given
the method chain, we construct a sequence of types by instantiating
the (METHOD) rule. The initial empty stack is represented by⊥. By
induction, we can prove that the each configuration is represented
by the corresponding type. Because the type of the Scala expression
is ⊥, the input is accepted by the slrpda.

A grammar in the Greibach normal form(GNF) and LL(1) (i.e.
no common prefix) can be converted directly to an slrpda. The slr-
pda is quite straightforward to construct, by just using nonterminals
as stack symbols. The embedding enG

L (G) of a LL(1) GNF gram-
mar G is defined as

Definition 2.8. The embedding of G in LL(1) GNF w.r.t name
embedding function e, written enG

L (G, e), is a set of classes with
the name of ez for all z ∈ Z.

enG
L (G, e) = {abstract class ez[κ]{

def ea() : ezn
1

[. . . ezn
n

[κ]]}
|z→ azn ∈ P}

The embedding of an input string an, written enG
S (an, e), is the

method chain

enG
S (an, e) = ean

1
() . . . ean

n
()

Theorem 2.9. If G is a grammar in LL(1) GNF and impzG

is an implementation of ezG , then an ∈ L(G) if and only if
new impzG

[⊥]()enG
S (an) has type ⊥ in Scala.

Proof. (Sketch) Prove by converting the grammar to an equivalent
slrpda.

Next, let’s look at an example.

abstract class es[κ]{
def e(() : er[κ]
}
abstract class er[κ]{

def ea() : er′ [κ]
def e(() : er[er′ [κ]]
}
abstract class er′ [κ]{

def e)() : κ
def e∗() : er′ [κ]
def ea() : er′ [κ]
def e(() : er[er′ [κ]]
}

Figure 1. Embedding Scala Classes

Example 2.10. Let Σ be a finite alphabet. We can embed in
Scala the regular expression DSL given by s → (r), r → a|r ∗
|rr|r′|′r|(r), where a ∈ Σ. We added an additional symbol s,
which makes the productions much easier to work with. First, we
convert it to an grammar in LL(1) GNF.

r → ar′ r′ → ∗r′
r → (rr′ r′ → ′|′r
r′ → ) r′ → (rr′

r′ → ar′ s → (r

We can generate the embedding directly from the GNF. For ex-
ample, for the first production, we have class er[κ]{def a() :
er′ [κ]}. When combined together, the embedding classes are in the
Figure 1.

If imps is an implementation of es, then for a regular expression
(a∗),

new imps[⊥]()e(()ea()e∗()e)()

has type ⊥; and for a string |a|,
new imps[⊥]()e|()ea()e|()

is rejected by Scala.

The intuition behind this embedding is that a type ez[ez1 [. . . ezn [⊥]]]
represents the configuration of the parser as a stack of the type (con-
structors). The current parser state is parsing nonterminal z. When
z is successfully parsed, the parser continues to parse z1, and so
forth. When parsing for some z in the grammar, the leading ter-
minals decide which productions to enter and which nonterminals
to push onto the stack that represents the next configuration of the
parser. The choice is always deterministic because the grammar is
LL(1).

Definition 2.11. We call the stack of type (constructors) represent-
ing the current configuration of the slrpda the continuation stack.
The top of continuations stack refers to the outermost type (con-
structor).

Suppose that the continuation stack is ez[⊥]. If the selected
production is of the form z → a, then it just removes the current
symbol from the top of the continuation stack by setting the return
type of the method the type κ, and the new stack is represented by
type κ as shown in Figure 2(a). If the selected production of the
form z → az1z2, then it pushes the type constructors representing
z1, z2 onto the continuation stack as shown in Figure 2(b).

3. Untyped MCS
In the previous section, we defined an embedding function enG that
embeds a grammar in LL(1) GNF into abstract classes of Scala.
But in this embedding the embedding classes can not be instanti-
ated because they are abstract classes. In this section, we discuss



(a) z→ a

(b) z→ az1z2

Figure 2. Examples

systematically the methodology of embedding that generates con-
crete classes.

3.1 Methodology
The methodology of embedding is that each embedding en of a
grammar G is a pair of embedding functions (enL, enS) param-
eterized over G and a name embedding function e, where enL is
a language embedding that generates support classes from G, and
enS is a string embedding that generates an expression for a string
s ∈ L(G). And the soundness theorem will be in the form that if
G satisfies certain properties, then with embedding enL(G), a string
s ∈ L(G) if and only if the embedding enS(s) of s is well-typed in
Scala.

3.2 Workaround for Restrictions in Scala
Before we look at the embedding, let us look at a restriction of
generics in Scala and how to work around it. One of the restrictions
in languages that use erasure such as Scala and Java is that type
parameters can not be used to create an object because they are
erased during compilation. For example, new τ() where τ is a
type parameter is not allowed. This is in contrast to C++ templates
and C# generics, which expand the generic types to instances of
these types during compilation or at runtime.

Example 3.1. We implement the abstract classes in the previous
example. In a first attempt, we may be tempted to implement the
class er′ [κ] as

class er′ [κ]{
def e)() = new κ()
. . .
}

but this is not a valid Scala program! This problem occurs for
methods that represents productions of the form z → a. We can
work around this restriction by letting the creator of this class pass
in a continuation that knows how to create an object of type κ. In
this example, we can simply pass in an object of type κ.

class er′ [κ](k : κ){
def e)() = k
. . .
}

The implementation of other methods are straightforward. The im-
plementation of es, er, er′ is shown in Figure 3. In methods that
add more than one type constructors the type of the continuation,
such as e((), we need to rewire the continuation properly. Now, in
order to initialize the parser, we set the type of the initial continua-
tion to ⊥ and pass in an intial continuation null which is the only
object of that type .

class es[κ](k : κ){
def e(() = new er[τ ](k)
}
class er[κ](k : κ){

def ea() = new er′ [κ](k)
def e(() = new er[er′ [κ]](new er′ [κ](k))
}
class er′ [κ](k : κ){

def ea() = new er′ [κ](k)
def e∗() = new er′ [κ](k)
def e(() = new er[er′ [κ]](new er′ [κ](k))
def e)() = k
}

Figure 3. Implementation

κn
0 , κ

κn
i+1 , ezn

n−i
[κn

i ]

kn
0 , k

kn
i+1 , new ezn

n−i
(kn

i )

(a)

enI
L(G, e) = {enI

L(p)|p ∈ PG}
enI

L(z→ azn, e) = class ez[κ](k : κ){enI
L(azn)}

enI
L(azn, e) = def ea() : κn

n = kn
n

(b)

enI
S(G, an, e) = new ezG [⊥](null)ean

1
() . . . ean

n
() : ⊥

(c)

Figure 4. Embedding Rules

3.3 The General Embedding Functions
The embedding enI embeds a grammar G as concrete classes.
The definition of the language embedding enI

L is given in Fig-
ure 4(a) and Figure 4(b). The rules represents a production of
the form z → a by a method that removes the type construc-
tor at the top of the continuation stack by returning the continu-
ation k of type κ and represents a production of the form z →
az1 . . . zn by a method that pushes the type constructors represent-
ing z1, z2, . . . , zn onto the continuation stack by constructing ob-
jects new ez1(. . . ezn(k))). If written separately, they are

enI
L

′
(a) = def ea() : τ = κ

enI
L

′
(az1 . . . zn) = def ea() : ez1 [. . . ezn [κ]]] =

new ez1(. . . ezn(k)))

The string embedding enI
S is given in Figure 4(c).

Corollary 3.2. If G is a grammar in LL(1) GNF, , e is a name
embedding function, then an ∈ L(G) if and only if enI

L(G, e) ∪
{enI

S(G, an, e)} is well-typed in Scala.

3.4 Parametrized Grammar
In this section, we introduce an extension to grammars, named
parametrized grammars, that will be used in this paper.

Definition 3.3. A parametrized grammar is a grammar G =
(ZG, zG,AG,PG) in the GNF with a mapping arity : PG → N.



For each production z → azn of the grammar, arity assigns an in-
teger k such that 0 ≤ k ≤ n. The first k nonterminals on the right
hand side of the production are called parameters of a. Further-
more, we require that ZG can be divided into two disjoint subsets
ZG0 ,ZG1 such that in all productions for z ∈ ZG1 , any z0 ∈ ZG0

only appears as parameters and for all productions for z0 ∈ ZG0 ,
no z ∈ ZG1 or parameter appears.

Effectively, we divided ZG into two levels. The terminals in pro-
ductions of top level nonterminals may take parameters from the
second level nonterminals. And the second level can be written as a
set of inductively defined data types, with the terminals as construc-
tors and nonterminals as types. We use→ to mark top level symbols
and = to mark second level symbols. Given a parametrized gram-
mar G, we write the productions for ZG0 as PG0 and productions for
ZG1 as PG1 .

Example 3.4. The untyped lambda calculus with de Brujin index:

e → var(i)|app e e|abs e
i = z|s i

e is a top level nonterminal, while i is a second level nonterminal.
The terminal var takes i as a parameter.

We will encode second level nonterminals as method parame-
ters in the embedding, which is summarized in the following defi-
nition.

To disambiguate with name embedding function e which are
used to encode top level symbols, we use another name embedding
functions d to encode second level symbols. The embedding en0

L of
second level symbols of a parametrized grammar G with regard to
the name embedding function d is a set of case classes (or inductive
data types, as sometimes they are called) defined in Figure 5(a). The
embedding en1

L of top level symbols of a parametrized grammar
G with regard to the name embedding functions e and d is a set
of classes with the name ez for all z ∈ ZG1 as defined in Figure
5(b). The string embedding of a string a1 . . . an generated by some
z ∈ ZG0 is inductively defined on its parse tree where tn

k is a subtree
for k ∈ {1, . . . , n} as shown in Figure 5(c). The string embedding
of string a1i

k1 . . . anikn , where iki for i ∈ {1, . . . , n} are strings
generated by some z ∈ Z0, is a method chain as shown in Figure
5(d).

3.5 Building Abstract Syntax Trees
In this section we discuss how to modify the parser to build an
abstract syntax tree when the parser is run. We first look at another
example,

Example 3.5. Since the grammar in Example 3.4 is already in
GNF, we can embed it as classes in Scala using enI. We use the
following name embedding: e map var to varx, app to app, abs
to abs, and e to E; d maps e to Term, var to V ar, app to App,
abs to Abs, i to Ref , z to Zero, and s to Succ.

class E[κ](k : κ){
def varx(i : Ref) : κ = k
def app() : E[E[κ]] = new E(E(k))
def abs() : E[κ] = new E(k)
}

We extend embedding en0 in Section 3.4 to top level symbols to
generate data structures for storing the abstract syntax tree. A string
generated by e is represented by Term, and a string generated by
i is represented by Ref , as shown in Figure 6(a). Next, we add a
builder function to the implementation as shown in Figure 6(b).

We made three modifications here. First, a new type parameter
σ is added to the class indicating the type of the value built by the
builder. Second, a parameter is added to the class b : Term ⇒ σ,
which is the builder. Third, the type of k is modified to σ ⇒ τ . The

en0
L(G, d) = {en0

L(p, d)|p ∈ PG0} ∪ {en
0
L(z, d)|z ∈ ZG0}

en0
L(z→ azn, d) = case class da(i1 : dzn

1
, . . . , in : dzn

n
)

extends dz()

en0
L(z, d) = abstract case class dz()

(a)

en1
L(G, d, e) = {en1

L(p, d, e)|p ∈ PG1}
en1

L(z→ azpzn, d, e) = class ez[κ]{
def ea(i1 : dz

p
1
, . . . , ip : dz

p
p
) :

κn
n = kn

n}
(b)

en0
S(an,G, d) = en0

S
′
(tree(an),G, d)

en0
S
′
(z(atn),G, d) = da(en

0
S
′
(tn

1 ,G, d), . . . en0
S
′
(tn

n,G, d))

(c)

en1
S(a1i

k1 . . . anikn ,G, d, e) = new ezG [⊥]()s1 . . . sn : ⊥
where

si = eai(en0
S(iki

1 ,G, d),

. . . , en0
S(iki

ki
,G, d))

(d)

Figure 5. Embedding Rules

abstract case class Term()
case class V ar(x : Ref) extends Term()
case class App(t1 : Term, t2 : Term) extends Term()
case class Abs(t : Term) extends Term()

abstract case class Ref()
case class Zero() extends Ref()
case class Succ(r : Ref) extends Ref()

(a)
class E[κ, σ](b : Term⇒ σ, k : σ ⇒ κ){
def varx(i : Ref) : κ = k(b(V ar(i)))
def app() : E[E[κ, σ], T erm⇒ σ] = new E(

(t1 : Term)⇒ (t2 : Term)⇒ b(App(t1, t2)),
(b1 : Term⇒ σ)⇒ E(b1, k))

def abs() : E[κ, σ] = new E((t : Term)⇒ b(Abs(t)), k)
}

(b)

Figure 6. Implementation with a Builder Function

reason is that we need to pass the builder to the continuation, so that
the currently building tree is part of the continuation constructed by
k during runtime.

Unlike in FNS, sometimes we need to construct a partial AST
whose subtrees are filled in later. Partial trees are built by con-
structing new builders. For example, the app function constructs
the builder (t1 : Term) ⇒ (t2 : Term) ⇒ b(App(t1, t2)) and
passes it to the continuation k, which encodes how to build theApp
object. But the actual construction of the App node happens when
all parameters to the constructor are built.

To use this class, we need to pass in an initial builder to the
constructor of the class where we create an object of the class.



Using the new embedding, we can encode terms of L(G) in Scala.
We define an auxiliary Scala method.

def term() = new E((t : Term)⇒ null, (s : Term)⇒ s)

Using this method, the following term

app abs varx(z) con(1)

is encoded in Scala as

term() app() abs() varx(Zero()) con(1) : ⊥

and the following term

app app abs abs con(2) app abs varx(z) con(1) con(1)

is encoded in Scala as
term()
app()
app()
abs()
abs()
con(2)

app()
abs()
varx(Zero())

con(1) : ⊥
Next, we formalize the ideas of Example 3.5 in the embedding

enB. enB is defined as a pair of embeddings (end, enb) which are
parametrized over grammar G, name embedding function e which
maps all symbols in G to a unique valid Scala names, and name
embedding function d which maps all symbols in G to unique valid
Scala names such that dz 6= ez for all z ∈ AG ∪ ZG. e is used
in enb while d is used both in enb and end. end is an extension of
en0 to all top level productions p and for all top level nonterminals
z, as shown in Figure 7(a) and Figure 7(b). enb is an extension of
en1 to include the builder function. We use the auxiliary definitions
as shown in Figure 7(c). σn

n is the type for the n-ary builders that
build values of type σ. p is the number of parameters of a. Bn,p

n is
an n-ary builder and its type is always σn

n . The degenerated builder
B0,p

0 is actually the value built by the builder. κn
n is the continuation

stack. kn
n is the continuation whose type is always σn

n ⇒ κn
n.

zp are parameters. The rules are shown in Figure 7(d). The string
embedding enb

S of the object language is defined in Figure 7(e),
where ak is a top level symbols for k ∈ {1, . . . , n} and iki are
second level strings for i ∈ {1, . . . , n}. The embedding enB is
defined in Figure 7(f).

We need the following theorem to complete our discussion.

Theorem 3.6. If G is a grammar of the terms of the object language
in LL(1) GNF, e maps AG∪ZG in G to unique Scala names, d maps
AG ∪ ZG to unique Scala name such that dz 6= ez for all z ∈ ZG. If
an is a term of the object language, then an ∈ L(G) if and only if
enB

L (G, d, e) ∪ {enB
S (an,G, d, e)} is well-typed in Scala.

Proof. (Sketch) Note that any encoded term is automatically well-
formed because the constructor da only encodes well-formed terms.
First, we prove that all encoded terms are well-formed. Then, by
the type safety, the encoding always constructs encoding of some
well-formed term. Finally, we prove that the term constructed is the
same term that is encoded in the method chain.

4. Typing MCS
In this section we discuss how to ensure well-typedness of an object
language program embedded in MCS. One of the key observations
of the previous section is that we can use the tree built to enforce
well-formedness of the program. In this section, we explore how to

end
L(G, d) = {end

L(p, d)|p ∈ PG} ∪ {end
L(z, d)|z ∈ ZG}

end
L(z→ azn, d) = case class da(i1 : dzn

1
, . . . , in : dzn

n
)

extends dz()

end
L(z, d) = abstract case class dz()

(a)
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S(an, d) = end

S

′
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S

′
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d
S

′
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1 , d), . . . end
S

′
(tn
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(b)
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n
i ]

kn
0 , k

kn
i+1 , (bi+1 : σn

i+1)⇒ new ezn
n−i
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n
i )
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n−i
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i

(c)

enb
L(G, d, e) = {enb

L(p, d, e)|p ∈ PG1}
enb

L(z→ azpzn, d, e) = class ez[κ]{
def ea(i1 : dz

p
1
, . . . , ip : dz

p
p
) :

κn
n = kn(Bn,p

n )}
(d)

enb
S(a1i

k1 . . . anikn ,G, d, e) = new term()s1 . . . sn : ⊥
where

si = eai(end
S(iki

1 , d),

. . . , end
S(iki

ki
, d))

def term() = new ezG [⊥, dzG ](

(t : dzG)⇒ null,

(s : dzG)⇒ s

)

(e)

enB
L (G, d, e) = end

L(G, d, e) ∪ enb
L(G, d, e)

enB
S (an,G, d, e) = enb

S(an,G, d, e)

(f)

Figure 7. Implementation Rules

use that to guarantee well-typedness of the program. The key is to
use the type checker of the host language to check the type of the
object language.

4.1 An Example
First, let’s look at an example.



Example 4.1. The simply typed lambda calculus with de Brujin
indices, booleans, and integers:

e → var(i)|con(n|b)|app e e|abs e
i = z|s i
n = integers
b = booleans

t = N |B|fun t t

E = nil|{t, E}

where e are terms, t are types, andE are typing environments. And
the following typing rules:

E ` con(n) : N
(TNAT)

E ` con(b) : B
(TBOOL)

E ` var(i) : t1

{t2, E} ` var(s i) : t1
(TSUCC)

{t, E} ` varx(z) : t
(TZERO)

E ` e1 : Fun(t1, t2) E ` e2 : t1

E ` app e1 e2 : t2
(TAPP)

{t1, E} ` e : t2

E ` abs(t1) e : fun(t1, t2)
(TABS)

where t, t1, t2 are type metavariables.
As in the previous example, we look at how to embed both the

grammar and the typing as case classes. In the previous example,
we used an embedding end to map terms of the object language
to terms of the host language. Here, we also need a mapping that
maps types of the object language to the host language. A mapping
function ε maps the types of the object langauge to Scala.

εt(N) = Int

εt(B) = Boolean

εt(fun t1 t2) = Fun[εt(t1), εt(t2)]

Here we use the metametavariable t1, t2 to disambiguate with type
metavariables t1, t2. For booleans and integers, we use Scala’s
types, and for function type, we defined a new type constructor to
disambiguate with the function type in Scala.

Let us first focus on the rules (TNAT), (TBOOL), (TAPP), and
partial (TABS) without the typing environment. We really can not
claim well-typedness without the rest of the rules, but we will
consider those rules later. We represent types and terms of the
object language using case classes as shown in Figure 8.

Next we implement the embedding classes. Since the grammar
is already in GNF, we can encode it directly in Scala, this time
parametrize ee also by χ, the type of the term that is currently
being constructed. In a first attempt, we tried to implement it with
a builder function as

class E[κ, σ, χ](b : Term[χ]⇒ σ, k : σ ⇒ κ){
. . .
def abs[χ1, χ2]() : E[κ, σ, χ2] =

new E((t : Term[χ2])⇒ b(Abs[χ1, χ2](t)), k)
}

But this program does not compile, because in the definition of
function abs the builder b expects some value of type Term[χ], but
what we supplied is of type Term[Fun[χ1, χ2]]. To solve the type
mismatch, we need to test the definitional equality of types, which

case class Fun[τ1, τ2]()

abstract case class Term[τ ]()
case class V ar(x : Ref [τ ]) extends Term[τ ]()
case class Con(x : τ) extends Term[τ ]()
case class App[τ1, τ2](t1 : Term[Fun[τ1, τ2]], t2 : Term[τ1])

extends Term[τ2]()
case class Abs[τ1, τ2](t : Term[τ1])

extends Term[Fun[τ1, τ2]]()

abstract case class Ref [τ ]()
case class Zero[τ ]() extends Ref [τ ]()
case class Succ[τ ](r : Ref [τ ]) extends Ref [τ ]()

Figure 8. Data structure for Implementation with a Builder Func-
tion and Typing, Partial Version

class E[κ, σ, χ](b : Term[χ]⇒ σ, k : σ ⇒ κ){
def varx(i : Ref [χ]) : κ = k(b(V ar[χ](i)))
def con(c : χ) : κ = k(b(Con[χ](c)))
def app[χ1]() :
E[E[κ, σ, χ1], T erm[χ1]⇒ σ, Fun[χ1, χ]] =

new E(
(t1 : Term[Fun[χ1, χ2]])⇒

(t2 : Term[χ1])⇒ b(App(t1, t2)),
(b1 : Term⇒ σ)⇒ E(b1, k))

def abs[χ1, χ2](cast : Term[χ1, χ2]⇒ Term[χ]) :
E[κ, σ, χ2] =

new E((t : Term[χ2])⇒
b(cast(Abs[χ1, χ2](t))), k)

}

Figure 9. Implementation with a Builder Function and Typing,
Partial Version

can be done by passing in a cast function: cast : Term[χ1, χ2]⇒
Term[χ]. The modified code is shown in Figure 9.

We take a simple approach here – we assume that when the
method app is called we pass the following generic function

def id[τ ](x : τ) = x

and initiate the type parameter to the desired type of the abstrac-
tion. For example, abs(id[Fun[Int, Int]]). Note that if the type
is incorrect, then Scala will report type errors, which means that
the only "requirement" for the user is ensuring that other functions
are not passed in as the cast function. We postpone the discussion
of a more sophisticated way of automatically enforcing definitional
equality of types that removes this "requirement" to Section 6.

We have now implemented (TNAT), (TBOOL), (TAPP), and
partial (TABS). Next, we add typing environments to complete the
implementation. First, we define a mapping for typing environ-
ments.

εe(nil) = Nothing

εe({t,E}) = (εt(t), εe(E))

We add a type parameter that represents the typing environment to
all classes that represent terms, The Ref class and its subclasses
represent the typing rules (TZERO), (TSUCC) as in [2]. Now the
classes together guarantee that only well-formed and well-typed
terms can be constructed. The modificationt to the classes are
shown in Figure 10.

We made two changes here. First, we added a new type param-
eter η. Second, in the type of abs, we modified it to implement the
modification of the environment in (TABS). Note that here we only



abstract case class Term[τ, η]()
case class V ar[τ, η](x : Ref [τ, η]) extends Term[τ, η]()
case class Con[τ, η](x : τ) extends Term[τ, η]()
case class App[τ1, τ2, η](
t1 : Term[Fun[τ1, τ2], η], t2 : Term[τ1, η])
extends Term[τ2, η]()

case class Abs[τ1, τ2, η](t : Term[τ2, (τ1, η)])
extends Term[Fun[τ1, τ2], η]()

abstract case class Ref [τ, η]()
case class Zero[τ, η]() extends Ref [τ, η]()
case class Succ[τ, η](r : Ref [τ, η])

extends Ref [τ, (_, η)]()

class E[κ, σ, χ, η](b : Term[χ]⇒ σ, k : σ ⇒ κ){
def varx(i : Ref [τ, η]) : κ = k(b(V ar[χ, η](i)))
def con(c : χ) : κ = k(b(Con[χ, η](c)))
def app[χ1, η]() :
E[E[τ, σ, χ1, η], T erm[χ1, η]⇒ σ, Fun[χ1, χ], η] =

new E(
(t1 : Term[Fun[χ1, χ2], η])⇒

(t2 : Term[χ1, η])⇒ b(App[χ1, χ, η](t1, t2)),
(b1 : Term[χ, η]⇒ σ)⇒ E(b1, k))

def abs[χ1, χ2, η](cast : Term[χ1, χ2, η]⇒ Term[χ, η]) :
E[κ, σ, χ2, (χ1, η)] =

new E((t : Term[χ2, (χ1, η)])⇒
b(cast(Abs[χ1, χ2, η](t))), k)

}

Figure 10. Implementation with a Builder Function and Typing,
Complete Version

need to change the environment in the continuation because, by the
typing rule (TABS), the new environment is used only in the term
immediately following abs.

We can encode terms in L(G) in Scala. To use this embedding,
not only do we need to pass in an initial builder to the E class
where we create an object of the class, but also specify the type
parameters representing the initial typing environment and the type
of the program. We define auxiliary methods.

def term[χ]() = new E[
⊥,
T erm[χ,Nothing],
χ,
Nothing](
(t : Term[χ,Nothing])⇒ null,
(s : Term[χ,Nothing])⇒ s

)
def id[τ, η](x : Term[τ, η]) = x

Using these methods, the following term

app abs varx(z) con(1)

is encoded in Scala as
term[Int]() app()
abs(id[Fun[Int, Int], Nothing]) varx(Zero()) con(1) : ⊥

The types of the partial method chains are shown in Figure 11.
The type of initial term() is shown in Figure 11(a); The type of
term() app() is shown in Figure 11(b); and so forth. We do not
care about the type σ, therefore, we put "_". The question marks
stand for type variables. The type of the whole method chain is
shown in Figure 11(e).

As a more complex example, the following term

app app abs abs con(2) app abs varx(z) con(1) con(1)

(a) E[⊥, _, Int,Nothing]

(b) E[E[⊥, _, ?, Nothing], _, Fun[?, Int], Nothing]

(c) E[E[⊥, _, Int,Nothing], _, Int, (Int,Nothing)]

(d) E[⊥, _, Int, (Int,Nothing)]

(e) ⊥

Figure 11. Examples

is encoded in Scala as

term[Int]()
app()
app()
abs(id[Fun[Int, Fun[Int, Int]], Nothing])
abs(id[Fun[Int, Int], (Int,Nothing)])
con(2)

app()
abs(id[Fun[Int, Int], Nothing])
varx(Zero())

con(1) : ⊥

4.2 Embedding Typing
Before we proceed to define the general metafunction enT, we
would like to summarize what we have learned from the example.
First of all, we must take typing rules into account when defining
this metafunction. It is very difficult to define a general embedding
function for all type systems, because it is very difficult to define
a small language that is expressive enough for all type systems.
However, if we focus on languages built around simply typed
lambda calculus, then there are a few assumptions that we can
make. The most important assumption is that

Assumption 4.2. There is exactly one typing rule for each produc-
tion in the grammar.



Each typing rule

Es1 ` es1 : ts1 . . . Esm ` esm : tsm

E ` ae1 . . . en : t
(T R∗)

can be written as

Ea,s1(E, t) ` es1 : Ta,s1(t)
. . .

Ea,sm(e, t) ` esm : Ta,sm(t)

E ` ae1 . . . en : t
(T R)

where {s1, . . . , sm} ⊂ {1, . . . , n}. For each typing rule T R, we
define two groups of mappings. The first group is Ta,si , which
maps the type t of e1 . . . en to the types of es1 , . . . , esm . Another
is Ea,si which maps the environment E and type t of e1 . . . en to
the environments of es1 , . . . , esm . The second assumption is that

Assumption 4.3. Both the group Ta,si and the group Ea,si are
definable with either construction or pattern matching on the pa-
rameters.

It turns out that many syntactic sugars fall into this framework.

Example 4.4. For example, consider extending our language with
the rules for if-then-else expressions and pairs.

E ` e1 : B E ` e2 : t E ` e3 : t

E ` if e1 then e2 else e3 : t
(TIFTHENELSE)

E ` e1 : t1 E ` e2 : t2

E ` pair e1 e2 : (t1, t2)
(TPAIR)

E ` e : (t1, t2)

E ` fst e : t1
(TFST)

E ` e : (t1, t2)

E ` snd e : t2
(TSND)

The (TIFTHENELSE) rules can be written as

Eif,1(E, t) ` e1 : Tif,1(t)
Eif,3(E, t) ` e2 : Tif,3(t)
Eif,5(E, t) ` e3 : Tif,5(t)

E ` if e1 then e2 else e3 : t
(TIFTHENELSE)

where

Eif,1|Eif,3|Eif,5(E, t) = E

Tif,1(t) = B

Tif,3|Tif,5(t) = t

The (TPAIR) rule can be written as

Epair,1(E, (t1, t2)) ` e1 : Tpair,1(t)
Epair,2(E, (t1, t2)) ` e2 : Tpair,3(t)

E ` pair e1 e2 : (t1, t2)
(TPAIR)

where

Epair,1|Epair,2(E, t) = E

Tpair,1((t, _)) = t

Tpair,2((_, t)) = t

The (TABS) rule can be written as

Eabs,1(E, fun(t1, t2)) ` e : Tabs,1(fun(t1, t2))

E ` abse : fun(t1, t2)
(TABS)

where

Eabs,1(E, fun(t, _)) = {t,E}
Tabs,1(fun(_, t)) = t

The (TAPP) rule can be written as

Eapp,1(E, t) ` e1 : Tapp,1(t)
Eapp,2(E, t) ` e2 : Tapp,2(t)

E ` e1 e2 : t
(TAPP)

where

Eapp,1|Eapp,2(E, t) = E

Tapp,1(t) = fun(t1, t)

Tapp,2(t) = t1

where t1 is a fresh type metavariable.

First, if type string matching or environment string pattern
matching is required in the consequence of a typing rule for
z → az1 . . . zn (which means that the type of the consequence is
not a type metavariable), such as in (TABS) and (TPAIR), then we
need to pass in a proof of definitional equality by a cast function.

Second, if type string pattern matching or environment string
pattern matching is required in the antecedent of a typing rule for
z → az1 . . . zn (which means that construction is required in Ta,k

or Ea,k, for some k ∈ {1, . . . , n}), then we need to construct
a new type for parameter χ or η, which represents the type and
the environment, respectively, either for type constructors that are
pushed onto the continuation stack in the return type of ea or the
types of the parameters of ea.

Third, all type variables in the rules other than that represented
by χ become the type variables of the method definitions such as
the app and abs method.

By viewing the grammar as parametrized, we actually embed-
ded part of the grammar not in the method chaining style but in
the functional nesting style. Therefore, it is possible to use some of
the existing techniques to avoid requiring the cast function, such
as in (TSUCC). Conversely, because an initial object with neces-
sary information is needed to initialize a method chain, the method
chaining style would induce unnecessary overhead and clog to the
code if used within the functional nesting style. This implies that
we can use method chaining style to embed a language while using
functional nesting style to deal with variables.

One potential problem that scrutinous readers may have noticed
is that in Example 4.1, the typing rules for constants are only
partially represented because the con method does not receive a
cast function as an argument. As a result, the universe of types may
be expanded. In general, the cast function is necessary. However,
this is not a problem in our example since all types of constants
are either specified in the type argument of term, or by the type
argument of cast functions for abs. Even if we add a cast function as
a parameter of the con method, we still rely on the user to provide
a type argument within the defined types for the cast function. We
call these types that are reused in the object language "native" types.
We need to deal with these types carefully, when generalizing our
method examplified.

4.3 The General Embedding Function for Typed Languages
Now, let’s define the embedding enT. enT is defined by a quadru-
ple of embedding functions (ent, ene, end, enb). These embed-
ding functions are parametrized over G, T, E, R, e, and d. G is
a parametrized grammar of the object language in LL(1) GNF. T is
a grammar for types of the object language in LL(1) GNF such that
ZT = {zT} (which may be a subgrammar of G). E is a grammar
for typing environments of the object language in LL(1) GNF such
that ZE = {zE}. R is a function that maps each production in G to a
typing rule of the form T R, so that there is exactly one typing rule
for each production in G. The name embedding function e maps
terminals and nonterminals in G to unique Scala names, and the
name embedding function d maps terminals and nonterminals of
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Figure 12. Embedding of Types in the Object Language
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Figure 13. Embedding of Typing Environments in the Object Lan-
guage

G, T, and E, and metavariables to unique Scala names such that
dz 6= ez for all z ∈ ZG.

We write the embedding of metavariable t as dt.

Definition 4.5. A extension G̃ of grammar G with metavariables
t1, t2, . . . is (ZG, zG,AG ∪{t1, t2, . . .},PG ∪{z→ tk|z ∈ ZG, k ∈
{1, 2, . . .}).

We start by defining the embedding ent, which is shown in
Figure 12, where υ1, . . . , υn are type parameters, an is a string
in T̃, and tn are subtrees. Each terminal in T is mapped to a
type constructor. This embedding generates the Scala classes that
represent types in the object language. This embedding actually
allows any type of the host language to be a type of the object
language. We do not need to restrict those types here because
possible types are restricted by the typing rules R. One advantage
of this is that we avoid casting for many types that we can reuse
from the host language.

The string embedding ent
S is defined on T̃ which maps type

metavariables t to dt. For example,

ent
S(N, d) = Int

ent
S(B, d) = Boolean

ent
S(fun t1 t2, d) = Fun[ent

S(t1, d), ent
S(t2, d)]

ent
S(t, d) = dt

The embedding ene of E is shown in Figure 13, where υ1, . . . , υn

are type parameters, an is a string in Ẽ, and tn are subtrees. Be-
cause E usually contains T, the embedding of E may share the
same classes as the embedding of T. For example, if the envi-
ronment is {t1, . . . {tn, nil}}, then ene

S({t1, . . . {tn, nil}}, d) =
d{[en

t
S(t1, d), d{[en

t
S(tn−1, d), dnil]].

The typing rules in R are encoded by both end and enb.
As the name suggests, end is an extension of the embedding end

defined in Section 3 for productions in G. Each embedding class is
parametrized over type parameters χ, η which represent types and
typing environments of the object language, respectively. The fv
metavariables are replaced by lists of free type variables that occur
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Figure 14. Embedding of Terms in the Object Language

in the constructor definition. Each constructor represents a typing
rule. The techniques for defining these data structures are typing
rule directed, as in [2]. Using auxilary definitions in Figure 14(a),
where "native" means that the type is a predefined Scala type such
as Int, or the name is a name for constants such as integers, the
embedding is defined in Figure 14(b) and Figure 14(c), where an is
a string in G, and tn are subtrees. Note that the string embedding is
exactly the same as in Section 3, because Scala automatically infers
the type parameters.

Next, we define enb
L. The rules are shown in Figure 15. We

redefined the auxiliary symbols from Section 3, adding type vari-
ables that represent types and typing environments to κn

k ,Bn,p
k for

k, n, p ∈ N. Also, in the definition of Bn,p
0 , we apply the cast

function after applying the builder.
Each method defined in class ez corresponds to a production,

and its typing rule. The class ez is parametrized over κ, σ, χ, η,
which represents the continuation stack, the type of the builder,
the type of the expected string that is generated by z, and the
typing environment, respectively. In the embedding, a cast : ϕ ⇒
dz[tvt, tve] function is passed in as a parameter for each method. In
the typing rule, the metametavariables t and tk for k ∈ {1, . . . , n}
are replaced with the actual types and similarly for E and Ek for
k ∈ {1, . . . , n}. If the actual type is a type metavariable t and
the actual environment is a metavariable E, then t = t,E = E
and neither Tai,k nor Eai,k require pattern matching, in which
case we can ignore the cast function because it has a trivial type
dz[dt, de] ⇒ dz[dt, de], and can be removed in a code generator3;
but we still list it in the parameters for uniformity. Similarly for
enb

S defined in Figure 16, the code generator can remove the id
argument for trivial cast function parameters to generate more
succinct code.

3 EriLex does this by testing the defintional equality when generating code.



p = arity(z→ azpzn)

nat(a, b, c) =

{
b b native
a[b, c] otherwise

ϕ , nat(dz, en
t
S(t, d), ene

S(E, d))

ϕn
i , nat(dzn

i
, ent

S(tn
i , d), ene

S(En
i , d))

ϕp
i , nat(dz

p
i
, ent

S(tp
i , d), ene

S(Ep
i , d))

σn
0 , σ

σn
i+1 , ϕn

n−i ⇒ σn
i

κn
0 , κ

κn
i+1 , ezn

n−i
[κn

i , σ
n
i , en

t
S(tn

n−i, d), ene
S(En

n−i, d)]

kn
0 , k

kn
i+1 , (bi+1 : σn

i+1)⇒ new ezn
n−i

(bi+1, k
n
i )

Bn,p
0 , b(cast(da(i1, . . . , ip, t1, . . . , tn)))

Bn,p
i+1 , (tn−i : ϕn

n−i)⇒ Bn,p
i

(a)

enb
L(G,R, d, e) = {enb

L(p,R, d, e)|p ∈ PG1}
enb

L(z→ azpzn,R, d, e) = class ez[κ, σ, tvt, tve](

b : dz[tvt, tve]⇒ σ,

k : σ ⇒ κ){enb
L(azn, d, e)}

where R(z→ azn) =

Ep
1 ` ep

1 : tp
1 . . . En

n ` en
n : tn

n

E ` aepen : t

enb
L(azpzn, d, e) = def ea[fv](

i1 : ϕp
1, . . . , ip : ϕp

p,

cast : ϕ⇒ dz[tvt, tve]) :

κn
n = kn

n(Bn,p
n )

where

tvt =

{
χ t is not a metavariable
dt otherwise

tve =

{
η E is not a metavariable
dE otherwise

fv = free type variables in the method definition

(b)

Figure 15. Embedding of Terms in MCS with a Builder Function
and Typing

The source embedding of programs in the object language de-
fined using the following auxiliary method definitions: term() and
id(), is shown in Figure 16.

The embedding in enb
S for a program

a1i
k1 . . . anikn

where ak are top level symbols for k ∈ {1, . . . , n} and iki are sec-
ond level strings for i ∈ {1, . . . , n}, is defined in Figure 16, where
tn
k ,E

n
k are the types and typing environments of the substrings of

program at ak, for k ∈ {1, . . . , n}.
The embedding of the object language is defined in Figure 17.

enb
S(a1i

k1 . . . anikn ,

G,R, d, e, tn,En) = new term()s1 . . . sn : ⊥
where

si = eai(end
S(iki

1 , d), . . . , end
S(iki

ki
, d)

id[ent
S(tn

i , d), ene
S(En

i , d)])

ϕG , dzG [ent
S(tn

1 , d), ene
S(En

1 , d)]

def term() = new ezG [⊥, ϕG, en
t
S(tn

1 , d), ene
S(En

1 , d)](

(t : ϕG)⇒ null,

(s : ϕG)⇒ s

)

def id[τ, η] = (x : Term[τ, η])⇒ x

Figure 16. String Embedding

enT
L (T,E,G,R, d, e) = ent

L(T, d) ∪ ene
L(E, d)

∪end
L(G,R, d) ∪ enb

L(G,R, d, e)

enT
S (an,G, d, e, tn,En) = enb

S(an,G, d, e, tn,En)

Figure 17. The Embedding enT
L

We need the following theorem to complete our discussion.

Theorem 4.6. If G, T, and E are grammars of the terms, types,
and typing environments of the object language in LL(1) GNF, R
is a function that maps each production in G to a typing rule of
the form T R, e maps AG ∪ ZG to unique Scala names, d maps
AT̃ ∪ ZT̃ ∪ AẼ ∪ ZẼ ∪ AG ∪ ZG to unique Scala names such that
dz 6= ez for all z ∈ ZG, s = a1i

k1 . . . anikn ∈AG
∗, tn are strings

of T,En are strings of E, then s ∈ L(G) and En
k ` sk : tn

k , where
sk is the substring of s at ak, for all k ∈ {1, ..., n} if and only
if enT

L (T,E,G,R, d, e) ∪ {enT
S (s,G, d, e, tn,En)} is well-typed in

Scala.

Proof. (Sketch) First prove that any encoded term is automatically
well-formed and well-typed because the constructor da only en-
codes well-formed and well-typed terms. Next, by type safety, the
encoding always constructs encoding of some well-formed and
well-typed term. Finally, we prove that the term constructed is the
same term as that is encoded in the method chain.

It is clear that with the addition of any nontrivial typing (i.e.
everything does not have the same type), our embedding generally
can no longer be modeled by an slrpda with finite stack symbols
and input symbols. However, if we allow the slrpda to have count-
ably infinite number of stack symbols and input symbols, our em-
bedding can be easily modeled, by viewing types constructed from
embedding classes as just a complex stack symbol, thus providing
an upper bound of the expressiveness of the embedding framework.

5. Related Work
The problems of embedding a typed DSL into a host language in the
FNS has been studied extencsively, see [6] for a list of references.
However, MCS embedding seems to be largely ignored, probably
because most of the research are done in a functional setting, and
embedding MCS in a functional programming language without
object-oriented features is awkward. As the object-oriented pro-
gramming languages become more and more mature in their type



systems, MCS may be a viable alternative to FNS since it seems to
be very natural in object-oriented programming languages.

Scala[1, 4, 9, 12] is well known for its combination of flexible
syntax, functional programming features, and object-oriented pro-
gramming features, and consequently the ease to define DSLs. The
Scala Parser Combinators is a parser library that embeds a BNF-
like parser DSLs in the Scala programming language in a very suc-
cinct way. Combinator based parser libraries are also widely imple-
mented and used[5]. We would like to point out that the monadic
parsers provide a very concise way of embedding parser DSLs.
However, as pointed out in [3], there is no easy way to transform
the resulting parser to make optimizations. In our approach, the
builder function are used to build a typed abstract syntax tree so
that the techniques introduced in [3] can be applied. Also, syntacti-
cally, which is probably less essential, in combinator based parser
libraries, the sequencing combinator (which usually does not ap-
pear in BNF) usually can not be omitted unless there are special
language support in the host language (such as the do notation in
Haskell), whereas in our approach as shown in Section 2, the se-
quencing operator is not needed, which results in a more succinct
embedding. Also, it is not clear in an object-oriented programming
language how the advantages of parser combinator would translate
to embedding DSLs other than parser DSLs, such as simply typed
lambda calculus based languages.

Two case studies of type safe DSLs and many practical aspects
of implementing embedded DSL are discussed in [7], in which type
safety is dealt with in a case by case manner. Typing environments
are partially encoded in class names which results in that the num-
ber of classes required is linear to the maximum size of the typing
environment allowed. In our approach, this problem is solved based
on the embedding from [2] and using the two groups of functions
E,T defined in Section 4.2. In this respect, our embedding can be
viewed as an extension of embedding from [2].

6. Discussion
It may seem that the difference between FNS and MCS are purely
syntactical because one can be encoded in another, but we believe
that MCS is a very important tool for object-oriented programming
languages. On one hand, the syntax is an important aspect of em-
bedding a DSL, for the expressiveness of an embedded language
can not exceed that of the host language. On the other hand, if en-
coding is concerned only, then most common features in object-
oriented programming languages can be encoded in a functional
programming language as demonstrated in [10]. Conversely, func-
tional programming can also be encoded in a object-oriented pro-
gramming language with parametric types and closure. But alter-
natives are still useful because some encoding may make the code
"bulky" at best, and inefficient at worst. After all every program-
ming language is more polished at the task it is intended for. For
mainstream object-oriented programming languages, it is creating
objects and invoking methods, but not dealing with higher order
functions.

Our approach may not be the most efficient because the builder
function in the embedding actually builds an AST. However, be-
cause the constructors da are not required to be constructors, they
can be any functions with the same type. Therefore, they can be eas-
ily interchanged with functions that actually act as the interpreter,
thus improving the performance. Practically, if we want to obtain
the AST for transformation, we can simply change the initial con-
tinuation k to (t : Term) ⇒ t to make it return the tree built in-
stead of null. Sometimes if the grammar is complex, the resulting
AST of GNF may not be the desired AST. For example in Example
2.10, we may discard the nodes generated by r′ and move its subn-
odes one level up, as it is apparent that only nodes generated by r
are needed in a more compact form of the grammar.

To ensure that the cast function is always the identity function,
we may use the technique in [2], but this requires higher-rank
polymorphism of kind ∗ → ∗ (i.e. universally quantified type
constructor in the domain type of a function), which is not directly
supported but can be encoded in Scala. For practical reasons we
choose not to used this encoding in this framework. However,
if direct support for higher-rank polymorphism of higher kind is
implemented in Scala, then we will definitely use that because that
seems to be a more elegant solution.

Our framework actually allows the object language to have not
just "terms", but multiple classes of programming constructs, which
is useful for embedding practical DSLs such as SQL in which dif-
ferent classes of programming constructs are not interchangeable.

To conclude, we demonstrated how to embed DSLs in Scala
in this paper in a general framework. We tried to keep to the
object-oriented programming paradigm as close as possible, so that
our framework can be used in a wide range of object-oriented
programming languages and are easily assessable to the majority
of programmers. In fact, most of the framework can be directly
translated to Java, albeit in a more verbose manner, using the
classical inner class encoding. There are many other features in
Scala that we have not used, such as abstract types, existential
types, and explicit bounded polymophism. Exploring these features
for embedding DSLs is part of future work for seeking more elegant
solutions.
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