Optimal Online Multiprocessor Scheduling of Sporadic Real-Time Tasks is Impossible

Nathan Fisher
Wayne State University
Joël Goossens
Université Libre de Bruxelles
Sanjoy Baruah
The University of North Carolina at Chapel Hill

Abstract

Optimal online scheduling algorithms are known for sporadic task systems scheduled upon a single processor. Additionally, optimal online scheduling algorithms are also known for restricted subclasses of sporadic task systems upon an identical multiprocessor platform. The research reported in this article addresses the question of existence of optimal online multiprocessor scheduling algorithms for general sporadic task systems. Our main result is a proof of the impossibility of optimal online scheduling for sporadic task systems upon a system comprised of two or more processors. The result is shown by finding a sporadic task system that is feasible on a multiprocessor platform that cannot be correctly scheduled by any possible online, deterministic scheduling algorithm. Since the sporadic task model is a subclass of many more general real-time task models, the nonexistence of optimal scheduling algorithms for the sporadic task systems implies nonexistence for any model which generalizes the sporadic task model.

Keywords: Real-time scheduling; Multiprocessor systems; Sporadic task model; Optimal scheduling algorithms.

1 Introduction

The sporadic task model $[18,16]$ has received tremendous research attention over the years for its usefulness in modeling recurring processes for hard-real-time systems. A sporadic task $\tau_{i}=\left(e_{i}, d_{i}, p_{i}\right)$ is characterized by a worst-case execution requirement e_{i}, a (relative) deadline d_{i}, and a minimum inter-arrival separation p_{i}, which is, for historical reasons, also referred to as the period of the task. Such a sporadic task generates a potentially infinite sequence of jobs, with successive job-arrivals separated by at least p_{i} time units. Each job has a worst-case execution requirement equal to e_{i} and a deadline that occurs d_{i} time units after its arrival time. A sporadic task system τ is a collection of such sporadic tasks.

Two significant factors contribute to the popularity of the sporadic task model in real-time system design. One factor is the generality of the sporadic task model. The sporadic task model is an extension of an earlier task model known as the Liu and Layland (LL) task model [17]. An LL task, τ_{i}, is only specified by an worst-case execution requirement e_{i} and a period p_{i}. The relative deadline is implicit in the period parameter (i.e., a job of an LL task has absolute deadline p_{i} time units after its arrival). The sporadic task model is, thus, a generalization of the LL task model, and, in fact, LL tasks are a subclass of sporadic task systems sometimes referred to as implicitdeadline sporadic task systems. Other subclasses of sporadic task systems include constrained-deadline sporadic task systems where each task has $d_{i} \leq p_{i}$ and arbitrary-deadline sporadic task systems where no constraint is imposed upon the relationship between a task's deadline and period.

The development of effective and efficient scheduling algorithms and associated analytical techniques for single processor systems is another factor in the sporadic task model's popularity. For instance, the earliest-deadline-first (EDF) scheduling algorithm is known to be optimal for arbitrary collections of independent jobs scheduled upon uniprocessor platforms [8]. This optimality result holds for both sporadic task systems and LL task systems on uniprocessors. The notion of optimality for real-time systems is explained in the following: a task system τ is said to be feasible on a processing platform, if, for any legal job arrival sequence of τ, there exists a schedule for τ on the processing platform in which each job successfully completes execution by its deadline. For any task system τ that is feasible on a given processing platform, an optimal scheduling algorithm is guaranteed to generate a schedule for τ which meets all deadlines. In addition to the existence of optimal scheduling algorithms for sporadic task systems, exact, pseudo-polynomial-time techniques are known for determining whether a given sporadic task system is feasible upon a preemptive single processor platform [7]. Such techniques are known as feasibility analysis. A related analysis technique, known as schedulability analysis, determines whether a given scheduling algorithm will correctly schedule a task system to meet all deadlines on a processing platform. Relatively efficient, exact schedulability tests have been developed for various scheduling algorithms on uniprocessor platforms.

The success of the sporadic task model for real-time system design on single processor systems has motivated research on scheduling algorithms and feasibility/schedulability analysis for sporadic task systems upon multiprocessor platforms. Unfortunately, most results from uniprocessor scheduling of sporadic task systems do not trivially extend to the multiprocessor setting. For instance, it is known that EDF is a suboptimal scheduling algorithm for even LL tasks on multiprocessor platforms [10]. However, optimal scheduling approaches for LL task systems have been developed [13, 6, 20].

Since LL tasks are a subclass of sporadic task systems, the non-optimality result for EDF [10] extends trivially to sporadic task systems on multiprocessor platforms. The question that this article addresses is: does there exist an algorithm which is guaranteed to successfully schedule any feasible sporadic task system on a multiprocessor platform? In other words, does there exist optimal scheduling algorithms for sporadic task model? For LL task systems, the answer to that question is "yes," due to the existence of optimal scheduling approaches (referred to in the preceding paragraph). For arbitrary collections of independent jobs where job arrival-times are not known a priori, Hong and Leung [12] and Dertouzos and Mok [9], independently, showed that the answer is "no"; i.e., optimal online scheduling of arbitrary collections of independent jobs is impossible. In terms of generality, the sporadic task model lies between the LL task model (any LL task system is also a sporadic task system) and the
arbitrary collections of independent jobs setting (any collection of jobs generated by a sporadic task system is also a legal collection of independent jobs). As we will illustrate later in this article, the multiprocessor optimality result for LL task systems and the non-optimality result do not directly apply to the sporadic task systems. Thus, the above question cannot be answered by application of prior results.

The main contribution of this article answers the above open question in the negative: optimal online multiprocessor scheduling of sporadic task systems is impossible. We, in fact, show a slightly stronger result that optimal online multiprocessor scheduling of constrained-deadline sporadic task systems is impossible. The impossibility result for constrained-deadline sporadic task systems immediately implies that optimal online scheduling of any task model that generalizes the constrained-deadline sporadic task model is impossible, as well. Therefore, even a slight amount of generalization from the LL task model (the sporadic task model simply adds a relative deadline parameter to the task specification) causes the existence of optimal scheduling algorithms to disappear.

This article is organized as follows. Section 2 presents the formal models and notation that we use for describing real-time work, task systems, processing platforms, and scheduling algorithms, Section 3 illustrates (via examples) the inapplicability of prior multiprocessor optimality results to the multiprocessor scheduling of sporadic task systems. Section 4 proves that optimal online multiprocessor scheduling of sporadic and more general task systems is impossible. The proof given in Section 4 relies upon an example task system that is assumed to be feasible upon a multiprocessor platform; Section 5 proves that this example task system is, in fact, feasible.

2 Model and Notation

2.1 Real-Time Instances

Throughout this article, we will characterize a real-time $j o b J_{i}$ by a three-tuple $\left(A_{i}, E_{i}, D_{i}\right)$: an arrival time A_{i}, an execution requirement E_{i}, and a relative deadline D_{i}. The interpretation of these parameters is that J_{i} arrives A_{i} time units after system start-time (assumed to be zero) and must execute for E_{i} time units over the time interval $\left[A_{i}, A_{i}+D_{i}\right) . A_{i}$ is assumed to be a non-negative real number while both E_{i} and D_{i} are positive real numbers. The interval $\left[A_{i}, A_{i}+D_{i}\right)$ is referred to as J_{i} 's scheduling window. A job J_{i} is said to be current at time t if $t \in\left[A_{i}, A_{i}+D_{i}\right)$. A current job is active at time t, if it has not completed execution by time t.

We denote a real-time instance I as a finite or infinite collection of jobs $I=\left\{J_{1}, J_{2}, \ldots\right\} . \mathcal{F}(I)$ denotes a real-time instance family with representative real-time instance I. For each job J_{i}^{\prime} in real-time instance $I^{\prime} \in \mathcal{F}(I)$, there is a job J_{i} in instance I with the same release time and deadline; however, the execution of J_{i}^{\prime} cannot exceed the execution time of J_{i}. More formally, $I^{\prime} \in \mathcal{F}(I)$ if and only if

$$
\forall J_{i}^{\prime} \in I^{\prime}, \exists J_{i} \in I::\left(A_{i}^{\prime}=A_{i}\right) \wedge\left(D_{i}^{\prime}=D_{i}\right) \wedge\left(E_{i}^{\prime} \leq E_{i}\right) .
$$

Informally, $\mathcal{F}(I)$ represents a set of related real-time instances with I being the most "temporally constrained" of the set.

Example 1 Consider a real-time instance $I=\{(0,2,3),(5,4,5),(6,2,4)\} . \mathcal{F}(I)$ includes any instance $I^{\prime}=$ $\{(0, x, 3),(5, y, 5),(6, z, 4)\}$ such that $0 \leq x \leq 2,0 \leq y \leq 4$, and $0 \leq z \leq 2$.

2.2 Real-Time Task Models

In some simpler real-time systems, it may be possible to completely specify the real-time instance I prior to system run-time (i.e., the system designer has complete knowledge of each $J_{i} \in I$). However, in systems with a large (or infinite) number of real-time jobs or systems that exhibit dynamic behavior, explicitly specifying each job, prior to system run-time, may be impossible or unreasonable. Fortunately, for systems where jobs may repeatedly
occur there is a more succinct representation of the repeating jobs via specification in some recurrent task model. A task model is the format and rules for specifying a task system. We may represent a set of repeating or related jobs by a recurrent task τ_{i} specified according to the model M (e.g., the sporadic task model). For every execution of the system, τ_{i} will generate a (possibly infinite) collection of real-time jobs.

Several recurrent tasks can be composed together into a recurrent task system $\tau=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$. The letter n will denote the number of tasks in a task system. Every system execution of task system τ will result in the generation of a real-time instance I. We will denote the set of real-time instances that τ can legally generate as $\mathcal{I}^{\mathrm{M}}(\tau)$. Based on the real-time instances that τ generates, we can classify τ as either completely specified or partially-specified. If the arrival-time and deadline parameters of each job $J_{i} \in I$ can be determined prior to system run-time, τ is a completely-specified task system. However, for many real-time systems, it is not possible to know beforehand what real-time instance will be generated by the system during run-time. Furthermore, completelyspecified systems are incapable of handling changes in real-time workloads. To overcome the fragile and inflexible nature of completely-specified task systems, a designer may instead consider partially-specified tasks systems. ${ }^{1}$ The focus of this article is on partially-specified task systems.

Partially-specified task systems permit that different executions of the same system may result in different realtime instances (with different job arrival times) being generated. The specification for a partially-specified task system includes a set of constraints that any generated real-time instance must satisfy; in general, such a system may legally generate infinitely many different real-time instances, each of which satisfies the constraints placed upon their generation. Each such real-time instance may also have infinitely many jobs.

Let M and M^{\prime} be task models. We say that task model M^{\prime} generalizes task model M, if for every task system τ specified in model M there exists a task system τ^{\prime} specified in model M^{\prime} such that

$$
I \in \mathcal{I}^{\mathrm{M}}(\tau) \Leftrightarrow I \in \mathcal{I}^{\mathrm{M}^{\prime}}\left(\tau^{\prime}\right) .
$$

That is, for all task systems τ that can be specified in task model M, there is a task system τ^{\prime} specified in task model M^{\prime} that can generate exactly the same real-time instances as τ. In the remainder of this subsection, we describe the Liu and Layland task model and sporadic task model in this more formal context.
\S Liu and Layland (LL) Task Model (Implicit-Deadline Sporadic Task Model). As mentioned in the introduction, the behavior of a LL task τ_{i} can be characterized by a two-tuple $\left(e_{i}, p_{i}\right)$. As with the periodic task model, e_{i} indicates the worst-case execution time of any job generated by task τ_{i}. The p_{i} parameter indicates the minimum inter-arrival time between successive jobs of τ_{i} (note p_{i} denoted the exact inter-arrival time for periodic tasks). Let $\mathcal{J}_{\mathrm{WCET}}^{\mathrm{LL}}\left(\tau_{i}\right)$ be a collection of real-time instances such that jobs of each real-time instance are generated by LL task τ_{i} satisfying the minimum inter-arrival constraint and requiring the worst-case possible execution time; i.e., $I_{\tau_{i}}$ is a member of $\mathcal{J}_{\mathrm{WCET}}^{\mathrm{LL}}\left(\tau_{i}\right)$ if and only if for all $J_{k} \in I_{\tau_{i}}$ the following constraints are satisfied:

$$
\begin{equation*}
\left(E_{k}=e_{i}\right) \wedge\left(D_{k}=p_{i}\right) \wedge\left(\left(\exists J_{k+1} \in I_{\tau_{i}} \backslash\left\{J_{k}\right\}: A_{k+1} \geq A_{k}\right) \Rightarrow\left(A_{k+1}-A_{k} \geq p_{i}\right)\right) \tag{1}
\end{equation*}
$$

The set of real-time instances that a LL task system $\tau=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$ can generate (with worst-case possible execution time) is equal to

$$
\begin{equation*}
\mathcal{I}_{\mathrm{WCET}}^{\mathrm{LL}}(\tau) \stackrel{\text { def }}{=}\left\{\bigcup_{i=1}^{n} I_{\tau_{i}} \mid\left(I_{\tau_{1}}, I_{\tau_{2}}, \ldots, I_{\tau_{n}}\right) \in \prod_{i=1}^{n} \mathcal{J}_{\mathrm{WCET}}^{\mathrm{LL}}\left(\tau_{i}\right)\right\} . \tag{2}
\end{equation*}
$$

Thus, the set of real-time instances generated by LL task system τ is

$$
\begin{equation*}
\mathcal{I}^{\mathrm{LL}}(\tau)=\bigcup_{I_{j} \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{LW}}(\tau)} \mathcal{F}\left(I_{j}\right) . \tag{3}
\end{equation*}
$$

[^0]Example 2 Consider the following LL task system: $\tau=\left\{\tau_{1}=(2,4), \tau_{2}=(3,10)\right\}$. Examples of sets of jobs in $\mathcal{J}_{\mathrm{WCET}}^{\mathrm{LL}}\left(\tau_{1}\right)$ are $\{(0,2,4),(4,2,4),(8,2,4), \ldots\},\{(0,2,4),(5,2,4),(9,2,4)\}$, and $\{(0,2,4),(6,2,4)$, $(10,2,4), \ldots\}$; examples of sets of jobs in $\mathcal{J}_{\mathrm{WCET}}^{\mathrm{LL}}\left(\tau_{2}\right)$ are $\{(0,3,10),(10,3,10),(20,3,10), \ldots\},\{(1,3,10)$, $(15,3,10),(25,3,10), \ldots\}$, and $\{(5,3,10),(15,3,10),(25,3,10), \ldots\}$.
§ Sporadic Task Model. The LL task model allows for flexibility in the job arrival times for a task τ_{i}; however, the model is still somewhat restrictive in forcing the deadline of each job generated by τ_{i} to be equal to the minimum inter-arrival parameter p_{i}. It is easy to imagine scenarios where the deadline of a job is not correlated with the minimum inter-arrival: for example, in a car's brake system the minimum time between braking events may be considerably larger than the required braking-reaction time (i.e., deadline for halting the car). The sporadic task model generalizes the LL task model by adding a relative deadline parameter d_{i} to the specification for a task. Recall that a sporadic task τ_{i} is specified by the three-tuple $\left(e_{i}, d_{i}, p_{i}\right)$. Let $\mathcal{J}_{\text {WCET }}^{\mathrm{S}}\left(\tau_{i}\right)$ be a collection of real-time instances that are jobs generated by sporadic task τ_{i} satisfying the minimum inter-arrival constraint and requiring the worst-case possible execution time; i.e., $I_{\tau_{i}}$ is a member of $\mathcal{J}_{\mathrm{WCET}}^{\mathrm{S}}\left(\tau_{i}\right)$ if and only if for all $J_{k} \in I_{\tau_{i}}$
the following constraints are satisfied:

$$
\begin{equation*}
\left(E_{k}=e_{i}\right) \wedge\left(D_{k}=d_{i}\right) \wedge\left(\left(\exists J_{k+1} \in I_{\tau_{i}} \backslash\left\{J_{k}\right\}: A_{k+1} \geq A_{k}\right) \Rightarrow\left(A_{k+1}-A_{k} \geq p_{i}\right)\right) . \tag{4}
\end{equation*}
$$

(Note that the only difference from Equation 1 for LL jobs is that the D_{k} parameter for each job J_{k} is set to d_{i}). The set of real-time instances that a sporadic task system $\tau=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$ can generate (with worst-case possible execution times) is

$$
\begin{equation*}
\mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}(\tau) \stackrel{\text { def }}{=}\left\{\bigcup_{i=1}^{n} I_{\tau_{i}} \mid\left(I_{\tau_{1}}, I_{\tau_{2}}, \ldots, I_{\tau_{n}}\right) \in \prod_{i=1}^{n} \mathcal{J}_{\mathrm{WCET}}^{\mathrm{S}}\left(\tau_{i}\right)\right\} . \tag{5}
\end{equation*}
$$

Thus, the set of real-time instances generated by sporadic task system τ is

$$
\begin{equation*}
\mathcal{I}^{\mathrm{S}}(\tau)=\bigcup_{I_{j} \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}(\tau)} \mathcal{F}\left(I_{j}\right) . \tag{6}
\end{equation*}
$$

Observe that for any LL task system $\tau=\left\{\tau_{1}=\left(e_{1}, p_{1}\right), \ldots, \tau_{n}=\left(e_{n}, p_{n}\right)\right\}$ we can represent the same task system in the sporadic model by the sporadic task system $\tau^{\prime}=\left\{\tau_{1}^{\prime}=\left(e_{1}, p_{1}, p_{1}\right), \ldots, \tau_{n}=\left(e_{n}, p_{n}, p_{n}\right)\right\}$. It is easy to see that $\mathcal{I}^{\mathrm{LL}}(\tau)=\mathcal{I}^{\mathrm{S}}\left(\tau^{\prime}\right)$; therefore, the sporadic task model generalizes the LL task model.
\S More General Task Models. There are other known real-time task models more general than the sporadic task model. For example, the generalized multiframe (GMF) task model [5] allows for a task to generate sequence of jobs with heterogenous separation, relative deadlines, and worst-case execution parameters. Another general task model, known as the recurring real-time task model [4], allows for conditional generation of job sequences for a task. Both of these models generalize the sporadic task model. Thus, the impossibility of optimal online multiprocessor scheduling algorithms for sporadic task systems implies the impossibility of optimal scheduling algorithms for these more general task models, as well.

2.3 Machine Model

This article focuses on the real-time scheduling upon multiprocessor platforms. More specifically, we will be concentrating on scheduling upon a class of multiprocessor platforms known as the identical multiprocessors. The identical multiprocessor model assumes that each processor in the platform has identical processing capabilities and speed. We denote the multiprocessor platform by Π and assume Π is comprised of m identical processors π_{1}, $\pi_{2}, \ldots, \pi_{m} \in \Pi$. Recall from the beginning of this paper that each job corresponds to the execution of a sequential
segment of code by the processing platform. For each model introduced in the previous subsection, a real-time task has associated worst-case execution requirement parameter(s). These execution requirements represent the worst-case cumulative amount of execution time that a job generated by the task requires to execute to completion on the processing platform.
§ Some Assumptions. We will assume that each processor has unit-speed. We will assume that jobs are preemptable at arbitrary times with no additional cost. Furthermore, we allow scheduling algorithms which migrate jobs between processor; that is, a job may execute on different processors over its scheduling window; however, job-level parallelism is not permitted (i.e., a job may not execute concurrently with itself on two or more processors simultaneously). We will make the simplifying assumption that migration does not incur any additional penalty or execution. Throughout this article, we will also assume that tasks are independent of each other; that is, the execution of a job of one task is not contingent upon the status of a job of another task (e.g., blocking on shared resources is not permitted). Most of the above assumptions are not limiting; in fact, the nonexistence of optimal online multiprocessor scheduling algorithms for sporadic task systems under this simplified setting implies the non-existence of optimal scheduling algorithms when the assumptions on preemption, migration, and task independence are removed.

2.4 Real-Time Scheduling Algorithms

When executing a real-time application, the real-time scheduling algorithm must determine which current jobs are executing on the processing platform at every time instant. At an abstract level, the real-time scheduling algorithm determines the interleaving of execution for jobs of any real-time instance I on the processing platform Π. The interleaving of execution of I on Π is known as a schedule. The goal of a real-time scheduling algorithm is to produce a schedule that ensures that every job of I is allocated the processor (i.e., executes) for its execution requirement during its scheduling window. In this subsection, we give some formal definitions for real-time scheduling algorithm concepts.

We can formally define the schedule S for real-time instance I as a function of the processor and time.
Definition 1 (Schedule Function) Let $S_{I}\left(\pi_{k}, t\right)$ be the job of I scheduled at time t on processor $\pi_{k} \in \Pi$; $S_{I}\left(\pi_{k}, t\right)$ is \perp if there is no task scheduled at time t (i.e., $\left.S_{I}: \Pi \times \mathbb{R}^{+} \mapsto I \cup\{\perp\}\right)$. Let $\mathbb{S}_{I, \Pi}$ be the set of all possible schedule functions over real-time instance I and platform Π.

It is sometimes useful to view the behavior of a single job of a real-time instance I in schedule S_{I}. The following definition allows us to characterize the schedule S_{I} with respect to task J_{i}.

Definition 2 (Job-Schedule Function) $S_{I}\left(\pi_{k}, t, J_{i}\right)$ is an indicator function denoting whether J_{i} is scheduled at time t on processor π_{k} for schedule S_{I}. In other words,

$$
S_{I}\left(\pi_{k}, t, J_{i}\right) \stackrel{\text { def }}{=} \begin{cases}1, & \text { if } S_{I}\left(\pi_{k}, t\right)=J_{i} \tag{7}\\ 0, & \text { otherwise. }\end{cases}
$$

A scheduling algorithm makes decisions about the order in which jobs of a real-time instance should execute. For systems that are partially-specified, an online algorithm is appropriate to handle dynamic job arrivals. For any time t, an online real-time scheduling algorithm decides the set of jobs that will be executed on Π at time t based on prior decisions and the status of jobs released at or prior to t. An online scheduling algorithm does not have specific information on the release of jobs after time t (i.e., future jobs arrival times are unknown). This article focuses on deterministic online, real-time multiprocessor scheduling algorithms.

At an abstract level, a real-time scheduling algorithm ${ }^{2} \mathcal{A}$ (either static or offline) on platform Π is a higherorder function ${ }^{3}$ from real-time instances to schedules over Π - i.e., $\mathcal{A}: \mathcal{I}^{\mathrm{M}}(\tau) \rightarrow \bigcup_{I \in \mathcal{I}} \mathbb{S}_{I, \Pi}$. Let $I_{\leq t} \stackrel{\text { def }}{=}\left\{J_{i} \in\right.$ $\left.I \mid A_{i} \leq t\right\}$; that is, $I_{\leq t}$ is the set of jobs of I that arrive prior to or at time t. For an online scheduling algorithm $\mathcal{A}, I_{\leq t}$ represents the set of jobs that \mathcal{A} has knowledge of at time t (i.e., \mathcal{A} knows the arrival time, execution requirement, and deadline parameters of the jobs of $I_{\leq t}$, but not other jobs of I). Up until time t, algorithm \mathcal{A} has made scheduling decisions without specific knowledge of jobs arriving after time t; furthermore, jobs arriving after t cannot have an effect on the schedule generated by \mathcal{A} from time zero to t. In other words, for an online scheduling algorithm future jobs cannot change past scheduling decisions.

Definition 3 (Deterministic Online Scheduling Algorithm) For any $I \in \mathcal{I}^{\mathrm{M}}(\tau)$, let $S_{I}^{\mathcal{A}}$ be the schedule produced by algorithm \mathcal{A} for real-time instance I and platform Π. An online real-time scheduling algorithm must satisfy the following constraint: for all $I, I^{\prime} \in \mathcal{I}^{\mathrm{M}}(\tau)$ and for all $t>0$,

$$
\begin{equation*}
\left(I_{\leq t}=I_{\leq t}^{\prime}\right) \Rightarrow\left(\forall t^{\prime}\left(0 \leq t^{\prime} \leq t\right), \forall \pi_{k} \in \Pi:: S_{I}^{\mathcal{A}}\left(\pi_{k}, t^{\prime}\right)=S_{I^{\prime}}^{\mathcal{A}}\left(\pi_{k}, t^{\prime}\right)\right) . \tag{8}
\end{equation*}
$$

Beyond restricting our attention to deterministic, online scheduling algorithms and algorithms that forbid job-level parallelism, we do not make any other restrictions on the scheduling algorithm.

2.5 Feasible Real-Time Task Systems

The definition of "optimal scheduling algorithm" makes use of the notion of a task system being feasible upon a processing platform: an optimal scheduling algorithm can correctly schedule any feasible task system. Thus, we need to formalize what we mean by "feasible task system." This subsection defines "feasible" and other related concepts.

When evaluating a real-time system, it is sometimes useful to describe the amount of "work" (execution) that a job does over a specified interval in a given schedule. The next definition defines the amount of "processor time" that a job receives over a given interval.

Definition 4 (Work Function) $W\left(S_{I}, \pi_{k}, J_{i}, t_{1}, t_{2}\right)$ denotes the amount of processor time on π_{k} that J_{i} receives from schedule S_{I} over the interval $\left[t_{1}, t_{2}\right)$. In other words, ${ }^{4}$

$$
\begin{equation*}
W\left(S_{I}, \pi_{k}, J_{i}, t_{1}, t_{2}\right) \stackrel{\text { def }}{=} \int_{t_{1}}^{t_{2}} S_{I}\left(\pi_{k}, t, J_{i}\right) d t \tag{9}
\end{equation*}
$$

We can use a system-work function to describe the cumulative work done by all jobs of a real-time instance over a specified time interval in a given schedule.

Definition 5 (System-Work Function) $W_{I}\left(S_{I}, t_{1}, t_{2}\right)$ denotes the amount of processor time (over all processors of Π) received by all jobs of I in schedule S_{I} over the interval $\left[t_{1}, t_{2}\right)$.

$$
\begin{equation*}
W_{I}\left(S_{I}, t_{1}, t_{2}\right) \stackrel{\text { def }}{=} \sum_{\pi_{k} \in \Pi} \sum_{J_{i} \in I} W\left(S_{I}, \pi_{k}, J_{i}, t_{1}, t_{2}\right) . \tag{10}
\end{equation*}
$$

[^1]Not all functions from $\Pi \times \mathbb{R}^{+}$to I, for a given real-time instance I, represent valid executions of a real-time system that could generate the instance I. In particular, we must ensure the following: a job can only execute during its scheduling window, a job cannot execute concurrently with itself on two or more processors, and a job must execute for E_{i} time units in its scheduling window to meet its deadline. Using Definitions 1 through 5 , we can now formally define a valid schedule S_{I} with respect to a real-time instance I :

Definition 6 (Valid Schedule) $S_{I} \in \mathbb{S}_{I, \Pi}$ is valid (with respect to jobs of some real-time instance I and platform П) if and only if the following three conditions are satisfied:

1. For any $J_{i} \in I$, if $t<A_{i}$ or $t>A_{i}+D_{i}$ then $S_{I}\left(\pi_{k}, t\right) \neq J_{i}$ for all $\pi_{k} \in \Pi$ (i.e., a job cannot execute while it is outside its scheduling window). For this article, will assume that two different jobs of the same task may execute concurrently on different processors (i.e., intra-task parallelism is allowed, but intra-job parallelism is forbidden).
2. If $S_{I}\left(\pi_{i}, t\right) \neq \perp$ and $S_{I}\left(\pi_{j}, t\right) \neq \perp$ then $S_{I}\left(\pi_{i}, t\right) \neq S_{I}\left(\pi_{j}, t\right)$ for all $t \in \mathbb{R}^{+}$and $\pi_{i} \neq \pi_{j} \in \Pi$ (i.e., a job may not execute concurrently with itself).
3. For all $J_{i} \in I, W_{I}\left(S_{I}, J_{i}, A_{i}, A_{i}+D_{i}\right)=E_{i}$ (i.e., each job receives processing time on Π equal to its execution requirement between its release time and deadline).

Recall that a recurrent task system can potentially generate infinitely different distinct real-time instances over different executions of the system. Informally, a recurrent task system τ is feasible on processing platform Π if and only if for every possible real-time instance there exists a way to meet all deadlines. If there is a way for a real-time instance I to meet all deadlines, we say that I is a feasible instance on processing platform Π.

Definition 7 (Feasible Instance) A real-time instance I is feasible on platform Π if and only if there exists $S_{I} \in$ $\mathbb{S}_{I, \Pi}$ such that S_{I} is valid.

We may extend the definition of feasible real-time instances to recurrent task systems.
Definition 8 (Feasible Task System) Recurrent task system τ in task model M is feasible on platform Π if and only iffor all $I \in \mathcal{I}^{\mathrm{M}}(\tau)$, I is a feasible instance on Π.

3 Inapplicability of Prior Optimality Results for Multiprocessor Real-Time Scheduling

The nonexistence of optimal online multiprocessor real-time scheduling algorithms for arbitrary collection of jobs has been known since the late 1980s [12, 9]. However, as mentioned in the introduction, these results do not imply the nonexistence of optimal multiprocessor scheduling algorithms for sporadic task systems. In this section, we will briefly review the Dertouzos and Mok [9] proof of impossibility for optimal scheduling of arbitrary collection of real-time jobs and discuss why this result does not apply to sporadic task systems. We will omit a discussion of the Hong and Leung result [12], since a nearly identical argument will show that their results also do not apply to the sporadic task model setting. The following is a restatement of the main result from [9].

Theorem 1 (from Dertouzos and Mok [9]) For two or more processors, no online scheduling algorithm can be optimal for arbitrary collections of real-time jobs without complete a priori knowledge of the absolute deadlines, execution time, and arrival time of each job.

Why does the above theorem not imply that sporadic task systems have no optimal multiprocessor scheduling algorithm? Intuitively, the reason is that for arbitrary real-time instances an optimal scheduling algorithm must be
able to correctly schedule any feasible real-time instances. While for sporadic task systems, an optimal scheduling algorithm must correctly schedule only feasible real-time instances that may be legally generated by a sporadic task system. To more clearly illustrate this point let us consider the following lemma from [9] used to prove Theorem 1.

Lemma 1 (from Dertouzos and Mok [9]) For two or more processors, no online scheduling algorithm for arbitrary collections of real-time jobs without complete a priori knowledge of the arrival time of each job.

The above lemma is proven in [9] by finding a set of feasible real-time instances that are identical up until a some time t that would cause any deterministic online scheduling algorithm to miss a deadline after time t. Below is the example set of feasible real-time instances used by Dertouzos and Mok [9] to prove Lemma 1.

Example 3 Define the following set of real-time instances.

$$
\begin{align*}
I_{1} & \stackrel{\text { def }}{=}\left\{J_{1}=(0,2,4), J_{2}=(0,1,1), J_{3}=(0,1,2)\right\}, \\
I_{2} & \stackrel{\text { def }}{ }\left\{J_{4}=(1,1,1), J_{5}=(1,1,1)\right\}, \\
I_{3} & \stackrel{\text { def }}{=}\left\{J_{6}=(1,2,2), J_{7}=(1,2,2)\right\}, \tag{11}\\
I_{A} & \stackrel{\text { def }}{=} I_{1} \cup I_{2}, \\
I_{B} & \stackrel{\text { def }}{=} I_{1} \cup I_{3} .
\end{align*}
$$

Consider how any online, deterministic scheduling algorithm \mathcal{A} would execute real-time instances I_{A} or I_{B} on platform $\Pi=\left\{\pi_{1}, \pi_{2}\right\}$ comprised of two identical unit-speed processors. To simplify the presentation of the example, let us assume that \mathcal{A} only makes scheduling decisions at integer time instants (i.e., preemptions will not occur at non-integer time instants); the lemma holds even when we remove this simplifying assumption. If \mathcal{A} does not know the arrival times of each job prior to their arrival, at time zero algorithm \mathcal{A} can only make a scheduling decision based upon the knowledge of the set of jobs in I_{1} (for scheduling either I_{A} or I_{B}). Real-time instances I_{A} and I_{B} appear to be identical to \mathcal{A} for all times in the interval $[0,1)$. However, \mathcal{A} must make a decision about what set of jobs will execute over $[0,1)$ on the two processors of Π without knowledge of the jobs that may arrive at time-instant one (i.e., at time zero, \mathcal{A} does not know whether it is executing I_{A} or I_{B}). Obviously, \mathcal{A} must execute job J_{2} on some processor (w.l.o.g., assume π_{1}) over the interval $[0,1)$ for J_{2} to meet its deadline at time-instant one. The non-obvious choice is what should execute on π_{2} over $[0,1)$? There are three possible choices:

1. \mathcal{A} executes J_{1} on π_{2} over $[0,1)$.
2. \mathcal{A} executes J_{3} on π_{2} over $[0,1)$.
3. \mathcal{A} executes no job on π_{2} over $[0,1)$.

If \mathcal{A} executes J_{1} over $[0,1)$, real-time instance I_{A} would miss a deadline at time-instant two; observe in this scenario J_{3}, J_{4}, and J_{5} must execute exactly continuously over $[1,2)$ to meet their deadline, but there are only two available processors. For a similar reason, I_{A} would also miss a deadline at time-instant two, if \mathcal{A} chose not to execute a job on π_{2} over $[0,1)$. If \mathcal{A} instead executes J_{3} over $[0,1)$, real-time instance I_{B} would miss a deadline at time-instant three, since J_{1}, J_{6}, and J_{7} require continuous execution over $[1,3)$. The reader should observe that I_{A} and I_{B} are both feasible on two processors (i.e., a valid schedule may be found for both instances). However, the above case analysis shows that for any choice made by \mathcal{A} at time zero (without knowledge of future job arrivals), there exist a feasible set of future job arrivals that will cause \mathcal{A} to miss a deadline. Thus, optimal online scheduling is impossible for arbitrary collections of real-time jobs on two processors. This example may easily be extended to an arbitrary number of processors.

For the above example to imply the non-existence of optimal online multiprocessor scheduling algorithms for sporadic task systems, we must show that I_{A} and I_{B} correspond to legal real-time instances generated by a sporadic task system τ that is feasible on two processors. One possible sporadic task system that could generate both the real-time instances I_{A} and I_{B} is

$$
\begin{equation*}
\tau \stackrel{\text { def }}{=}\left\{\tau_{1}=(2,4, \infty), \tau_{2}=\tau_{3}=\tau_{4}=(1,1, \infty), \tau_{5}=(1,2, \infty), \tau_{6}=\tau_{7}=(2,2, \infty)\right\} \tag{12}
\end{equation*}
$$

The above task system allows each job of $I_{A} \cup I_{B}$ to be generated by a different task. Real-time instances I_{A} and I_{B} satisfy the constraints of Equation 4 for task system τ. However, τ is not feasible on two processors since the real-time instance where each task of τ generates a job at time-instant zero is also a legal real-time instance; such an instance requires that at least five jobs execute continuously over $[0,1)$! Other possible groupings of jobs to task also appear to result in a sporadic task system that is infeasible on two processors. The difficulty in finding a feasible task system that can generate both I_{A} and I_{B}, suggests that such a sporadic task system may not exist. Thus, Lemma 1 and Theorem 1 do not directly imply anything about the existence of an optimal online algorithm for sporadic task systems. A similar argument may be used to argue about the inapplicability of the results of Hong and Leung [12] to sporadic task systems. We should also point out that the main result of Section 4 (Theorem 3) implies the impossibility of optimal scheduling for arbitrary collections of real-time jobs without knowledge of future arrival times. Thus, our results can be considered a strengthening of the impossibility results of both Dertouzos and Mok [9] and Hong and Leung [12].

4 Impossibility of Optimal Online Multiprocessor Scheduling for Sporadic and More General Task Systems

We now present the main result of this article. Our method of proving that optimal online algorithms do not exist for sporadic task systems is as follows.

1. Find a potentially feasible sporadic task system τ on some processing platform Π.
2. Prove that the task system is feasible a multiprocessor platform Π. This means that for any real-time instance generated by τ on Π there exists a schedule on Π that will meet all deadlines.
3. For the feasible task system τ, show there exists a set of real-time instances generated by τ that are identical up to a time t (denoted by $\mathcal{I}^{\prime}(\tau)$); however, at time t they require any online scheduling algorithm \mathcal{A} to make a decision regarding which current jobs to schedule (i.e., there are more current jobs than processors at time t). Show that regardless of the choice made by \mathcal{A} at time t, there exists a real-time instance in $\mathcal{I}^{\prime}(\tau)$ that causes the choice made by \mathcal{A} at time t to result in a deadline miss.

In this brief section, we give the details of Steps 1 and 3. Step 3 especially gives insight into why optimal online scheduling of sporadic task systems is impossible. The proof of feasibility (Step 2), though very important to showing the nonexistence of optimal scheduling algorithms, is extremely complex and not necessary to understanding the main result of this paper; therefore, we have decided to defer the details of Step 2 until the next section (Section 5).

In accordance with Step 1 of the above approach, consider the following task system, $\tau^{\text {example }}$, comprised of six tasks (recall that a sporadic task is specified by three-tuple $\left(e_{i}, d_{i}, p_{i}\right)$) and described by Figure 1a.

Theorem $2 \tau^{\text {example }}$ is feasible on two processors.
Proof: Proved in Section 5.

	e_{i}	d_{i}	p_{i}
τ_{1}	2	2	5
τ_{2}	1	1	5
τ_{3}	1	2	6
τ_{4}	2	4	100
τ_{5}	2	6	100
τ_{6}	4	8	100

(a) Task system $\tau^{\text {example }}$

(b) The times at which tasks $\tau_{1}, \tau_{2}, \tau_{3}$, and τ_{4} must execute

Figure 1. System $\tau^{\text {example }}$ and Its Execution.

Lemma 2 No optimal online algorithm exists for the multiprocessor scheduling real-time, constrained-deadline sporadic task systems on two processors.

Proof: The proof is by contradiction. Assume there exists an optimal online algorithm, \mathcal{A}, for scheduling constrained-deadline sporadic real-time tasks on two processors. Then, by Theorem $2, \mathcal{A}$ must find a valid schedule for $\tau^{\text {example }}$ where no deadline is missed; more formally, for all $I \in \mathcal{I}^{\mathrm{S}}\left(\tau^{\text {example }}\right)$, the schedule $\mathcal{A}(I)$ is valid (Definition 6). Figure 1a shows task system $\tau^{\text {example }}$.

Let each task of $\tau^{\text {example }}$ release a job at time zero. Figure 1 b shows the slots at which \mathcal{A} must execute $\tau_{1}, \tau_{2}, \tau_{3}$, and τ_{4} (i.e., any other order would result in a deadline miss). Let $\mathcal{I}_{\text {zero }}$ ($\tau^{\text {example }}$) be the set of all real-time instances generated by $\tau^{\text {example }}$ where each task generates a job at time instant zero and all jobs execute for their respective task's worst-case execution requirement; all real-time instances in $\mathcal{I}_{\text {zero }}\left(\tau^{\text {example }}\right)$ must include the following six jobs (recall a real-time job is specified by $\left(A_{i}, E_{i}, D_{i}\right)$) $(0,2,2),(0,1,1),(0,1,2),(0,2,4),(0,2,6)$, and $(0,4,8)$. Note, that by the minimum separation parameter (period) of each task, the earliest the second job of any task may be generated is at time five. So, for all I and I^{\prime} in $\mathcal{I}_{\text {zero }}\left(\tau^{\text {example }}\right), I_{\leq 5}$ and $I_{\leq 5}^{\prime}$ are identical.

For any $I \in \mathcal{I}_{\text {zero }}\left(\tau^{\text {example }}\right)$, there exist two possible choices that \mathcal{A} must make regarding the execution of τ_{5}.

1. \mathcal{A} schedules τ_{5} for $x(0<x \leq 2)$ units of time in the interval $(2,4]$.
2. \mathcal{A} does not schedule τ_{5} in the interval $(2,4]$.

Since \mathcal{A} is an online scheduling algorithm, by Definition 3, any I, I^{\prime} $\in \mathcal{I}_{\text {zero }}\left(\tau^{\text {example }}\right)$ where $I_{\leq 5}=I_{\leq 5}^{\prime}$ implies that the schedule generated by \mathcal{A} for both I and I^{\prime} is identical up to $t=5$. Thus, algorithm \mathcal{A} will make the same choice (either choice 1 or 2 , above) for all instances in $\mathcal{I}_{\text {zero }}\left(\tau^{\text {example }}\right)$. We will show that for either choice made by algorithm \mathcal{A} there exists an $I_{\text {miss }} \in \mathcal{I}_{\text {zero }}\left(\tau^{\text {example }}\right)$ that forces a deadline miss. Let us consider both cases.

1. \mathcal{A} schedules τ_{5} for $x(0<x \leq 2)$ units of time in the interval $(2,4]$: Consider any real-time instance I in $\mathcal{I}_{\text {zero }}\left(\tau^{\text {example }}\right)$ where, in addition to the six jobs that all real-time instances in $\mathcal{I}_{\text {zero }}$ ($\left.\tau^{\text {example }}\right)$ must contain, I includes a job generated by τ_{1}, τ_{2}, and τ_{3} at $t=6$; that is, I must include the jobs: $(6,2,2),(6,1,1)$, and $(6,1,2)$. It is obvious that the two processors are fully utilized by τ_{1}, τ_{2}, and τ_{3} over the interval (6,8]; therefore, τ_{6} may not execute over the interval $(6,8]$ (otherwise, either τ_{1}, τ_{2}, or τ_{3} will miss a deadline). This implies that τ_{6} must execute in the interval $(2,6]$ given real-time instance I. However, \mathcal{I} chose to execute τ_{5} in $(2,4]$ for x time units, and τ_{4} requires a processor to execute job $(0,2,4)$ continuously. Thus, given the choice by \mathcal{A} and real-time instance I, there only exists $4-x$ units of time in which τ_{6} may execute in the interval $(2,4] ; \tau_{6}$ will miss a deadline at $t=8$. Figure 2 a shows this scenario.

Figure 2. Two Execution Scenarios for $\tau^{\text {example }}$.
2. \mathcal{A} does not schedule τ_{5} in the interval $(2,4]$: Consider any real-time instance I^{\prime} in $\mathcal{I}_{\text {zero }}\left(\tau^{\text {example }}\right)$ where, in addition to the six jobs that all real-time instances in $\mathcal{I}_{\text {zero }}\left(\tau^{\text {example }}\right)$ must contain, I^{\prime} includes a job generated by τ_{1} and τ_{2} at $t=5$; that is, I^{\prime} must include the jobs $(5,2,2)$ and $\left.5,1,1\right)$. It is clear that the two processors are fully utilized by τ_{1} and τ_{2} over interval (5,6$]$. However, since \mathcal{A} chose not to execute τ_{5} in the interval $(2,4], \tau_{5}$ must continuously execute in the interval $(4,8]$ to meet its deadline. In this scenario, three jobs must continuously execute in the interval $(5,6]$. Therefore, either τ_{1}, τ_{2}, or τ_{5} will miss a deadline in the interval $(5,6]$. Figure 2 b illustrates this scenario.

Since for any of the choices made by \mathcal{A} over the interval (2,4], there exists a real-time instance $I \in \mathcal{I}_{\text {zero }}$ ($\tau^{\text {example }}$) that causes \mathcal{A} to miss a deadline, this contradicts our assumption that there exists an optimal algorithm \mathcal{A}. Therefore, no optimal algorithm for scheduling sporadic real-time tasks upon a two-processor platform can exist.

We may easily generalize the above lemma to an arbitrary number of processors ($m>1$).
Theorem 3 No optimal online algorithm exists for the multiprocessor scheduling real-time, constrained-deadline sporadic task systems on two or more processors.

Proof: For any Π comprised of $m>1$ identical unit-speed processors, consider the task system $\tau^{\prime} \stackrel{\text { def }}{=} \tau^{\text {example }} \cup$ $\left\{\tau_{1}^{\prime}, \tau_{2}^{\prime}, \ldots, \tau_{m-2}^{\prime}\right\}$ where $\tau_{i}^{\prime}=(1,1,1)$ for all $0<i \leq m-2$. It is easy to see that τ^{\prime} is feasible on Π, as we can dedicate a processor to each of the tasks in $\left\{\tau_{1}^{\prime}, \tau_{2}^{\prime}, \ldots, \tau_{m-2}^{\prime}\right\}$ and by Theorem $2 \tau^{\text {example }}$ is feasible on the remaining two processors. The argument of Lemma 2 holds in the case where each of $\left\{\tau_{1}^{\prime}, \tau_{2}^{\prime}, \ldots, \tau_{m-2}^{\prime}\right\}$ generate jobs at time zero and successive jobs as soon as legally allowable. Therefore, the jobs generated by $\tau^{\text {example }}$ cannot use the additional processors, and the argument of the lemma is identical.

The above negative result immediately extends to any task model that generalizes the sporadic task model. The reason is that for any model M that generalizes the sporadic model, there exists a $\tau^{\prime \mathrm{M}}$ specified in model M such that $I \in \mathcal{I}^{\mathrm{M}}\left(\tau^{\mathrm{M}}\right)$ if and only if $I \in \mathcal{I}^{\mathrm{S}}\left(\tau^{\prime}\right)$. Therefore, the argument of Lemma 2 is unchanged for this more general task system (e.g., arbitrary-deadline sporadic task systems or GMF task systems).

Corollary 1 No optimal online algorithm exists on two or more processors for the multiprocessor scheduling of real-time task systems in models that generalize the sporadic task model.

5 Feasibility of Sporadic Task System $\tau^{\text {example }}$ on Two Processors

Section 4 introduced task system $\tau^{\text {example }}$ (given by Figure 1a) that is used to prove that optimal online multiprocessor scheduling of arbitrary and constrained task systems is impossible. In this section, we give a formal proof of Theorem 2; that is, task system $\tau^{\text {example }}$ is feasible on two processors.

In Section 5.1, we informally outline our proof. In Section 5.2, we introduce additional formal notation involved in $\tau^{\text {example, }}$ s feasibility proof. In Section 5.3 , we give the entire feasibility proof.

5.1 Outline

The goal of Theorem 2 is to show that task system $\tau^{\text {example }}$ is feasible on two processors. However, we are unaware of any existing, non-trivial, exact feasibility test for constrained-deadline task systems on a multiprocessor platform that could precisely determine whether $\tau^{\text {example }}$ is feasible on two processors or not. For instance, the task system does not satisfy the sufficient feasibility condition [11]. The sufficient conditions for feasibility of sporadic task systems of Baker and Cirinei [2] only apply to single processors. Finally, the exact "bruteforce" multiprocessor schedulability algorithm of Baker and Cirinei [3] does not trivially extend to multiprocessor feasibility. Furthermore, even if one could extend the brute-force result to multiprocessor feasibility, our approach does not assume integer arrival times and execution (as would be required by the current brute-force approach). Thus, since we may not validate the feasibility of $\tau^{\text {example }}$ with previously-known techniques, we must tailor an argument specially for task system $\tau^{\text {example }}$. Specifically, we must show that for every legal real-time instance I generated by task system $\tau^{\text {example }}$, there exists a valid schedule in which no deadlines are missed (i.e., $\tau^{\text {example }}$ satisfies the definition of feasible task system according to Definition 8).

The approach that we take for proving Theorem 2 is to show, for any $I \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}\left(\tau^{\text {example }}\right)$, that a valid schedule may be constructed for I on two processors ${ }^{5}$. It turns out that it is very easy to find a schedule on two processors for the set of tasks $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$; so, we construct this schedule, denoted S_{I}, for the jobs of $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ in real-time instance I. If the jobs of τ_{6} in instance I can execute completely during the processor idle times for S_{I} (i.e., when jobs of $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ are not executing in S_{I}), then we have shown that a valid schedule exists for instance I. However, it is possible that there does not exist sufficient idle processor time to execute every job of τ_{6} in S_{I}. Therefore, we may need to modify schedule S_{I} further. Our approach considers up to two additional modified schedules, S_{I}^{\prime} and $S_{I}^{\prime \prime}$ - defined separately for ease of presentation and clarity. Our final step is to show that if τ_{6} could not complete in either S_{I} or S_{I}^{\prime}, all jobs of τ_{6} must complete in $S_{I}^{\prime \prime}$. The following steps informally explain our proof of showing that a valid schedule exists on two processors for any $I \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}\left(\tau^{\text {example }}\right)$. Figure 3 gives a diagram of the steps of the proof.

Step 0) Partition $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$: Consider a partition of $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ into two sets:

$$
\begin{equation*}
\tau^{A} \stackrel{\text { def }}{=}\left\{\tau_{1}, \tau_{4}\right\} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau^{B} \stackrel{\text { def }}{=}\left\{\tau_{2}, \tau_{3}, \tau_{5}\right\} . \tag{14}
\end{equation*}
$$

Step 1) Construct schedule S_{I} to show that $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ is feasible on two processor: Using known uniprocessor scheduling algorithms, we show that τ^{A} may be correctly scheduled on processor π_{1} and τ^{B} may be scheduled on processor π_{2}.

Step 2) Construct a modified schedule S_{I}^{\prime} : If the jobs of τ_{6} cannot completely execute by their deadlines on processor π_{2} (the less "loaded" of the two processors in S_{I}) during the idle time instants in schedule S_{I}, we will construct a new schedule S_{I}^{\prime}. For any real-time instance I, S_{I}^{\prime} is a global schedule (i.e., non-partitioned) constructed by moving as much work as possible to the first processor π_{1} (with respect to idle times in S_{I} schedule for processor π_{1}).

[^2]

Figure 3. Logical steps in proof of Theorem 2.

Step 3) Derive properties of schedule S_{I}^{\prime} if τ_{6} cannot complete execution: We will derive several properties in the event that τ_{6} cannot complete during the idle instants in schedule S_{I}^{\prime}. These properties will be useful in defining a second modified schedule $S_{I}^{\prime \prime}$ in which τ_{6} can complete execution.

Step 4) Construct a second modified schedule $S_{I}^{\prime \prime}$ that leaves sufficient room for τ_{6} to be completely assigned to the second processor: Again, if τ_{6} cannot completely execute during the idle times instants on processor π_{2} in schedule S_{I}^{\prime}, we construct a second modified schedule $S_{I}^{\prime \prime}$. The properties of the previous step will be used to show that a schedule $S_{I}^{\prime \prime}$ can always be constructed that leaves the second processor idle for four units between the release and deadline of a any job of τ_{6}. Obviously, τ_{6} can be completely assigned to these idle times. Therefore, $\tau^{\text {example }}$ is feasible on two unit-capacity processors (Theorem 2).

In the next section, we discuss some additional notation needed for our proof. In Section 5.3, we formally carry-out the steps outlined in this subsection.

5.2 Notation

In this section, we present general notation for describing the scheduling and behavior of a sporadic task system τ. The remainder of this section heavily relies on the notation presented in Sections 2.4 and 2.5. The notation defined for the remainder of this section will assume that τ is a constrained-deadline system (i.e., for all $\tau_{i} \in \tau$, $\left.d_{i} \leq p_{i}\right)$. For each $I \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}(\tau)$, let $I\left(\tau_{i}\right) \subseteq I$ denote the jobs generated by τ_{i} in instance I.

The next two functions give the "nearest" job release-time and deadline with respect to a given time t and real-time instance $I\left(\tau_{i}\right)$.

Definition 9 (Job-Release Function) If τ_{i} is current at time t in real-time instance I then $r_{i}(I, t)$ is the release time of the most recently released job of τ_{i} (with respect to time t). Otherwise, $r_{i}(I, t)=\infty$ if τ_{i} is not in a scheduling window at time t. More formally,

$$
r_{i}(I, t) \stackrel{\text { def }}{=} \begin{cases}A_{k}, & \text { if } \exists J_{k} \in I\left(\tau_{i}\right) \text { such that } A_{k} \leq t \leq A_{k}+D_{k} \tag{15}\\ \infty, & \text { otherwise. }\end{cases}
$$

Definition 10 (Job-Deadline Function) If τ_{i} is current at time t for real-time instance I then $d_{i}(I, t)$ is the absolute deadline of the most recently released job of τ_{i} (with respect to time t). Otherwise, $d_{i}(I, t)=-\infty$ if τ_{i} is not in a scheduling window at time t.

$$
d_{i}(I, t) \stackrel{\text { def }}{=} \begin{cases}A_{k}+D_{k}, & \text { if } \exists J_{k} \in I\left(\tau_{i}\right) \text { such that } A_{k} \leq t \leq A_{k}+D_{k} \tag{16}\\ -\infty, & \text { otherwise. }\end{cases}
$$

The following function is useful for identifying the current current job (if any) of task τ_{i} at time t.
Definition 11 (Current-Job Function) If τ_{i} is current at time t for real-time instance $I, \varphi_{i}(I, t)$ is the current job at time t. Otherwise, $\varphi_{i}(I, t)=\perp$, if τ_{i} is not in a scheduling window at time t.

$$
\varphi_{i}(I, t) \stackrel{\text { def }}{=} \begin{cases}J_{k}, & \text { if } \exists J_{k} \in I\left(\tau_{i}\right) \text { such that } A_{k} \leq t \leq A_{k}+D_{k} \tag{17}\\ \perp, & \text { otherwise. }\end{cases}
$$

Similar to Definition 2 which defined a schedule function with respect to jobs of a real-time instance, we can define the schedule S as a function with respect to task τ_{i}.

Definition 12 (Task-Schedule Function) $S_{I}\left(\pi_{\ell}, t, \tau_{i}\right)$ is an indicator function denoting whether task τ_{i} is scheduled at time t for schedule S_{I}. In other words,

$$
S_{I}\left(\pi_{\ell}, t, \tau_{i}\right) \stackrel{\text { def }}{=} \begin{cases}1, & \text { if } \exists J_{k} \in I\left(\tau_{i}\right):: S_{I}\left(\pi_{\ell}, t, J_{i}\right)=1 \tag{18}\\ 0, & \text { otherwise. }\end{cases}
$$

The next definition defines the work that task τ_{i} receives on π_{ℓ} over a given interval. The job work function (Definition 4) is used.

Definition 13 (Task-Work Function) $W_{i}\left(S_{I}, \pi_{\ell}, t_{1}, t_{2}\right)$ denotes the amount of processor time that τ_{i} receives from schedule S_{I} on processor π_{ℓ} over the interval $\left[t_{1}, t_{2}\right)$ for real-time instance I. In other words,

$$
\begin{equation*}
W_{i}\left(S_{I}, \pi_{\ell}, t_{1}, t_{2}\right) \stackrel{\text { def }}{=} \sum_{J_{k} \in I\left(\tau_{i}\right)} W\left(S_{I}, \pi_{\ell}, J_{i}, t_{1}, t_{2}\right) . \tag{19}
\end{equation*}
$$

Definition 14 (Idle-Work Function) $W_{\perp}\left(S_{I}, \pi_{\ell}, t_{1}, t_{2}\right)$ denotes the total amount of processor time that schedule S_{I} idles processor π_{ℓ} over the interval $\left[t_{1}, t_{2}\right)$ for real-time instance I. In other words,

$$
\begin{equation*}
W_{\perp}\left(S_{I}, \pi_{\ell}, t_{1}, t_{2}\right) \stackrel{\text { def }}{=} W\left(S_{I}, \pi_{\ell}, \perp, t_{1}, t_{2}\right) \tag{20}
\end{equation*}
$$

5.3 Proof

In this section, we prove Theorem 2 by following the steps outlined in Section 5.1. Obviously, Step 0 has already been given in the proof outline of Section 5.1; thus, we begin with Step 1. Section 5.3.1 gives the construction for schedule S_{I} for Step 1. Section 5.3.2 describes the construction of schedule S_{I}^{\prime} for Step 2. Section 5.3.3 proves several important properties about S_{I}^{\prime}, if τ_{6} cannot be scheduled during the idle times (Step 3). Finally, Section 5.3.4 defines schedule $S_{I}^{\prime \prime}$ which can be shown to accommodate all jobs of task τ_{6} on processor π_{2} (Step 4).

5.3.1 Step 1: Construction of Schedule S_{I}

The first step of the outline (Section 5.1) of the proof requires us to show that the partition τ^{A} and τ^{B} of $\tau^{\text {example }} \backslash$ $\left\{\tau_{6}\right\}$ is feasible on two processors and give a valid schedule for real-time instance $I \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}(\tau)$. We can easily obtain feasibility of this task system by partitioning $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ into two sets and scheduling each subset on its own processor using a uniprocessor scheduling algorithm called the deadline-monotonic (DM) scheduling algorithm. For each processor, DM executes at any time instant the active job of the task with the smallest relative deadline parameter (among the set of all tasks assigned to that processor with active jobs). For simplicity of analysis, we will use DM on each processor.

Audsley et al. [1] developed a test to determine whether each task in a constrained-deadline task system can be scheduled by DM on a single processor to always meet all deadlines. Let $\mathbf{T}_{H_{i}}$ be the set of tasks with priority greater than or equal to task τ_{i} under the DM priority assignment. The following theorem restates their result.

Theorem 4 (from [1]) In a constrained-deadline, sporadic task system, task τ_{i} always meets all deadlines using DM on a preemptive uniprocessor if and only if $\exists t \in\left(0, d_{i}\right]$ such that

$$
\begin{equation*}
\left(\operatorname{CBF}\left(\tau_{i}, t\right) \stackrel{\text { def }}{=} \sum_{\tau_{j} \in \mathbf{T}_{H_{i}}} \operatorname{RBF}\left(\tau_{j}, t\right)+e_{i}\right) \leq t . \tag{21}
\end{equation*}
$$

Using this result, we obtain the following lemma which states that $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ is feasible on the given two-processor platform:

Lemma $3 \tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ is feasible on a multiprocessor platform composed of two unit-capacity processors.
Proof: For partition τ^{A} and τ^{B} of $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ (Equations 13 and 14), assign τ^{A} to π_{1} and τ^{B} to π_{2}. It is easy to verify by Theorem 4 that τ^{A} and τ^{B} are feasible with respect to their assigned processors. First, we will show that τ^{A} is feasible on processor $\pi_{1} . \tau_{1}$ always meets all deadlines (according to Theorem 4) on π_{1} with respect to task system τ^{A} because $\operatorname{CBF}\left(\tau_{1}, 2\right)=2 \leq 2$. Similarly, τ_{4} always meets all deadlines on π_{1} because $\operatorname{CBF}\left(\tau_{4}, 4\right)=2+2=4 \leq 4$. Since both of these tasks always meet all deadlines using DM on π_{1} over all real-time instance $I_{A} \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}\left(\tau^{A}\right), \tau^{A}$ is feasible on π_{1} according to Definition 8 .

Next, we will show that τ^{B} is feasible on processor π_{2}. τ_{2} always meets all deadlines on π_{2} because $\operatorname{CBF}\left(\tau_{2}, 1\right)=$ $1 \leq 1$. τ_{3} always meets all deadlines on π_{2} due to $\operatorname{CbF}\left(\tau_{3}, 2\right)=1+1=2 \leq 2$. Finally, τ_{5} always meets all deadlines on π because $\operatorname{CbF}\left(\tau_{5}, 4\right)=1+1+2=4 \leq 4$. Since all three of these tasks always meet all deadlines using DM on π_{2} over all real-time instances $I_{B} \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}\left(\tau^{B}\right), \tau^{B}$ is feasible on π_{2} according to Definition 8. Combining the two uniprocessor schedules from DM, we get a valid multiprocessor schedule for $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$, and the lemma follows.

Let S_{I} be the schedule constructed by DM on each processor for task system $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ with partitions τ^{A} and τ^{B}. From the previous argument, S_{I} is valid for I (with τ_{6} 's jobs excluded).

5.3.2 Step 2: Construction of Schedule S_{I}^{\prime}

If the jobs generated by τ_{6} in real-time instance I cannot complete by their deadlines in the idle times of S_{I}, we must proceed to Step 2 of our proof outline: construct a schedule S_{I}^{\prime} that is globally (non-partitioned) feasible. The goal of this step is to move as much computation off processor π_{2} as possible. To accomplish this goal, for every idle instant on processor π_{1} in schedule S_{I}, we move a task in its scheduling window on π_{2} to π_{1} (if such a task exists). The construction "builds" schedule S_{I}^{\prime} for processor π_{1}, first. After $S_{I}^{\prime}\left(\pi_{1}, t\right)$ is constructed, then S_{I}^{\prime}

	e_{i}	d_{i}	p_{i}
τ_{1}	2	2	5
τ_{3}	1	2	6
τ_{4}	2	4	100
τ_{5}	2	6	100

(a) replicates the legend for these tasks

(b) S_{I}

(c) S_{I}^{\prime}

Figure 4. Construction of Schedule S_{I}^{\prime}. Note that the execution of τ_{5} in the interval $[1,2)$ is moved from the second processor to $[4,5)$ on the first processor.
is constructed for π_{2}. Note that such a schedule could not be constructed online (i.e., it is an off-line constructed schedule), since $S_{I}^{\prime}\left(\pi_{2}, t\right)$ may require that $S_{I}^{\prime}\left(\pi_{1}, t^{\prime}\right)$ be known for some $t^{\prime}>t$ (i.e., $S_{I}^{\prime}\left(\pi_{2}, t\right)$ requires knowledge of future events). Constructing an offline schedule is not a contradiction of Theorem 3 as feasibility requires us only to construct (by any means) a valid schedule for any real-time instance that may be generated by $\tau^{\text {example }}$.

In schedule $S_{I}^{\prime}\left(\pi_{1}, t\right)$, tasks of set τ^{A} (tasks τ_{1} and $\left.\tau_{4}\right)$ execute at exactly the same times as they did in schedule $S_{I}\left(\pi_{1}, t\right)$ (i.e., the uniprocessor rate-monotonic schedule for τ^{A} and τ^{B}). However, the tasks of set τ^{B} move as much execution as possible (without disturbing tasks of τ^{A}) from processor π_{2} to processor π_{1}. Consider an arbitrary time t. $S_{I}^{\prime}\left(\pi_{1}, t\right)$ is constructed using the following rules:

1. If at time t processor π_{1} is busy executing a job from tasks of τ^{A} in schedule S_{I}, then $S_{I}^{\prime}\left(\pi_{1}, t\right)$ equals $S_{I}\left(\pi_{1}, t\right)$.
2. If processor π_{1} is idle at time t in schedule S_{I}, then:
(a) If task τ_{5} is in its scheduling window (i.e., $r_{5}(I, t)<\infty$) and it has not already executed for more than e_{5} time units in S_{I}^{\prime} on processor π_{1}, then S_{I}^{\prime} at time t is set to the current job of $\tau_{5}-$ i.e $S_{I}^{\prime}\left(\pi_{1}, t\right)=$ $\varphi_{5}(I, t)$;
(b) else, if task τ_{2} is in its scheduling window (i.e., $r_{2}(I, t)<\infty$) and it has not already executed for more than e_{2} time units in S^{\prime} on processor π_{1}, then S_{I}^{\prime} at time t is set to the current job of τ_{2} - i.e $S_{I}^{\prime}\left(\pi_{1}, t\right)=\varphi_{2}(I, t) ;$
(c) else, if task τ_{3} is in its scheduling window (i.e., $r_{3}(I, t)<\infty$) and it has not already executed for more than e_{3} time units in S^{\prime} on processor π_{1}, then S_{I}^{\prime} at time t is set to the current job of τ_{3} - i.e $S_{I}^{\prime}\left(\pi_{1}, t\right)=\varphi_{3}(I, t)$;
(d) else, leave processor π_{1} idle.

Note the above order that we move jobs of tasks (i.e., in order of τ_{5}, τ_{2}, and τ_{3}) is significant.
The execution of jobs of tasks in τ^{B} that could not be moved to processor π_{1} is executed on processor π_{2} (with the added constraint that a task does not execute in parallel with itself). For arbitrary time $t, S_{I}^{\prime}\left(\pi_{2}, t\right)$ is constructed using the following rule: if, at time instant t, a job J_{k} of task $\tau_{i} \in \tau^{B}$ is executing on processor π_{2} in schedule S_{I} (i.e., $S_{I}\left(\pi_{2}, t, J_{k}\right)=1$), then J_{k} will also execute on processor π_{2} at time instant t in schedule S_{I}^{\prime} only if the following two conditions are true,

1. J_{k} is not executing on processor π_{1} at time t in schedule S_{I}^{\prime} (i.e., $S_{I}^{\prime}\left(\pi_{2}, t, J_{k}\right)=0$), and
2. the total time that job J_{k} has executed on processor π_{1} between its arrival and its absolute deadline and on processor π_{2} between its arrival and time t in schedule S_{I}^{\prime} is strictly less than e_{i}.

Figure 4 presents a visual example comparing schedules S_{I} and S_{I}^{\prime}. The following construction is the inductive formal definition of the modified schedule for all $I \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}\left(\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}\right)$ and $t \geq 0$. Please note that $S_{I}^{\prime}\left(\pi_{1}, t\right)$ is inductively constructed first for all $t \geq 0$. $S_{I}^{\prime}\left(\pi_{2}, t\right)$ is constructed after S_{I}^{\prime} for processor π_{1}. Also, note that S_{I}^{\prime} is not work-conserving in the sense that a processor may be idle at time t, even if there are active jobs with remaining execution.

$$
\begin{align*}
& S_{I}^{\prime}\left(\pi_{1}, t\right) \stackrel{\text { def }}{=} \begin{cases}S_{I}\left(\pi_{1}, t\right), & \text { if } S_{I}\left(\pi_{1}, t\right) \neq \perp, \\
\varphi_{5}(I, t), & \text { if } r_{5}(I, t)<\infty \text { and } W_{5}\left(S_{I}^{\prime}, \pi_{1}, r_{5}(I, t), t\right)<e_{5}, \\
\varphi_{2}(I, t), & \text { if } r_{2}(I, t)<\infty \text { and } W_{2}\left(S_{I}^{\prime}, \pi_{1}, r_{2}(I, t), t\right)<e_{2}, \\
\varphi_{3}(I, t), & \text { if } r_{3}(I, t)<\infty \text { and } W_{3}\left(S_{I}^{\prime}, \pi_{1}, r_{3}(I, t), t\right)<e_{3}, \\
\perp, & \text { otherwise }\end{cases} \\
& S_{I}^{\prime}\left(\pi_{2}, t\right) \xlongequal{\text { def }} \begin{cases}\varphi_{2}(I, t), & \text { if }\left(S_{I}\left(\pi_{2}, t, \tau_{2}\right)=1\right) \text { and }\left(S_{I}^{\prime}\left(\pi_{1}, t, \tau_{2}\right)=0\right) \text { and } \\
\varphi_{3}(I, t), & \left(W_{2}\left(S_{I}^{\prime} \pi_{1}\left(S_{I}, r_{2}(I, t), d_{2}(I, t)\right)+W_{2}\left(S_{I}^{\prime}, \pi_{2}, r_{2}(I, t), t\right)<\tau_{3}\right), 1\right) \text { and }\left(S_{I}^{\prime}\left(\pi_{1}, t, \tau_{3}\right)=0\right) \text { and } \\
\varphi_{2}, & \left(W_{3}\left(S_{I}^{\prime}, \pi_{1}, r_{3}(I, t), d_{3}(I, t)\right)+W_{3}\left(S_{I}^{\prime}, \pi_{2}, r_{3}(I, t), t\right)<e_{3}\right), \\
\varphi_{5}(I, t), & \text { if }\left(S_{I}\left(\pi_{2}, t, \tau_{5}\right)=1\right) \text { and }\left(S_{I}^{\prime}\left(\pi_{1}, t, \tau_{5}\right)=0\right) \text { and } \\
\perp, & \left(W_{5}\left(S_{I}^{\prime}, \pi_{1}, r_{5}(I, t), d_{5}(I, t)\right)+W_{5}\left(S_{I}^{\prime}, \pi_{2}, r_{5}(I, t), t\right)<e_{5}\right),\end{cases} \tag{22}
\end{align*}
$$

Lemma $4 S_{I}^{\prime}$ is valid on Π for any I with respect to jobs of $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$.
Proof: Schedule S_{I}^{\prime} is obviously valid for the jobs generated by $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ in instance I. Each job, by definition of S_{I}^{\prime} above only executes within its scheduling window, does not execute concurrently with itself on both processors, and executes exactly for its execution requirement.

5.3.3 Step 3: Properties of Schedule S_{I}^{\prime}

If S_{I}^{\prime} does not have sufficient idle time to schedule τ_{6} entirely on processor π_{2}, then there must exist a job $J_{6} \in I$ that does not meet its deadline, with respect to the idle time in schedule S_{I}^{\prime}. In this section, we prove several lemmas which characterize the properties of schedule S_{I}^{\prime} with respect to the J_{6} 's scheduling window. The main observation from these properties is that the jobs of I are constrained in how their scheduling windows intersect, if J_{6} cannot be scheduled in S_{I}^{\prime}. We will exploit these intersection constraints on job in the next section (Step 4) when we define schedule $S_{I}^{\prime \prime}$.

Let A_{6} be the arrival of J_{6}. Since the relative deadline of τ_{6} is $d_{6}=8$, the scheduling window of J_{6} is $\left[A_{6}, A_{6}+8\right)$. We will start by making an observation on the maximum possible amount that jobs of $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ could execute in any schedule over an interval of length six, eight, and ten. These observations will be useful to reason about the amount of work that could occur over the scheduling windows of jobs of τ_{5} and τ_{6}.

Observation 1 Table 1 presents upper-bounds on $W_{i}\left(S, \pi_{1}, t, t+L\right)+W_{i}\left(S, \pi_{2}, t, t+L\right)$ for intervals of length $L \in\{6,8,10\}$ for any valid schedule S, task $\tau_{i} \in \tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$ and time-instant t. The upper bounds for $L=8$ and $L=10$ may easily be observed by noting that τ_{1}, τ_{2}, and τ_{3} have at most two jobs with scheduling windows that intersect with an interval $[t, t+L)$ for $8 \leq L \leq 10$, and τ_{4} and τ_{5} can have at most one job with scheduling window intersecting $[t, t+L)$. Similarly, for $L=6$, at most two jobs of τ_{1}, τ_{2}, and τ_{3} and a single job of τ_{4} and τ_{5} may over lap with the interval $[t, t+6)$; however, the maximum intersection between the scheduling windows of τ_{1} 's jobs and $[t, t+6)$ is three, due to the fact that p_{1} equals five. We also point out that upper bounds on $W_{i}\left(S, \pi_{1}, t, t+L\right)+W_{i}\left(S, \pi_{2}, t, t+L\right)$ are monotonically non-decreasing with L.

Task	$\geq W_{i}\left(S, \pi_{1}, t, t+L\right)+W_{i}\left(S, \pi_{2}, t, t+L\right)$		
	$L=6$	$L=8$	$L=10$
τ_{1}	3	4	4
τ_{2}	2	2	2
τ_{3}	2	2	2
τ_{4}	2	2	2
τ_{5}	2	2	2

Table 1. Upper bounds on the execution of tasks over intervals $[t, t+L)$ for various values of L.

The first property we show for S_{I}^{\prime} is in regard to the execution of jobs of τ_{5} over the J_{6} 's scheduling window of $\left[A_{6}, A_{6}+8\right)$. If there was not sufficient idle time in S_{I}^{\prime} to completely schedule J_{6}, a job of τ_{5} must have its scheduling window intersect with $\left[A_{6}, A_{6}+8\right)$. Furthermore, a job of τ_{5} must execute for a non-zero amount of time on processor π_{2} over $\left[A_{6}, A_{6}+8\right)$. The following lemma formally shows this property.

Lemma 5 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then there exists a single job $J_{5} \in I$ of τ_{5} with scheduling window $\left[A_{5}, A_{5}+6\right)$ where

$$
\begin{equation*}
\left[A_{5}, A_{5}+6\right) \cap\left[A_{6}, A_{6}+8\right) \neq \emptyset \tag{23}
\end{equation*}
$$

Furthermore, let α equal the execution of J_{5} on processor π_{2} over $\left[A_{5}, A_{5}+6\right)$ (i.e., $\alpha \stackrel{\text { def }}{=} W_{5}\left(S_{I}^{\prime}, \pi_{2}, A_{5}, A_{5}+6\right)$). It must be that

$$
\begin{equation*}
\alpha>0 . \tag{24}
\end{equation*}
$$

and that J_{5} executes for some non-zero amount of time $\leq \alpha$ on π_{2} over $\left[A_{6}, A_{6}+8\right)\left(\right.$ i.e., $W_{5}\left(S_{I}^{\prime}, \pi_{2}, A_{6}, A_{6}+8\right) \leq$ $\alpha)$.

Proof: First note, that since the period of τ_{5}, p_{5}, equals 100 , at most one job of τ_{5} could possibly have its scheduling window intersect with the interval $\left[A_{6}, A_{6}+8\right.$). We will now show (by contradiction) that exactly one job of τ_{5} intersects J_{6} 's scheduling window and executes during this interval on processor π_{2}. Assume the lemma is false: a job of τ_{5} does not execute on processor π_{2} over J_{6} 's scheduling window in valid schedule S_{I}^{\prime}. Then, exactly one of the following three cases is true:

Case 1 there does not exist a job $J_{5} \in I$ with $\left[A_{5}, A_{5}+6\right) \cap\left[A_{6}, A_{6}+8\right) \neq \emptyset$.
Case 2 there exists a job $J_{5} \in I$ of τ_{5} with $\left[A_{5}, A_{5}+6\right) \cap\left[A_{6}, A_{6}+8\right) \neq \emptyset$, but J_{5} does not execute on processor π_{2} over the interval $\left[A_{5}, A_{5}+6\right.$) (i.e., $\alpha=0$); or,

Case 3 there exists a job $J_{5} \in I$ of τ_{5} with $\left[A_{5}, A_{5}+6\right) \cap\left[A_{6}, A_{6}+8\right) \neq \emptyset$ and J_{5} executes on processor π_{2} for $\alpha>0$ over the interval $\left[A_{5}, A_{5}+6\right)$, but does not execute over $\left[A_{6}, A_{6}+8\right)$;

By construction of S_{I}^{\prime}, the only other tasks of $\tau^{\text {example }} \backslash\left\{\tau_{6}\right\}$, other than τ_{5}, that are executed on π_{2} in S_{I}^{\prime} are τ_{2} or τ_{3}. Since J_{6} 's execution requirement, E_{6}, is 4 , the execution of τ_{2} and τ_{3} on processor π_{2} in schedule S_{I}^{\prime} over the interval $\left[A_{6}, A_{6}+8\right)$ must exceed four for J_{6} to be unable to execute completely on π_{2}. However, by Observation 1, the most that τ_{2} and τ_{3} could execute over $\left[A_{6}, A_{6}+8\right)$ is four. Thus, τ_{5} must have executed on π_{2} over $\left[A_{6}, A_{6}+8\right)$ in S_{I}^{\prime} for some non-zero amount of time in order for J_{6} not to complete which contradicts the assumption of Cases 1,2 , and 3 ; the lemma follows.

The next lemma gives an upper bound on the amount of time that J_{5} can execute on processor π_{2} in schedule S_{I}^{\prime}.

Lemma 6 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then

$$
\begin{equation*}
\alpha \leq 1 . \tag{25}
\end{equation*}
$$

Proof: If there is insufficient time in S_{I}^{\prime} to execute J_{6}, Lemma 5 states that a unique job J_{5} of task τ_{5} must exist with a scheduling window $\left[A_{5}, A_{5}+6\right)$ that intersects $\left[A_{6}, A_{6}+8\right)$. Observation 1 implies that an upper bound on the execution of jobs of τ^{A} in S_{I}^{\prime} over the interval $\left[A_{5}, A_{5}+6\right)$ is at most five. Thus, the total amount of time that processor π_{1} is idle over $\left[A_{5}, A_{5}+6\right)$ in the original schedule S_{I} is at least one. J_{5} executes on processor π_{1} at most $2-\alpha$, by Lemma 5 . Assume that $\alpha>1$. Then, J_{5} executes on the processor π_{1} for strictly less than one time unit in schedule S_{I}^{\prime}. Thus, there exists $t \in\left[A_{5}, A_{5}+6\right)$ where S_{I}^{\prime} is executing a job not in task $\tau^{A} \cup\left\{\tau_{5}\right\}$ on processor π_{1}. However, the existence of execution of J_{5} on processor π_{2} contradicts the construction of S_{I}^{\prime} which moves as much of J_{5} 's to π_{1} at instances whenever jobs of τ^{A} are not executing. Thus, our assumption that $\alpha>1$ must be false and the lemma follows.

The next two lemmas (Lemmas 7 and 8) exactly characterize the jobs of τ_{3} and τ_{2} that must execute over J_{6} 's scheduling window.

Lemma 7 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then there exists exactly two jobs of $\tau_{3}, J_{3}^{1}, J_{3}^{2} \in I$ (where $A_{3}^{1}+6 \leq A_{3}^{2}$), such that

$$
\begin{equation*}
\left(\left[A_{3}^{1}, A_{3}^{1}+2\right) \cap\left[A_{6}, A_{6}+8\right) \neq \emptyset\right) \bigwedge\left(\left[A_{3}^{2}, A_{3}^{2}+2\right) \cap\left[A_{6}, A_{6}+8\right) \neq \emptyset\right) . \tag{26}
\end{equation*}
$$

Furthermore, both J_{3}^{1} and J_{3}^{2} execute for strictly more than $2-\alpha$ time units on π_{2} in S_{I}^{\prime} over $\left[A_{6}, A_{6}+8\right.$) (i.e., $\left.W_{3}\left(S_{I}^{\prime}, \pi_{2}, A_{6}, A_{6}+8\right)>2-\alpha\right)$.

Proof: Since J_{6} cannot complete during the idle times in S_{I}^{\prime}, the execution on processor π_{2} over the J_{6} 's scheduling window $\left[A_{6}, A_{6}+8\right)$ must exceed four time units; otherwise, J_{6} could complete entirely on processor π_{2}. By definition of S_{I}^{\prime}, only jobs of τ_{2}, τ_{3}, and τ_{5} execute on processor π_{2}. Observation 1 implies that τ_{2} can execute for at most two time units over $\left[A_{6}, A_{6}+8\right)$. By Lemma 5 and Lemma $6, J_{5}$ executes for amount of time at most $\alpha \leq 1$ time units over J_{6} 's scheduling window on processor π_{2}. Thus, τ_{3} must execute for strictly more than $2-\alpha$ time unit over $\left[A_{6}, A_{6}+8\right)$ on π_{2} in S_{I}^{\prime}. Since the execution requirement e_{3} is one, there must be at least two jobs of τ_{3} that execute during $\left[A_{6}, A_{6}+8\right.$). The period and relative deadline parameter of τ_{3} ($p_{3}=6$ and $d_{3}=2$) imply that at most two jobs of τ_{3} can execute in $\left[A_{6}, A_{6}+8\right)$. Let J_{3}^{1} and J_{3}^{2} be the jobs of τ_{3} that execute in $\left[A_{6}, A_{6}+8\right.$) where $A_{3}^{2}-A_{3}^{1} \geq 6$ (by the period parameter). The fact that J_{3}^{1} and J_{3}^{2},s scheduling windows overlap with J_{6} 's scheduling window implies Equation 26.

Lemma 8 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then there exists exactly two jobs of $\tau_{2}, J_{2}^{1}, J_{2}^{2} \in I$ (where $A_{2}^{1}+5 \leq A_{2}^{2}$), such that

$$
\begin{equation*}
\left(\left[A_{2}^{1}, A_{2}^{1}+1\right) \cap\left[A_{6}, A_{6}+8\right) \neq \emptyset\right) \bigwedge\left(\left[A_{2}^{2}, A_{2}^{2}+1\right) \cap\left[A_{6}, A_{6}+8\right) \neq \emptyset\right) . \tag{27}
\end{equation*}
$$

Furthermore, both J_{2}^{1} and J_{2}^{2} execute for strictly more than $2-\alpha$ time units on π_{2} in S_{I}^{\prime} over $\left[A_{6}, A_{6}+8\right)$ (i.e., $\left.W_{2}\left(S_{I}^{\prime}, \pi_{2}, A_{6}, A_{6}+8\right)>2-\alpha\right)$.

Proof: Since J_{6} cannot complete during the idle times in S_{I}^{\prime}, the execution on processor π_{2} over the J_{6} 's scheduling window $\left[A_{6}, A_{6}+8\right)$ must exceed four time units; otherwise, J_{6} could complete entirely on processor π_{2}. By definition of S_{I}^{\prime}, only jobs of τ_{2}, τ_{3}, and τ_{5} execute on processor π_{2}. Observation 1 implies that τ_{2} can execute for at most two time units over $\left[A_{6}, A_{6}+8\right)$. By Lemma 5 and Lemma $6, J_{5}$ executes for amount of time at most $\alpha \leq 1$ time units over J_{6} 's scheduling window on processor π_{2}. Thus, τ_{2} must execute for strictly more
than $2-\alpha$ time unit over $\left[A_{6}, A_{6}+8\right)$ on π_{2} in S_{I}^{\prime}. Since the execution requirement e_{2} is one, there must be at least two jobs of τ_{2} that execute during $\left[A_{6}, A_{6}+8\right.$). The period and relative deadline parameter of τ_{1} ($p_{1}=5$ and $d_{1}=1$) imply that at most two jobs of τ_{1} can execute in $\left[A_{6}, A_{6}+8\right)$. Let J_{2}^{1} and J_{2}^{2} be the jobs of τ_{2} that execute in $\left[A_{6}, A_{6}+8\right.$) where $A_{2}^{2}-A_{2}^{1} \geq 5$ (by the period parameter). The fact that J_{2}^{1} and J_{2}^{2} 's scheduling windows overlap with J_{6} 's scheduling window implies Equation 27.

The following corollary of Lemmas 6 and 8 , showing that both J_{2}^{1} and J_{2}^{2} must execute on π_{2} over $\left[A_{6}, A_{6}+8\right)$, will be useful in later proofs.

Corollary 2 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then both J_{2}^{1} and J_{2}^{2} execute for non-zero amounts of time on processor π_{2} in the interval $\left[A_{6}, A_{6}+8\right)$.

Proof: Lemma 8 states that J_{2}^{1} and J_{2}^{2} together must execute for strictly greater than $2-\alpha$ time on processor π_{2} over the interval $\left[A_{6}, A_{6}+8\right)$. Lemma 6 show that $\alpha \leq 1$; thus, the execution of both jobs over interval $\left[A_{6}, A_{6}+8\right)$ must exceed one. Since $e_{2}=1$, both J_{2}^{1} and J_{2}^{2} must execute for non-zero amounts of time in $\left[A_{6}, A_{6}+8\right)$.

The previous two lemmas and corollary gave a lower bound on the execution of jobs of either τ_{2} or τ_{3} over the interval $\left[A_{6}, A_{6}+8\right)$ on processor π_{2}. In the next lemma, we derive a lower bound on the combined execution of τ_{2} and τ_{3} over this same interval and processor.

Lemma 9 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then τ_{2} and τ_{3} execute on processor π_{2} over the interval $\left[A_{6}, A_{6}+8\right)$ for strictly more than $4-\alpha$ time units in S_{I}^{\prime}. I.e.,

$$
\begin{equation*}
W_{2}\left(S_{I}^{\prime}, \pi_{2}, A_{6}, A_{6}+8\right)+W_{3}\left(S_{I}^{\prime}, \pi_{2}, A_{6}, A_{6}+8\right)>4-\alpha \tag{28}
\end{equation*}
$$

Proof: Since J_{6} cannot complete during the idle times in S_{I}^{\prime}, the execution on processor π_{2} by jobs of τ^{B} over J_{6} 's scheduling window $\left[A_{6}, A_{6}+8\right)$ must exceed four units. Lemma 5 showed that the most J_{5} could execute on processor π_{2} over $\left[A_{6}, A_{6}+8\right)$ is α. Thus, jobs of τ_{2} and τ_{3} must execute for strictly more than $4-\alpha$ time units on processor π_{2} over $\left[A_{6}, A_{6}+8\right)$.

We now focus on jobs of tasks in τ^{A} whose scheduling windows overlap with J_{5} 's scheduling window. The above lemmas (Lemmas 5, 7, and 8) showed that a jobs of τ^{B} must have prevented J_{6} from completing execution entirely on processor π_{2}. We follow this reasoning and show that a jobs of τ^{A} must have prevented τ_{5} 's job, J_{5} from completing its execution entirely on processor π_{1}. The next two properties of S_{I}^{\prime} show that exactly one job of τ_{4} executes in the scheduling window $\left[A_{5}, A_{5}+6\right)$ (Lemma 10) and exactly two jobs of τ_{1} execute in $\left[A_{5}, A_{5}+6\right)$ (Lemma 11).

Lemma 10 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then there exists a single job $J_{4} \in I$ of τ_{4} such that

$$
\begin{equation*}
\left[A_{4}, A_{4}+4\right) \cap\left[A_{5}, A_{5}+6\right) \neq \emptyset \tag{29}
\end{equation*}
$$

Furthermore, J_{4} executes for at least $1+\alpha$ units of time on π_{1} in S_{I}^{\prime} over $\left[A_{5}, A_{5}+6\right)$ (i.e., $W_{5}\left(S_{I}^{\prime}, \pi_{1}, A_{5}, A_{5}+\right.$ 6) >0).

Proof: By Lemma 5, J_{5} executes on processor π_{2} for some $\alpha>0$ amount of time in schedule S_{I}^{\prime}. By construction, S_{I}^{\prime} executes J_{5} at any time instant $t \in\left[A_{5}, A_{5}+6\right)$ where processor π_{1} was idle in the original schedule S_{I} (i.e., neither τ_{1} or τ_{4} were executing at time t). Since J_{5} could only execute $2-\alpha(\leq 1)$ units on processor π_{1} over its scheduling window, this implies that the total amount jobs of τ_{1} and τ_{4} execute over $\left[A_{5}, A_{5}+6\right)$ is exactly $4+\alpha$. By Observation 1, the most that jobs of τ_{1} could execute in this scheduling window is three time units; thus, there must exist at least one job $J_{4} \in I$ such that $\left[A_{4}, A_{4}+4\right) \cap\left[A_{5}, A_{5}+6\right) \neq \emptyset$ where J_{4} executes for at least $1+\alpha$ units on processor π_{1} over $\left[A_{5}, A_{5}+6\right)$ in schedule S_{I}^{\prime}. Since τ_{4} 's period, p_{4}, equals $100, J_{4}$ is unique.

Lemma 11 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then there exists exactly two jobs of $\tau_{1}, J_{1}^{1}, J_{1}^{2} \in I$ (where $A_{1}^{1}+5 \leq A_{1}^{2}$), such that

$$
\begin{equation*}
\left(\left[A_{1}^{1}, A_{1}^{1}+2\right) \cap\left[A_{5}, A_{5}+6\right) \neq \emptyset\right) \bigwedge\left(\left[A_{1}^{2}, A_{1}^{2}+2\right) \cap\left[A_{5}, A_{5}+6\right) \neq \emptyset\right) \tag{30}
\end{equation*}
$$

Furthermore, the total execution of J_{1}^{1} and J_{1}^{2} must be at least $2+\alpha$ units of time on π_{1} in S_{I}^{\prime} over $\left[A_{5}, A_{5}+6\right.$) (i.e., $\left.W_{1}\left(S_{I}^{\prime}, \pi_{1}, A_{5}, A_{5}+6\right)>2+\alpha\right)$.

Proof: Again, by Lemma 5, J_{5} executes on π_{2} for α time in S_{I}^{\prime}. By identical reasoning as the proof for Lemma 10, τ_{1} and τ_{4} must execute for exactly $4+\alpha$ units over the interval $\left[A_{5}, A_{5}+6\right)$. By Observation 1 , the most that τ_{4} could execute in J_{5} 's scheduling window is two time units. Thus, jobs of τ_{1} must execute for at least $2+\alpha$ time units over J_{5} 's scheduling window. Since the execution requirement of a single job of τ_{1} is one time unit, this implies there must exist at least two jobs $J_{1}^{1}, J_{1}^{2} \in I$ of τ_{1} such that $\left(\left[A_{1}^{1}, A_{1}^{1}+2\right) \cap\left[A_{5}, A_{5}+6\right) \neq \emptyset\right)$ and $\left(\left[A_{1}^{2}, A_{1}^{2}+2\right) \cap\left[A_{5}, A_{5}+6\right) \neq \emptyset\right)$ that execute in S_{I}^{\prime} over $\left[A_{5}, A_{5}+6\right)$ on processor π_{1} for more than two units of time. Assume that the arrival of J_{1}^{1} precedes J_{1}^{2}. The period of $\tau_{1}\left(p_{1}=5\right)$ implies that $A_{1}^{1}+5 \leq A_{1}^{2}$ and that no more than two jobs of τ_{1} could execute in $\left[A_{5}, A_{5}+6\right)$.

We now focus our attention on the execution of jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$ that could prevent execution of τ_{2} and τ_{3} from being moved from processor π_{2} to π_{1}. The next lemma (Lemma 12) shows that the scheduling window $\left[A_{5}, A_{5}+6\right.$) is a continuously busy interval on processor π_{1} with respect to schedule S_{I}^{\prime} tasks $\tau^{A} \cup\left\{\tau_{5}\right\}$. A continuously busy interval for a processor with respect to a given collection of tasks and schedule is an interval $\left[t_{1}, t_{2}\right)$ where a job of the given task collection is executing in the schedule on the processor for all time $t \in\left[t_{1}, t_{2}\right)$. We also show that the scheduling windows for jobs J_{1}^{1} and J_{1}^{2}, and job J_{4} are continuously busy (Lemmas 13 and 14 , respectively).

Lemma 12 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then the interval $\left[A_{5}, A_{5}+6\right)$ is a continuously busy interval on processor π_{1} in schedule S_{I}^{\prime} for jobs of tasks $\tau^{A} \cup\left\{\tau_{5}\right\}$. More formally,

$$
\begin{equation*}
\sum_{\tau_{j} \in \tau^{A} \cup\left\{\tau_{5}\right\}} W_{j}\left(S_{I}^{\prime}, \pi_{1}, A_{5}, A_{5}+6\right)=6 \tag{31}
\end{equation*}
$$

Proof: Again, by Lemma 5, J_{5} executes on π_{2} for $\alpha>0$ time in S_{I}^{\prime}. Since S_{I} moves as much execution of J_{5} from π_{2} to π_{1}, this implies for all time $t \in\left[A_{5}, A_{5}+6\right)$ at which π_{1} is not executing J_{5}, it must be executing jobs of τ^{A}.

Lemma 13 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then the intervals $\left[A_{1}^{1}, A_{1}^{1}+2\right)$ and $\left[A_{1}^{2}, A_{1}^{2}+2\right)$ are a continuously busy intervals on processor π_{1} in schedule S_{I}^{\prime} for jobs of tasks $\tau^{A} \cup\left\{\tau_{5}\right\}$. More formally, for $k \in\{1,2\}$,

$$
\begin{equation*}
\sum_{\tau_{j} \in \tau^{A} \cup\left\{\tau_{5}\right\}} W_{j}\left(S_{I}^{\prime}, \pi_{1}, A_{1}^{k}, A_{1}^{k}+2\right)=2 \tag{32}
\end{equation*}
$$

Proof: Any job of τ_{1} in I must execute continuously from its arrival to deadline because $e_{1}=d_{1}=2$. Thus, since τ_{1} is scheduled on processor π_{1} in S_{I}^{\prime} and since S_{I}^{\prime} is valid, J_{1}^{1} executes continuously on π_{1} over $\left[A_{1}^{1}, A_{1}^{1}+2\right)$ and J_{1}^{2} executes continuously on π_{1} over $\left[A_{1}^{2}, A_{1}^{2}+2\right)$.

Lemma 14 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then the interval $\left[A_{4}, A_{4}+4\right)$ is a continuously busy interval on processor π_{1} in schedule S_{I}^{\prime} for jobs of tasks $\tau^{A} \cup\left\{\tau_{5}\right\}$. More formally,

$$
\begin{equation*}
\sum_{\tau_{j} \in \tau^{A} \cup\left\{\tau_{5}\right\}} W_{j}\left(S_{I}^{\prime}, \pi_{1}, A_{4}, A_{4}+4\right)=4 \tag{33}
\end{equation*}
$$

Proof: Lemma 11 implies that both J_{1}^{1} 's and J_{1}^{2} 's scheduling window intersects with the interval $\left[A_{5}, A_{5}+6\right)$. Since J_{1}^{1} 's arrival precedes J_{1}^{2} 's arrival, the lemma also implies that $\left[A_{1}^{1}+2, A_{1}^{2}\right) \subset\left[A_{5}, A_{5}+6\right)$; in words, the time interval between the deadline of J_{1}^{1} to the arrival of J_{1}^{2} is a proper subset of the J_{5} 's scheduling window. The interval $\left[A_{1}^{1}+2, A_{1}^{2}\right)$ is between the scheduling window of two consecutive jobs of τ_{1}; therefore, no job of τ_{1} can execute in S_{I}^{\prime} during the interval $\left[A_{1}^{1}+2, A_{1}^{2}\right)$. Due to the period and relative deadline parameter of τ_{1}, the length of this interval must be at least three time units (i.e., $A_{1}^{2}-A_{1}^{1}-2 \geq 3$). By Lemma 12 and $\left[A_{1}^{1}+2, A_{1}^{2}\right) \subset\left[A_{5}, A_{5}+6\right.$), the interval $\left[A_{1}^{1}+2, A_{1}^{2}\right)$ is continuously busy executing jobs of τ_{4} and τ_{5} on processor π_{1} in schedule S_{I}^{\prime}. Lemma 5 implies that J_{5} can execute on processor π_{1} for at most $2-\alpha$ time in schedule S_{I}^{\prime}. Thus, J_{4} must execute for at least $1+\alpha$ time units on processor π_{1} over the interval $\left[A_{1}^{1}+2, A_{1}^{2}\right)$ in schedule S_{I}^{\prime}; i.e.,

$$
\begin{equation*}
W_{4}\left(S_{I}^{\prime}, \pi_{1}, A_{1}^{1}+2, A_{2}^{1}\right) \geq 1+\alpha \tag{34}
\end{equation*}
$$

Lemma 10 implies that $\left[A_{4}, A_{4}+4\right) \cap\left[A_{5}, A_{5}+6\right) \neq \emptyset$. The above equation (Equation 34) and the validity of schedule S_{I}^{\prime} implies that $\left[A_{4}, A_{4}+4\right) \cap\left[A_{1}^{1}+2, A_{1}^{2}\right) \neq \emptyset$. From these statements, we can reason about the work of $\tau^{A} \cap\left\{\tau_{5}\right\}$ over J_{4} 's scheduling window. There are two separate main cases we consider: 1) if J_{4} 's scheduling window is completely contained within J_{5} 's scheduling window; 2) J_{4} 's scheduling window is not completely contained in J_{5} 's scheduling window. We will show that each of the cases imply Equation 33. The case analysis is below.

1. $\left[A_{4}, A_{4}+4\right) \subseteq\left[A_{5}, A_{5}+6\right)$: Lemma 12 states that π_{1} is continuously busy executing jobs of $\tau^{A} \cap\left\{\tau_{5}\right\}$ over $\left[A_{5}, A_{5}+6\right)$. Thus, Equation 33 follows trivially.
2. $\left[A_{4}, A_{4}+4\right) \nsubseteq\left[A_{5}, A_{5}+6\right)$: Given this case, there are two possibilities. Either the job of τ_{4} is released before A_{5} or it is released after A_{5}. More formally, the subcases are:
a) $A_{4}<A_{5}<A_{4}+4$: In this case, Equation 34 and $\left[A_{4}, A_{4}+4\right) \cap\left[A_{1}^{1}+2, A_{1}^{2}\right) \neq \emptyset$ imply that J_{4} 's deadline must be at least $1+\alpha$ after A_{5} (i.e., $A_{4}+4 \geq A_{5}+1+\alpha$). Since $\left[A_{1}^{1}, A_{1}^{1}+2\right) \cap$ $\left[A_{5}, A_{5}+6\right) \neq \emptyset$ (Lemma 11), it must also be that $\left[A_{4}, A_{4}+4\right) \cap\left[A_{1}^{1}, A_{1}^{1}+2\right) \neq \emptyset$. Otherwise, if $\left[A_{4}, A_{4}+4\right) \cap\left[A_{1}^{1}, A_{1}^{1}+2\right)=\emptyset$, then J_{1}^{1} must arrive after J_{4} 's deadline, in order to still overlap with J_{5} 's scheduling window. In this case, the earliest J_{4} 's deadline may occur is $1+\alpha$ units after A_{5}; hence, $A_{1}^{1} \geq A_{5}+1+\alpha$. However, this inequality and the minimum separation between J_{1}^{1} and J_{1}^{2} imply $A_{1}^{2} \geq A_{1}^{1}+5 \geq A_{5}+6+\alpha$. This further implies $\left[A_{1}^{2}, A_{1}^{2}+2\right) \cap\left[A_{5}, A_{5}+6\right)=\emptyset$ which contradicts Lemma 11. So given that $\left[A_{4}, A_{4}+4\right) \cap\left[A_{1}^{1}, A_{1}^{1}+2\right) \neq \emptyset$ is true, we may consider three additional subcases regarding the execution of J_{4} in relation to J_{1}^{1} 's absolute deadline.
i) J_{4} executes entirely after $A_{1}^{1}+2$ (i.e., J_{4} executes only in the interval $\left[A_{1}^{1}+2, A_{4}+4\right)$): Because the execution requirement of J_{4} is two and $\left[A_{4}, A_{4}+4\right) \cap\left[A_{1}^{1}+2, A_{1}^{2}\right) \neq \emptyset$, it must be that $A_{4} \in$ $\left[A_{1}^{1}, A_{1}^{1}+2\right)$; otherwise, there length of the interval $\left[A_{1}^{1}, A_{4}+4\right.$) would leave insufficient time for J_{4} to execute. Since $A_{4}<A_{5}$ in this case, $A_{1}^{1} \leq A_{4}<A_{5}$. Thus, the interval $\left[A_{4}, A_{4}+4\right)$ is a subset of $\left[A_{1}^{1}, A_{5}+6\right)$. By Lemma $13, \pi_{1}$ is continuously busy executing J_{1}^{1} during $\left[A_{1}^{1}, A_{1}^{1}+2\right)$. By Lemma $12, \pi_{1}$ is continuously busy executing jobs of $\tau^{A} \cap\left\{\tau_{5}\right\}$ during $\left[A_{5}, A_{5}+6\right)$. It must be that π_{1} is also continuously busy executing jobs of $\tau^{A} \cap\left\{\tau_{5}\right\}$ over the interval $\left[A_{4}, A_{4}+4\right)$ in schedule S_{I}^{\prime}, because it is a subset of the union of these two continuously busy intervals. This implies Equation 33.
ii) J_{4} executes both before A_{1}^{1} and after $A_{1}^{1}+2$: Observe that job J_{1}^{1} executes continuously over $\left[A_{1}^{1}, A_{1}^{1}+2\right)$. Since J_{4} executes both before and after A_{1}^{1} and S_{I}^{\prime} is valid, it follows that $\left[A_{1}^{1}, A_{1}^{1}+\right.$ 2) $\subset\left[A_{4}, A_{4}+4\right)$. Thus, J_{4} must continuously execute on processor π_{1} over the intervals $\left[A_{4}, A_{1}^{1}\right)$ and $\left[A_{1}^{1}+2, A_{4}+4\right)$ in schedule S_{I}^{\prime} to complete by its deadline. Since processor π_{1} is continuously busy executing either J_{4} or J_{1}^{1} over the intervals $\left[A_{4}, A_{1}^{1}\right),\left[A_{1}^{1}, A_{1}^{1}+2\right)$ and $\left[A_{1}^{1}+2, A_{4}+4\right)$, it
is continuously busy over the interval $\left[A_{4}, A_{4}+4\right)$ in schedule S_{I}^{\prime} executing jobs of $\tau_{A} \cap\left\{\tau_{5}\right\}$. This implies Equation 33.
iii) J_{4} executes entirely before A_{1}^{1} : Equation 34 implies that this case is impossible.
b) $A_{5}+2<A_{4}<A_{5}+6$: Symmetric to Case a.

We now concentrate on identifying the longest continuously busy interval on processor π_{1} for tasks $\tau^{A} \cap\left\{\tau_{5}\right\}$ that contains the interval $\left[A_{5}, A_{5}+6\right)$. By identifying this interval, we may more easily reason about the amount of execution of jobs of τ_{2} or τ_{3} on processor π_{1} in schedule S_{I}^{\prime}. We begin by defining $t_{\text {start }}$ which we will show is the start of the longest continuously busy interval containing $\left[A_{5}, A_{5}+6\right)$.

$$
\begin{equation*}
t_{\text {start }} \stackrel{\text { def }}{=} \min \left\{A_{1}^{1}, A_{4}, A_{5}\right\} \tag{35}
\end{equation*}
$$

The next lemma shows that the the interval $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$ is continuously busy on π_{1} for tasks $\tau^{A} \cup\left\{\tau_{5}\right\}$; Lemma 16 will show that $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right.$) is, in fact, the maximum continuously busy interval that contains $\left[A_{5}, A_{5}+6\right)$ because the time instants immediately before $t_{\text {start }}$ or immediately after $t_{\text {start }}+8-\alpha$ cannot execute jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$.

Lemma 15 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then the interval $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right) \supset\left[A_{5}, A_{5}+6\right)$ is a continuously busy interval on processor π_{1} with respect to schedule S_{I}^{\prime} and tasks $\tau^{A} \cup\left\{\tau_{5}\right\}$. More formally,

$$
\begin{equation*}
\sum_{\tau_{j} \in \tau^{A} \cup\left\{\tau_{5}\right\}} W_{j}\left(S_{I}^{\prime}, \pi_{1}, t_{\text {start }}, t_{\text {start }}+8-\alpha\right)=8-\alpha, \tag{36}
\end{equation*}
$$

Furthermore, jobs $J_{1}^{1}, J_{1}^{2}, J_{4}$, and J_{5} are the only jobs to execute on processor π_{1} over $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right.$) in schedule S_{I}^{\prime}.

Proof: Lemmas 10 and 11 imply that the scheduling windows of jobs J_{4}, J_{1}^{1}, and J_{1}^{2} intersect with the scheduling window of job J_{5}. Lemmas 12,13 , and 14 imply that the scheduling windows of jobs $J_{5}, J_{1}^{1}, J_{1}^{2}$, and J_{4} are continuously busy intervals on processor π_{1} in schedule S_{I}^{\prime} for tasks $\tau^{A} \cap\left\{\tau_{5}\right\}$. Thus, the union of the scheduling windows of $J_{5}, J_{1}^{1}, J_{1}^{2}$, and J_{4} is also a continuously busy interval on π_{1} for $\tau^{A} \cap\left\{\tau_{5}\right\}$; i.e., $\left[A_{5}, A_{5}+6\right) \cup\left[A_{1}^{1}, A_{1}^{1}+\right.$ 2) $\cup\left[A_{1}^{2}, A_{1}^{2}+2\right) \cup\left[A_{4}, A_{4}+4\right)=\left[\min \left\{A_{5}, A_{1}^{1}, A_{4}\right\}, \max \left\{A_{5}+6, A_{1}^{2}+2, A_{4}+4\right\}\right)$ is a continuously busy interval on π_{1}.

We will now show that $\left[\min \left\{A_{5}, A_{1}^{1}, A_{4}\right\}, \max \left\{A_{5}+6, A_{1}^{2}+2, A_{4}+4\right\}\right)$ equals the interval $\left[t_{\text {start }}, t_{\text {start }}+\right.$ $8-\alpha$). Obviously, by definition of Equation $35, \min \left\{A_{5}, A_{1}^{1}, A_{4}\right\}$ equals $t_{\text {start }}$; so, we must show that $\max \left\{A_{5}+\right.$ $\left.6, A_{1}^{2}+2, A_{4}+4\right\}$ equals $t_{\text {start }}+8-\alpha$. Lemma 12 shows that processor π_{1} over the interval $\left[A_{5}, A_{5}+6\right)$ in S_{I}^{\prime} executes only jobs $J_{1}^{1}, J_{1}^{2}, J_{4}$, and J_{5}. The busy interval $\left[\min \left\{A_{5}, A_{1}^{1}, A_{4}\right\}\right.$, $\left.\max \left\{A_{5}+6, A_{1}^{2}+2, A_{4}+4\right\}\right)$ must include these jobs, whose total execution on processor π_{1} in schedule S_{I}^{\prime} equals $2+2+2+2-\alpha=8-\alpha$. Because the execution of these jobs must complete in the busy interval, $\max \left\{A_{5}+6, A_{1}^{2}+2, A_{4}+4\right\}$ must be at least $t_{\text {start }}+8-\alpha$. If $\max \left\{A_{5}+6, A_{1}^{2}+2, A_{4}+4\right\}$ exceeds $t_{\text {start }}+8-\alpha$, then some job $\tau_{A} \cup\left\{\tau_{5}\right\}$ (other than $J_{1}^{1}, J_{1}^{2}, J_{4}$ or J_{5}) must have a scheduling window that overlaps $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right.$); otherwise, the interval $\left[\min \left\{A_{5}, A_{1}^{1}, A_{4}\right\}, \max \left\{A_{5}+6, A_{1}^{2}+2, A_{4}+4\right\}\right)$ is not continuously busy for tasks $\tau^{A} \cap\left\{\tau_{5}\right\}$. However, Observation 1 implies that such a job cannot exist. Therefore, $\max \left\{A_{5}+6, A_{1}^{2}+2, A_{4}+4\right\}$ equals $t_{\text {start }}+8-\alpha$, implying Equation 36.

Since the busy interval $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$ includes the entire execution from jobs $J_{1}^{1}, J_{1}^{2}, J_{4}$, and $2-\alpha$ units of execution from J_{5}, there is an idle period (with respect to tasks $\tau^{A} \cup\left\{\tau_{5}\right\}$) before and after $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right.$). The following lemma exactly characterizes these idle periods.

Lemma 16 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then no job of $\tau^{A} \cap\left\{\tau_{5}\right\}$ executes on processor π_{1} in either the interval $\left[t_{\text {start }}-2-\alpha, t_{\text {start }}\right)$ or $\left[t_{\text {start }}+8-\alpha, t_{\text {start }}+10\right)$. More formally,

$$
\begin{equation*}
\sum_{\tau_{j} \in \tau^{A} \cup\left\{\tau_{5}\right\}} W_{j}\left(S_{I}^{\prime}, \pi_{1}, t_{\text {start }}-2-\alpha, t_{\text {start }}\right)=0, \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\tau_{j} \in \tau^{A} \cup\left\{\tau_{5}\right\}} W_{j}\left(S_{I}^{\prime}, \pi_{1}, t_{\text {start }}+8-\alpha, t_{\text {start }}+10\right)=0 . \tag{38}
\end{equation*}
$$

Proof: We begin with Equation 37: we show that S_{I}^{\prime} does not execute any jobs of $\tau^{A} \cap\left\{\tau_{5}\right\}$ on processor π_{1} during the interval $\left[t_{\text {start }}-2, t_{\text {start }}\right)$. Equation 38 can be shown by a symmetric argument. Observe that

$$
\begin{equation*}
W_{1}\left(S_{I}^{\prime}, \pi_{1}, A_{1}^{1}-3, A_{1}^{1}\right)=0 \tag{39}
\end{equation*}
$$

because the period of τ_{1}, p_{1} equals five and the relative deadline, d_{1}, equals two. Recall from the proof of Lemma 14 that the interval $\left[A_{1}^{1}+2, A_{1}^{2}\right)$ is a subset of $\left[A_{5}, A_{5}+6\right)$ and that $A_{1}^{2}-A_{1}^{1}-2 \geq 3$. So, the interval $\left[A_{1}^{1}+2, A_{1}^{2}\right)$ is continuously busy on processor π_{1} executing either J_{4} or J_{5} :

$$
\sum_{\tau_{j} \in\left\{\tau_{4}, \tau_{5}\right\}} W_{j}\left(S_{I}^{\prime}, \pi_{1}, A_{1}^{1}+2, A_{2}^{1}\right) \geq 3 .
$$

Since at least three units of J_{4} and J_{5} must execute in the interval $\left[A_{1}^{1}+2, A_{2}^{1}\right)$ and the total execution of J_{4} and J_{5} on π_{1} is $4-\alpha$, this leaves at most $1-\alpha$ units left to execute either before A_{1}^{1} and/or after $A_{2}^{1}+2$. This implies

$$
\begin{equation*}
t_{\text {start }} \geq A_{1}^{1}-1+\alpha \tag{40}
\end{equation*}
$$

Equations 39 and 40 imply that the latest another job of τ_{1} (that precedes J_{1}^{1}) could execute prior to $t_{\text {start }}$ is $t_{\text {start }}-2-\alpha$. Since τ_{5} and τ_{4} have periods equal to 100 , and they release jobs contained within $\left[t_{\text {start }}, t_{\text {start }}+\right.$ $8-\alpha)$, they are not current in the interval $\left[t_{\text {start }}-2-\alpha, t_{\text {start }}\right)$. Therefore,

$$
\sum_{\tau_{j} \in \tau^{A} \cup\left\{\tau_{5}\right\}} W_{j}\left(S_{I}^{\prime}, \pi_{1}, t_{\text {start }}-2-\alpha, t_{\text {start }}\right)=0 .
$$

Processor π_{1} can also be shown to be busy during the scheduling windows for jobs of τ^{B}. Lemma 17 shows that there is no idle time on π_{1} in S_{I}^{\prime} over the scheduling window for any job of τ^{B} that executes a non-zero amount of time on π_{2}. Lemma 18 will show for any interval on π_{1} that is continuously busy for jobs of τ_{2} and τ_{3}, no job of these two tasks can execute on processor π_{1} in the same interval.

Lemma 17 For any $t \geq 0$ where $S_{I}^{\prime}\left(\pi_{2}, t\right) \neq \perp$, let $J_{k}=S_{I}^{\prime}\left(\pi_{2}, t\right)$ where $J_{k}=\left(A_{k}, E_{k}, D_{k}\right) \in I$. For all $t^{\prime} \in\left[A_{k}, A_{k}+D_{k}\right)$,

$$
\begin{equation*}
S_{I}^{\prime}\left(\pi_{1}, t^{\prime}\right) \neq \perp \tag{41}
\end{equation*}
$$

Proof: Note that $J_{k} \in I$ must have been generated by a task of τ^{B} in order to be executed on π_{2} in S_{I}^{\prime}. By construction of S_{I}^{\prime}, as much of the execution of J_{k} has been moved from π_{2} to π_{1} (with respect to the idle times on processor π_{1} in schedule S_{I}). Since J_{k} executed on π_{2} for a non-zero amount of time there is no further unused idle time in $\left[A_{k}, A_{k}+D_{k}\right)$; thus, $S_{I}^{\prime}\left(\pi_{1}, t^{\prime}\right) \neq \perp$ for all $t^{\prime} \in\left[A_{k}, A_{k}+D_{k}\right)$ which implies the lemma.

Lemma 18 For any interval $\left[t_{1}, t_{2}\right)$ where $0 \leq t_{1}<t_{2}$ where processor π_{1} is continuously busy in S_{I}^{\prime} with respect to jobs of τ_{2} and τ_{3}, then no job of τ_{2} or τ_{3} is executed on processor π_{2} in S_{I}^{\prime} over $\left[t_{1}, t_{2}\right)$. More formally,

$$
\begin{equation*}
\sum_{\tau_{j} \in\left\{\tau_{2}, \tau_{3}\right\}} W_{j}\left(S_{I}^{\prime}, \pi_{2}, t_{1}, t_{2}\right)=0 \tag{42}
\end{equation*}
$$

Proof: Assume that $\left[t_{1}, t_{2}\right)$ is a continuously busy interval on processor π_{1} for τ_{2} and τ_{3}. Thus, for each $t \in\left[t_{1}, t_{2}\right)$, either $S_{I}^{\prime}\left(\pi_{1}, t, \tau_{2}\right)=1$ or $S_{I}^{\prime}\left(\pi_{1}, t, \tau_{3}\right)=1$. We will show in either case that $S_{I}^{\prime}\left(\pi_{2}, t\right)=\perp$. If $S_{I}^{\prime}\left(\pi_{1}, t, \tau_{2}\right)=1$, then $S_{I}\left(\pi_{2}, t, \tau_{2}\right)=1$ in the original schedule, since $e_{1}=d_{1}=1$. Because S_{I}^{\prime} is a valid schedule $S_{I}^{\prime}\left(\pi_{2}, t, \tau_{2}\right)=0$. Further $S_{I}^{\prime}\left(\pi_{2}, t, \tau_{3}\right)=0$ due to the fact that S_{I}^{\prime} schedules jobs of τ^{B} on processor π_{2} only at times that they were scheduled on processor π_{2} in the original schedule S_{I}. Thus, $S_{I}^{\prime}\left(\pi_{1}, t, \tau_{2}\right)=1$ implies that $S_{I}^{\prime}\left(\pi_{2}, t\right)=\perp$.

If $S_{I}^{\prime}\left(\pi_{1}, t, \tau_{3}\right)=1$, then $S_{I}^{\prime}\left(\pi_{2}, t, \tau_{3}\right)=0$ due to the validity of S_{I}^{\prime}. Since we move as much execution of τ_{2} from π_{2} to π_{1} before moving τ_{3} 's execution, a job of task τ_{3} cannot be executing on processor π_{1} at the same time that τ_{2} is executing on processor π_{2}; otherwise, since τ_{2} is only scheduled at points during which π_{1} is idle in the original schedule S_{I}, we could have moved more execution of τ_{2} to processor π_{1}. Thus, we have shown that $S_{I}^{\prime}\left(\pi_{2}, t, \tau_{2}\right)=0$ for this case, implying $S_{I}^{\prime}\left(\pi_{2}, t\right)=\perp$ and the lemma.

For the final lemma of Step 3 (Lemma 22), we derive constraints on the arrival times of J_{5} and J_{6}. In fact, if J_{6} cannot complete in schedule S_{I}^{\prime}, then J_{5} 's scheduling window cannot be contained within J_{6} 's scheduling window. Furthermore, we show that either J_{5} arrives at least two time units before the arrival of J_{6}, or that J_{5} has a deadline at least two units after J_{6} 's deadline. Before we can prove Lemma 22, we require three technical lemmas: Lemmas 19 and 20 are concerned with the execution of jobs J_{3}^{1} and J_{3}^{2} in relation to the intervals $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$ and $\left[A_{6}, A_{6}+8\right)$; Lemma 21 describes the relative overlap of the intervals $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$ and $\left[A_{6}, A_{6}+8\right)$.

Lemma 19 Given that S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}. If jobs J_{3}^{1} and J_{3}^{2} both have their scheduling window intersect with $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$ and $0<t_{\text {start }}-A_{3}^{1}<\alpha$, then

$$
\begin{equation*}
\left[t_{\text {start }}+8-\alpha, A_{3}^{1}+8\right) \subset\left[A_{3}^{2}, A_{3}^{2}+2\right) \tag{43}
\end{equation*}
$$

Proof: Observe that since $t_{\text {start }}-A_{3}^{1}<\alpha$, the inequality

$$
\begin{equation*}
t_{\text {start }}+8-\alpha<A_{3}^{1}+8 \tag{44}
\end{equation*}
$$

must hold. Since J_{3}^{2},s scheduling window intersects with $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$, the following inequality must be true:

$$
\begin{equation*}
A_{3}^{2}<t_{\text {start }}+8-\alpha \tag{45}
\end{equation*}
$$

The period parameter of $\tau_{3}\left(p_{3}=6\right)$ implies $A_{3}^{1}+6 \leq A_{3}^{2}$. This inequality along with $t_{\text {start }}-\alpha<A_{3}^{1}$ implies

$$
\begin{align*}
& t_{\text {start }}+6-\alpha<A_{3}^{2} \\
& \quad \Rightarrow t_{\text {start }}+8-\alpha<A_{3}^{2}+2 . \tag{46}
\end{align*}
$$

Furthermore, $A_{3}^{1}+6 \leq A_{3}^{2}$ implies

$$
\begin{equation*}
A_{3}^{1}+8 \leq A_{3}^{2}+2 \tag{47}
\end{equation*}
$$

Inequalities $44,45,46$, and 47 taken together imply Equation 43 of the lemma.

Lemma 20 Given that S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}. If jobs J_{3}^{1} and J_{3}^{2} both have their scheduling window intersect with $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$, then there exists $t^{\prime} \geq 0$ such that

$$
\begin{equation*}
\left[t^{\prime}, t^{\prime}+10\right) \supset\left[A_{6}, A_{6}+8\right) \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{2}\left(S_{I}^{\prime}, \pi_{1}, t^{\prime}, t^{\prime}+10\right)+W_{3}\left(S_{I}^{\prime}, \pi_{1}, t^{\prime}, t^{\prime}+10\right) \geq \alpha \tag{49}
\end{equation*}
$$

Proof: Because both J_{3}^{1} and J_{3}^{2} have scheduling windows that overlap with $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$, the interval between the scheduling windows of J_{3}^{1} and J_{3}^{2} must be completely contained in $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right.$) (i.e., $\left[A_{3}^{1}+2, A_{3}^{2}\right) \subset\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$). The period and relative deadline parameter of $\tau_{3}\left(p_{3}=6\right.$ and $\left.d_{3}=2\right)$ imply that $A_{3}^{2}-\left(A_{3}^{1}+2\right) \geq 4$. Therefore, total intersection between the $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$ and the scheduling windows of J_{3}^{1} and J_{3}^{2} is at most $4-\alpha$. Since the aggregate length of the scheduling windows for J_{3}^{1} and J_{3}^{2} is four, the total remaining portion of J_{3}^{1} and J_{3}^{2} 's scheduling windows that do not overlap with $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$ is at least α. This remaining portion of the scheduling windows of J_{3}^{1} and J_{3}^{2} must overlap with either $\left[t_{\text {start }}-2-\alpha, t_{\text {start }}\right)$ or $\left[t_{\text {start }}+8-\alpha, t_{\text {start }}+10\right)$ which, by Lemma 16 , does not contain the execution of jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$.

According to Lemma 7, J_{3}^{1} and J_{3}^{2} execute on π_{2} over $\left[A_{6}, A_{6}+8\right)$ for at least $2-\alpha$ time units. Since the execution requirement of each job of τ_{3} is one (i.e., $e_{3}=1$), both J_{3}^{1} and J_{3}^{2} must each execute on π_{2} over $\left[A_{6}, A_{6}+8\right)$ for at least $1-\alpha$ time units. Thus, the scheduling window of both J_{3}^{1} and J_{3}^{2} must each overlap with $\left[A_{6}, A_{6}+8\right)$ for at least $1-\alpha$ time units. Therefore, the earliest that J_{3}^{1} could arrive is at time $A_{6}-1-\alpha$ (otherwise, J_{3}^{1} would overlap with $\left[A_{6}, A_{6}+8\right)$ less than $1-\alpha$ time units). Similarly, the latest that J_{3}^{2} could have its deadline is $A_{6}+9+\alpha$. More formally,

$$
\begin{equation*}
A_{3}^{1} \geq A_{6}-1-\alpha \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{3}^{2}+2 \leq A_{6}+9+\alpha \tag{51}
\end{equation*}
$$

We now consider three cases based on how J_{3}^{1} and J_{3}^{2} intersect with $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$. In each case, we will prove that there exists a $t \geq 0$ that satisfies the conditions of Equations 48 and 49. The three cases are:

Case I) J_{3}^{1} 's scheduling window is completely contained within $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$;
Case II) J_{3}^{2},s scheduling window is completely contained within $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right.$); or
Case III) Neither J_{3}^{1} 's nor J_{3}^{2},s scheduling window is completely contained within $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$.
(Observe that the argument of the first paragraph of the proof implies that both J_{3}^{1} and J_{3}^{2} cannot have their scheduling windows completely contained within $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$).
Analysis for Case I. Both $\left[A_{3}^{1}, A_{3}^{1}+2\right)$ and $\left[A_{3}^{1}+2, A_{3}^{2}\right)$ are proper subsets of $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$. Thus, by the argument of the first paragraph, at least α of J_{3}^{2},s scheduling window must intersect with $\left[t_{\text {start }}+8-\alpha, t_{\text {start }}+10\right)$. More precisely, $\left[t_{\text {start }}+8-\alpha, t_{\text {start }}+8\right) \subset\left[A_{3}^{2}, A_{3}^{2}+2\right)$. By Lemma 16, jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$ do not execute during $\left[t_{\text {start }}+8-\alpha, t_{\text {start }}+8\right)$. Lemma 7 implies that J_{3}^{2} must execute on processor π_{2} for some non-zero amount of time in schedule S_{I}^{\prime}. According to Lemma 13 and the fact that $\tau^{A} \cup\left\{\tau_{5}\right\}$ cannot execute during this interval, $\left[t_{\text {start }}+8-\alpha, t_{\text {start }}+8\right)$ must be continuously busy on processor π_{1} with respect to jobs of τ_{2} and τ_{3}. By Equation 50 (i.e., $A_{3}^{1} \geq A_{6}-1-\alpha$) and the period parameter of τ_{3} (i.e., $p_{3}=6$), $A_{3}^{2} \geq A_{6}+5-\alpha$ must be true; since $\alpha \leq 1$ (by Lemma 6),

$$
\begin{equation*}
A_{6} \leq A_{3}^{2} \tag{52}
\end{equation*}
$$

Equation 51 states that $A_{3}^{2}+2 \leq A_{6}+9+\alpha$; since $\alpha \leq 1$, it must be that

$$
\begin{equation*}
A_{3}^{2}+2 \leq A_{6}+10 \tag{53}
\end{equation*}
$$

Equations 52 and 53 together imply $\left[A_{6}, A_{6}+10\right) \supset\left[A_{3}^{2}, A_{3}^{2}+2\right)$. Furthermore, we have shown that $\left[A_{3}^{2}, A_{3}^{2}+2\right) \supset$ $\left[t_{\text {start }}+8-\alpha, t_{\text {start }}+8\right)$; thus, $\left[A_{6}, A_{6}+10\right) \supset\left[t_{\text {start }}+8-\alpha, t_{\text {start }}+8\right)$. Since $\left[t_{\text {start }}+8-\alpha, t_{\text {start }}+8\right)$ is continuously busy on π_{1} for α time units executing jobs of τ_{2} and τ_{3} and $\left[A_{6}, A_{6}+8\right) \subset\left[A_{6}, A_{6}+10\right)$, the interval $\left[A_{6}, A_{6}+10\right)$ satisfies both Equations 48 and 49 of the lemma.
Analysis for Case II. This case is exactly symmetric to Case II.
Analysis for Case III. Consider the interval $\left[A_{3}^{1}, A_{3}^{1}+8\right)$. We first show that $\left[A_{3}^{1}, A_{3}^{1}+8\right)$ contains at least α units of execution for jobs of τ_{2} and τ_{3} on processor π_{1}. Since J_{3}^{1} intersects $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$ and $d_{3}=2$, it must be that $t_{\text {start }}-2<A_{3}^{1}<t_{\text {start }}$, which implies that $t_{\text {start }}-A_{3}^{1}<2$. Thus, the interval $\left[A_{3}^{1}, t_{\text {start }}\right)$ is contained within $\left[t_{\text {start }}-2-\alpha, t_{\text {start }}\right)$ which by Lemma 16 cannot contain the execution of jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$ on processor π_{1}. According to Lemma 7, J_{3}^{1} must execute on processor π_{2} for some non-zero amount of time which implies that there must exist a time $t \in\left[A_{3}^{1}, A_{3}^{1}+2\right)$ such that $S_{I}^{\prime}\left(\pi_{2}, t\right)=J_{3}^{1}(\neq \perp)$. Note the preceding statement satisfies the supposition of Lemma 17 ; so, for all $t^{\prime} \in\left[A_{3}^{1}, A_{3}^{1}+2\right), S_{I}^{\prime}\left(\pi_{1}, t^{\prime}\right) \neq \perp$. By Lemma 17 and the fact that jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$ do not execute on processor π over $\left[A_{3}^{1}, t_{\text {start }}\right.$), processor π_{1} must be continuously busy over the interval $\left[A_{3}^{1}, t_{\text {start }}\right)$ executing only jobs of τ_{2} and τ_{3}. If the interval length of $\left[A_{3}^{1}, t_{\text {start }}\right)$ is greater or equal to α, then we have shown that $\left[A_{3}^{1}, A_{3}^{1}+8\right)$ contains at least α units of execution of τ_{2} and τ_{3} on processor π_{1}. If the interval length of $\left[A_{3}^{1}, t_{\text {start }}\right)$ is less than α, then $\left[A_{3}^{1}, A_{3}^{1}+8\right) \supset\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$. Additionally, Lemma 19 implies that interval $\left[t_{\text {start }}+8-\alpha, A_{3}^{1}+8\right)$ must be contained within $\left[A_{3}^{2}, A_{3}^{2}+2\right) . J_{3}^{2}$ must execute on processor π_{2} for some non-zero time by Lemma 7. Lemma 17 implies then that π_{1} is continuously busy over $\left[A_{3}^{2}, A_{3}^{2}+2\right)$. However, $\left[t_{\text {start }}+8-\alpha, A_{3}^{1}+8\right) \subset\left[t_{\text {start }}+8-\alpha, A_{3}^{2}+2\right)$ cannot contain the execution of jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$ (by Lemma 16). Thus, the interval $\left[t_{\text {start }}+8-\alpha, A_{3}^{1}+8\right.$) is continuously busy executing only jobs of τ_{2} and τ_{3} on processor π_{1} in schedule S_{I}^{\prime}. Therefore, $\left[A_{3}^{1}, A_{3}^{1}+8\right)$ contains intervals (namely $\left[A_{3}^{1}, t_{\text {start }}\right.$) and/or $\left[t_{\text {start }}+8-\alpha, A_{3}^{1}+8\right)$) of total length α that are continuously busy executing jobs of τ_{2} and τ_{3} on processor π_{1}.

Continuing our analysis of Case III, we will now show that the interval $\left[\min \left(A_{3}^{1}, A_{6}\right), \min \left(A_{3}^{1}, A_{6}\right)+10\right)$ is a superset for both intervals $\left[A_{6}, A_{6}+8\right)$ and $\left[A_{3}^{1}, A_{3}^{1}+8\right)$, and thus satisfies Equations 48 and 49 of the lemma. There are two subcases to consider:

Subcase III.A) $A_{3}^{1} \leq A_{6}$; or
Subcase III.B) $A_{3}^{1}>A_{6}$.
For Subcase III.A, $\left[\min \left(A_{3}^{1}, A_{6}\right), \min \left(A_{3}^{1}, A_{6}\right)+10\right)$ is equivalent to the interval $\left[A_{3}^{1}, A_{3}^{1}+10\right)$. Equation 50 states that $A_{3}^{1} \geq A_{6}-1-\alpha$. This implies that $A_{3}^{1}+10 \geq A_{6}+9-\alpha$. Since $\alpha>0$ (Lemma 5), $\left[A_{6}, A_{6}+8\right) \subset$ $\left[A_{3}^{1}, A_{3}^{1}+10\right)$. Furthermore, $\left[A_{3}^{1}, A_{3}^{1}+8\right)$ is obviously a subset of $\left[A_{3}^{1}, A_{3}^{1}+10\right)$.

For Subcase III.B, $\left[\min \left(A_{3}^{1}, A_{6}\right), \min \left(A_{3}^{1}, A_{6}\right)+10\right)$ is equivalent to the interval $\left[A_{6}, A_{6}+10\right)$. Equation 51 states that $A_{3}^{2}+2 \leq A_{6}+9+\alpha \Rightarrow A_{3}^{2} \leq A_{6}+7+\alpha$. Due to the period parameter for τ_{3} (i.e., $p_{3}=6$), $A_{3}^{1} \leq$ $A_{6}+1+\alpha$. Adding eight to both sides of the inequality implies, $A_{3}^{1}+8 \leq A_{6}+9+\alpha$. Since $\alpha \leq 1$ (Lemma 6), $\left[A_{3}^{1}, A_{3}^{1}+8\right) \subset\left[A_{6}, A_{6}+10\right)$. Furthermore, $\left[A_{6}, A_{6}+8\right)$ is obviously a subset of $\left[A_{6}, A_{6}+10\right)$. In both the subcases, we have shown that both $\left[A_{3}^{1}, A_{3}^{1}+8\right)$ and $\left[A_{6}, A_{6}+8\right)$ are subsets of $\left[\min \left(A_{3}^{1}, A_{6}\right), \min \left(A_{3}^{1}, A_{6}\right)+10\right)$. Thus, $\left[\min \left(A_{3}^{1}, A_{6}\right), \min \left(A_{3}^{1}, A_{6}\right)+10\right)$ satisfies the conditions of Equations 48 and 49 of the lemma.

Lemma 21 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then

$$
\begin{equation*}
\left(A_{6}-2>t_{\text {start }}\right) \vee\left(t_{\text {start }}>A_{6}+2+\alpha\right) \tag{54}
\end{equation*}
$$

Proof: We will prove the lemma by contradiction; that is, we will show that if

$$
\begin{equation*}
A_{6}-2 \leq t_{\text {start }} \leq A_{6}+2+\alpha \tag{55}
\end{equation*}
$$

is true, then we reach a logical contradiction.
By Lemma 16, the intervals $\left[t_{\text {start }}-2-\alpha, t_{\text {start }}\right)$ and $\left[t_{\text {start }}+8-\alpha, t_{\text {start }}+10\right)$ do not contain the execution of jobs of task $\tau^{A} \cup\left\{\tau_{5}\right\}$ on processor π_{1} in schedule S_{I}^{\prime}. Equation 55 states that $t_{\text {start }} \leq A_{6}+2+\alpha$. This implies that $A_{6} \geq t_{\text {start }}-2-\alpha$. Therefore, $\left[A_{6}, t_{\text {start }}\right)$ is a subset of $\left[t_{\text {start }}-2-\alpha, t_{\text {start }}\right)$ and hence no jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$ may execute in $\left[A_{6}, t_{\text {start }}\right)$. (Please note that $\left[A_{6}, t_{\text {start }}\right.$) may be empty if $t_{\text {start }} \leq A_{6}$). Similarly, since $t_{\text {start }} \geq A_{6}-2$, then $t_{\text {start }}+10 \geq A_{6}+8$; this implies that interval $\left[t_{\text {start }}+8-\alpha, A_{6}+8\right)$ also does not contain the execution of jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$. (Again, $\left[t_{s t a r t}+8-\alpha, A_{6}+8\right.$) may be empty if $t_{s t a r t}+8-\alpha \geq A_{6}+8$). Thus, the only times during which processor π_{1} executes jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$ over $\left[A_{6}, A_{6}+8\right)$ in schedule S_{I}^{\prime} is over the subinterval $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right) \cap\left[A_{6}, A_{6}+8\right)$.

Lemma 7 implies that two jobs of τ_{3}, namely $J_{3}^{1}, J_{3}^{2} \in I$, must execute on processor π_{2} in schedule S_{I}^{\prime} over the interval $\left[A_{6}, A_{6}+8\right)$ for strictly more than $2-\alpha$ time units. We now consider three possible subcases regarding the intersection between the interval $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$ and the scheduling windows of J_{3}^{1} and J_{3}^{2}.

Case I) Both the scheduling windows of J_{3}^{1} and J_{3}^{2} intersect with $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$;
Case II) only one of either J_{3}^{1} or J_{3}^{2} has a scheduling window that intersects with $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right.$); or
Case III) neither J_{3}^{1} nor J_{3}^{2} intersect with $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$.
For Case I, Lemma 20 implies that there exists an interval $\left[t^{\prime}, t^{\prime}+10\right)$ such that $W_{2}\left(S_{I}^{\prime}, \pi_{1}, t^{\prime}, t^{\prime}+10\right)+$ $W_{3}\left(S_{I}^{\prime}, \pi_{1}, t^{\prime}, t^{\prime}+10\right) \geq \alpha$ and $\left[t^{\prime}, t^{\prime}+10\right) \supset\left[A_{6}, A_{6}+8\right)$. Observation 1 states that the most that jobs of τ_{2} and τ_{3} can execute in S_{I}^{\prime} over $\left[t^{\prime}, t^{\prime}+10\right)$ is four units. Since τ_{2} and τ_{3} execute for at least α time units on processor π_{1} over $\left[t^{\prime}, t^{\prime}+10\right), \tau_{2}$ and τ_{3} can execute for at most $4-\alpha$ time units on processor π_{2} over the same interval. Because $\left[A_{6}, A_{6}+8\right) \subset\left[t^{\prime}, t^{\prime}+10\right)$, the preceding statement implies that τ_{2} and τ_{3} execute for at most $4-\alpha$ time units on π_{2} over $\left[A_{6}, A_{6}+8\right)$ in S_{I}^{\prime}. However, this directly contradicts Lemma 9 .

For Case II, without loss of generality, assume that J_{3}^{1} is the job that does not intersect with $\left[t_{\text {start }}, t_{\text {start }}+\right.$ $8-\alpha)$. Since J_{3}^{1} does not intersect with $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$, the interval $\left[A_{6}, A_{6}+8\right) \cap\left[A_{3}^{1}, A_{3}^{1}+2\right)$ does not contain the execution of jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$ on processor π_{1} in schedule S_{I}^{\prime} (according to the argument at the beginning of Case I about the execution of jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$ over $\left[A_{6}, A_{6}+8\right)$). Lemma 7 implies that J_{3}^{1} executes on π_{2} over $\left[A_{6}, A_{6}+8\right)$. Lemma 17 thus, implies that π_{1} is continuously busy over $\left[A_{3}^{1}, A_{3}^{1}+2\right.$). However, we have just argued that $\tau^{A} \cup\left\{\tau_{5}\right\}$ do not execute on π_{1} over $\left[A_{6}, A_{6}+8\right) \cap\left[A_{3}^{1}, A_{3}^{1}+2\right)$. Thus, π_{1} is continuously busy over $\left[A_{6}, A_{6}+8\right) \cap\left[A_{3}^{1}, A_{3}^{1}+2\right)$ for τ_{2} and τ_{3}. Lemma 18 implies that π_{2} is idle over the interval $\left[A_{6}, A_{6}+8\right) \cap\left[A_{3}^{1}, A_{3}^{1}+2\right)$ for tasks τ_{2} and τ_{3}. However, this contradicts the earlier statement that J_{3}^{1} must have executed on π_{2} over $\left[A_{6}, A_{6}+8\right)$. Thus, this case is not possible, since we have reached a contradiction to Lemma 7

The proof of Case III is identical to Case II, except neither J_{3}^{1} nor J_{3}^{2} will execute on processor π_{2} over the interval $\left[A_{6}, A_{6}+8\right)$, which contradicts Lemma 7. Thus, in each subcase, we derived a contradiction. Thus, Equation 55 is impossible and Equation 54 must be true.

Lemma 22 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then

$$
\begin{equation*}
\left(A_{5}<A_{6}-2\right) \vee\left(A_{6}+4<A_{5}\right) \tag{56}
\end{equation*}
$$

Proof: We prove the lemma by contradiction; that is, we will assume that there is not sufficient idle time for J_{6} in S_{I}^{\prime} and

$$
\begin{equation*}
A_{6}-2 \leq A_{5} \leq A_{6}+4 \tag{57}
\end{equation*}
$$

However, we will show that the Equation 57 leads to a contradiction.
Our argument is based on a case analysis of the possible relative values of A_{6} and $t_{\text {start }}$ (under the constraint of Equation 57). First, observe that Lemma 15 states that $\left[A_{5}, A_{5}+6\right) \subset\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$; thus, the following two inequalities are true:

$$
\begin{equation*}
t_{\text {start }} \leq A_{5}, \tag{58}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{5}+6 \leq t_{\text {start }}+8-\alpha \tag{59}
\end{equation*}
$$

Our case analysis contains three major cases (with several subcases). We will show in each case a contradiction arises. The three major cases are:

Case I) $A_{6}-2 \leq t_{\text {start }} \leq A_{6}+2+\alpha$;
Case II) $t_{\text {start }}<A_{6}-2$; or
Case III) $A_{6}+2+\alpha<t_{\text {start }}$.
Below is the proof of contradiction for each major case.
Analysis for Case I): This case directly contradicts Lemma 21.
Analysis for Case II): By assumption of Case II and Equation 59,

$$
\begin{align*}
& A_{5}-2+\alpha \leq t_{\text {start }}<A_{6}-2 \\
\Rightarrow \quad & A_{6}-4+\alpha \leq t_{\text {start }}<A_{6}-2 \tag{60}
\end{align*}
$$

The last implication follows from the assumption of Equation 57.
Let $y \stackrel{\text { def }}{=} A_{6}-2-t_{\text {start }}$. We may rewrite the expression $t_{\text {start }}+8-\alpha$ as $A_{6}+6-\alpha-y$ and the interval $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$ as $\left[t_{\text {start }}, A_{6}+6-\alpha-y\right)$. From Case II and Equation 60 , we may obtain the following bounds on y :

$$
\begin{equation*}
0<y \leq 2-\alpha \tag{61}
\end{equation*}
$$

Since $\left[A_{6}, A_{6}+6-\alpha-y\right) \subset\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$, Lemma 15 implies that $\left[A_{6}, A_{6}+6-\alpha-y\right)$ is a continuously busy interval for tasks $\tau^{A} \cup\left\{\tau_{5}\right\}$ on processor π_{1}. Note that $A_{6}+6-\alpha-y \geq A_{6}+4$ from Equation 61; so, the interval $\left[A_{6}, A_{6}+6-\alpha-y\right)$ is non-empty. Since $A_{6}+6-\alpha-y$ equals $t_{\text {start }}+8-\alpha$, Lemma 16 implies that no job of $\tau^{A} \cup\left\{\tau_{5}\right\}$ executes in $\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$. By $y>0$ (Equation 61), the interval $\left[A_{6}+8-y, A_{6}+8\right)$ is also a non-zero length interval. We have, thus, partitioned the interval $\left[A_{6}, A_{6}+8\right)$ into three disjoint, non-zero-length intervals: $\left[A_{6}, A_{6}+6-\alpha-y\right)$, which is continuously busy for $\tau^{A} \cup\left\{\tau_{5}\right\}$; $\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$ which is continuously idle for $\tau^{A} \cup\left\{\tau_{5}\right\}$; and $\left[A_{6}+8-y, A_{6}+8\right)$.

The only jobs that execute on processor π_{2} over $\left[A_{6}, A_{6}+8\right)$ are $J_{2}^{1}, J_{2}^{2}, J_{3}^{1}, J_{3}^{2}$ and J_{5}, by Lemmas 8,7 , and 5 . Since $\left[A_{6}, A_{6}+6-\alpha-y\right)$ equals $\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right) \cap\left[A_{6}, A_{6}+8\right)$ and $\left[A_{5}, A_{5}+6\right) \subseteq\left[t_{\text {start }}, t_{\text {start }}+8-\alpha\right)$, Lemma 5 implies that J_{5} must execute for some amount of time $\leq \alpha$ in the interval $\left[A_{6}, A_{6}+6-\alpha-y\right)$. We consider the following subcase analysis based on the relative placement of the two jobs of τ_{2} and τ_{3}. The subcases are:

Subcase II.A) τ_{2} has the scheduling windows of both J_{2}^{1} and J_{2}^{2} intersect with $\left[A_{6}, A_{6}+6-\alpha-y\right)$;
Subcase II.B) τ_{2} has at most one job that intersects with $\left[A_{6}, A_{6}+6-\alpha-y\right)$;
Sub-Subcase II.B1) τ_{3} has the scheduling windows of both J_{3}^{1} and J_{3}^{2} intersect with $\left[A_{6}, A_{6}+6-\alpha-y\right) ;$
Sub-Subcase II.B2) both τ_{2} and τ_{3} have at most one job that intersects with $\left[A_{6}, A_{6}+6-\alpha-y\right)$.

For Subcase II.A, the interval between the scheduling windows of J_{2}^{1} and J_{2}^{2} must be completely contained in $\left[A_{6}, A_{6}+6-\alpha-y\right)$ (i.e., $\left[A_{2}^{1}+1, A_{2}^{2}\right) \subset\left[A_{6}, A_{6}+6-\alpha-y\right)$). The period and relative deadline parameter of $\tau_{2}\left(p_{2}=5\right.$ and $\left.d_{2}=1\right)$ imply that $A_{2}^{2}-\left(A_{2}^{1}+1\right) \geq 4$. The length of $\left[A_{6}, A_{6}+6-\alpha-y\right)$ is strictly less than $6-\alpha$, since $y>0$. Therefore, the total intersection between the scheduling windows of both J_{2}^{1} and J_{2}^{2} and the interval $\left[A_{6}, A_{6}+6-\alpha-y\right)$ is strictly less than $2-\alpha$. The remaining portion of the scheduling windows, of total length at least α, for J_{2}^{1} and J_{2}^{2} must overlap with either $\left[t_{\text {start }}, A_{6}\right)$ or $\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$. Since $e_{2}=d_{2}=1$, J_{2}^{1} must be continuously executing over the interval $\left[A_{2}^{1}, A_{2}^{1}+1\right) \cap\left[t_{\text {start }}, A_{6}\right.$) (if non-empty), since J_{2}^{1} completes by its deadline in S_{I}^{\prime}; note that the execution of J_{1}^{1} is outside the interval $\left[A_{6}, A_{6}+8\right)$. Similarly, J_{2}^{2} must also be continuously executing over the interval $\left[A_{2}^{2}, A_{2}^{2}+1\right) \cap\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$. Corollary 2 implies that J_{2}^{2} must execute over $\left[A_{6}, A_{6}+8\right)$ for a non-zero amount. Lemma 17 implies that processor π_{1} is continuously busy over the intervals $\left[A_{2}^{2}, A_{2}^{2}+1\right) \cap\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$. However, by the argument at the beginning of Case II, $\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$ does not contain the execution of jobs of $\tau^{A} \cup\left\{\tau_{5}\right\}$ on processor π_{1}. Therefore, $\left[A_{2}^{2}, A_{2}^{2}+1\right) \cap\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$ is continuously busy on processor π_{1} executing jobs of τ_{2} and τ_{3}. Lemma 18 implies that processor π_{2} does not contain the execution of jobs of τ_{2} and τ_{3} over $\left[A_{2}^{2}, A_{2}^{2}+1\right) \cap\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$. Since J_{2}^{2} must be continuously executing over its scheduling window and π_{2} does not execute jobs of τ_{2} over $\left[A_{2}^{2}, A_{2}^{2}+1\right) \cap\left[A_{6}+6-\alpha-y, A_{6}+8-y\right), J_{2}^{2}$ must execute entirely on processor π_{1} over $\left[A_{2}^{2}, A_{2}^{2}+1\right) \cap\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$. Finally, observe that since J_{2}^{2} overlaps with $\left[A_{6}, A_{6}+6-\alpha-y\right)$, then $A_{2}^{2}<A_{6}+6-\alpha-y \Rightarrow A_{2}^{2}+1<A_{6}+7-\alpha-y<A_{6}+8-y$; hence, τ_{2} does not execute during $\left[A_{6}+8-y, A_{6}+8\right)$. Thus, we have shown that during the total portion (of length $\geq \alpha$) that the scheduling windows of J_{2}^{1} and J_{2}^{2} do not overlap with $\left[A_{6}, A_{6}+6-\alpha-y\right)$ (specifically, $\left[t_{\text {start }}, A_{6}\right)$), τ_{2} either executes outside of $\left[A_{6}, A_{6}+8\right)$ on processor π_{2} or τ_{2} executes on processor π_{1}. Thus, for Case II.A, the most that τ_{2} can execute on processor π_{2} in S_{I}^{\prime} over $\left[A_{6}, A_{6}+8\right)$ is at most $2-\alpha$. However, this directly contradicts Lemma 8 which states that τ_{2} executes for strictly more than $2-\alpha$ time units on processor π_{2} over $\left[A_{6}, A_{6}+8\right)$.

For Sub-Subcase II.B1, both J_{3}^{1} and J_{3}^{2} intersect with the interval $\left[A_{6}, A_{6}+6-\alpha-y\right)$; thus, the interval between the scheduling windows of J_{3}^{1} and J_{3}^{2} must be completely contained in $\left[A_{6}, A_{6}+6-\alpha-y\right.$) (i.e., $\left[A_{3}^{1}+2, A_{3}^{2}\right) \subset\left[A_{6}, A_{6}+6-\alpha-y\right)$). The period and relative deadline parameter of $\tau_{3}\left(p_{3}=6\right.$ and $\left.d_{3}=2\right)$ imply that $A_{3}^{2}-\left(A_{3}^{1}+2\right) \geq 4$. By reasoning similar to previous subcase above, the total intersection between the scheduling windows of J_{3}^{1} and J_{3}^{2} is strictly less than $2-\alpha$. Thus, the most that τ_{3} can execute on processor π_{2} over the interval $\left[A_{6}, A_{6}+6-\alpha-y\right)$ is strictly less than $2-\alpha$. τ_{3} cannot execute over $\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$, since if J_{3}^{2} overlaps with $\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$ then Lemma 17 implies π_{1} would be continuously busy executing τ_{2} or τ_{3} over $\left[A_{3}^{2}, A_{3}^{2}+2\right) \cap\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$. Lemma 18 implies that no jobs of τ_{2} or τ_{3} execute on π_{2} over such an interval. Furthermore, observe that since J_{3}^{2} overlaps with $\left[A_{6}, A_{6}+6-\alpha-y\right.$), then $A_{3}^{2}<A_{6}+6-\alpha-y \Rightarrow A_{3}^{2}+2<A_{6}+8-\alpha-y<A_{6}+8-y$; hence, τ_{3} does not execute during $\left[A_{6}+8-y, A_{6}+8\right.$). Thus, for Sub-Subcase II.B1, the most that τ_{3} can execute on processor π_{2} in S_{I}^{\prime} over $\left[A_{6}, A_{6}+8\right)$ is strictly less than $2-\alpha$ which contradicts Lemma 7.

For Sub-Subcase II.B2, we have at most one job of each τ_{2} and τ_{3} that intersect with $\left[A_{6}, A_{6}+6-\alpha-y\right)$. Notice that J_{2}^{2},s scheduling window does not intersect with $\left[A_{6}, A_{6}+6-\alpha-y\right)$. If J_{2}^{2} intersects $\left[A_{6}, A_{6}+6-\alpha-y\right)$, then J_{2}^{1} 's scheduling window must also intersect $\left[A_{6}, A_{6}+6-\alpha-y\right)$ because by Lemma $8 J_{2}^{1}$ intersects with $\left[A_{6}, A_{6}+\right.$ 6) and $A_{2}^{1}+5 \leq A_{2}^{2}$; however, this contradicts the assumption of Sub-Subcase II.B2. Similarly, it may be shown by identical reasoning that J_{3}^{2},s scheduling window does not intersect with $\left[A_{6}, A_{6}+6-\alpha-y\right)$. By Lemma 17 and 18, neither J_{2}^{2} nor J_{3}^{2} can execute on π_{2} in schedule S_{I}^{\prime} during the interval $\left[A_{6}+6-\alpha-y, A_{6}+8-y\right)$. Thus, in this subcase, the only times during which J_{2}^{2} or J_{3}^{2} may execute on π_{2} over $\left[A_{6}, A_{6}+8\right)$ is during the subinterval $\left[A_{6}+8-y, A_{6}+8\right)$. However the length of the interval is at most $2-\alpha$ by Equation 61 . So, J_{2}^{2} and J_{3}^{2} contribute at most $2-\alpha$ execution on π_{2} over $\left[A_{6}, A_{6}+8\right)$. J_{2}^{1} and J_{3}^{1} contribute at most one unit on π_{2} over $\left[A_{6}, A_{6}+8\right)$. Finally, J_{5} contributes at most α units on π_{2} over this interval. Thus, $\sum_{\tau_{i} \in \tau^{\text {example }}-\left\{\tau_{6}\right\}} W_{i}\left(S_{I}^{\prime}, \pi_{2}, A_{6}, A_{6}+8\right) \leq$ 4. In this case, J_{6} could have completed its execution entirely on processor π_{2}. Thus, in each subcase, we derived a contradiction to our assumption of insufficient idle time for J_{6}.

Analysis for Case III): This case is exactly symmetric to Case II.
In each major case, we achieve a contradiction to our assumption that J_{6} could not execute completely in S_{I}^{\prime}. Thus, Equation 57 must be false. The lemma follows.

5.3.4 Step 4: Construction of Schedule $S_{I}^{\prime \prime}$

By the previous section, we know that if τ_{6} cannot complete in schedule S_{I}^{\prime}, then there exists a job of τ_{6} where there is insufficient time on both π_{1} and π_{2} to complete the job during the idle instants. As in the last section, let J_{6} be any such job of τ_{6} that cannot complete in its scheduling window with respect to the idle instants of S_{I}^{\prime}. We now define a modified schedule $S_{I}^{\prime \prime}$ in which more of τ_{5} 's execution on processor π_{2} is moved out of the interval $\left[A_{6}, A_{6}+8\right)$. Lemma 5 implies that a job J_{5} of τ_{5} exists that has a scheduling window that intersects with $\left[A_{6}, A_{6}+8\right)$. Lemma 22 implies that J_{5} 's scheduling window is not completely contained in $\left[A_{6}, A_{6}+8\right)$. The following are informal "rules" which we apply inductively at every time instant t from $[0, \infty)$. A formal definition of $S_{I}^{\prime \prime}$ appears immediately after the informal description.

Rule 0) The schedule for processor π_{1} is not changed from S_{I}^{\prime} to $S_{I}^{\prime \prime}$ (i.e, for all $t, S_{I}^{\prime \prime}\left(\pi_{1}, t\right)=S_{I}^{\prime}\left(\pi_{1}, t\right)$).
Rule 1) The current job of τ_{5} has its execution moved to time t on processor π_{2} if:
a) there is a current job of τ_{5} at time t;
b) there is no current job of τ_{6} at time t;
c) no job was scheduled at time t on processor π_{2} in S_{I}^{\prime}; and
d) the total execution of the current job of τ_{5} over its entire scheduling window on processor π_{1} plus the total execution of the current job of τ_{5} on processor π_{2} up until time t, is less than τ_{5} 's execution requirement.

The purpose of this rule is to add new execution of J_{5} to times when $\left[A_{5}, A_{5}+6\right)$ does not overlap with [$A_{6}, A_{6}+8$) (when processor π_{2} is idle at time t and J_{5} is eligible to continue executing).

Rule 2) Processor π_{2} is idled at time t if:
a) there is a current job of τ_{5} at time t;
b) there is no current job of τ_{6} at time t;
c) a job of τ_{5} executed at time t on processor π_{2} in schedule S_{I}^{\prime}; and
d) the total execution of the current job of τ_{5} over its entire scheduling window on processor π_{1} plus the total execution of the current job of τ_{5} on processor π_{2} up until time t, already equals τ_{5} 's execution requirement.

The purpose of this rule is to continue to idle processor π_{2} at times t when $\left[A_{5}, A_{5}+6\right)$ does not overlap with $\left[A_{6}, A_{6}+8\right)$ and J_{5} has sufficient execution on processor π_{1} over $\left[A_{5}, A_{5}+6\right)$ and execution on processor π_{2} over $\left[A_{5}, t\right)$ to successfully complete.

Rule 3) This rule is used to move execution out of the intersection of the scheduling windows of jobs of τ_{5} and τ_{6}. (Note the execution is added to the non-intersecting portion of the windows by Rule 1.) For this rule, we need to determine how much execution has already been moved, as well as determine the amount of execution of τ_{5} that could be moved forward in time. The specification of the third rule for $S_{I}^{\prime \prime}\left(\pi_{2}, t\right)$ is that processor π_{2} is idled at time t if:
a) there is a current job of τ_{5} at time t;
b) there is a current job of τ_{6} at time t;
c) a job of τ_{5} executed at time t on processor π_{2} in schedule S_{I}^{\prime}; and
d) the total aggregation of the following expressions exceeds or equals τ_{5} 's execution requirement:
i) total execution of the current job of τ_{5} over its entire scheduling window on processor π_{1} in schedule $S_{I}^{\prime \prime}$
ii) the total execution of the current job of τ_{5} on processor π_{2} preceding τ_{6} 's scheduling window (if any) in schedule $S_{I}^{\prime \prime}$;
iii) the total execution of current job of τ_{5} from the arrival of τ_{6} 's job plus the total execution of τ_{5} in schedule S_{I}^{\prime} occurring after τ_{6} 's scheduling window;
iv) the total idle time during the portion of τ_{5} 's scheduling window that succeeds τ_{6} 's scheduling window in schedule S_{I}^{\prime} (i.e., potential times to move τ_{5} 's execution).

Rule 4) Finally, if none above rules' conditions are satisfied, then the schedule at time t remains the same as in S_{I}^{\prime}.

The schedule $S_{I}^{\prime \prime}$ is formally (and inductively) defined as follows.

$$
\begin{align*}
& S_{I}^{\prime \prime}\left(\pi_{1}, t\right) \stackrel{\text { def }}{=} S_{I}^{\prime}\left(\pi_{1}, t\right) \\
& S_{I}^{\prime \prime}\left(\pi_{2}, t\right) \stackrel{\text { def }}{=} \begin{cases}\varphi_{5}(I, t), & \begin{array}{l}
\text { if }\left(r_{5}(I, t)<\infty\right) \text { and }\left(r_{6}(t)=\infty\right) \text { and }\left(S_{I}^{\prime}\left(\pi_{2}, t\right)=\perp\right) \text { and }\left(S_{I}^{\prime}\left(\pi_{1}, t, \tau_{5}\right)=0\right) \\
\text { and }\left(W_{5}\left(S_{I}^{\prime}, \pi_{1}, r_{5}(I, t), r_{5}(I, t)+6\right)+W_{5}\left(S_{I}^{\prime \prime}, \pi_{2}, r_{5}(I, t), t\right)<2\right), \\
\perp, \\
\perp, \\
\text { if }\left(r_{5}(I, t)<\infty\right) \text { and }\left(r_{6}(t)=\infty\right) \text { and }\left(S_{I}^{\prime}\left(\pi_{2}, t, \tau_{5}\right)=1\right) \text { and } \\
\left(W_{5}\left(S_{I}^{\prime}, \pi_{1}, r_{5}(I, t), r_{5}(I, t)+6\right)+W_{5}\left(S_{I}^{\prime \prime}, \pi_{2}, r_{5}(I, t), t\right)=2\right), \\
\\
\text { if } \left.\left(r_{5}(I, t)<\infty\right) \text { and }\left(r_{6}(I, t)<\infty\right) \text { and }\left(S_{I}^{\prime}\left(\pi_{2}, t, \tau_{5}\right)=1\right)=1\right) \text { and } \\
\left(W_{5}\left(S_{I}^{\prime}, \pi_{1}, r_{5}(I, t), r_{5}(I, t)+6\right)+W_{5}\left(S_{I}^{\prime \prime}, \pi_{2}, r_{5}(I, t), \max \left\{r_{5}(I, t), r_{6}(I, t)\right\}\right)+\right. \\
W_{5}\left(S_{I}^{\prime \prime}, \pi_{2}, \max \left\{r_{5}(I, t), r_{6}(I, t)\right\}, t\right)+W_{5}\left(S_{I}^{\prime}, \pi_{2}, \min \left\{d_{5}(I, t), d_{6}(I, t)\right\}, d_{5}(I, t)\right) \\
\left.+W_{\perp}\left(S_{I}^{\prime}, \pi_{2}, \min \left\{d_{5}(I, t), d_{6}(I, t)\right\}, d_{5}(I, t)\right) \geq 2\right), \\
S_{I}^{\prime}\left(\pi_{2}, t\right), \\
\text { otherwise. }
\end{array}\end{cases}
\end{align*}
$$

Figure 5 shows two possible scenarios in which execution of J_{5} on processor π_{1} is moved from its original scheduled time instants in S_{I}^{\prime}. It is straightforward to see that $S_{I}^{\prime \prime}$ remains valid.

Lemma 23 Schedule $S_{I}^{\prime \prime}$ is valid.

Proof: It is easy to see that $S_{I}^{\prime \prime}$ is valid, as we are only moving execution of τ_{5} during τ_{5} 's scheduling window. Furthermore, we ensure that τ_{5} does not execute concurrently with itself and that the total execution over τ_{5} 's scheduling window does not exceed τ_{5} 's execution requirement ($e_{5}=2$).

Before showing that schedule $S_{I}^{\prime \prime}$ can accommodate J_{6} 's execution, we prove a lemma regarding the conditions that must hold when a job of τ_{5} executes on processor π_{2} in schedule $S_{I}^{\prime \prime}$.

Lemma 24 Let $t>0$ be a time such that $r_{5}(I, t)<\infty$ and $r_{6}(I, t)=\infty$ (i.e., at time t there is a current scheduling window for τ_{5}, but not τ_{6}). The current job of $\tau_{5}, \varphi_{5}(I, t)$, executes on processor π_{2} at time t in schedule $S_{I}^{\prime \prime}\left(\right.$ i.e., $S_{I}^{\prime \prime}\left(\pi_{2}, t\right)=\varphi_{5}(I, t)$, if and only if, the following three conditions hold:

Figure 5. The above image shows the two possible scenarios of moving J_{5} 's execution from the interval $\left[A_{6}, A_{6}+8\right)$. In the left scenario, J_{5} 's execution on processor π_{1} in the interval $\left[A_{6}, A_{6}+\right.$ 8) $\cup\left[A_{5}, A_{5}+6\right)$ is moved to the left in an available time instant on processor π_{1} in the interval $\left[A_{5}, A_{5}+6\right) \backslash\left[A_{6}, A_{6}+8\right)$ that precedes J_{6} 's scheduling window. The movement of execution to left is achieved by application of Rule 1 followed by Rule 3. The right scenario shows the movement of execution to the right when J_{5} 's deadline is after J_{6} 's. Movement to the right is achieved by application of Rule 3 followed by Rule 1.

Condition 1: $\varphi_{5}(I, t)$ has not completed execution (i.e., J_{5} has executed for a total of exactly two time units on π_{1} over $\left[r_{5}(I, t), r_{5}(I, t)+6\right)$ and π_{2} over $\left.\left[r_{5}(I, t), t\right)\right)$. Formally, $W_{5}\left(S_{I}^{\prime}, \pi_{1}, r_{5}(I, t), r_{5}(I, t)+\right.$ $6)+W_{5}\left(S_{I}^{\prime \prime}, \pi_{2}, r_{5}(I, t), t\right)<2$;

Condition 2: π_{1} is not executing $\varphi_{5}(I, t)$ at time t in schedule S_{I}^{\prime}; and
Condition 3: π_{2} is not executing a job of task τ_{2} or τ_{3} at time t in schedule S_{I}^{\prime}.
Proof: The "if" direction is trivial; if each of the three conditions hold, observe that Rule 1's conditions are satisfied and $\varphi_{5}(I, t)$ is scheduled at time t on processor π_{2} in schedule $S_{I}^{\prime \prime}$. We will prove the "only if" direction by contradiction. That is, assume that $S_{I}^{\prime \prime}\left(\pi_{2}, t\right)=\varphi_{5}(I, t)$, but one of the three conditions is not true. Notice that if either Condition 1 or 2 is not true, the validity of schedule $S_{I}^{\prime \prime}$ (Lemma 23) will be violated. Specifically, if $\varphi_{5}(I, t)$ is scheduled at time t on processor π_{2}, but has already executed two units on π_{1} over $\left[r_{5}(I, t), r_{5}(I, t)+5\right)$ and on π_{2} over $\left[r_{5}(I, t), t\right)$, then we will execute for more than the execution requirement in $S_{I}^{\prime \prime}$. If $\varphi_{5}(I, t)$ is scheduled at time t on processor π_{2}, but is already executing at time t on processor π_{1}, then we will be executing concurrently with itself. Finally, if Condition 3 is not true, then either τ_{2} or τ_{3} was already executing at time t in schedule S_{I}^{\prime}. Observe that the definition of schedule $S_{I}^{\prime \prime}$ never moves execution of τ_{2} or τ_{3}. So, we cannot concurrently execute a job of either τ_{2} or τ_{3} with $\varphi_{5}(I, t)$ on the same processor. Thus, in each case, we have shown that if any of the conditions is violated a contradiction arises. Therefore, if $\varphi_{5}(I, t)$ is scheduled at time t on processor π_{2} in schedule $S_{I}^{\prime \prime}$, then the above three conditions must hold.

We now show, for any job $J_{6} \in I$ of task τ_{6} that cannot complete in schedule S_{I}^{\prime}, J_{6} is guaranteed to complete execution in $S_{I}^{\prime \prime}$. More formally, we show, in the following lemma, that there is sufficient space to execute J_{6} entirely on processor π_{2} in schedule $S_{I}^{\prime \prime}$ over J_{6} 's scheduling window.

Lemma 25 If S_{I}^{\prime} does not have sufficient idle time over $\left[A_{6}, A_{6}+8\right)$ to completely execute J_{6}, then

$$
\begin{equation*}
\sum_{\tau_{i} \in \tau^{\text {example }} \backslash\left\{\tau_{6}\right\}} W_{i}\left(S_{I}^{\prime \prime}, \pi_{2}, A_{6}, A_{6}+8\right) \leq 4 \tag{63}
\end{equation*}
$$

Proof: By Lemma 5, there exists a job $J_{5} \in I$ of task τ_{5} with scheduling window such that $\left[A_{5}, A_{5}+6\right) \cap$ $\left[A_{6}, A_{6}+8\right) \neq \emptyset$. From Lemma 22, exactly one of the following two expressions is true:

Case I) $A_{5}<A_{6}-2$; or
Case II) $A_{6}+4<A_{5}$.
Analysis for Case I: The inequality of Case I implies that J_{5} arrives strictly earlier than two time units prior J_{6} 's arrival. Since J_{5} and J_{6} intersect, then $A_{6} \leq A_{5}+6$. Therefore, $\left[A_{6}-2, A_{6}\right) \subset\left[A_{5}, A_{5}+6\right)$. There are two subcases to consider regarding the execution of J_{5} over $\left[A_{5}, A_{6}\right)$.

Subcase I.A) J_{5} completes α units of its execution on processor π_{2} in $\left[A_{5}, A_{6}\right.$); or
Subcase I.B) J_{5} does not complete α units of execution on processor π_{2} in $\left[A_{5}, A_{6}\right)$.
For Subcase I.A, J_{5} will not execute in the interval $\left[A_{6}, A_{6}+8\right)$; Lemma 5 states that J_{5} executes for only α time on processor π_{2} in $\left[A_{5}, A_{5}+6\right)$. Since $S_{I}^{\prime \prime}$ does not move execution of τ_{2} or τ_{3}, exactly two jobs of both τ_{2} and τ_{3} execute in $\left[A_{6}, A_{6}+8\right)$ by Lemmas 8 and 7 . The total execution requirement of these four jobs is at most four which implies Equation 63.

For Subcase I.B, note that Lemma 5 states that J_{5} executes for $2-\alpha$ on processor π_{1}. So, if J_{5} does not complete α units of execution on processor π_{2} in $\left[A_{5}, A_{6}\right.$) for schedule $S_{I}^{\prime \prime}$, then Condition 1 is never false for any $t \in\left[A_{5}, A_{6}\right)$. Therefore, by Lemma 24, whenever J_{5} is not executing on processor π_{2} over $\left[A_{5}, A_{6}\right)$, then either Condition 2 or 3 of Lemma 24 is false. By Lemma 5, J_{5} executes on processor π_{2} for α time units in S_{I}^{\prime} over $\left[A_{5}, A_{5}+6\right)$. Since $S_{I}^{\prime \prime}$ does not move additional execution of J_{5} to π_{1} from π_{2}, J_{5} continues to execute for α time units in $\left[A_{5}, A_{5}+6\right)$ for $S_{I}^{\prime \prime}$. Thus, J_{5} executes the remaining portion on processor π_{1} for exactly $2-\alpha$ time units. Hence, the most that J_{5} could execute for in schedule $S_{I}^{\prime \prime}$ on processor π_{1} over $\left[A_{5}, A_{6}\right.$) (and by extension subinterval $\left[A_{6}-2, A_{6}\right)$) is $2-\alpha$. So, Condition 2 could be false for at most $2-\alpha$ times in the interval $\left[A_{6}-2, A_{6}\right.$). The remaining α time in the interval $\left[A_{6}-2, A_{6}\right)$ must have either J_{5} executing on processor π_{2} or Condition 3 being false (i.e., either τ_{2} or τ_{3} are executing).

By Observation 1, the most τ_{2} can execute over $\left[A_{6}-2, A_{6}+8\right)$ (in any valid schedule) is two; similarly, the most τ_{3} can execute over $\left[A_{6}-2, A_{6}+8\right)$ is two. Lemma 5 and its period parameter ($p_{5}=100$) implies the most that τ_{5} could execute in $\left[A_{6}-2, A_{6}+8\right)$ is α. Thus, the total execution of all jobs of τ^{B} over $\left[A_{6}-2, A_{6}+8\right)$ is $4+\alpha$. By the preceding paragraph, at least α units of this execution on π_{2} must occur over $\left[A_{6}-2, A_{6}\right)$, leaving at most four units to execute over $\left[A_{6}, A_{6}+8\right)$. Thus, Equation 63 is true for this subcase. We have shown that Equation 63 is true for all subcases of Case I
Analysis for Case II: Symmetric to Case I.
Theorem 2 immediately follows from the Steps outlined in Figure 3 and Lemma 25. That is, for any $I \in$ $\mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}\left(\tau^{\text {example }}\right)$, we can construct a valid schedule on two processors. Thus, by Definition $8, \tau^{\text {example }}$ is feasible on two processors.

6 Conclusions

In this article, we have seen that there exists a sporadic task system that is feasible upon a multiprocessor platform for which there does not exist an online multiprocessor algorithm that can successfully schedule every real-time instance generated by this task system. The existence of such a feasible task system implies that optimal online scheduling of sporadic and more general task systems is impossible for multiprocessor platforms. This article identified the feasible task system and proved that no online scheduling algorithm can successfully schedule all feasible instances.

The consequence of this negative result is far-reaching in that algorithms that are optimal for LL task systems no longer retain their optimality for small generalizations of the task model. Without optimality, it is not immediately clear what should be the theoretical basis for evaluating the effectiveness of a real-time multiprocessor scheduling algorithm for sporadic and more general task systems. The use of analytical techniques such as resource-augmentation [19] for identifying near-optimal online scheduling algorithms provide a potential metric for comparison of multiprocessor scheduling algorithms for general task systems.

References

[1] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time Scheduling: The Deadline Monotonic Approach. In Proceedings 8th IEEE Workshop on Real-Time Operating Systems and Software, pages 127-132, Atlanta, May 1991.
[2] T. Baker and M. Cirinei. A necessary and sometimes sufficient condition for the feasibility of sets of sporadic hard-deadline tasks. In Proceedings of the IEEE Real-time Systems Symposium, pages 178-187, Rio de Janeiro, December 2006. IEEE Computer Society Press.
[3] T. Baker and M. Cirinei. Brute-force determination of multiprocessor schedulability for sets of sporadic harddeadline tasks. In Proceedings of the 10th International Conference on Principles of Distributed Systems, pages 62-75, Guadeloupe, December 2007.
[4] S. Baruah. Dynamic- and static-priority scheduling of recurring real-time tasks. Real-Time Systems: The International Journal of Time-Critical Computing, 24(1):99-128, 2003.
[5] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized multiframe tasks. Real-Time Systems: The International Journal of Time-Critical Computing, 17(1):5-22, July 1999.
[6] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource allocation. Algorithmica, 15(6):600-625, June 1996.
[7] S. Baruah, R. Howell, and L. Rosier. Feasibility problems for recurring tasks on one processor. Theoretical Computer Science, 118(1):3-20, 1993.
[8] M. Dertouzos. Control robotics : the procedural control of physical processors. In Proceedings of the IFIP Congress, pages 807-813, 1974.
[9] M. Dertouzos and A. K. Mok. Multiprocessor scheduling in a hard real-time environment. IEEE Transactions on Software Engineering, 15(12):1497-1506, 1989.
[10] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research, 26:127-140, 1978.
[11] N. Fisher and S. Baruah. The feasibility of general task systems with precedence constraints on multiprocessor platforms. Real-Time Systems, 41(1):1-26, 2009.
[12] K. Hong and J. Leung. On-line scheduling of real-time tasks. In Proceedings of the Real-Time Systems Symposium, pages 244-250, Huntsville, Alabama, December 1988. IEEE.
[13] W. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly, 21:177-185, 1974.
[14] K. Jeffay, D. Stanat, and C. Martel. On non-preemptive scheduling of periodic and sporadic tasks. In Proceedings of the 12th Real-Time Systems Symposium, pages 129-139, San Antonio, Texas, December 1991. IEEE Computer Society Press.
[15] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover Publications, Inc., New York, 1970.
[16] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic, real-time tasks. Performance Evaluation, 2:237-250, 1982.
[17] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the ACM, 20(1):46-61, 1973.
[18] A. K. Mok. Fundamental Design Problems of Distributed Systems for The Hard-Real-Time Environment. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology, 1983. Available as Technical Report No. MIT/LCS/TR-297.
[19] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource augmentation. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 140-149, El Paso, Texas, 4-6 May 1997.
[20] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocessors. In Proceedings of the 34th ACM Symposium on the Theory of Computing, pages 189-198, May 2002.

[^0]: ${ }^{1}$ A partially-specified task system is sometimes referred to as non-concrete [14].

[^1]: ${ }^{2}$ We will slightly abuse notation and use \mathcal{A} to refer to both the scheduling algorithm and the function.
 ${ }^{3} \mathrm{~A}$ higher-order function has a function space as either the domain or range.
 ${ }^{4}$ Since $S_{I}\left(\pi_{k}, t, J_{i}\right)$ is potentially discontinuous at an infinite number of points, $\int_{t_{1}}^{t_{2}} S_{I}\left(\pi_{k}, t, J_{i}\right) d t$ denotes a Lebesgue integral [15] and not a Riemann integral.

[^2]: ${ }^{5}$ Please note that we only consider real-time instances in $I \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}\left(\tau^{\text {example }}\right)$; the feasibility of any instance $I^{\prime} \in \mathcal{I}^{\mathrm{S}}\left(\tau^{\text {example }}\right)$ follows from the fact that there exists an $I \in \mathcal{I}_{\mathrm{WCET}}^{\mathrm{S}}\left(\tau^{\text {example }}\right)$ such that $I^{\prime} \in \mathcal{F}(I)$. So, we only need to consider a valid schedule $S_{I}^{\prime \prime}$ and it suffices to use the same schedule for I^{\prime} (except the jobs of I^{\prime} will potentially execute for less than the jobs of I).

