
Optimal Online Multiprocessor Scheduling of Sporadic Real-Time Tasks is
Impossible

Nathan Fisher
Wayne State University

Joël Goossens
Université Libre de Bruxelles

Sanjoy Baruah
The University of North Carolina at Chapel Hill

Abstract

Optimal online scheduling algorithms are known for sporadic task systems scheduled upon a single processor.
Additionally, optimal online scheduling algorithms are also known for restricted subclasses of sporadic task sys-
tems upon an identical multiprocessor platform. The research reported in this article addresses the question of
existence of optimal online multiprocessor scheduling algorithms for general sporadic task systems. Our main re-
sult is a proof of the impossibility of optimal online scheduling for sporadic task systems upon a system comprised
of two or more processors. The result is shown by finding a sporadic task system that is feasible on a multiproces-
sor platform that cannot be correctly scheduled by any possible online, deterministic scheduling algorithm. Since
the sporadic task model is a subclass of many more general real-time task models, the nonexistence of optimal
scheduling algorithms for the sporadic task systems implies nonexistence for any model which generalizes the
sporadic task model.
Keywords: Real-time scheduling; Multiprocessor systems; Sporadic task model; Optimal scheduling algorithms.



1 Introduction

The sporadic task model [18, 16] has received tremendous research attention over the years for its usefulness
in modeling recurring processes for hard-real-time systems. A sporadic task τi = (ei, di, pi) is characterized by
a worst-case execution requirement ei, a (relative) deadline di, and a minimum inter-arrival separation pi, which
is, for historical reasons, also referred to as the period of the task. Such a sporadic task generates a potentially
infinite sequence of jobs, with successive job-arrivals separated by at least pi time units. Each job has a worst-case
execution requirement equal to ei and a deadline that occurs di time units after its arrival time. A sporadic task
system τ is a collection of such sporadic tasks.

Two significant factors contribute to the popularity of the sporadic task model in real-time system design. One
factor is the generality of the sporadic task model. The sporadic task model is an extension of an earlier task
model known as the Liu and Layland (LL) task model [17]. An LL task, τi, is only specified by an worst-case
execution requirement ei and a period pi. The relative deadline is implicit in the period parameter (i.e., a job of an
LL task has absolute deadline pi time units after its arrival). The sporadic task model is, thus, a generalization of
the LL task model, and, in fact, LL tasks are a subclass of sporadic task systems sometimes referred to as implicit-
deadline sporadic task systems. Other subclasses of sporadic task systems include constrained-deadline sporadic
task systems where each task has di ≤ pi and arbitrary-deadline sporadic task systems where no constraint is
imposed upon the relationship between a task’s deadline and period.

The development of effective and efficient scheduling algorithms and associated analytical techniques for single
processor systems is another factor in the sporadic task model’s popularity. For instance, the earliest-deadline-first
(EDF) scheduling algorithm is known to be optimal for arbitrary collections of independent jobs scheduled upon
uniprocessor platforms [8]. This optimality result holds for both sporadic task systems and LL task systems on
uniprocessors. The notion of optimality for real-time systems is explained in the following: a task system τ is said
to be feasible on a processing platform, if, for any legal job arrival sequence of τ , there exists a schedule for τ on
the processing platform in which each job successfully completes execution by its deadline. For any task system
τ that is feasible on a given processing platform, an optimal scheduling algorithm is guaranteed to generate a
schedule for τ which meets all deadlines. In addition to the existence of optimal scheduling algorithms for sporadic
task systems, exact, pseudo-polynomial-time techniques are known for determining whether a given sporadic task
system is feasible upon a preemptive single processor platform [7]. Such techniques are known as feasibility
analysis. A related analysis technique, known as schedulability analysis, determines whether a given scheduling
algorithm will correctly schedule a task system to meet all deadlines on a processing platform. Relatively efficient,
exact schedulability tests have been developed for various scheduling algorithms on uniprocessor platforms.

The success of the sporadic task model for real-time system design on single processor systems has motivated
research on scheduling algorithms and feasibility/schedulability analysis for sporadic task systems upon multi-
processor platforms. Unfortunately, most results from uniprocessor scheduling of sporadic task systems do not
trivially extend to the multiprocessor setting. For instance, it is known that EDF is a suboptimal scheduling algo-
rithm for even LL tasks on multiprocessor platforms [10]. However, optimal scheduling approaches for LL task
systems have been developed [13, 6, 20].

Since LL tasks are a subclass of sporadic task systems, the non-optimality result for EDF [10] extends trivially
to sporadic task systems on multiprocessor platforms. The question that this article addresses is: does there exist
an algorithm which is guaranteed to successfully schedule any feasible sporadic task system on a multiprocessor
platform? In other words, does there exist optimal scheduling algorithms for sporadic task model? For LL task
systems, the answer to that question is “yes,” due to the existence of optimal scheduling approaches (referred to
in the preceding paragraph). For arbitrary collections of independent jobs where job arrival-times are not known
a priori, Hong and Leung [12] and Dertouzos and Mok [9], independently, showed that the answer is “no”; i.e.,
optimal online scheduling of arbitrary collections of independent jobs is impossible. In terms of generality, the
sporadic task model lies between the LL task model (any LL task system is also a sporadic task system) and the

1



arbitrary collections of independent jobs setting (any collection of jobs generated by a sporadic task system is also
a legal collection of independent jobs). As we will illustrate later in this article, the multiprocessor optimality
result for LL task systems and the non-optimality result do not directly apply to the sporadic task systems. Thus,
the above question cannot be answered by application of prior results.

The main contribution of this article answers the above open question in the negative: optimal online multipro-
cessor scheduling of sporadic task systems is impossible. We, in fact, show a slightly stronger result that optimal
online multiprocessor scheduling of constrained-deadline sporadic task systems is impossible. The impossibility
result for constrained-deadline sporadic task systems immediately implies that optimal online scheduling of any
task model that generalizes the constrained-deadline sporadic task model is impossible, as well. Therefore, even a
slight amount of generalization from the LL task model (the sporadic task model simply adds a relative deadline
parameter to the task specification) causes the existence of optimal scheduling algorithms to disappear.

This article is organized as follows. Section 2 presents the formal models and notation that we use for describing
real-time work, task systems, processing platforms, and scheduling algorithms, Section 3 illustrates (via examples)
the inapplicability of prior multiprocessor optimality results to the multiprocessor scheduling of sporadic task
systems. Section 4 proves that optimal online multiprocessor scheduling of sporadic and more general task systems
is impossible. The proof given in Section 4 relies upon an example task system that is assumed to be feasible upon
a multiprocessor platform; Section 5 proves that this example task system is, in fact, feasible.

2 Model and Notation

2.1 Real-Time Instances

Throughout this article, we will characterize a real-time job Ji by a three-tuple (Ai, Ei, Di): an arrival timeAi,
an execution requirement Ei, and a relative deadline Di. The interpretation of these parameters is that Ji arrives
Ai time units after system start-time (assumed to be zero) and must execute for Ei time units over the time interval
[Ai, Ai + Di). Ai is assumed to be a non-negative real number while both Ei and Di are positive real numbers.
The interval [Ai, Ai + Di) is referred to as Ji’s scheduling window. A job Ji is said to be current at time t if
t ∈ [Ai, Ai +Di). A current job is active at time t, if it has not completed execution by time t.

We denote a real-time instance I as a finite or infinite collection of jobs I = {J1, J2, . . .}. F(I) denotes a
real-time instance family with representative real-time instance I . For each job J ′i in real-time instance I ′ ∈ F(I),
there is a job Ji in instance I with the same release time and deadline; however, the execution of J ′i cannot exceed
the execution time of Ji. More formally, I ′ ∈ F(I) if and only if

∀J ′i ∈ I ′,∃Ji ∈ I :: (A′i = Ai) ∧ (D′i = Di) ∧ (E′i ≤ Ei).

Informally, F(I) represents a set of related real-time instances with I being the most “temporally constrained” of
the set.

Example 1 Consider a real-time instance I = {(0, 2, 3), (5, 4, 5), (6, 2, 4)}. F(I) includes any instance I ′ =
{(0, x, 3), (5, y, 5), (6, z, 4)} such that 0 ≤ x ≤ 2, 0 ≤ y ≤ 4, and 0 ≤ z ≤ 2.

2.2 Real-Time Task Models

In some simpler real-time systems, it may be possible to completely specify the real-time instance I prior to
system run-time (i.e., the system designer has complete knowledge of each Ji ∈ I). However, in systems with a
large (or infinite) number of real-time jobs or systems that exhibit dynamic behavior, explicitly specifying each job,
prior to system run-time, may be impossible or unreasonable. Fortunately, for systems where jobs may repeatedly

2



occur there is a more succinct representation of the repeating jobs via specification in some recurrent task model.
A task model is the format and rules for specifying a task system. We may represent a set of repeating or related
jobs by a recurrent task τi specified according to the model M (e.g., the sporadic task model). For every execution
of the system, τi will generate a (possibly infinite) collection of real-time jobs.

Several recurrent tasks can be composed together into a recurrent task system τ = {τ1, τ2, . . . , τn}. The letter
n will denote the number of tasks in a task system. Every system execution of task system τ will result in the
generation of a real-time instance I . We will denote the set of real-time instances that τ can legally generate
as IM(τ). Based on the real-time instances that τ generates, we can classify τ as either completely specified or
partially-specified. If the arrival-time and deadline parameters of each job Ji ∈ I can be determined prior to system
run-time, τ is a completely-specified task system. However, for many real-time systems, it is not possible to know
beforehand what real-time instance will be generated by the system during run-time. Furthermore, completely-
specified systems are incapable of handling changes in real-time workloads. To overcome the fragile and inflexible
nature of completely-specified task systems, a designer may instead consider partially-specified tasks systems.1

The focus of this article is on partially-specified task systems.
Partially-specified task systems permit that different executions of the same system may result in different real-

time instances (with different job arrival times) being generated. The specification for a partially-specified task
system includes a set of constraints that any generated real-time instance must satisfy; in general, such a system
may legally generate infinitely many different real-time instances, each of which satisfies the constraints placed
upon their generation. Each such real-time instance may also have infinitely many jobs.

Let M and M ′ be task models. We say that task model M ′ generalizes task model M , if for every task system
τ specified in model M there exists a task system τ ′ specified in model M ′ such that

I ∈ IM(τ)⇔ I ∈ IM′
(τ ′).

That is, for all task systems τ that can be specified in task model M , there is a task system τ ′ specified in task
model M ′ that can generate exactly the same real-time instances as τ . In the remainder of this subsection, we
describe the Liu and Layland task model and sporadic task model in this more formal context.
§ Liu and Layland (LL) Task Model (Implicit-Deadline Sporadic Task Model). As mentioned in the intro-
duction, the behavior of a LL task τi can be characterized by a two-tuple (ei, pi). As with the periodic task model,
ei indicates the worst-case execution time of any job generated by task τi. The pi parameter indicates the minimum
inter-arrival time between successive jobs of τi (note pi denoted the exact inter-arrival time for periodic tasks).
Let J LL

WCET(τi) be a collection of real-time instances such that jobs of each real-time instance are generated by
LL task τi satisfying the minimum inter-arrival constraint and requiring the worst-case possible execution time;
i.e., Iτi is a member of J LL

WCET(τi) if and only if for all Jk ∈ Iτi the following constraints are satisfied:

(Ek = ei) ∧ (Dk = pi) ∧ ((∃Jk+1 ∈ Iτi \ {Jk} : Ak+1 ≥ Ak)⇒ (Ak+1 −Ak ≥ pi)) . (1)

The set of real-time instances that a LL task system τ = {τ1, τ2, . . . , τn} can generate (with worst-case possible
execution time) is equal to

I LL
WCET(τ) def=

{
n⋃
i=1

Iτi

∣∣∣∣ (Iτ1 , Iτ2 , . . . , Iτn) ∈
n∏
i=1

J LL
WCET(τi)

}
. (2)

Thus, the set of real-time instances generated by LL task system τ is

I LL(τ) =
⋃

Ij∈I LL
WCET(τ)

F(Ij). (3)

1A partially-specified task system is sometimes referred to as non-concrete [14].

3



Example 2 Consider the following LL task system: τ = {τ1 = (2, 4), τ2 = (3, 10)}. Examples of sets of
jobs in J LL

WCET(τ1) are {(0, 2, 4), (4, 2, 4), (8, 2, 4), . . .}, {(0, 2, 4), (5, 2, 4), (9, 2, 4)}, and {(0, 2, 4), (6, 2, 4),
(10, 2, 4), . . .}; examples of sets of jobs in J LL

WCET(τ2) are {(0, 3, 10), (10, 3, 10), (20, 3, 10), . . .}, {(1, 3, 10),
(15, 3, 10), (25, 3, 10), . . .}, and {(5, 3, 10), (15, 3, 10), (25, 3, 10), . . .}.

§ Sporadic Task Model. The LL task model allows for flexibility in the job arrival times for a task τi; however, the
model is still somewhat restrictive in forcing the deadline of each job generated by τi to be equal to the minimum
inter-arrival parameter pi. It is easy to imagine scenarios where the deadline of a job is not correlated with the
minimum inter-arrival: for example, in a car’s brake system the minimum time between braking events may be
considerably larger than the required braking-reaction time (i.e., deadline for halting the car). The sporadic task
model generalizes the LL task model by adding a relative deadline parameter di to the specification for a task.
Recall that a sporadic task τi is specified by the three-tuple (ei, di, pi). Let J S

WCET(τi) be a collection of real-time
instances that are jobs generated by sporadic task τi satisfying the minimum inter-arrival constraint and requiring
the worst-case possible execution time; i.e., Iτi is a member of J S

WCET(τi) if and only if for all Jk ∈ Iτi
the following constraints are satisfied:

(Ek = ei) ∧ (Dk = di) ∧ ((∃Jk+1 ∈ Iτi \ {Jk} : Ak+1 ≥ Ak)⇒ (Ak+1 −Ak ≥ pi)) . (4)

(Note that the only difference from Equation 1 for LL jobs is that the Dk parameter for each job Jk is set to
di). The set of real-time instances that a sporadic task system τ = {τ1, τ2, . . . , τn} can generate (with worst-case
possible execution times) is

I S
WCET(τ) def=

{
n⋃
i=1

Iτi

∣∣∣∣ (Iτ1 , Iτ2 , . . . , Iτn) ∈
n∏
i=1

J S
WCET(τi)

}
. (5)

Thus, the set of real-time instances generated by sporadic task system τ is

I S(τ) =
⋃

Ij∈I S
WCET(τ)

F(Ij). (6)

Observe that for any LL task system τ = {τ1 = (e1, p1), . . . , τn = (en, pn)} we can represent the same task
system in the sporadic model by the sporadic task system τ ′ = {τ ′1 = (e1, p1, p1), . . . , τn = (en, pn, pn)}. It is
easy to see that I LL(τ) = I S(τ ′); therefore, the sporadic task model generalizes the LL task model.
§ More General Task Models. There are other known real-time task models more general than the sporadic task
model. For example, the generalized multiframe (GMF) task model [5] allows for a task to generate sequence
of jobs with heterogenous separation, relative deadlines, and worst-case execution parameters. Another general
task model, known as the recurring real-time task model [4], allows for conditional generation of job sequences
for a task. Both of these models generalize the sporadic task model. Thus, the impossibility of optimal online
multiprocessor scheduling algorithms for sporadic task systems implies the impossibility of optimal scheduling
algorithms for these more general task models, as well.

2.3 Machine Model

This article focuses on the real-time scheduling upon multiprocessor platforms. More specifically, we will be
concentrating on scheduling upon a class of multiprocessor platforms known as the identical multiprocessors. The
identical multiprocessor model assumes that each processor in the platform has identical processing capabilities
and speed. We denote the multiprocessor platform by Π and assume Π is comprised of m identical processors π1,
π2, . . ., πm ∈ Π. Recall from the beginning of this paper that each job corresponds to the execution of a sequential

4



segment of code by the processing platform. For each model introduced in the previous subsection, a real-time
task has associated worst-case execution requirement parameter(s). These execution requirements represent the
worst-case cumulative amount of execution time that a job generated by the task requires to execute to completion
on the processing platform.
§ Some Assumptions. We will assume that each processor has unit-speed. We will assume that jobs are pre-
emptable at arbitrary times with no additional cost. Furthermore, we allow scheduling algorithms which migrate
jobs between processor; that is, a job may execute on different processors over its scheduling window; however,
job-level parallelism is not permitted (i.e., a job may not execute concurrently with itself on two or more pro-
cessors simultaneously). We will make the simplifying assumption that migration does not incur any additional
penalty or execution. Throughout this article, we will also assume that tasks are independent of each other; that
is, the execution of a job of one task is not contingent upon the status of a job of another task (e.g., blocking on
shared resources is not permitted). Most of the above assumptions are not limiting; in fact, the nonexistence of
optimal online multiprocessor scheduling algorithms for sporadic task systems under this simplified setting im-
plies the non-existence of optimal scheduling algorithms when the assumptions on preemption, migration, and
task independence are removed.

2.4 Real-Time Scheduling Algorithms

When executing a real-time application, the real-time scheduling algorithm must determine which current jobs
are executing on the processing platform at every time instant. At an abstract level, the real-time scheduling
algorithm determines the interleaving of execution for jobs of any real-time instance I on the processing platform
Π. The interleaving of execution of I on Π is known as a schedule. The goal of a real-time scheduling algorithm
is to produce a schedule that ensures that every job of I is allocated the processor (i.e., executes) for its execution
requirement during its scheduling window. In this subsection, we give some formal definitions for real-time
scheduling algorithm concepts.

We can formally define the schedule S for real-time instance I as a function of the processor and time.

Definition 1 (Schedule Function) Let SI(πk, t) be the job of I scheduled at time t on processor πk ∈ Π;
SI(πk, t) is ⊥ if there is no task scheduled at time t (i.e., SI : Π × R+ 7→ I ∪ {⊥}). Let SI,Π be the set of
all possible schedule functions over real-time instance I and platform Π.

It is sometimes useful to view the behavior of a single job of a real-time instance I in schedule SI . The following
definition allows us to characterize the schedule SI with respect to task Ji.

Definition 2 (Job-Schedule Function) SI(πk, t, Ji) is an indicator function denoting whether Ji is scheduled at
time t on processor πk for schedule SI . In other words,

SI(πk, t, Ji)
def=
{

1 , if SI(πk, t) = Ji
0 , otherwise.

(7)

A scheduling algorithm makes decisions about the order in which jobs of a real-time instance should execute.
For systems that are partially-specified, an online algorithm is appropriate to handle dynamic job arrivals. For any
time t, an online real-time scheduling algorithm decides the set of jobs that will be executed on Π at time t based
on prior decisions and the status of jobs released at or prior to t. An online scheduling algorithm does not have
specific information on the release of jobs after time t (i.e., future jobs arrival times are unknown). This article
focuses on deterministic online, real-time multiprocessor scheduling algorithms.

5



At an abstract level, a real-time scheduling algorithm2 A (either static or offline) on platform Π is a higher-
order function3 from real-time instances to schedules over Π — i.e., A : IM(τ)→ ⋃

I∈I SI,Π. Let I≤t
def= {Ji ∈

I|Ai ≤ t}; that is, I≤t is the set of jobs of I that arrive prior to or at time t. For an online scheduling algorithm
A, I≤t represents the set of jobs that A has knowledge of at time t (i.e., A knows the arrival time, execution
requirement, and deadline parameters of the jobs of I≤t, but not other jobs of I). Up until time t, algorithm A
has made scheduling decisions without specific knowledge of jobs arriving after time t; furthermore, jobs arriving
after t cannot have an effect on the schedule generated by A from time zero to t. In other words, for an online
scheduling algorithm future jobs cannot change past scheduling decisions.

Definition 3 (Deterministic Online Scheduling Algorithm) For any I ∈ IM(τ), let SAI be the schedule pro-
duced by algorithm A for real-time instance I and platform Π. An online real-time scheduling algorithm must
satisfy the following constraint: for all I, I ′ ∈ IM(τ) and for all t > 0,

(I≤t = I ′≤t)⇒
(∀t′(0 ≤ t′ ≤ t), ∀πk ∈ Π :: SAI (πk, t′) = SAI′ (πk, t′)

)
. (8)

Beyond restricting our attention to deterministic, online scheduling algorithms and algorithms that forbid job-level
parallelism, we do not make any other restrictions on the scheduling algorithm.

2.5 Feasible Real-Time Task Systems

The definition of “optimal scheduling algorithm” makes use of the notion of a task system being feasible upon
a processing platform: an optimal scheduling algorithm can correctly schedule any feasible task system. Thus, we
need to formalize what we mean by “feasible task system.” This subsection defines “feasible” and other related
concepts.

When evaluating a real-time system, it is sometimes useful to describe the amount of “work” (execution) that a
job does over a specified interval in a given schedule. The next definition defines the amount of “processor time”
that a job receives over a given interval.

Definition 4 (Work Function) W (SI , πk, Ji, t1, t2) denotes the amount of processor time on πk that Ji receives
from schedule SI over the interval [t1, t2). In other words,4

W (SI , πk, Ji, t1, t2) def=
∫ t2

t1

SI(πk, t, Ji)dt. (9)

We can use a system-work function to describe the cumulative work done by all jobs of a real-time instance over
a specified time interval in a given schedule.

Definition 5 (System-Work Function) WI(SI , t1, t2) denotes the amount of processor time (over all processors
of Π) received by all jobs of I in schedule SI over the interval [t1, t2).

WI(SI , t1, t2) def=
∑
πk∈Π

∑
Ji∈I

W (SI , πk, Ji, t1, t2). (10)

2We will slightly abuse notation and use A to refer to both the scheduling algorithm and the function.
3A higher-order function has a function space as either the domain or range.
4Since SI(πk, t, Ji) is potentially discontinuous at an infinite number of points,

∫ t2
t1
SI(πk, t, Ji)dt denotes a Lebesgue integral [15]

and not a Riemann integral.

6



Not all functions from Π × R+ to I , for a given real-time instance I , represent valid executions of a real-time
system that could generate the instance I . In particular, we must ensure the following: a job can only execute
during its scheduling window, a job cannot execute concurrently with itself on two or more processors, and a job
must execute for Ei time units in its scheduling window to meet its deadline. Using Definitions 1 through 5, we
can now formally define a valid schedule SI with respect to a real-time instance I:

Definition 6 (Valid Schedule) SI ∈ SI,Π is valid (with respect to jobs of some real-time instance I and platform
Π) if and only if the following three conditions are satisfied:

1. For any Ji ∈ I , if t < Ai or t > Ai + Di then SI(πk, t) 6= Ji for all πk ∈ Π (i.e., a job cannot execute
while it is outside its scheduling window). For this article, will assume that two different jobs of the same
task may execute concurrently on different processors (i.e., intra-task parallelism is allowed, but intra-job
parallelism is forbidden).

2. If SI(πi, t) 6= ⊥ and SI(πj , t) 6= ⊥ then SI(πi, t) 6= SI(πj , t) for all t ∈ R+ and πi 6= πj ∈ Π (i.e., a job
may not execute concurrently with itself).

3. For all Ji ∈ I , WI(SI , Ji, Ai, Ai + Di) = Ei (i.e., each job receives processing time on Π equal to its
execution requirement between its release time and deadline).

Recall that a recurrent task system can potentially generate infinitely different distinct real-time instances over
different executions of the system. Informally, a recurrent task system τ is feasible on processing platform Π if
and only if for every possible real-time instance there exists a way to meet all deadlines. If there is a way for a
real-time instance I to meet all deadlines, we say that I is a feasible instance on processing platform Π.

Definition 7 (Feasible Instance) A real-time instance I is feasible on platform Π if and only if there exists SI ∈
SI,Π such that SI is valid.

We may extend the definition of feasible real-time instances to recurrent task systems.

Definition 8 (Feasible Task System) Recurrent task system τ in task model M is feasible on platform Π if and
only if for all I ∈ IM(τ), I is a feasible instance on Π.

3 Inapplicability of Prior Optimality Results for Multiprocessor Real-Time Scheduling

The nonexistence of optimal online multiprocessor real-time scheduling algorithms for arbitrary collection of
jobs has been known since the late 1980s [12, 9]. However, as mentioned in the introduction, these results do
not imply the nonexistence of optimal multiprocessor scheduling algorithms for sporadic task systems. In this
section, we will briefly review the Dertouzos and Mok [9] proof of impossibility for optimal scheduling of arbitrary
collection of real-time jobs and discuss why this result does not apply to sporadic task systems. We will omit a
discussion of the Hong and Leung result [12], since a nearly identical argument will show that their results also do
not apply to the sporadic task model setting. The following is a restatement of the main result from [9].

Theorem 1 (from Dertouzos and Mok [9]) For two or more processors, no online scheduling algorithm can be
optimal for arbitrary collections of real-time jobs without complete a priori knowledge of the absolute deadlines,
execution time, and arrival time of each job.

Why does the above theorem not imply that sporadic task systems have no optimal multiprocessor scheduling
algorithm? Intuitively, the reason is that for arbitrary real-time instances an optimal scheduling algorithm must be

7



able to correctly schedule any feasible real-time instances. While for sporadic task systems, an optimal scheduling
algorithm must correctly schedule only feasible real-time instances that may be legally generated by a sporadic
task system. To more clearly illustrate this point let us consider the following lemma from [9] used to prove
Theorem 1.

Lemma 1 (from Dertouzos and Mok [9]) For two or more processors, no online scheduling algorithm for arbi-
trary collections of real-time jobs without complete a priori knowledge of the arrival time of each job.

The above lemma is proven in [9] by finding a set of feasible real-time instances that are identical up until a some
time t that would cause any deterministic online scheduling algorithm to miss a deadline after time t. Below is the
example set of feasible real-time instances used by Dertouzos and Mok [9] to prove Lemma 1.

Example 3 Define the following set of real-time instances.

I1
def= {J1 = (0, 2, 4), J2 = (0, 1, 1), J3 = (0, 1, 2)},

I2
def= {J4 = (1, 1, 1), J5 = (1, 1, 1)},

I3
def= {J6 = (1, 2, 2), J7 = (1, 2, 2)},

IA
def= I1 ∪ I2,

IB
def= I1 ∪ I3.

(11)

Consider how any online, deterministic scheduling algorithm A would execute real-time instances IA or IB on
platform Π = {π1, π2} comprised of two identical unit-speed processors. To simplify the presentation of the
example, let us assume that A only makes scheduling decisions at integer time instants (i.e., preemptions will not
occur at non-integer time instants); the lemma holds even when we remove this simplifying assumption. IfA does
not know the arrival times of each job prior to their arrival, at time zero algorithm A can only make a scheduling
decision based upon the knowledge of the set of jobs in I1 (for scheduling either IA or IB). Real-time instances IA
and IB appear to be identical toA for all times in the interval [0, 1). However,Amust make a decision about what
set of jobs will execute over [0, 1) on the two processors of Π without knowledge of the jobs that may arrive at
time-instant one (i.e., at time zero,A does not know whether it is executing IA or IB). Obviously,A must execute
job J2 on some processor (w.l.o.g., assume π1) over the interval [0, 1) for J2 to meet its deadline at time-instant
one. The non-obvious choice is what should execute on π2 over [0, 1)? There are three possible choices:

1. A executes J1 on π2 over [0, 1).

2. A executes J3 on π2 over [0, 1).

3. A executes no job on π2 over [0, 1).

If A executes J1 over [0, 1), real-time instance IA would miss a deadline at time-instant two; observe in this
scenario J3, J4, and J5 must execute exactly continuously over [1, 2) to meet their deadline, but there are only two
available processors. For a similar reason, IA would also miss a deadline at time-instant two, if A chose not to
execute a job on π2 over [0, 1). IfA instead executes J3 over [0, 1), real-time instance IB would miss a deadline at
time-instant three, since J1, J6, and J7 require continuous execution over [1, 3). The reader should observe that IA
and IB are both feasible on two processors (i.e., a valid schedule may be found for both instances). However, the
above case analysis shows that for any choice made by A at time zero (without knowledge of future job arrivals),
there exist a feasible set of future job arrivals that will causeA to miss a deadline. Thus, optimal online scheduling
is impossible for arbitrary collections of real-time jobs on two processors. This example may easily be extended
to an arbitrary number of processors.

8



For the above example to imply the non-existence of optimal online multiprocessor scheduling algorithms for
sporadic task systems, we must show that IA and IB correspond to legal real-time instances generated by a sporadic
task system τ that is feasible on two processors. One possible sporadic task system that could generate both the
real-time instances IA and IB is

τ
def= {τ1 = (2, 4,∞), τ2 = τ3 = τ4 = (1, 1,∞), τ5 = (1, 2,∞), τ6 = τ7 = (2, 2,∞)}. (12)

The above task system allows each job of IA ∪ IB to be generated by a different task. Real-time instances IA
and IB satisfy the constraints of Equation 4 for task system τ . However, τ is not feasible on two processors since
the real-time instance where each task of τ generates a job at time-instant zero is also a legal real-time instance;
such an instance requires that at least five jobs execute continuously over [0, 1)! Other possible groupings of
jobs to task also appear to result in a sporadic task system that is infeasible on two processors. The difficulty
in finding a feasible task system that can generate both IA and IB , suggests that such a sporadic task system
may not exist. Thus, Lemma 1 and Theorem 1 do not directly imply anything about the existence of an optimal
online algorithm for sporadic task systems. A similar argument may be used to argue about the inapplicability
of the results of Hong and Leung [12] to sporadic task systems. We should also point out that the main result of
Section 4 (Theorem 3) implies the impossibility of optimal scheduling for arbitrary collections of real-time jobs
without knowledge of future arrival times. Thus, our results can be considered a strengthening of the impossibility
results of both Dertouzos and Mok [9] and Hong and Leung [12].

4 Impossibility of Optimal Online Multiprocessor Scheduling for Sporadic and More General
Task Systems

We now present the main result of this article. Our method of proving that optimal online algorithms do not
exist for sporadic task systems is as follows.

1. Find a potentially feasible sporadic task system τ on some processing platform Π.

2. Prove that the task system is feasible a multiprocessor platform Π. This means that for any real-time instance
generated by τ on Π there exists a schedule on Π that will meet all deadlines.

3. For the feasible task system τ , show there exists a set of real-time instances generated by τ that are identical
up to a time t (denoted by I ′(τ)); however, at time t they require any online scheduling algorithm A to
make a decision regarding which current jobs to schedule (i.e., there are more current jobs than processors
at time t). Show that regardless of the choice made by A at time t, there exists a real-time instance in I ′(τ)
that causes the choice made by A at time t to result in a deadline miss.

In this brief section, we give the details of Steps 1 and 3. Step 3 especially gives insight into why optimal online
scheduling of sporadic task systems is impossible. The proof of feasibility (Step 2), though very important to
showing the nonexistence of optimal scheduling algorithms, is extremely complex and not necessary to under-
standing the main result of this paper; therefore, we have decided to defer the details of Step 2 until the next
section (Section 5).

In accordance with Step 1 of the above approach, consider the following task system, τ example, comprised of
six tasks (recall that a sporadic task is specified by three-tuple (ei, di, pi)) and described by Figure 1a.

Theorem 2 τ example is feasible on two processors.

Proof: Proved in Section 5.

9



ei di pi
τ1 2 2 5
τ2 1 1 5
τ3 1 2 6
τ4 2 4 100
τ5 2 6 100
τ6 4 8 100

(a) Task system τ example

0 1 2 3 4 5

π1 τ1 τ4

τ2 τ3π2

(b) The times at which tasks τ1, τ2, τ3, and τ4 must ex-
ecute

Figure 1. System τ example and Its Execution.

Lemma 2 No optimal online algorithm exists for the multiprocessor scheduling real-time, constrained-deadline
sporadic task systems on two processors.

Proof: The proof is by contradiction. Assume there exists an optimal online algorithm, A, for scheduling
constrained-deadline sporadic real-time tasks on two processors. Then, by Theorem 2,Amust find a valid schedule
for τ example where no deadline is missed; more formally, for all I ∈ I S(τ example), the schedule A(I) is valid
(Definition 6). Figure 1a shows task system τ example.

Let each task of τ example release a job at time zero. Figure 1b shows the slots at whichAmust execute τ1, τ2, τ3,
and τ4 (i.e., any other order would result in a deadline miss). Let Izero(τ example) be the set of all real-time instances
generated by τ example where each task generates a job at time instant zero and all jobs execute for their respective
task’s worst-case execution requirement; all real-time instances in Izero(τ example) must include the following six
jobs (recall a real-time job is specified by (Ai, Ei, Di)): (0, 2, 2), (0, 1, 1), (0, 1, 2), (0, 2, 4), (0, 2, 6), and (0, 4, 8).
Note, that by the minimum separation parameter (period) of each task, the earliest the second job of any task may
be generated is at time five. So, for all I and I ′ in Izero(τ example), I≤5 and I ′≤5 are identical.

For any I ∈ Izero(τ example), there exist two possible choices that A must make regarding the execution of τ5.

1. A schedules τ5 for x (0 < x ≤ 2) units of time in the interval (2, 4].

2. A does not schedule τ5 in the interval (2, 4].

Since A is an online scheduling algorithm, by Definition 3, any I, I ′

∈ Izero(τ example) where I≤5 = I ′≤5 implies that the schedule generated by A for both I and I ′ is identical
up to t = 5. Thus, algorithm A will make the same choice (either choice 1 or 2, above) for all instances in
Izero(τ example). We will show that for either choice made by algorithm A there exists an Imiss ∈ Izero(τ example)
that forces a deadline miss. Let us consider both cases.

1. A schedules τ5 for x (0 < x ≤ 2) units of time in the interval (2, 4]: Consider any real-time instance I in
Izero(τ example) where, in addition to the six jobs that all real-time instances in Izero(τ example) must contain,
I includes a job generated by τ1, τ2, and τ3 at t = 6; that is, I must include the jobs: (6, 2, 2), (6, 1, 1),
and (6, 1, 2). It is obvious that the two processors are fully utilized by τ1, τ2, and τ3 over the interval (6, 8];
therefore, τ6 may not execute over the interval (6, 8] (otherwise, either τ1, τ2, or τ3 will miss a deadline).
This implies that τ6 must execute in the interval (2, 6] given real-time instance I . However, I chose to
execute τ5 in (2, 4] for x time units, and τ4 requires a processor to execute job (0, 2, 4) continuously. Thus,
given the choice byA and real-time instance I , there only exists 4−x units of time in which τ6 may execute
in the interval (2, 4]; τ6 will miss a deadline at t = 8. Figure 2a shows this scenario.

10



0 1 2 3 4 5

π1 τ1 τ4

τ2 τ3π2

τ5 τ1

τ5 τ6 τ2 τ3

6 7

Task τ6 misses a deadline

7 8

(a) A schedules τ5 for x (0 < x ≤ 2) units of time in
the interval (2, 4[.

0 1 2 3 4 5

π1 τ1 τ4

τ2 τ3π2

τ5

τ6 τ3 τ6

6 7

Task τ5 misses a deadline

7 8

τ1

τ2

(b) A does not schedule τ5 in the interval (2, 4[

Figure 2. Two Execution Scenarios for τ example.

2. A does not schedule τ5 in the interval (2, 4]: Consider any real-time instance I ′ in Izero(τ example) where,
in addition to the six jobs that all real-time instances in Izero(τ example) must contain, I ′ includes a job
generated by τ1 and τ2 at t = 5; that is, I ′ must include the jobs (5, 2, 2) and 5, 1, 1). It is clear that the two
processors are fully utilized by τ1 and τ2 over interval (5, 6]. However, since A chose not to execute τ5 in
the interval (2, 4], τ5 must continuously execute in the interval (4, 8] to meet its deadline. In this scenario,
three jobs must continuously execute in the interval (5, 6]. Therefore, either τ1, τ2, or τ5 will miss a deadline
in the interval (5, 6]. Figure 2b illustrates this scenario.

Since for any of the choices made byA over the interval (2, 4], there exists a real-time instance I ∈ Izero(τ example)
that causes A to miss a deadline, this contradicts our assumption that there exists an optimal algorithm A. There-
fore, no optimal algorithm for scheduling sporadic real-time tasks upon a two-processor platform can exist.

We may easily generalize the above lemma to an arbitrary number of processors (m > 1).

Theorem 3 No optimal online algorithm exists for the multiprocessor scheduling real-time, constrained-deadline
sporadic task systems on two or more processors.

Proof: For any Π comprised of m > 1 identical unit-speed processors, consider the task system τ ′
def= τ example ∪

{τ ′1, τ ′2, . . . , τ ′m−2} where τ ′i = (1, 1, 1) for all 0 < i ≤ m − 2. It is easy to see that τ ′ is feasible on Π, as we
can dedicate a processor to each of the tasks in {τ ′1, τ ′2, . . . , τ ′m−2} and by Theorem 2 τ example is feasible on the
remaining two processors. The argument of Lemma 2 holds in the case where each of {τ ′1, τ ′2, . . . , τ ′m−2} generate
jobs at time zero and successive jobs as soon as legally allowable. Therefore, the jobs generated by τ example cannot
use the additional processors, and the argument of the lemma is identical.

The above negative result immediately extends to any task model that generalizes the sporadic task model. The
reason is that for any model M that generalizes the sporadic model, there exists a τ ′M specified in model M such
that I ∈ IM(τ ′M) if and only if I ∈ I S(τ ′). Therefore, the argument of Lemma 2 is unchanged for this more
general task system (e.g., arbitrary-deadline sporadic task systems or GMF task systems).

Corollary 1 No optimal online algorithm exists on two or more processors for the multiprocessor scheduling of
real-time task systems in models that generalize the sporadic task model.

5 Feasibility of Sporadic Task System τ example on Two Processors

Section 4 introduced task system τ example (given by Figure 1a) that is used to prove that optimal online mul-
tiprocessor scheduling of arbitrary and constrained task systems is impossible. In this section, we give a formal
proof of Theorem 2; that is, task system τ example is feasible on two processors.

11



In Section 5.1, we informally outline our proof. In Section 5.2, we introduce additional formal notation involved
in τ example’s feasibility proof. In Section 5.3, we give the entire feasibility proof.

5.1 Outline

The goal of Theorem 2 is to show that task system τ example is feasible on two processors. However, we are
unaware of any existing, non-trivial, exact feasibility test for constrained-deadline task systems on a multiprocessor
platform that could precisely determine whether τ example is feasible on two processors or not. For instance,
the task system does not satisfy the sufficient feasibility condition [11]. The sufficient conditions for feasibility
of sporadic task systems of Baker and Cirinei [2] only apply to single processors. Finally, the exact “brute-
force” multiprocessor schedulability algorithm of Baker and Cirinei [3] does not trivially extend to multiprocessor
feasibility. Furthermore, even if one could extend the brute-force result to multiprocessor feasibility, our approach
does not assume integer arrival times and execution (as would be required by the current brute-force approach).
Thus, since we may not validate the feasibility of τ example with previously-known techniques, we must tailor an
argument specially for task system τ example. Specifically, we must show that for every legal real-time instance I
generated by task system τ example, there exists a valid schedule in which no deadlines are missed (i.e., τ example

satisfies the definition of feasible task system according to Definition 8).
The approach that we take for proving Theorem 2 is to show, for any I ∈ I S

WCET(τ example), that a valid
schedule may be constructed for I on two processors5. It turns out that it is very easy to find a schedule on
two processors for the set of tasks τ example \ {τ6}; so, we construct this schedule, denoted SI , for the jobs of
τ example \ {τ6} in real-time instance I . If the jobs of τ6 in instance I can execute completely during the processor
idle times for SI (i.e., when jobs of τ example \ {τ6} are not executing in SI ), then we have shown that a valid
schedule exists for instance I . However, it is possible that there does not exist sufficient idle processor time to
execute every job of τ6 in SI . Therefore, we may need to modify schedule SI further. Our approach considers
up to two additional modified schedules, S′I and S′′I – defined separately for ease of presentation and clarity. Our
final step is to show that if τ6 could not complete in either SI or S′I , all jobs of τ6 must complete in S′′I . The
following steps informally explain our proof of showing that a valid schedule exists on two processors for any
I ∈ I S

WCET(τ example). Figure 3 gives a diagram of the steps of the proof.

Step 0) Partition τ example \ {τ6}: Consider a partition of τ example \ {τ6} into two sets:

τA
def= {τ1, τ4}, (13)

and
τB

def= {τ2, τ3, τ5}. (14)

Step 1) Construct schedule SI to show that τ example \ {τ6} is feasible on two processor: Using known uniproces-
sor scheduling algorithms, we show that τA may be correctly scheduled on processor π1 and τB may be
scheduled on processor π2.

Step 2) Construct a modified schedule S′I : If the jobs of τ6 cannot completely execute by their deadlines on proces-
sor π2 (the less “loaded” of the two processors in SI ) during the idle time instants in schedule SI , we will
construct a new schedule S′I . For any real-time instance I , S′I is a global schedule (i.e., non-partitioned)
constructed by moving as much work as possible to the first processor π1 (with respect to idle times in SI
schedule for processor π1).

5Please note that we only consider real-time instances in I ∈ I S
WCET(τ example); the feasibility of any instance I ′ ∈ I S(τ example)

follows from the fact that there exists an I ∈ I S
WCET(τ example) such that I ′ ∈ F(I). So, we only need to consider a valid schedule S′′

I

and it suffices to use the same schedule for I ′ (except the jobs of I ′ will potentially execute for less than the jobs of I).

12



Done

Done Step 3: Derive S′
I properties

Step 4: Construct schedule S′′
I

Done Step 2: Construct schedule S′
I

τ6 is schedulable

τ6 is schedulable

τ6 is not schedulable

τ6 is not schedulable

Prove τ6 is schedulable (Lemma 20)

Step 0: Partition τ example \ {τ6} into two sets τA and τB

Step 1: Show that τ example \ {τ6} is feasible on two processors by constructing schedule SI

Figure 3. Logical steps in proof of Theorem 2.

Step 3) Derive properties of schedule S′I if τ6 cannot complete execution: We will derive several properties in the
event that τ6 cannot complete during the idle instants in schedule S′I . These properties will be useful in
defining a second modified schedule S′′I in which τ6 can complete execution.

Step 4) Construct a second modified schedule S′′I that leaves sufficient room for τ6 to be completely assigned to the
second processor: Again, if τ6 cannot completely execute during the idle times instants on processor π2 in
schedule S′I , we construct a second modified schedule S′′I . The properties of the previous step will be used
to show that a schedule S′′I can always be constructed that leaves the second processor idle for four units
between the release and deadline of a any job of τ6. Obviously, τ6 can be completely assigned to these idle
times. Therefore, τ example is feasible on two unit-capacity processors (Theorem 2).

In the next section, we discuss some additional notation needed for our proof. In Section 5.3, we formally
carry-out the steps outlined in this subsection.

5.2 Notation

In this section, we present general notation for describing the scheduling and behavior of a sporadic task system
τ . The remainder of this section heavily relies on the notation presented in Sections 2.4 and 2.5. The notation
defined for the remainder of this section will assume that τ is a constrained-deadline system (i.e., for all τi ∈ τ ,
di ≤ pi). For each I ∈ I S

WCET(τ), let I(τi) ⊆ I denote the jobs generated by τi in instance I .
The next two functions give the “nearest” job release-time and deadline with respect to a given time t and

real-time instance I(τi).

Definition 9 (Job-Release Function) If τi is current at time t in real-time instance I then ri(I, t) is the release
time of the most recently released job of τi (with respect to time t). Otherwise, ri(I, t) = ∞ if τi is not in a
scheduling window at time t. More formally,

ri(I, t)
def=
{
Ak , if ∃Jk ∈ I(τi) such that Ak ≤ t ≤ Ak +Dk

∞ , otherwise.
(15)

13



Definition 10 (Job-Deadline Function) If τi is current at time t for real-time instance I then di(I, t) is the abso-
lute deadline of the most recently released job of τi (with respect to time t). Otherwise, di(I, t) = −∞ if τi is not
in a scheduling window at time t.

di(I, t)
def=
{
Ak +Dk , if ∃Jk ∈ I(τi) such that Ak ≤ t ≤ Ak +Dk

−∞ , otherwise.
(16)

The following function is useful for identifying the current current job (if any) of task τi at time t.

Definition 11 (Current-Job Function) If τi is current at time t for real-time instance I , ϕi(I, t) is the current
job at time t. Otherwise, ϕi(I, t) = ⊥, if τi is not in a scheduling window at time t.

ϕi(I, t)
def=
{
Jk , if ∃Jk ∈ I(τi) such that Ak ≤ t ≤ Ak +Dk

⊥ , otherwise.
(17)

Similar to Definition 2 which defined a schedule function with respect to jobs of a real-time instance, we can
define the schedule S as a function with respect to task τi.

Definition 12 (Task-Schedule Function) SI(π`, t, τi) is an indicator function denoting whether task τi is sched-
uled at time t for schedule SI . In other words,

SI(π`, t, τi)
def=
{

1 , if ∃Jk ∈ I(τi) :: SI(π`, t, Ji) = 1
0 , otherwise.

(18)

The next definition defines the work that task τi receives on π` over a given interval. The job work function
(Definition 4) is used.

Definition 13 (Task-Work Function) Wi(SI , π`, t1, t2) denotes the amount of processor time that τi receives
from schedule SI on processor π` over the interval [t1, t2) for real-time instance I . In other words,

Wi(SI , π`, t1, t2) def=
∑

Jk∈I(τi)

W (SI , π`, Ji, t1, t2). (19)

Definition 14 (Idle-Work Function) W⊥(SI , π`, t1, t2) denotes the total amount of processor time that schedule
SI idles processor π` over the interval [t1, t2) for real-time instance I . In other words,

W⊥(SI , π`, t1, t2) def= W (SI , π`,⊥, t1, t2). (20)

5.3 Proof

In this section, we prove Theorem 2 by following the steps outlined in Section 5.1. Obviously, Step 0 has already
been given in the proof outline of Section 5.1; thus, we begin with Step 1. Section 5.3.1 gives the construction
for schedule SI for Step 1. Section 5.3.2 describes the construction of schedule S′I for Step 2. Section 5.3.3
proves several important properties about S′I , if τ6 cannot be scheduled during the idle times (Step 3). Finally,
Section 5.3.4 defines schedule S′′I which can be shown to accommodate all jobs of task τ6 on processor π2 (Step 4).

14



5.3.1 Step 1: Construction of Schedule SI

The first step of the outline (Section 5.1) of the proof requires us to show that the partition τA and τB of τ example \
{τ6} is feasible on two processors and give a valid schedule for real-time instance I ∈ I S

WCET(τ). We can easily
obtain feasibility of this task system by partitioning τ example \ {τ6} into two sets and scheduling each subset
on its own processor using a uniprocessor scheduling algorithm called the deadline-monotonic (DM) scheduling
algorithm. For each processor, DM executes at any time instant the active job of the task with the smallest relative
deadline parameter (among the set of all tasks assigned to that processor with active jobs). For simplicity of
analysis, we will use DM on each processor.

Audsley et al. [1] developed a test to determine whether each task in a constrained-deadline task system can
be scheduled by DM on a single processor to always meet all deadlines. Let THi be the set of tasks with priority
greater than or equal to task τi under the DM priority assignment. The following theorem restates their result.

Theorem 4 (from [1]) In a constrained-deadline, sporadic task system, task τi always meets all deadlines using
DM on a preemptive uniprocessor if and only if ∃t ∈ (0, di] such thatCBF(τi, t)

def=
∑

τj∈THi

RBF(τj , t) + ei

 ≤ t. (21)

Using this result, we obtain the following lemma which states that τ example \ {τ6} is feasible on the given
two-processor platform:

Lemma 3 τ example \ {τ6} is feasible on a multiprocessor platform composed of two unit-capacity processors.

Proof: For partition τA and τB of τ example \ {τ6} (Equations 13 and 14), assign τA to π1 and τB to π2. It is
easy to verify by Theorem 4 that τA and τB are feasible with respect to their assigned processors. First, we will
show that τA is feasible on processor π1. τ1 always meets all deadlines (according to Theorem 4) on π1 with
respect to task system τA because CBF(τ1, 2) = 2 ≤ 2. Similarly, τ4 always meets all deadlines on π1 because
CBF(τ4, 4) = 2+2 = 4 ≤ 4. Since both of these tasks always meet all deadlines using DM on π1 over all real-time
instance IA ∈ I S

WCET(τA), τA is feasible on π1 according to Definition 8.
Next, we will show that τB is feasible on processor π2. τ2 always meets all deadlines on π2 because CBF(τ2, 1) =

1 ≤ 1. τ3 always meets all deadlines on π2 due to CBF(τ3, 2) = 1 + 1 = 2 ≤ 2. Finally, τ5 always meets all
deadlines on π because CBF(τ5, 4) = 1 + 1 + 2 = 4 ≤ 4. Since all three of these tasks always meet all deadlines
using DM on π2 over all real-time instances IB ∈ I S

WCET(τB), τB is feasible on π2 according to Definition 8.
Combining the two uniprocessor schedules from DM, we get a valid multiprocessor schedule for τ example \ {τ6},
and the lemma follows.

Let SI be the schedule constructed by DM on each processor for task system τ example \ {τ6} with partitions τA

and τB . From the previous argument, SI is valid for I (with τ6’s jobs excluded).

5.3.2 Step 2: Construction of Schedule S′I

If the jobs generated by τ6 in real-time instance I cannot complete by their deadlines in the idle times of SI , we
must proceed to Step 2 of our proof outline: construct a schedule S′I that is globally (non-partitioned) feasible.
The goal of this step is to move as much computation off processor π2 as possible. To accomplish this goal, for
every idle instant on processor π1 in schedule SI , we move a task in its scheduling window on π2 to π1 (if such a
task exists). The construction “builds” schedule S′I for processor π1, first. After S′I(π1, t) is constructed, then S′I

15



ei di pi
τ1 2 2 5
τ3 1 2 6
τ4 2 4 100
τ5 2 6 100

(a) replicates the legend for
these tasks

0 1 2 3 4 5

τ1 τ4

SI

τ5 τ3

τ1

6

(b) SI

0 1 2 3 4 5

τ1 τ4

S′
I

τ5 τ3

τ1

6

τ5

(c) S′
I

Figure 4. Construction of Schedule S′I . Note that the execution of τ5 in the interval [1, 2) is moved
from the second processor to [4, 5) on the first processor.

is constructed for π2. Note that such a schedule could not be constructed online (i.e., it is an off-line constructed
schedule), since S′I(π2, t) may require that S′I(π1, t

′) be known for some t′ > t (i.e., S′I(π2, t) requires knowledge
of future events). Constructing an offline schedule is not a contradiction of Theorem 3 as feasibility requires us
only to construct (by any means) a valid schedule for any real-time instance that may be generated by τ example.

In schedule S′I(π1, t), tasks of set τA (tasks τ1 and τ4) execute at exactly the same times as they did in schedule
SI(π1, t) (i.e., the uniprocessor rate-monotonic schedule for τA and τB). However, the tasks of set τB move
as much execution as possible (without disturbing tasks of τA) from processor π2 to processor π1. Consider an
arbitrary time t. S′I(π1, t) is constructed using the following rules:

1. If at time t processor π1 is busy executing a job from tasks of τA in schedule SI , then S′I(π1, t) equals
SI(π1, t).

2. If processor π1 is idle at time t in schedule SI , then:

(a) If task τ5 is in its scheduling window (i.e., r5(I, t) <∞) and it has not already executed for more than
e5 time units in S′I on processor π1, then S′I at time t is set to the current job of τ5 – i.e S′I(π1, t) =
ϕ5(I, t);

(b) else, if task τ2 is in its scheduling window (i.e., r2(I, t) < ∞) and it has not already executed for
more than e2 time units in S′ on processor π1, then S′I at time t is set to the current job of τ2 – i.e
S′I(π1, t) = ϕ2(I, t);

(c) else, if task τ3 is in its scheduling window (i.e., r3(I, t) < ∞) and it has not already executed for
more than e3 time units in S′ on processor π1, then S′I at time t is set to the current job of τ3 – i.e
S′I(π1, t) = ϕ3(I, t);

(d) else, leave processor π1 idle.

Note the above order that we move jobs of tasks (i.e., in order of τ5, τ2, and τ3) is significant.
The execution of jobs of tasks in τB that could not be moved to processor π1 is executed on processor π2

(with the added constraint that a task does not execute in parallel with itself). For arbitrary time t, S′I(π2, t) is
constructed using the following rule: if, at time instant t, a job Jk of task τi ∈ τB is executing on processor π2

in schedule SI (i.e., SI(π2, t, Jk) = 1), then Jk will also execute on processor π2 at time instant t in schedule S′I
only if the following two conditions are true,

1. Jk is not executing on processor π1 at time t in schedule S′I (i.e., S′I(π2, t, Jk) = 0), and

16



2. the total time that job Jk has executed on processor π1 between its arrival and its absolute deadline and on
processor π2 between its arrival and time t in schedule S′I is strictly less than ei.

Figure 4 presents a visual example comparing schedules SI and S′I . The following construction is the inductive
formal definition of the modified schedule for all I ∈ I S

WCET(τ example \ {τ6}) and t ≥ 0. Please note that
S′I(π1, t) is inductively constructed first for all t ≥ 0. S′I(π2, t) is constructed after S′I for processor π1. Also,
note that S′I is not work-conserving in the sense that a processor may be idle at time t, even if there are active jobs
with remaining execution.

S′
I(π1, t)

def=


SI(π1, t) , if SI(π1, t) 6= ⊥,
ϕ5(I, t) , if r5(I, t) <∞ and W5(S′

I , π1, r5(I, t), t) < e5,
ϕ2(I, t) , if r2(I, t) <∞ and W2(S′

I , π1, r2(I, t), t) < e2,
ϕ3(I, t) , if r3(I, t) <∞ and W3(S′

I , π1, r3(I, t), t) < e3,
⊥ , otherwise

S′
I(π2, t)

def=



ϕ2(I, t) , if (SI(π2, t, τ2) = 1) and (S′
I(π1, t, τ2) = 0) and

(W2(S′
I , π1, r2(I, t), d2(I, t)) +W2(S′

I , π2, r2(I, t), t) < e2),
ϕ3(I, t) , if (SI(π2, t, τ3) = 1) and (S′

I(π1, t, τ3) = 0) and
(W3(S′

I , π1, r3(I, t), d3(I, t)) +W3(S′
I , π2, r3(I, t), t) < e3),

ϕ5(I, t) , if (SI(π2, t, τ5) = 1) and (S′
I(π1, t, τ5) = 0) and

(W5(S′
I , π1, r5(I, t), d5(I, t)) +W5(S′

I , π2, r5(I, t), t) < e5),
⊥ , otherwise

(22)

Lemma 4 S′I is valid on Π for any I with respect to jobs of τ example \ {τ6}.
Proof: Schedule S′I is obviously valid for the jobs generated by τ example \ {τ6} in instance I . Each job, by
definition of S′I above only executes within its scheduling window, does not execute concurrently with itself on
both processors, and executes exactly for its execution requirement.

5.3.3 Step 3: Properties of Schedule S′I

If S′I does not have sufficient idle time to schedule τ6 entirely on processor π2, then there must exist a job J6 ∈ I
that does not meet its deadline, with respect to the idle time in schedule S′I . In this section, we prove several
lemmas which characterize the properties of schedule S′I with respect to the J6’s scheduling window. The main
observation from these properties is that the jobs of I are constrained in how their scheduling windows intersect,
if J6 cannot be scheduled in S′I . We will exploit these intersection constraints on job in the next section (Step 4)
when we define schedule S′′I .

Let A6 be the arrival of J6. Since the relative deadline of τ6 is d6 = 8, the scheduling window of J6 is
[A6, A6 +8). We will start by making an observation on the maximum possible amount that jobs of τ example\{τ6}
could execute in any schedule over an interval of length six, eight, and ten. These observations will be useful to
reason about the amount of work that could occur over the scheduling windows of jobs of τ5 and τ6.

Observation 1 Table 1 presents upper-bounds on Wi(S, π1, t, t+L) +Wi(S, π2, t, t+L) for intervals of length
L ∈ {6, 8, 10} for any valid schedule S, task τi ∈ τ example \ {τ6} and time-instant t. The upper bounds for L = 8
and L = 10 may easily be observed by noting that τ1, τ2, and τ3 have at most two jobs with scheduling windows
that intersect with an interval [t, t+ L) for 8 ≤ L ≤ 10, and τ4 and τ5 can have at most one job with scheduling
window intersecting [t, t + L). Similarly, for L = 6, at most two jobs of τ1, τ2, and τ3 and a single job of τ4 and
τ5 may over lap with the interval [t, t + 6); however, the maximum intersection between the scheduling windows
of τ1’s jobs and [t, t + 6) is three, due to the fact that p1 equals five. We also point out that upper bounds on
Wi(S, π1, t, t+ L) +Wi(S, π2, t, t+ L) are monotonically non-decreasing with L.

17



Task ≥Wi(S, π1, t, t+ L) +Wi(S, π2, t, t+ L)
L = 6 L = 8 L = 10

τ1 3 4 4
τ2 2 2 2
τ3 2 2 2
τ4 2 2 2
τ5 2 2 2

Table 1. Upper bounds on the execution of tasks over intervals [t, t+ L) for various values of L.

The first property we show for S′I is in regard to the execution of jobs of τ5 over the J6’s scheduling window
of [A6, A6 + 8). If there was not sufficient idle time in S′I to completely schedule J6, a job of τ5 must have its
scheduling window intersect with [A6, A6 + 8). Furthermore, a job of τ5 must execute for a non-zero amount of
time on processor π2 over [A6, A6 + 8). The following lemma formally shows this property.

Lemma 5 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then there exists a
single job J5 ∈ I of τ5 with scheduling window [A5, A5 + 6) where

[A5, A5 + 6) ∩ [A6, A6 + 8) 6= ∅. (23)

Furthermore, let α equal the execution of J5 on processor π2 over [A5, A5 +6) (i.e., α def= W5(S′I , π2, A5, A5 +6)).
It must be that

α > 0. (24)

and that J5 executes for some non-zero amount of time≤ α on π2 over [A6, A6+8) (i.e.,W5(S′I , π2, A6, A6+8) ≤
α).

Proof: First note, that since the period of τ5, p5, equals 100, at most one job of τ5 could possibly have its
scheduling window intersect with the interval [A6, A6 + 8). We will now show (by contradiction) that exactly one
job of τ5 intersects J6’s scheduling window and executes during this interval on processor π2. Assume the lemma
is false: a job of τ5 does not execute on processor π2 over J6’s scheduling window in valid schedule S′I . Then,
exactly one of the following three cases is true:

Case 1 there does not exist a job J5 ∈ I with [A5, A5 + 6) ∩ [A6, A6 + 8) 6= ∅.
Case 2 there exists a job J5 ∈ I of τ5 with [A5, A5 + 6)∩ [A6, A6 + 8) 6= ∅, but J5 does not execute on processor

π2 over the interval [A5, A5 + 6) (i.e., α = 0); or,

Case 3 there exists a job J5 ∈ I of τ5 with [A5, A5 + 6) ∩ [A6, A6 + 8) 6= ∅ and J5 executes on processor π2 for
α > 0 over the interval [A5, A5 + 6), but does not execute over [A6, A6 + 8);

By construction of S′I , the only other tasks of τ example \ {τ6}, other than τ5, that are executed on π2 in S′I are
τ2 or τ3. Since J6’s execution requirement, E6, is 4, the execution of τ2 and τ3 on processor π2 in schedule S′I
over the interval [A6, A6 + 8) must exceed four for J6 to be unable to execute completely on π2. However, by
Observation 1, the most that τ2 and τ3 could execute over [A6, A6 + 8) is four. Thus, τ5 must have executed on π2

over [A6, A6 + 8) in S′I for some non-zero amount of time in order for J6 not to complete which contradicts the
assumption of Cases 1, 2, and 3; the lemma follows.

The next lemma gives an upper bound on the amount of time that J5 can execute on processor π2 in schedule
S′I .

18



Lemma 6 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then

α ≤ 1. (25)

Proof: If there is insufficient time in S′I to execute J6, Lemma 5 states that a unique job J5 of task τ5 must exist
with a scheduling window [A5, A5 + 6) that intersects [A6, A6 + 8). Observation 1 implies that an upper bound
on the execution of jobs of τA in S′I over the interval [A5, A5 + 6) is at most five. Thus, the total amount of time
that processor π1 is idle over [A5, A5 + 6) in the original schedule SI is at least one. J5 executes on processor π1

at most 2− α, by Lemma 5. Assume that α > 1. Then, J5 executes on the processor π1 for strictly less than one
time unit in schedule S′I . Thus, there exists t ∈ [A5, A5 + 6) where S′I is executing a job not in task τA ∪ {τ5} on
processor π1. However, the existence of execution of J5 on processor π2 contradicts the construction of S′I which
moves as much of J5’s to π1 at instances whenever jobs of τA are not executing. Thus, our assumption that α > 1
must be false and the lemma follows.

The next two lemmas (Lemmas 7 and 8) exactly characterize the jobs of τ3 and τ2 that must execute over J6’s
scheduling window.

Lemma 7 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then there exists
exactly two jobs of τ3, J1

3 , J
2
3 ∈ I (where A1

3 + 6 ≤ A2
3), such that(

[A1
3, A

1
3 + 2) ∩ [A6, A6 + 8) 6= ∅)∧(

[A2
3, A

2
3 + 2) ∩ [A6, A6 + 8) 6= ∅) . (26)

Furthermore, both J1
3 and J2

3 execute for strictly more than 2 − α time units on π2 in S′I over [A6, A6 + 8) (i.e.,
W3(S′I , π2, A6, A6 + 8) > 2− α).

Proof: Since J6 cannot complete during the idle times in S′I , the execution on processor π2 over the J6’s
scheduling window [A6, A6 + 8) must exceed four time units; otherwise, J6 could complete entirely on processor
π2. By definition of S′I , only jobs of τ2, τ3, and τ5 execute on processor π2. Observation 1 implies that τ2 can
execute for at most two time units over [A6, A6 + 8). By Lemma 5 and Lemma 6, J5 executes for amount of time
at most α ≤ 1 time units over J6’s scheduling window on processor π2. Thus, τ3 must execute for strictly more
than 2 − α time unit over [A6, A6 + 8) on π2 in S′I . Since the execution requirement e3 is one, there must be at
least two jobs of τ3 that execute during [A6, A6 +8). The period and relative deadline parameter of τ3 (p3 = 6 and
d3 = 2) imply that at most two jobs of τ3 can execute in [A6, A6 + 8). Let J1

3 and J2
3 be the jobs of τ3 that execute

in [A6, A6 + 8) where A2
3 − A1

3 ≥ 6 (by the period parameter). The fact that J1
3 and J2

3 ’s scheduling windows
overlap with J6’s scheduling window implies Equation 26.

Lemma 8 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then there exists
exactly two jobs of τ2, J1

2 , J
2
2 ∈ I (where A1

2 + 5 ≤ A2
2), such that(

[A1
2, A

1
2 + 1) ∩ [A6, A6 + 8) 6= ∅)∧(

[A2
2, A

2
2 + 1) ∩ [A6, A6 + 8) 6= ∅) . (27)

Furthermore, both J1
2 and J2

2 execute for strictly more than 2 − α time units on π2 in S′I over [A6, A6 + 8) (i.e.,
W2(S′I , π2, A6, A6 + 8) > 2− α).

Proof: Since J6 cannot complete during the idle times in S′I , the execution on processor π2 over the J6’s
scheduling window [A6, A6 + 8) must exceed four time units; otherwise, J6 could complete entirely on processor
π2. By definition of S′I , only jobs of τ2, τ3, and τ5 execute on processor π2. Observation 1 implies that τ2 can
execute for at most two time units over [A6, A6 + 8). By Lemma 5 and Lemma 6, J5 executes for amount of time
at most α ≤ 1 time units over J6’s scheduling window on processor π2. Thus, τ2 must execute for strictly more

19



than 2 − α time unit over [A6, A6 + 8) on π2 in S′I . Since the execution requirement e2 is one, there must be at
least two jobs of τ2 that execute during [A6, A6 +8). The period and relative deadline parameter of τ1 (p1 = 5 and
d1 = 1) imply that at most two jobs of τ1 can execute in [A6, A6 + 8). Let J1

2 and J2
2 be the jobs of τ2 that execute

in [A6, A6 + 8) where A2
2 − A1

2 ≥ 5 (by the period parameter). The fact that J1
2 and J2

2 ’s scheduling windows
overlap with J6’s scheduling window implies Equation 27.

The following corollary of Lemmas 6 and 8, showing that both J1
2 and J2

2 must execute on π2 over [A6, A6 +8),
will be useful in later proofs.

Corollary 2 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then both J1
2 and

J2
2 execute for non-zero amounts of time on processor π2 in the interval [A6, A6 + 8).

Proof: Lemma 8 states that J1
2 and J2

2 together must execute for strictly greater than 2 − α time on processor
π2 over the interval [A6, A6 + 8). Lemma 6 show that α ≤ 1; thus, the execution of both jobs over interval
[A6, A6 + 8) must exceed one. Since e2 = 1, both J1

2 and J2
2 must execute for non-zero amounts of time in

[A6, A6 + 8).
The previous two lemmas and corollary gave a lower bound on the execution of jobs of either τ2 or τ3 over the

interval [A6, A6 + 8) on processor π2. In the next lemma, we derive a lower bound on the combined execution of
τ2 and τ3 over this same interval and processor.

Lemma 9 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then τ2 and τ3

execute on processor π2 over the interval [A6, A6 + 8) for strictly more than 4− α time units in S′I . I.e.,

W2(S′I , π2, A6, A6 + 8) +W3(S′I , π2, A6, A6 + 8) > 4− α (28)

Proof: Since J6 cannot complete during the idle times in S′I , the execution on processor π2 by jobs of τB over
J6’s scheduling window [A6, A6 + 8) must exceed four units. Lemma 5 showed that the most J5 could execute on
processor π2 over [A6, A6 + 8) is α. Thus, jobs of τ2 and τ3 must execute for strictly more than 4− α time units
on processor π2 over [A6, A6 + 8).

We now focus on jobs of tasks in τA whose scheduling windows overlap with J5’s scheduling window. The
above lemmas (Lemmas 5, 7, and 8) showed that a jobs of τB must have prevented J6 from completing execution
entirely on processor π2. We follow this reasoning and show that a jobs of τA must have prevented τ5’s job, J5

from completing its execution entirely on processor π1. The next two properties of S′I show that exactly one job of
τ4 executes in the scheduling window [A5, A5 +6) (Lemma 10) and exactly two jobs of τ1 execute in [A5, A5 +6)
(Lemma 11).

Lemma 10 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then there exists a
single job J4 ∈ I of τ4 such that

[A4, A4 + 4) ∩ [A5, A5 + 6) 6= ∅. (29)

Furthermore, J4 executes for at least 1 +α units of time on π1 in S′I over [A5, A5 + 6) (i.e., W5(S′I , π1, A5, A5 +
6) > 0).

Proof: By Lemma 5, J5 executes on processor π2 for some α > 0 amount of time in schedule S′I . By construction,
S′I executes J5 at any time instant t ∈ [A5, A5 + 6) where processor π1 was idle in the original schedule SI (i.e.,
neither τ1 or τ4 were executing at time t). Since J5 could only execute 2− α (≤ 1) units on processor π1 over its
scheduling window, this implies that the total amount jobs of τ1 and τ4 execute over [A5, A5 + 6) is exactly 4 +α.
By Observation 1, the most that jobs of τ1 could execute in this scheduling window is three time units; thus, there
must exist at least one job J4 ∈ I such that [A4, A4 + 4) ∩ [A5, A5 + 6) 6= ∅ where J4 executes for at least 1 + α
units on processor π1 over [A5, A5 + 6) in schedule S′I . Since τ4’s period, p4, equals 100, J4 is unique.

20



Lemma 11 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then there exists
exactly two jobs of τ1, J1

1 , J
2
1 ∈ I (where A1

1 + 5 ≤ A2
1), such that(

[A1
1, A

1
1 + 2) ∩ [A5, A5 + 6) 6= ∅)∧(

[A2
1, A

2
1 + 2) ∩ [A5, A5 + 6) 6= ∅) . (30)

Furthermore, the total execution of J1
1 and J2

1 must be at least 2+α units of time on π1 in S′I over [A5, A5+6) (i.e.,
W1(S′I , π1, A5, A5 + 6) > 2 + α).

Proof: Again, by Lemma 5, J5 executes on π2 for α time in S′I . By identical reasoning as the proof for Lemma 10,
τ1 and τ4 must execute for exactly 4 + α units over the interval [A5, A5 + 6). By Observation 1, the most that
τ4 could execute in J5’s scheduling window is two time units. Thus, jobs of τ1 must execute for at least 2 + α
time units over J5’s scheduling window. Since the execution requirement of a single job of τ1 is one time unit,
this implies there must exist at least two jobs J1

1 , J
2
1 ∈ I of τ1 such that

(
[A1

1, A
1
1 + 2) ∩ [A5, A5 + 6) 6= ∅) and(

[A2
1, A

2
1 + 2) ∩ [A5, A5 + 6) 6= ∅) that execute in S′I over [A5, A5 + 6) on processor π1 for more than two units

of time. Assume that the arrival of J1
1 precedes J2

1 . The period of τ1 (p1 = 5) implies that A1
1 + 5 ≤ A2

1 and that
no more than two jobs of τ1 could execute in [A5, A5 + 6).

We now focus our attention on the execution of jobs of τA∪{τ5} that could prevent execution of τ2 and τ3 from
being moved from processor π2 to π1. The next lemma (Lemma 12) shows that the scheduling window [A5, A5+6)
is a continuously busy interval on processor π1 with respect to schedule S′I tasks τA ∪ {τ5}. A continuously busy
interval for a processor with respect to a given collection of tasks and schedule is an interval [t1, t2) where a job of
the given task collection is executing in the schedule on the processor for all time t ∈ [t1, t2). We also show that
the scheduling windows for jobs J1

1 and J2
1 , and job J4 are continuously busy (Lemmas 13 and 14, respectively).

Lemma 12 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then the interval
[A5, A5 + 6) is a continuously busy interval on processor π1 in schedule S′I for jobs of tasks τA ∪ {τ5}. More
formally, ∑

τj∈τA∪{τ5}

Wj(S′I , π1, A5, A5 + 6) = 6 (31)

Proof: Again, by Lemma 5, J5 executes on π2 for α > 0 time in S′I . Since SI moves as much execution of J5

from π2 to π1, this implies for all time t ∈ [A5, A5 + 6) at which π1 is not executing J5, it must be executing jobs
of τA.

Lemma 13 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then the intervals
[A1

1, A
1
1 + 2) and [A2

1, A
2
1 + 2) are a continuously busy intervals on processor π1 in schedule S′I for jobs of tasks

τA ∪ {τ5}. More formally, for k ∈ {1, 2},∑
τj∈τA∪{τ5}

Wj(S′I , π1, A
k
1, A

k
1 + 2) = 2 (32)

Proof: Any job of τ1 in I must execute continuously from its arrival to deadline because e1 = d1 = 2. Thus, since
τ1 is scheduled on processor π1 in S′I and since S′I is valid, J1

1 executes continuously on π1 over [A1
1, A

1
1 + 2) and

J2
1 executes continuously on π1 over [A2

1, A
2
1 + 2).

Lemma 14 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then the interval
[A4, A4 + 4) is a continuously busy interval on processor π1 in schedule S′I for jobs of tasks τA ∪ {τ5}. More
formally, ∑

τj∈τA∪{τ5}

Wj(S′I , π1, A4, A4 + 4) = 4 (33)

21



Proof: Lemma 11 implies that both J1
1 ’s and J2

1 ’s scheduling window intersects with the interval [A5, A5 + 6).
Since J1

1 ’s arrival precedes J2
1 ’s arrival, the lemma also implies that [A1

1 + 2, A2
1) ⊂ [A5, A5 + 6); in words, the

time interval between the deadline of J1
1 to the arrival of J2

1 is a proper subset of the J5’s scheduling window. The
interval [A1

1 + 2, A2
1) is between the scheduling window of two consecutive jobs of τ1; therefore, no job of τ1 can

execute in S′I during the interval [A1
1+2, A2

1). Due to the period and relative deadline parameter of τ1, the length of
this interval must be at least three time units (i.e.,A2

1−A1
1−2 ≥ 3). By Lemma 12 and [A1

1+2, A2
1) ⊂ [A5, A5+6),

the interval [A1
1+2, A2

1) is continuously busy executing jobs of τ4 and τ5 on processor π1 in schedule S′I . Lemma 5
implies that J5 can execute on processor π1 for at most 2 − α time in schedule S′I . Thus, J4 must execute for at
least 1 + α time units on processor π1 over the interval [A1

1 + 2, A2
1) in schedule S′I ; i.e.,

W4(S′I , π1, A
1
1 + 2, A1

2) ≥ 1 + α (34)

Lemma 10 implies that [A4, A4 + 4)∩ [A5, A5 + 6) 6= ∅. The above equation (Equation 34) and the validity of
schedule S′I implies that [A4, A4 + 4) ∩ [A1

1 + 2, A2
1) 6= ∅. From these statements, we can reason about the work

of τA ∩ {τ5} over J4’s scheduling window. There are two separate main cases we consider: 1) if J4’s scheduling
window is completely contained within J5’s scheduling window; 2) J4’s scheduling window is not completely
contained in J5’s scheduling window. We will show that each of the cases imply Equation 33. The case analysis
is below.

1. [A4, A4 + 4) ⊆ [A5, A5 + 6): Lemma 12 states that π1 is continuously busy executing jobs of τA ∩ {τ5}
over [A5, A5 + 6). Thus, Equation 33 follows trivially.

2. [A4, A4 + 4) * [A5, A5 + 6): Given this case, there are two possibilities. Either the job of τ4 is released
before A5 or it is released after A5. More formally, the subcases are:

a) A4 < A5 < A4 + 4: In this case, Equation 34 and [A4, A4 + 4) ∩ [A1
1 + 2, A2

1) 6= ∅ imply that
J4’s deadline must be at least 1 + α after A5 (i.e., A4 + 4 ≥ A5 + 1 + α). Since [A1

1, A
1
1 + 2) ∩

[A5, A5 + 6) 6= ∅ (Lemma 11), it must also be that [A4, A4 + 4) ∩ [A1
1, A

1
1 + 2) 6= ∅. Otherwise,

if [A4, A4 + 4) ∩ [A1
1, A

1
1 + 2) = ∅, then J1

1 must arrive after J4’s deadline, in order to still overlap
with J5’s scheduling window. In this case, the earliest J4’s deadline may occur is 1 +α units after A5;
hence, A1

1 ≥ A5 + 1 + α. However, this inequality and the minimum separation between J1
1 and J2

1

imply A2
1 ≥ A1

1 + 5 ≥ A5 + 6 + α. This further implies [A2
1, A

2
1 + 2) ∩ [A5, A5 + 6) = ∅ which

contradicts Lemma 11. So given that [A4, A4 + 4) ∩ [A1
1, A

1
1 + 2) 6= ∅ is true, we may consider three

additional subcases regarding the execution of J4 in relation to J1
1 ’s absolute deadline.

i) J4 executes entirely after A1
1 + 2 (i.e., J4 executes only in the interval [A1

1 + 2, A4 + 4)): Because
the execution requirement of J4 is two and [A4, A4 + 4)∩ [A1

1 + 2, A2
1) 6= ∅, it must be that A4 ∈

[A1
1, A

1
1 + 2); otherwise, there length of the interval [A1

1, A4 + 4) would leave insufficient time for
J4 to execute. Since A4 < A5 in this case, A1

1 ≤ A4 < A5. Thus, the interval [A4, A4 + 4) is a
subset of [A1

1, A5 + 6). By Lemma 13, π1 is continuously busy executing J1
1 during [A1

1, A
1
1 + 2).

By Lemma 12, π1 is continuously busy executing jobs of τA ∩ {τ5} during [A5, A5 + 6). It must
be that π1 is also continuously busy executing jobs of τA ∩ {τ5} over the interval [A4, A4 + 4)
in schedule S′I , because it is a subset of the union of these two continuously busy intervals. This
implies Equation 33.

ii) J4 executes both before A1
1 and after A1

1 + 2: Observe that job J1
1 executes continuously over

[A1
1, A

1
1 +2). Since J4 executes both before and after A1

1 and S′I is valid, it follows that [A1
1, A

1
1 +

2) ⊂ [A4, A4+4). Thus, J4 must continuously execute on processor π1 over the intervals [A4, A
1
1)

and [A1
1+2, A4+4) in schedule S′I to complete by its deadline. Since processor π1 is continuously

busy executing either J4 or J1
1 over the intervals [A4, A

1
1), [A1

1, A
1
1 + 2) and [A1

1 + 2, A4 + 4), it

22



is continuously busy over the interval [A4, A4 + 4) in schedule S′I executing jobs of τA ∩ {τ5}.
This implies Equation 33.

iii) J4 executes entirely before A1
1: Equation 34 implies that this case is impossible.

b) A5 + 2 < A4 < A5 + 6: Symmetric to Case a.

We now concentrate on identifying the longest continuously busy interval on processor π1 for tasks τA ∩ {τ5}
that contains the interval [A5, A5 + 6). By identifying this interval, we may more easily reason about the amount
of execution of jobs of τ2 or τ3 on processor π1 in schedule S′I . We begin by defining tstart which we will show is
the start of the longest continuously busy interval containing [A5, A5 + 6).

tstart
def= min{A1

1, A4, A5} (35)

The next lemma shows that the the interval [tstart, tstart+8−α) is continuously busy on π1 for tasks τA∪{τ5};
Lemma 16 will show that [tstart, tstart + 8− α) is, in fact, the maximum continuously busy interval that contains
[A5, A5 +6) because the time instants immediately before tstart or immediately after tstart+8−α cannot execute
jobs of τA ∪ {τ5}.

Lemma 15 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then the interval
[tstart, tstart + 8−α) ⊃ [A5, A5 + 6) is a continuously busy interval on processor π1 with respect to schedule S′I
and tasks τA ∪ {τ5}. More formally,∑

τj∈τA∪{τ5}

Wj(S′I , π1, tstart, tstart + 8− α) = 8− α, (36)

Furthermore, jobs J1
1 , J2

1 , J4, and J5 are the only jobs to execute on processor π1 over [tstart, tstart + 8 − α) in
schedule S′I .

Proof: Lemmas 10 and 11 imply that the scheduling windows of jobs J4, J1
1 , and J2

1 intersect with the scheduling
window of job J5. Lemmas 12, 13, and 14 imply that the scheduling windows of jobs J5, J1

1 , J2
1 , and J4 are

continuously busy intervals on processor π1 in schedule S′I for tasks τA ∩ {τ5}. Thus, the union of the scheduling
windows of J5, J1

1 , J2
1 , and J4 is also a continuously busy interval on π1 for τA∩{τ5}; i.e., [A5, A5+6)∪[A1

1, A
1
1+

2) ∪ [A2
1, A

2
1 + 2) ∪ [A4, A4 + 4) =

[
min{A5, A

1
1, A4},max{A5 + 6, A2

1 + 2, A4 + 4}) is a continuously busy
interval on π1.

We will now show that
[
min{A5, A

1
1, A4},max{A5 + 6, A2

1 + 2, A4 + 4}) equals the interval [tstart, tstart +
8−α). Obviously, by definition of Equation 35, min{A5, A

1
1, A4} equals tstart; so, we must show that max{A5 +

6, A2
1 + 2, A4 + 4} equals tstart + 8 − α. Lemma 12 shows that processor π1 over the interval [A5, A5 + 6) in

S′I executes only jobs J1
1 , J2

1 , J4, and J5. The busy interval
[
min{A5, A

1
1, A4},max{A5 + 6, A2

1 + 2, A4 + 4})
must include these jobs, whose total execution on processor π1 in schedule S′I equals 2 + 2 + 2 + 2− α = 8− α.
Because the execution of these jobs must complete in the busy interval, max{A5 + 6, A2

1 + 2, A4 + 4} must
be at least tstart + 8 − α. If max{A5 + 6, A2

1 + 2, A4 + 4} exceeds tstart + 8 − α, then some job τA ∪ {τ5}
(other than J1

1 , J2
1 , J4 or J5) must have a scheduling window that overlaps [tstart, tstart + 8 − α); otherwise,

the interval
[
min{A5, A

1
1, A4},max{A5 + 6, A2

1 + 2, A4 + 4}) is not continuously busy for tasks τA ∩ {τ5}.
However, Observation 1 implies that such a job cannot exist. Therefore, max{A5 + 6, A2

1 + 2, A4 + 4} equals
tstart + 8− α, implying Equation 36.

Since the busy interval [tstart, tstart+8−α) includes the entire execution from jobs J1
1 , J2

1 , J4, and 2−α units
of execution from J5, there is an idle period (with respect to tasks τA∪{τ5}) before and after [tstart, tstart+8−α).
The following lemma exactly characterizes these idle periods.

23



Lemma 16 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then no job of
τA ∩ {τ5} executes on processor π1 in either the interval [tstart − 2 − α, tstart) or [tstart + 8 − α, tstart + 10).
More formally, ∑

τj∈τA∪{τ5}

Wj(S′I , π1, tstart − 2− α, tstart) = 0, (37)

and ∑
τj∈τA∪{τ5}

Wj(S′I , π1, tstart + 8− α, tstart + 10) = 0. (38)

Proof: We begin with Equation 37: we show that S′I does not execute any jobs of τA ∩ {τ5} on processor π1

during the interval [tstart − 2, tstart). Equation 38 can be shown by a symmetric argument. Observe that

W1(S′I , π1, A
1
1 − 3, A1

1) = 0 (39)

because the period of τ1, p1 equals five and the relative deadline, d1, equals two. Recall from the proof of
Lemma 14 that the interval [A1

1 + 2, A2
1) is a subset of [A5, A5 + 6) and that A2

1 − A1
1 − 2 ≥ 3. So, the interval

[A1
1 + 2, A2

1) is continuously busy on processor π1 executing either J4 or J5:∑
τj∈{τ4,τ5}

Wj(S′I , π1, A
1
1 + 2, A1

2) ≥ 3.

Since at least three units of J4 and J5 must execute in the interval [A1
1 + 2, A1

2) and the total execution of J4

and J5 on π1 is 4 − α, this leaves at most 1 − α units left to execute either before A1
1 and/or after A1

2 + 2. This
implies

tstart ≥ A1
1 − 1 + α. (40)

Equations 39 and 40 imply that the latest another job of τ1 (that precedes J1
1 ) could execute prior to tstart is

tstart − 2 − α. Since τ5 and τ4 have periods equal to 100, and they release jobs contained within [tstart, tstart +
8− α), they are not current in the interval [tstart − 2− α, tstart). Therefore,∑

τj∈τA∪{τ5}

Wj(S′I , π1, tstart − 2− α, tstart) = 0.

Processor π1 can also be shown to be busy during the scheduling windows for jobs of τB . Lemma 17 shows that
there is no idle time on π1 in S′I over the scheduling window for any job of τB that executes a non-zero amount of
time on π2. Lemma 18 will show for any interval on π1 that is continuously busy for jobs of τ2 and τ3, no job of
these two tasks can execute on processor π1 in the same interval.

Lemma 17 For any t ≥ 0 where S′I(π2, t) 6= ⊥, let Jk = S′I(π2, t) where Jk = (Ak, Ek, Dk) ∈ I . For all
t′ ∈ [Ak, Ak +Dk),

S′I(π1, t
′) 6= ⊥. (41)

Proof: Note that Jk ∈ I must have been generated by a task of τB in order to be executed on π2 in S′I . By
construction of S′I , as much of the execution of Jk has been moved from π2 to π1 (with respect to the idle times
on processor π1 in schedule SI ). Since Jk executed on π2 for a non-zero amount of time there is no further unused
idle time in [Ak, Ak +Dk); thus, S′I(π1, t

′) 6= ⊥ for all t′ ∈ [Ak, Ak +Dk) which implies the lemma.

24



Lemma 18 For any interval [t1, t2) where 0 ≤ t1 < t2 where processor π1 is continuously busy in S′I with respect
to jobs of τ2 and τ3, then no job of τ2 or τ3 is executed on processor π2 in S′I over [t1, t2). More formally,∑

τj∈{τ2,τ3}

Wj(S′I , π2, t1, t2) = 0 (42)

Proof: Assume that [t1, t2) is a continuously busy interval on processor π1 for τ2 and τ3. Thus, for each
t ∈ [t1, t2), either S′I(π1, t, τ2) = 1 or S′I(π1, t, τ3) = 1. We will show in either case that S′I(π2, t) = ⊥. If
S′I(π1, t, τ2) = 1, then SI(π2, t, τ2) = 1 in the original schedule, since e1 = d1 = 1. Because S′I is a valid
schedule S′I(π2, t, τ2) = 0. Further S′I(π2, t, τ3) = 0 due to the fact that S′I schedules jobs of τB on processor
π2 only at times that they were scheduled on processor π2 in the original schedule SI . Thus, S′I(π1, t, τ2) = 1
implies that S′I(π2, t) = ⊥.

If S′I(π1, t, τ3) = 1, then S′I(π2, t, τ3) = 0 due to the validity of S′I . Since we move as much execution of
τ2 from π2 to π1 before moving τ3’s execution, a job of task τ3 cannot be executing on processor π1 at the same
time that τ2 is executing on processor π2; otherwise, since τ2 is only scheduled at points during which π1 is idle in
the original schedule SI , we could have moved more execution of τ2 to processor π1. Thus, we have shown that
S′I(π2, t, τ2) = 0 for this case, implying S′I(π2, t) = ⊥ and the lemma.

For the final lemma of Step 3 (Lemma 22), we derive constraints on the arrival times of J5 and J6. In fact,
if J6 cannot complete in schedule S′I , then J5’s scheduling window cannot be contained within J6’s scheduling
window. Furthermore, we show that either J5 arrives at least two time units before the arrival of J6, or that J5

has a deadline at least two units after J6’s deadline. Before we can prove Lemma 22, we require three technical
lemmas: Lemmas 19 and 20 are concerned with the execution of jobs J1

3 and J2
3 in relation to the intervals

[tstart, tstart+8−α) and [A6, A6+8); Lemma 21 describes the relative overlap of the intervals [tstart, tstart+8−α)
and [A6, A6 + 8).

Lemma 19 Given that S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6. If jobs J1
3

and J2
3 both have their scheduling window intersect with [tstart, tstart + 8− α) and 0 < tstart −A1

3 < α, then

[tstart + 8− α,A1
3 + 8) ⊂ [A2

3, A
2
3 + 2) (43)

Proof: Observe that since tstart −A1
3 < α, the inequality

tstart + 8− α < A1
3 + 8 (44)

must hold. Since J2
3 ’s scheduling window intersects with [tstart, tstart + 8− α), the following inequality must be

true:
A2

3 < tstart + 8− α. (45)

The period parameter of τ3 (p3 = 6) implies A1
3 + 6 ≤ A2

3. This inequality along with tstart − α < A1
3 implies

tstart + 6− α < A2
3

⇒ tstart + 8− α < A2
3 + 2.

(46)

Furthermore, A1
3 + 6 ≤ A2

3 implies
A1

3 + 8 ≤ A2
3 + 2 (47)

Inequalities 44, 45, 46, and 47 taken together imply Equation 43 of the lemma.

25



Lemma 20 Given that S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6. If jobs J1
3

and J2
3 both have their scheduling window intersect with [tstart, tstart + 8− α), then there exists t′ ≥ 0 such that

[t′, t′ + 10) ⊃ [A6, A6 + 8), (48)

and
W2(S′I , π1, t

′, t′ + 10) +W3(S′I , π1, t
′, t′ + 10) ≥ α. (49)

Proof: Because both J1
3 and J2

3 have scheduling windows that overlap with [tstart, tstart + 8 − α), the interval
between the scheduling windows of J1

3 and J2
3 must be completely contained in [tstart, tstart + 8 − α) (i.e.,

[A1
3+2, A2

3) ⊂ [tstart, tstart+8−α)). The period and relative deadline parameter of τ3 (p3 = 6 and d3 = 2) imply
thatA2

3−(A1
3+2) ≥ 4. Therefore, total intersection between the [tstart, tstart+8−α) and the scheduling windows

of J1
3 and J2

3 is at most 4−α. Since the aggregate length of the scheduling windows for J1
3 and J2

3 is four, the total
remaining portion of J1

3 and J2
3 ’s scheduling windows that do not overlap with [tstart, tstart + 8−α) is at least α.

This remaining portion of the scheduling windows of J1
3 and J2

3 must overlap with either [tstart − 2 − α, tstart)
or [tstart + 8− α, tstart + 10) which, by Lemma 16, does not contain the execution of jobs of τA ∪ {τ5}.

According to Lemma 7, J1
3 and J2

3 execute on π2 over [A6, A6 + 8) for at least 2 − α time units. Since the
execution requirement of each job of τ3 is one (i.e., e3 = 1), both J1

3 and J2
3 must each execute on π2 over

[A6, A6 + 8) for at least 1 − α time units. Thus, the scheduling window of both J1
3 and J2

3 must each overlap
with [A6, A6 + 8) for at least 1 − α time units. Therefore, the earliest that J1

3 could arrive is at time A6 − 1 − α
(otherwise, J1

3 would overlap with [A6, A6 +8) less than 1−α time units). Similarly, the latest that J2
3 could have

its deadline is A6 + 9 + α. More formally,

A1
3 ≥ A6 − 1− α, (50)

and
A2

3 + 2 ≤ A6 + 9 + α. (51)

We now consider three cases based on how J1
3 and J2

3 intersect with [tstart, tstart + 8 − α). In each case, we
will prove that there exists a t ≥ 0 that satisfies the conditions of Equations 48 and 49. The three cases are:

Case I) J1
3 ’s scheduling window is completely contained within [tstart, tstart + 8− α);

Case II) J2
3 ’s scheduling window is completely contained within [tstart, tstart + 8− α); or

Case III) Neither J1
3 ’s nor J2

3 ’s scheduling window is completely contained within [tstart, tstart + 8− α).

(Observe that the argument of the first paragraph of the proof implies that both J1
3 and J2

3 cannot have their
scheduling windows completely contained within [tstart, tstart + 8− α)).
Analysis for Case I. Both [A1

3, A
1
3 +2) and [A1

3 +2, A2
3) are proper subsets of [tstart, tstart+8−α). Thus, by the

argument of the first paragraph, at least α of J2
3 ’s scheduling window must intersect with [tstart+8−α, tstart+10).

More precisely, [tstart + 8 − α, tstart + 8) ⊂ [A2
3, A

2
3 + 2). By Lemma 16, jobs of τA ∪ {τ5} do not execute

during [tstart + 8 − α, tstart + 8). Lemma 7 implies that J2
3 must execute on processor π2 for some non-zero

amount of time in schedule S′I . According to Lemma 13 and the fact that τA ∪ {τ5} cannot execute during this
interval, [tstart + 8 − α, tstart + 8) must be continuously busy on processor π1 with respect to jobs of τ2 and τ3.
By Equation 50 (i.e., A1

3 ≥ A6 − 1− α) and the period parameter of τ3 (i.e., p3 = 6), A2
3 ≥ A6 + 5− α must be

true; since α ≤ 1 (by Lemma 6),
A6 ≤ A2

3. (52)

26



Equation 51 states that A2
3 + 2 ≤ A6 + 9 + α; since α ≤ 1, it must be that

A2
3 + 2 ≤ A6 + 10. (53)

Equations 52 and 53 together imply [A6, A6+10) ⊃ [A2
3, A

2
3+2). Furthermore, we have shown that [A2

3, A
2
3+2) ⊃

[tstart + 8 − α, tstart + 8); thus, [A6, A6 + 10) ⊃ [tstart + 8 − α, tstart + 8). Since [tstart + 8 − α, tstart + 8)
is continuously busy on π1 for α time units executing jobs of τ2 and τ3 and [A6, A6 + 8) ⊂ [A6, A6 + 10), the
interval [A6, A6 + 10) satisfies both Equations 48 and 49 of the lemma.
Analysis for Case II. This case is exactly symmetric to Case II.
Analysis for Case III. Consider the interval [A1

3, A
1
3 + 8). We first show that [A1

3, A
1
3 + 8) contains at least α

units of execution for jobs of τ2 and τ3 on processor π1. Since J1
3 intersects [tstart, tstart + 8 − α) and d3 = 2,

it must be that tstart − 2 < A1
3 < tstart, which implies that tstart − A1

3 < 2. Thus, the interval [A1
3, tstart) is

contained within [tstart − 2 − α, tstart) which by Lemma 16 cannot contain the execution of jobs of τA ∪ {τ5}
on processor π1. According to Lemma 7, J1

3 must execute on processor π2 for some non-zero amount of time
which implies that there must exist a time t ∈ [A1

3, A
1
3 + 2) such that S′I(π2, t) = J1

3 (6= ⊥). Note the preceding
statement satisfies the supposition of Lemma 17; so, for all t′ ∈ [A1

3, A
1
3 + 2), S′I(π1, t

′) 6= ⊥. By Lemma 17 and
the fact that jobs of τA ∪ {τ5} do not execute on processor π over [A1

3, tstart), processor π1 must be continuously
busy over the interval [A1

3, tstart) executing only jobs of τ2 and τ3. If the interval length of [A1
3, tstart) is greater or

equal to α, then we have shown that [A1
3, A

1
3 + 8) contains at least α units of execution of τ2 and τ3 on processor

π1. If the interval length of [A1
3, tstart) is less than α, then [A1

3, A
1
3 + 8) ⊃ [tstart, tstart + 8 − α). Additionally,

Lemma 19 implies that interval [tstart + 8− α,A1
3 + 8) must be contained within [A2

3, A
2
3 + 2). J2

3 must execute
on processor π2 for some non-zero time by Lemma 7. Lemma 17 implies then that π1 is continuously busy over
[A2

3, A
2
3 + 2). However, [tstart + 8−α,A1

3 + 8) ⊂ [tstart + 8−α,A2
3 + 2) cannot contain the execution of jobs of

τA ∪ {τ5} (by Lemma 16). Thus, the interval [tstart + 8−α,A1
3 + 8) is continuously busy executing only jobs of

τ2 and τ3 on processor π1 in schedule S′I . Therefore, [A1
3, A

1
3 + 8) contains intervals (namely [A1

3, tstart) and/or
[tstart + 8− α,A1

3 + 8)) of total length α that are continuously busy executing jobs of τ2 and τ3 on processor π1.
Continuing our analysis of Case III, we will now show that the interval

[
min(A1

3, A6),min(A1
3, A6) + 10

)
is a

superset for both intervals [A6, A6 + 8) and [A1
3, A

1
3 + 8), and thus satisfies Equations 48 and 49 of the lemma.

There are two subcases to consider:

Subcase III.A) A1
3 ≤ A6; or

Subcase III.B) A1
3 > A6.

For Subcase III.A,
[
min(A1

3, A6),min(A1
3, A6) + 10

)
is equivalent to the interval [A1

3, A
1
3 + 10). Equation 50

states that A1
3 ≥ A6 − 1− α. This implies that A1

3 + 10 ≥ A6 + 9− α. Since α > 0 (Lemma 5), [A6, A6 + 8) ⊂
[A1

3, A
1
3 + 10). Furthermore, [A1

3, A
1
3 + 8) is obviously a subset of [A1

3, A
1
3 + 10).

For Subcase III.B,
[
min(A1

3, A6),min(A1
3, A6) + 10

)
is equivalent to the interval [A6, A6 + 10). Equation 51

states that A2
3 + 2 ≤ A6 + 9 + α ⇒ A2

3 ≤ A6 + 7 + α. Due to the period parameter for τ3 (i.e., p3 = 6), A1
3 ≤

A6 + 1 +α. Adding eight to both sides of the inequality implies, A1
3 + 8 ≤ A6 + 9 +α. Since α ≤ 1 (Lemma 6),

[A1
3, A

1
3 + 8) ⊂ [A6, A6 + 10). Furthermore, [A6, A6 + 8) is obviously a subset of [A6, A6 + 10). In both the

subcases, we have shown that both [A1
3, A

1
3+8) and [A6, A6+8) are subsets of

[
min(A1

3, A6),min(A1
3, A6) + 10

)
.

Thus,
[
min(A1

3, A6),min(A1
3, A6) + 10

)
satisfies the conditions of Equations 48 and 49 of the lemma.

Lemma 21 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then

(A6 − 2 > tstart) ∨ (tstart > A6 + 2 + α) (54)

27



Proof: We will prove the lemma by contradiction; that is, we will show that if

A6 − 2 ≤ tstart ≤ A6 + 2 + α (55)

is true, then we reach a logical contradiction.
By Lemma 16, the intervals [tstart− 2−α, tstart) and [tstart + 8−α, tstart + 10) do not contain the execution

of jobs of task τA ∪ {τ5} on processor π1 in schedule S′I . Equation 55 states that tstart ≤ A6 + 2 + α. This
implies that A6 ≥ tstart − 2− α. Therefore, [A6, tstart) is a subset of [tstart − 2− α, tstart) and hence no jobs of
τA ∪{τ5} may execute in [A6, tstart). (Please note that [A6, tstart) may be empty if tstart ≤ A6). Similarly, since
tstart ≥ A6− 2, then tstart + 10 ≥ A6 + 8; this implies that interval [tstart + 8−α,A6 + 8) also does not contain
the execution of jobs of τA ∪ {τ5}. (Again, [tstart + 8 − α,A6 + 8) may be empty if tstart + 8 − α ≥ A6 + 8).
Thus, the only times during which processor π1 executes jobs of τA ∪ {τ5} over [A6, A6 + 8) in schedule S′I is
over the subinterval [tstart, tstart + 8− α) ∩ [A6, A6 + 8).

Lemma 7 implies that two jobs of τ3, namely J1
3 , J

2
3 ∈ I , must execute on processor π2 in schedule S′I over the

interval [A6, A6 + 8) for strictly more than 2− α time units. We now consider three possible subcases regarding
the intersection between the interval [tstart, tstart + 8− α) and the scheduling windows of J1

3 and J2
3 .

Case I) Both the scheduling windows of J1
3 and J2

3 intersect with [tstart, tstart + 8− α);

Case II) only one of either J1
3 or J2

3 has a scheduling window that intersects with [tstart, tstart + 8− α); or

Case III) neither J1
3 nor J2

3 intersect with [tstart, tstart + 8− α).

For Case I, Lemma 20 implies that there exists an interval [t′, t′ + 10) such that W2(S′I , π1, t
′, t′ + 10) +

W3(S′I , π1, t
′, t′ + 10) ≥ α and [t′, t′ + 10) ⊃ [A6, A6 + 8). Observation 1 states that the most that jobs of τ2 and

τ3 can execute in S′I over [t′, t′ + 10) is four units. Since τ2 and τ3 execute for at least α time units on processor
π1 over [t′, t′ + 10), τ2 and τ3 can execute for at most 4 − α time units on processor π2 over the same interval.
Because [A6, A6 + 8) ⊂ [t′, t′+ 10), the preceding statement implies that τ2 and τ3 execute for at most 4−α time
units on π2 over [A6, A6 + 8) in S′I . However, this directly contradicts Lemma 9.

For Case II, without loss of generality, assume that J1
3 is the job that does not intersect with [tstart, tstart +

8 − α). Since J1
3 does not intersect with [tstart, tstart + 8 − α), the interval [A6, A6 + 8) ∩ [A1

3, A
1
3 + 2) does

not contain the execution of jobs of τA ∪ {τ5} on processor π1 in schedule S′I (according to the argument at
the beginning of Case I about the execution of jobs of τA ∪ {τ5} over [A6, A6 + 8)). Lemma 7 implies that
J1

3 executes on π2 over [A6, A6 + 8). Lemma 17 thus, implies that π1 is continuously busy over [A1
3, A

1
3 + 2).

However, we have just argued that τA ∪ {τ5} do not execute on π1 over [A6, A6 + 8) ∩ [A1
3, A

1
3 + 2). Thus, π1

is continuously busy over [A6, A6 + 8) ∩ [A1
3, A

1
3 + 2) for τ2 and τ3. Lemma 18 implies that π2 is idle over the

interval [A6, A6 + 8) ∩ [A1
3, A

1
3 + 2) for tasks τ2 and τ3. However, this contradicts the earlier statement that J1

3

must have executed on π2 over [A6, A6 + 8). Thus, this case is not possible, since we have reached a contradiction
to Lemma 7

The proof of Case III is identical to Case II, except neither J1
3 nor J2

3 will execute on processor π2 over the
interval [A6, A6 + 8), which contradicts Lemma 7. Thus, in each subcase, we derived a contradiction. Thus,
Equation 55 is impossible and Equation 54 must be true.

Lemma 22 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then

(A5 < A6 − 2) ∨ (A6 + 4 < A5) (56)

Proof: We prove the lemma by contradiction; that is, we will assume that there is not sufficient idle time for J6

in S′I and
A6 − 2 ≤ A5 ≤ A6 + 4. (57)

28



However, we will show that the Equation 57 leads to a contradiction.
Our argument is based on a case analysis of the possible relative values of A6 and tstart (under the constraint of

Equation 57). First, observe that Lemma 15 states that [A5, A5 + 6) ⊂ [tstart, tstart + 8− α); thus, the following
two inequalities are true:

tstart ≤ A5, (58)

and
A5 + 6 ≤ tstart + 8− α, (59)

Our case analysis contains three major cases (with several subcases). We will show in each case a contradiction
arises. The three major cases are:

Case I) A6 − 2 ≤ tstart ≤ A6 + 2 + α;

Case II) tstart < A6 − 2; or

Case III) A6 + 2 + α < tstart.

Below is the proof of contradiction for each major case.
Analysis for Case I): This case directly contradicts Lemma 21.
Analysis for Case II): By assumption of Case II and Equation 59,

A5 − 2 + α ≤ tstart < A6 − 2
⇒ A6 − 4 + α ≤ tstart < A6 − 2

(60)

The last implication follows from the assumption of Equation 57.
Let y def= A6 − 2 − tstart. We may rewrite the expression tstart + 8 − α as A6 + 6 − α − y and the interval

[tstart, tstart + 8 − α) as [tstart, A6 + 6 − α − y). From Case II and Equation 60, we may obtain the following
bounds on y:

0 < y ≤ 2− α. (61)

Since [A6, A6 + 6 − α − y) ⊂ [tstart, tstart + 8 − α), Lemma 15 implies that [A6, A6 + 6 − α − y) is a
continuously busy interval for tasks τA ∪ {τ5} on processor π1. Note that A6 + 6 − α − y ≥ A6 + 4 from
Equation 61; so, the interval [A6, A6 + 6 − α − y) is non-empty. Since A6 + 6 − α − y equals tstart + 8 − α,
Lemma 16 implies that no job of τA∪{τ5} executes in [A6 + 6−α−y,A6 + 8−y). By y > 0 (Equation 61), the
interval [A6 +8−y,A6 +8) is also a non-zero length interval. We have, thus, partitioned the interval [A6, A6 +8)
into three disjoint, non-zero-length intervals: [A6, A6 + 6 − α − y), which is continuously busy for τA ∪ {τ5};
[A6 + 6− α− y,A6 + 8− y) which is continuously idle for τA ∪ {τ5}; and [A6 + 8− y,A6 + 8).

The only jobs that execute on processor π2 over [A6, A6 +8) are J1
2 , J2

2 , J1
3 , J2

3 and J5, by Lemmas 8, 7, and 5.
Since [A6, A6 +6−α−y) equals [tstart, tstart+8−α)∩ [A6, A6 +8) and [A5, A5 +6) ⊆ [tstart, tstart+8−α),
Lemma 5 implies that J5 must execute for some amount of time ≤ α in the interval [A6, A6 + 6 − α − y). We
consider the following subcase analysis based on the relative placement of the two jobs of τ2 and τ3. The subcases
are:

Subcase II.A) τ2 has the scheduling windows of both J1
2 and J2

2 intersect with [A6, A6 + 6− α− y);

Subcase II.B) τ2 has at most one job that intersects with [A6, A6 + 6− α− y);

Sub-Subcase II.B1) τ3 has the scheduling windows of both J1
3 and J2

3 intersect with
[A6, A6 + 6− α− y);

Sub-Subcase II.B2) both τ2 and τ3 have at most one job that intersects with [A6, A6 + 6− α− y).

29



For Subcase II.A, the interval between the scheduling windows of J1
2 and J2

2 must be completely contained in
[A6, A6 + 6− α− y) (i.e., [A1

2 + 1, A2
2) ⊂ [A6, A6 + 6− α− y)). The period and relative deadline parameter of

τ2 (p2 = 5 and d2 = 1) imply that A2
2 − (A1

2 + 1) ≥ 4. The length of [A6, A6 + 6 − α − y) is strictly less than
6 − α, since y > 0. Therefore, the total intersection between the scheduling windows of both J1

2 and J2
2 and the

interval [A6, A6 + 6 − α − y) is strictly less than 2 − α. The remaining portion of the scheduling windows, of
total length at least α, for J1

2 and J2
2 must overlap with either [tstart, A6) or [A6 + 6− α− y,A6 + 8− y). Since

e2 = d2 = 1, J1
2 must be continuously executing over the interval [A1

2, A
1
2 + 1)∩ [tstart, A6) (if non-empty), since

J1
2 completes by its deadline in S′I ; note that the execution of J1

1 is outside the interval [A6, A6 + 8). Similarly, J2
2

must also be continuously executing over the interval [A2
2, A

2
2 + 1) ∩ [A6 + 6− α− y,A6 + 8− y). Corollary 2

implies that J2
2 must execute over [A6, A6 + 8) for a non-zero amount. Lemma 17 implies that processor π1 is

continuously busy over the intervals [A2
2, A

2
2 + 1) ∩ [A6 + 6 − α − y,A6 + 8 − y). However, by the argument

at the beginning of Case II, [A6 + 6 − α − y,A6 + 8 − y) does not contain the execution of jobs of τA ∪ {τ5}
on processor π1. Therefore, [A2

2, A
2
2 + 1) ∩ [A6 + 6 − α − y,A6 + 8 − y) is continuously busy on processor π1

executing jobs of τ2 and τ3. Lemma 18 implies that processor π2 does not contain the execution of jobs of τ2 and
τ3 over [A2

2, A
2
2 + 1)∩ [A6 + 6−α− y,A6 + 8− y). Since J2

2 must be continuously executing over its scheduling
window and π2 does not execute jobs of τ2 over [A2

2, A
2
2 + 1) ∩ [A6 + 6− α − y,A6 + 8− y), J2

2 must execute
entirely on processor π1 over [A2

2, A
2
2 + 1)∩ [A6 + 6−α− y,A6 + 8− y). Finally, observe that since J2

2 overlaps
with [A6, A6 + 6−α− y), then A2

2 < A6 + 6−α− y ⇒ A2
2 + 1 < A6 + 7−α− y < A6 + 8− y; hence, τ2 does

not execute during [A6 +8−y,A6 +8). Thus, we have shown that during the total portion (of length≥ α) that the
scheduling windows of J1

2 and J2
2 do not overlap with [A6, A6 + 6 − α − y) (specifically, [tstart, A6)), τ2 either

executes outside of [A6, A6 + 8) on processor π2 or τ2 executes on processor π1. Thus, for Case II.A, the most
that τ2 can execute on processor π2 in S′I over [A6, A6 + 8) is at most 2 − α. However, this directly contradicts
Lemma 8 which states that τ2 executes for strictly more than 2− α time units on processor π2 over [A6, A6 + 8).

For Sub-Subcase II.B1, both J1
3 and J2

3 intersect with the interval [A6, A6 + 6 − α − y); thus, the interval
between the scheduling windows of J1

3 and J2
3 must be completely contained in [A6, A6 + 6 − α − y) (i.e.,

[A1
3 + 2, A2

3) ⊂ [A6, A6 + 6 − α − y)). The period and relative deadline parameter of τ3 (p3 = 6 and d3 = 2)
imply that A2

3 − (A1
3 + 2) ≥ 4. By reasoning similar to previous subcase above, the total intersection between the

scheduling windows of J1
3 and J2

3 is strictly less than 2 − α. Thus, the most that τ3 can execute on processor π2

over the interval [A6, A6 +6−α−y) is strictly less than 2−α. τ3 cannot execute over [A6 +6−α−y,A6 +8−y),
since if J2

3 overlaps with [A6 + 6 − α − y,A6 + 8 − y) then Lemma 17 implies π1 would be continuously busy
executing τ2 or τ3 over [A2

3, A
2
3 + 2) ∩ [A6 + 6 − α − y,A6 + 8 − y). Lemma 18 implies that no jobs of τ2 or

τ3 execute on π2 over such an interval. Furthermore, observe that since J2
3 overlaps with [A6, A6 + 6 − α − y),

then A2
3 < A6 + 6 − α − y ⇒ A2

3 + 2 < A6 + 8 − α − y < A6 + 8 − y; hence, τ3 does not execute during
[A6 + 8 − y,A6 + 8). Thus, for Sub-Subcase II.B1, the most that τ3 can execute on processor π2 in S′I over
[A6, A6 + 8) is strictly less than 2− α which contradicts Lemma 7.

For Sub-Subcase II.B2, we have at most one job of each τ2 and τ3 that intersect with [A6, A6+6−α−y). Notice
that J2

2 ’s scheduling window does not intersect with [A6, A6+6−α−y). If J2
2 intersects [A6, A6+6−α−y), then

J1
2 ’s scheduling window must also intersect [A6, A6+6−α−y) because by Lemma 8 J1

2 intersects with [A6, A6+
6) and A1

2 + 5 ≤ A2
2; however, this contradicts the assumption of Sub-Subcase II.B2. Similarly, it may be shown

by identical reasoning that J2
3 ’s scheduling window does not intersect with [A6, A6 + 6− α− y). By Lemma 17

and 18, neither J2
2 nor J2

3 can execute on π2 in schedule S′I during the interval [A6 +6−α−y,A6 +8−y). Thus,
in this subcase, the only times during which J2

2 or J2
3 may execute on π2 over [A6, A6 +8) is during the subinterval

[A6 +8−y,A6 +8). However the length of the interval is at most 2−α by Equation 61. So, J2
2 and J2

3 contribute
at most 2− α execution on π2 over [A6, A6 + 8). J1

2 and J1
3 contribute at most one unit on π2 over [A6, A6 + 8).

Finally, J5 contributes at most α units on π2 over this interval. Thus,
∑

τi∈τexample−{τ6}Wi(S′I , π2, A6, A6 + 8) ≤
4. In this case, J6 could have completed its execution entirely on processor π2. Thus, in each subcase, we derived
a contradiction to our assumption of insufficient idle time for J6.

30



Analysis for Case III): This case is exactly symmetric to Case II.
In each major case, we achieve a contradiction to our assumption that J6 could not execute completely in S′I .

Thus, Equation 57 must be false. The lemma follows.

5.3.4 Step 4: Construction of Schedule S′′I

By the previous section, we know that if τ6 cannot complete in schedule S′I , then there exists a job of τ6 where
there is insufficient time on both π1 and π2 to complete the job during the idle instants. As in the last section,
let J6 be any such job of τ6 that cannot complete in its scheduling window with respect to the idle instants of
S′I . We now define a modified schedule S′′I in which more of τ5’s execution on processor π2 is moved out of the
interval [A6, A6 + 8). Lemma 5 implies that a job J5 of τ5 exists that has a scheduling window that intersects with
[A6, A6 + 8). Lemma 22 implies that J5’s scheduling window is not completely contained in [A6, A6 + 8). The
following are informal “rules” which we apply inductively at every time instant t from [0,∞). A formal definition
of S′′I appears immediately after the informal description.

Rule 0) The schedule for processor π1 is not changed from S′I to S′′I (i.e, for all t, S′′I (π1, t) = S′I(π1, t)).

Rule 1) The current job of τ5 has its execution moved to time t on processor π2 if:

a) there is a current job of τ5 at time t;

b) there is no current job of τ6 at time t;

c) no job was scheduled at time t on processor π2 in S′I ; and

d) the total execution of the current job of τ5 over its entire scheduling window on processor π1 plus
the total execution of the current job of τ5 on processor π2 up until time t, is less than τ5’s execution
requirement.

The purpose of this rule is to add new execution of J5 to times when [A5, A5 + 6) does not overlap with
[A6, A6 + 8) (when processor π2 is idle at time t and J5 is eligible to continue executing).

Rule 2) Processor π2 is idled at time t if:

a) there is a current job of τ5 at time t;

b) there is no current job of τ6 at time t;

c) a job of τ5 executed at time t on processor π2 in schedule S′I ; and

d) the total execution of the current job of τ5 over its entire scheduling window on processor π1 plus the
total execution of the current job of τ5 on processor π2 up until time t, already equals τ5’s execution
requirement.

The purpose of this rule is to continue to idle processor π2 at times t when [A5, A5 + 6) does not overlap
with [A6, A6 + 8) and J5 has sufficient execution on processor π1 over [A5, A5 + 6) and execution on
processor π2 over [A5, t) to successfully complete.

Rule 3) This rule is used to move execution out of the intersection of the scheduling windows of jobs of τ5 and
τ6. (Note the execution is added to the non-intersecting portion of the windows by Rule 1.) For this rule,
we need to determine how much execution has already been moved, as well as determine the amount of
execution of τ5 that could be moved forward in time. The specification of the third rule for S′′I (π2, t) is
that processor π2 is idled at time t if:

a) there is a current job of τ5 at time t;

31



b) there is a current job of τ6 at time t;

c) a job of τ5 executed at time t on processor π2 in schedule S′I ; and

d) the total aggregation of the following expressions exceeds or equals τ5’s execution requirement:

i) total execution of the current job of τ5 over its entire scheduling window on processor π1 in
schedule S′′I ;

ii) the total execution of the current job of τ5 on processor π2 preceding τ6’s scheduling window (if
any) in schedule S′′I ;

iii) the total execution of current job of τ5 from the arrival of τ6’s job plus the total execution of τ5 in
schedule S′I occurring after τ6’s scheduling window;

iv) the total idle time during the portion of τ5’s scheduling window that succeeds τ6’s scheduling
window in schedule S′I (i.e., potential times to move τ5’s execution).

Rule 4) Finally, if none above rules’ conditions are satisfied, then the schedule at time t remains the same as in
S′I .

The schedule S′′I is formally (and inductively) defined as follows.

S′′I (π1, t)
def= S′I(π1, t)

S′′I (π2, t)
def=



ϕ5(I, t) , if (r5(I, t) < ∞) and (r6(t) = ∞) and (S′I(π2, t) = ⊥) and (S′I(π1, t, τ5) = 0)
and (W5(S′I , π1, r5(I, t), r5(I, t) + 6) +W5(S′′I , π2, r5(I, t), t) < 2),

⊥ , if (r5(I, t) < ∞) and (r6(t) = ∞) and (S′I(π2, t, τ5) = 1) and
(W5(S′I , π1, r5(I, t), r5(I, t) + 6) +W5(S′′I , π2, r5(I, t), t) = 2),

⊥ , if (r5(I, t) < ∞) and (r6(I, t) < ∞) and (S′I(π2, t, τ5) = 1) and
(W5(S′I , π1, r5(I, t), r5(I, t)+6) +W5(S′′I , π2, r5(I, t),max{r5(I, t), r6(I, t)}) +
W5(S′′I , π2,max{r5(I, t), r6(I, t)}, t) +W5(S′I , π2,min{d5(I, t), d6(I, t)}, d5(I, t))
+ W⊥(S′I , π2,min{d5(I, t), d6(I, t)}, d5(I, t)) ≥ 2),

S′I(π2, t) , otherwise.
(62)

Figure 5 shows two possible scenarios in which execution of J5 on processor π1 is moved from its original
scheduled time instants in S′I . It is straightforward to see that S′′I remains valid.

Lemma 23 Schedule S′′I is valid.

Proof: It is easy to see that S′′I is valid, as we are only moving execution of τ5 during τ5’s scheduling window.
Furthermore, we ensure that τ5 does not execute concurrently with itself and that the total execution over τ5’s
scheduling window does not exceed τ5’s execution requirement (e5 = 2).

Before showing that schedule S′′I can accommodate J6’s execution, we prove a lemma regarding the conditions
that must hold when a job of τ5 executes on processor π2 in schedule S′′I .

Lemma 24 Let t > 0 be a time such that r5(I, t) < ∞ and r6(I, t) = ∞ (i.e., at time t there is a current
scheduling window for τ5, but not τ6). The current job of τ5, ϕ5(I, t), executes on processor π2 at time t in
schedule S′′I (i.e., S′′I (π2, t) = ϕ5(I, t)), if and only if, the following three conditions hold:

32



A5 A5 + 6 A5

S′′
I on π2

A5 + 6

or

A6 A6 + 8

J5 J5

Figure 5. The above image shows the two possible scenarios of moving J5’s execution from the
interval [A6, A6 + 8). In the left scenario, J5’s execution on processor π1 in the interval [A6, A6 +
8) ∪ [A5, A5 + 6) is moved to the left in an available time instant on processor π1 in the interval
[A5, A5 + 6) \ [A6, A6 + 8) that precedes J6’s scheduling window. The movement of execution to
left is achieved by application of Rule 1 followed by Rule 3. The right scenario shows the movement
of execution to the right when J5’s deadline is after J6’s. Movement to the right is achieved by
application of Rule 3 followed by Rule 1.

Condition 1: ϕ5(I, t) has not completed execution (i.e., J5 has executed for a total of exactly two time units on
π1 over [r5(I, t), r5(I, t) + 6) and π2 over [r5(I, t), t)). Formally, W5(S′I , π1, r5(I, t), r5(I, t) +
6) +W5(S′′I , π2, r5(I, t), t) < 2;

Condition 2: π1 is not executing ϕ5(I, t) at time t in schedule S′I ; and

Condition 3: π2 is not executing a job of task τ2 or τ3 at time t in schedule S′I .

Proof: The “if” direction is trivial; if each of the three conditions hold, observe that Rule 1’s conditions are
satisfied and ϕ5(I, t) is scheduled at time t on processor π2 in schedule S′′I . We will prove the “only if” direction
by contradiction. That is, assume that S′′I (π2, t) = ϕ5(I, t), but one of the three conditions is not true. Notice that if
either Condition 1 or 2 is not true, the validity of schedule S′′I (Lemma 23) will be violated. Specifically, if ϕ5(I, t)
is scheduled at time t on processor π2, but has already executed two units on π1 over [r5(I, t), r5(I, t) + 5) and on
π2 over [r5(I, t), t), then we will execute for more than the execution requirement in S′′I . If ϕ5(I, t) is scheduled at
time t on processor π2, but is already executing at time t on processor π1, then we will be executing concurrently
with itself. Finally, if Condition 3 is not true, then either τ2 or τ3 was already executing at time t in schedule S′I .
Observe that the definition of schedule S′′I never moves execution of τ2 or τ3. So, we cannot concurrently execute
a job of either τ2 or τ3 with ϕ5(I, t) on the same processor. Thus, in each case, we have shown that if any of
the conditions is violated a contradiction arises. Therefore, if ϕ5(I, t) is scheduled at time t on processor π2 in
schedule S′′I , then the above three conditions must hold.

We now show, for any job J6 ∈ I of task τ6 that cannot complete in schedule S′I , J6 is guaranteed to complete
execution in S′′I . More formally, we show, in the following lemma, that there is sufficient space to execute J6

entirely on processor π2 in schedule S′′I over J6’s scheduling window.

Lemma 25 If S′I does not have sufficient idle time over [A6, A6 + 8) to completely execute J6, then∑
τi∈τexample\{τ6}

Wi(S′′I , π2, A6, A6 + 8) ≤ 4 (63)

33



Proof: By Lemma 5, there exists a job J5 ∈ I of task τ5 with scheduling window such that [A5, A5 + 6) ∩
[A6, A6 + 8) 6= ∅. From Lemma 22, exactly one of the following two expressions is true:

Case I) A5 < A6 − 2; or

Case II) A6 + 4 < A5.

Analysis for Case I: The inequality of Case I implies that J5 arrives strictly earlier than two time units prior J6’s
arrival. Since J5 and J6 intersect, then A6 ≤ A5 + 6. Therefore, [A6 − 2, A6) ⊂ [A5, A5 + 6). There are two
subcases to consider regarding the execution of J5 over [A5, A6).

Subcase I.A) J5 completes α units of its execution on processor π2 in [A5, A6); or

Subcase I.B) J5 does not complete α units of execution on processor π2 in [A5, A6).

For Subcase I.A, J5 will not execute in the interval [A6, A6 + 8); Lemma 5 states that J5 executes for only α
time on processor π2 in [A5, A5 + 6). Since S′′I does not move execution of τ2 or τ3, exactly two jobs of both τ2

and τ3 execute in [A6, A6 + 8) by Lemmas 8 and 7. The total execution requirement of these four jobs is at most
four which implies Equation 63.

For Subcase I.B, note that Lemma 5 states that J5 executes for 2 − α on processor π1. So, if J5 does not
complete α units of execution on processor π2 in [A5, A6) for schedule S′′I , then Condition 1 is never false for
any t ∈ [A5, A6). Therefore, by Lemma 24, whenever J5 is not executing on processor π2 over [A5, A6), then
either Condition 2 or 3 of Lemma 24 is false. By Lemma 5, J5 executes on processor π2 for α time units in S′I
over [A5, A5 + 6). Since S′′I does not move additional execution of J5 to π1 from π2, J5 continues to execute
for α time units in [A5, A5 + 6) for S′′I . Thus, J5 executes the remaining portion on processor π1 for exactly
2− α time units. Hence, the most that J5 could execute for in schedule S′′I on processor π1 over [A5, A6) (and by
extension subinterval [A6− 2, A6)) is 2−α. So, Condition 2 could be false for at most 2−α times in the interval
[A6 − 2, A6). The remaining α time in the interval [A6 − 2, A6) must have either J5 executing on processor π2 or
Condition 3 being false (i.e., either τ2 or τ3 are executing).

By Observation 1, the most τ2 can execute over [A6 − 2, A6 + 8) (in any valid schedule) is two; similarly, the
most τ3 can execute over [A6 − 2, A6 + 8) is two. Lemma 5 and its period parameter (p5 = 100) implies the most
that τ5 could execute in [A6 − 2, A6 + 8) is α. Thus, the total execution of all jobs of τB over [A6 − 2, A6 + 8) is
4 + α. By the preceding paragraph, at least α units of this execution on π2 must occur over [A6 − 2, A6), leaving
at most four units to execute over [A6, A6 + 8). Thus, Equation 63 is true for this subcase. We have shown that
Equation 63 is true for all subcases of Case I
Analysis for Case II: Symmetric to Case I.

Theorem 2 immediately follows from the Steps outlined in Figure 3 and Lemma 25. That is, for any I ∈
I S

WCET(τ example), we can construct a valid schedule on two processors. Thus, by Definition 8, τ example is feasible
on two processors.

6 Conclusions

In this article, we have seen that there exists a sporadic task system that is feasible upon a multiprocessor
platform for which there does not exist an online multiprocessor algorithm that can successfully schedule every
real-time instance generated by this task system. The existence of such a feasible task system implies that optimal
online scheduling of sporadic and more general task systems is impossible for multiprocessor platforms. This
article identified the feasible task system and proved that no online scheduling algorithm can successfully schedule
all feasible instances.

34



The consequence of this negative result is far-reaching in that algorithms that are optimal for LL task sys-
tems no longer retain their optimality for small generalizations of the task model. Without optimality, it is not
immediately clear what should be the theoretical basis for evaluating the effectiveness of a real-time multiproces-
sor scheduling algorithm for sporadic and more general task systems. The use of analytical techniques such as
resource-augmentation [19] for identifying near-optimal online scheduling algorithms provide a potential metric
for comparison of multiprocessor scheduling algorithms for general task systems.

References

[1] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time Scheduling: The Deadline
Monotonic Approach. In Proceedings 8th IEEE Workshop on Real-Time Operating Systems and Software,
pages 127–132, Atlanta, May 1991.

[2] T. Baker and M. Cirinei. A necessary and sometimes sufficient condition for the feasibility of sets of sporadic
hard-deadline tasks. In Proceedings of the IEEE Real-time Systems Symposium, pages 178–187, Rio de
Janeiro, December 2006. IEEE Computer Society Press.

[3] T. Baker and M. Cirinei. Brute-force determination of multiprocessor schedulability for sets of sporadic hard-
deadline tasks. In Proceedings of the 10th International Conference on Principles of Distributed Systems,
pages 62–75, Guadeloupe, December 2007.

[4] S. Baruah. Dynamic- and static-priority scheduling of recurring real-time tasks. Real-Time Systems: The
International Journal of Time-Critical Computing, 24(1):99–128, 2003.

[5] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized multiframe tasks. Real-Time Systems: The
International Journal of Time-Critical Computing, 17(1):5–22, July 1999.

[6] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource
allocation. Algorithmica, 15(6):600–625, June 1996.

[7] S. Baruah, R. Howell, and L. Rosier. Feasibility problems for recurring tasks on one processor. Theoretical
Computer Science, 118(1):3–20, 1993.

[8] M. Dertouzos. Control robotics : the procedural control of physical processors. In Proceedings of the IFIP
Congress, pages 807–813, 1974.

[9] M. Dertouzos and A. K. Mok. Multiprocessor scheduling in a hard real-time environment. IEEE Transactions
on Software Engineering, 15(12):1497–1506, 1989.

[10] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research, 26:127–140, 1978.

[11] N. Fisher and S. Baruah. The feasibility of general task systems with precedence constraints on multiproces-
sor platforms. Real-Time Systems, 41(1):1–26, 2009.

[12] K. Hong and J. Leung. On-line scheduling of real-time tasks. In Proceedings of the Real-Time Systems
Symposium, pages 244–250, Huntsville, Alabama, December 1988. IEEE.

[13] W. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly, 21:177–185, 1974.

[14] K. Jeffay, D. Stanat, and C. Martel. On non-preemptive scheduling of periodic and sporadic tasks. In
Proceedings of the 12th Real-Time Systems Symposium, pages 129–139, San Antonio, Texas, December
1991. IEEE Computer Society Press.

35



[15] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover Publications, Inc., New York, 1970.

[16] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation, 2:237–250, 1982.

[17] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal
of the ACM, 20(1):46–61, 1973.

[18] A. K. Mok. Fundamental Design Problems of Distributed Systems for The Hard-Real-Time Environment.
PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology, 1983. Available as
Technical Report No. MIT/LCS/TR-297.

[19] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource augmentation.
In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 140–149, El
Paso, Texas, 4–6 May 1997.

[20] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocessors. In Proceedings of the
34th ACM Symposium on the Theory of Computing, pages 189–198, May 2002.

36


