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ClearPath: Highly Parallel Collision Avoidance for Multi-Agent Simulation

Abstract

We present a new local collision avoidance algorithm between mul-
tiple agents for real-time simulations. Our approach extends the no-
tion of velocity obstacles from robotics and formulates the condi-
tions for collision free navigation as a quadratic optimization prob-
lem. We use a discrete optimization method to efficiently compute
the motion of each agent. This resulting algorithm can be paral-
lelized by exploiting data-parallelism and thread-level parallelism.
The overall approach, ClearPath, is general and can robustly handle
dense scenarios with tens or hundreds of thousands of heteroge-
neous agents in a few milli-seconds. As compared to prior collision
avoidance algorithms, we observe more than an order of magnitude
performance improvement.

1 Introduction

Multi-agent systems are used to model a network of a loosely cou-
pled dynamic units, often called agents. Based on the pioneer-
ing work of Reynolds [1987] on distributed behavior models, the
study of multi-agent simulation has grown tremendously over the
last two decades. Many simulation algorithms have been developed
based on simple models and local rules. Besides computer graph-
ics, multi-agent systems are widely used to model the dynamics of
crowds, robots and swarms in traffic engineering, virtual environ-
ments, control theory, and sensor networks.

In this paper, we address the problem of real-time collision avoid-
ance in multi-agent systems that use distributed behavior models.
The motion of each agent is typically governed by some high-level
formulation and local interaction rules (e.g. collision avoidance). It
is important that any agent does not collide with its neighbors. Col-
lision avoidance can quickly become a major bottlenecks in multi-
agent simulation, especially in tightly packed scenarios. This is an
important issue in computer games, which may only be able to de-
vote less than 5% of processing cycles to collision avoidance and
behavior computations. Furthermore, applications such as urban
simulations need to simulate tens or hundreds of thousands of het-
erogeneous agents at interactive rates.

One of our goals in studying the computational issues involved in
enabling real-time agent-based simulation is to exploit the current
architectural trends. Recent and future commodity processors are
becoming increasingly parallel. Specifically, GPUs and the upcom-
ing x86-based many-core processor Larrabee. These processors
consist of tens or hundreds of cores, with each core capable of ex-
ecuting multiple threads and vector instructions to achieve higher
parallel-code performance. Therefore, it is important to design col-
lision avoidance and simulation algorithms that can exploit substan-
tial amounts of fine-grained parallelism.

Main Results: We present a highly parallel and robust colli-
sion avoidance approach, ClearPath, for multi-agent navigation.
Our formulation is based on the concept of velocity obstacles that
was introduced by Fiorini and Shiller [1998] in robotics for mo-
tion planning in dynamic obstacles. We use an efficient velocity-
obstacle based formulation that can be combined with any underly-
ing multi-agent simulation. Local collision avoidance computation
is reduced to solving a quadratic optimization problem that mini-
mizes the change in the underlying velocity of each agent subject
to non-collision constraints (described in Section 3). We present a
polynomial-time algorithm for 2D agents to compute collision-free
motion. In practice, ClearPath is up to an one order of magnitude
faster than prior velocity-obstacle based methods.

Figure 1: Building evacuation: 1,000 independent agents in dif-
ferent rooms of a building move towards the two exit signs and
cause congestion. P-ClearPath can efficiently perform local col-
lision avoidance for all agents in such tight packed simulations at
550 FPS on Intel quad-core Xeon (3.16GHz) processor. Our algo-
rithm is more than an order of magnitude faster than prior velocity-
obstacle based algorithms.

We show that ClearPath is amenable to data-parallelism and thread-
level parallelism on commodity processors and present a paral-
lel extension in Section 4. The resulting parallel algorithm, P-
ClearPath, exploits the structure of our optimization algorithm and
architectural capabilities like gather/scatter, and pack/unpack to
provide improved data-parallel scalability. We evaluate its perfor-
mance in various scenarios on current multi-core CPUs. In practice,
P-ClearPath demonstrates 8-15X speedup on a conventional quad-
core processor over prior VO-based algorithms.

2 Related Work

Different techniques have been proposed to model behaviors of in-
dividual agents, groups and heterogeneous crowds. Excellent re-
cent surveys are given in [Pelechano et al. 2008; Thalmann et al.
2006]. These include methods to model the local dynamics and
generating emergent behaviors [Reynolds 1987; Reynolds 1999],
psychological effects and cognitive models [Yu and Terzopoulos
2007], cellular automata models and hierarchical approaches. In
this section, we give a brief overview of related work in collision
detection and avoidance, and parallel algorithms.

2.1 Collision detection and path planning

There is rich literature on collision detection between two or mul-
tiple objects. Many fast algorithms have been proposed for check-
ing whether these objects overlap at a given time instance (discrete
collision detection) or over a one dimensional continuous interval
(continuous collision detection) [Ericson 2004]. The problem of
computing collision-free motion for one or multiple robots among
static or dynamic obstacles has been extensively studied in robot
motion planning [LaValle 2006]. These include global algorithms
based on randomized sampling, local planning techniques based on
potential field methods, centralized and decentralized methods for
multi-robot coordination, etc. These methods are either too slow for
interactive applications or may suffer from local minima problems.
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Figure 2: Dense Circle Scenario: 1,000 agents are arranged uniformly around a circle and move towards antipodal position. ClearPath
performs local collision avoidance computation for all agents in this simulation in 4ms on a single 3.16 GHz Xeon core

2.2 Collision avoidance

Collision avoidance problems have been been studied in control
theory, traffic simulation, robotics and crowd simulation. Opti-
mization techniques for local collision detection have been pro-
posed for a pair of objects, including separation or penetration dis-
tance computation between convex polytopes [Cameron 1997; Lin
1993] and local collision detection between convex or non-strictly
convex polyhedra with continuous velocities [Faverjon and Tour-
nassoud 1987; Kanehiro et al. 2008]. Different techniques have
been proposed for collision avoidance in group and crowd simu-
lations [Reynolds 1999; Foudil and Noureddine 2027; Sugiyama
et al. 2001; Musse and Thalmann 1997; Thalmann et al. 2006; Hel-
bing et al. 2005; Lamarche and Donikian 2004; Sud et al. 2007b].
These are based on local coordination schemes, velocity models,
prioritization rules, force-based techniques, or adaptive roadmaps.

The notion of velocity obstacles (VO) was proposed for motion
planning in dynamic environments and has been extended to deal
with uncertainity in the sensor data [Fiorini and Shiller 1998; Ful-
genzi et al. 2007; Kluge and Prassler 2007]. Recently, Berg et
al. [2008a; 2008b] extended the VO formulation for reducing colli-
sions between the agents.

3 Local Collision Avoidance

In this section, we present our collision avoidance algorithm. Our
approach is general and can be combined with different crowd and
multi-agent simulation techniques.

Assumptions and Notation: We assume that the scene consists
of heterogeneous agents with static and dynamic obstacles. The
behavior of each agents is governed by some extrinsic and intrin-
sic parameters and computed in a distributed manner. The overall
simulation proceeds in discrete time steps and we update the state
of each agent, including its position and velocity during each time
step. Given the position and velocities of all the agents at a partic-
ular time instant 7', and a discrete time interval of AT. Our goal is
to compute a velocity or path for each agent that either results in no
collisions or attempts to reduce the number of collisions during the
interval [T, T + AT].

We also assume that the agents are moving on a 2D plane, though
our approach can be extended to handle agents moving in 3D space.
At any time instance, each agent has the information about the po-
sition and velocity of nearby agents. We represent each agent using
a circle or convex polygon in the plane. If the actual shape of the
agent is non-convex, we use its convex hull. The resulting collision-
avoidance algorithm becomes conservative in such cases. In the rest
of the paper, we describe the algorithm for circular agents. Given
an agent A, we use p4, I, and v4 to denote its position, radius
and velocity, respectively. We assume that the underlying simula-

tion algorithm uses the intrinsic and extrinsic characteristics of the
agent or some high level model to compute a desired velocity for
each agent (vﬁ“ ) during the time step. Let v,y and a4, represent
the maximum velocity and acceleration, respectively, of the agent
during this timestep. Furthermore, ¢g* denotes a line perpendicular
to line g (both in 2D).

3.1 Velocity Obstacles

Our approach is build on velocity obstacles [Fiorini and Shiller
1998]. We use the notion of Minkowski sum, A & B, of two objects
A and B and let —A denote the object A reflected in its reference
point. Furthermore, let A(p,v) denote the a ray starting at p and
heading in the direction of v: A(p,v) = {p+1tv|t > 0}.

Let A be an agent moving in the plane and B be a planar (mov-
ing) obstacle on the same plane. The velocity obstacle VO‘?; (vp) of
obstacle B to agent A is defined as the set consisting of all those
velocities v4 for A that will result in a collision at some moment in
time (+ > T') with obstacle B moving at velocity vg. This can be
expressed as:

VO4(v8) = Va | MPa,Va — VB)NBS —A#0

This region has the geometric shape of a cone. Let 0(v, p,u) denote
the distance of point v from p along u:

o(v,p,u) ={(v—p)-u}

Henceforth, the region inside the cone is represented as
VO%’(V) = (¢(vvavijleft) > 0) A (¢(vvaapi_Bright) > 0)7

where pj(B left and ijri ohr ATC the inwards directed rays perpendic-

ular to the left and right edges of the cone, respectively. The VO is
a cone with its apex at vp, as shown in Fig. 3(a).

Recently Van den Berg et al. [2008a; 2008b] presented an extension
called RVO. The resulting velocity computation algorithm guaran-
tees an oscillation free behavior for two agents. An RVO is formu-

lated by moving the apex of the VO cone from vp to w IfA

has N nearby agents, we obtain N cones, and each agent needs to
ensure that its desired velocity for the next frame, vaes s outside
all the N velocity obstacle cones of its neighbors to avoid colli-
sions. RVO algorithm performs a random sampling of the 2D space
in the vicinity of vj{es , and chooses a feasible solution that satis-
fies the constraints. However, the RVO algorithm has the following
limitations: RVO performs random sampling, and may not find a
collision-free velocity even if there is a feasible solution. Since
RVO uses infinite cones, the extent of feasible region decreases as
N increases. In practice, the RVO formulation can become overly
conservative for tightly packed scenarios.
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Figure 3: (a) The Velocity Obstacle VO’g,(VB) of a disc-shaped obstacle B to a disc-shaped agent A. This VO represents the velocities
that could result in a collision of A with B (i.e. potentially colliding region). (b) The Fast Velocity Obstacle F VO‘?;(VB) of a disc-shaped
obstacle B to a disc-shaped agent A. This formulation takes into account the time interval for local collision avoidance. (c) Classifying FVO
boundary subsegments as Inside/Outside of the remaining FVO regions for multi-agent simulation. Our optimization algorithm performs
these classification tests to compute a non-colliding velocity for each agent.

3.2 Optimization Formulation for Collision Avoidance

In this section, we pose the local collision avoidance problem for N
agents as a combinatorial optimization problem. We extend the VO
formulation by imposing additional constraints that can guarantee
collision avoidance for each agent during the discrete interval. We
take into account the discrete time interval and define a truncated
cone (FVO) to represent the collision free region during the time
interval corresponding to AT'.

The original VO or RVO are defined using only two constraints (left
and right), as shown in Fig. 3(a). The FVO is defined using a total
of four constraints.

The two boundary cone constraints of the FVO are the same as that
of RVO:

FVOLE(V) = 0(V, (VA +VB)/2,PApes) = 0
FVOR% (v) = 0(v, (va + VB)/27ijrighl) >0

Additionally, we impose two more types of constraints:

Type-1 Constraint - Finite time interval: We only guaran-
tee collision avoidance for the duration AT. We compute a finite
subset of the RVO cone that corresponds to the forbidden veloci-
ties that could lead to collisions in the time interval. As shown in
Figure 3(b), the truncated cone (expressed as a shaded region) is
bounded by a curve Y45(Vv) (detailed formulation in the appendix).
Due to efficiency reasons, we replace Y4p(v) with a conservative
linear approximation I'45(v). In practice, this approximation in-
creases the area of the truncated cone by a small amount. This con-
stitutes our additional FVO constraint, represented as: FVorg (v)=

Ta () =2 (M = (pe— ) x7,(Pa-B)") , where

n = tan(sin-(. & N
7 = tan( ps_gf)x(|p Bt 1)) and

I
M= (IPe—h: |—(rA+rB))x(m)4LJ£%;

Type-II Constraint - Consistent velocity orientation: A suf-
ficient condition to avoid collisions among multiple agents is to en-
sure that each agent chooses a velocity that is on the same side of
the line joining their centers [Berg et al. 2008b]. Without loss of
generality, we force each agent to choose its right side and impose
this constraint as: FVOc4(v) = (0(V,pa,p1p) < 0)

Any feasible solution to both types of constraints will guarantee
collision avoidance. In this case, we minimize the deviation from
Vj{“, which is desired by the underlying simulation algorithm,
and compute a new velocity w.r.t the FVO constraints. Let By,..,
By represent the N nearest neighbors of an agent A. We pose the
computation of a new velocity (v}*") as the following optimization

problem:

Minimize [|(v2" — v4¢%)||, such that
((FVQa ™) U ~FVQe, (v U~FVQ, () N ~FVQy, (V™)) N

((~-FVQa, (Vi) U ~FVQy, (Vi) O~qu; V) N ~FVQg, (™))

This is a quadratic optimization function with 4N non-convex linear
constraints. It can be shown to be NP-Hard [Kann 2000] for non-
constant dimensions via reduction to quadratic integer program-
ming . It has a polynomial time solution when the dimensionality
of the constrains is constant — two in our case.

We refer to union of each neighbor’s FVO as its potentially collid-
ing region (PCR), and the boundary segments of each neighbor’s
FVO as collectively the Boundary Edges (BE). BE consists of 4NV
boundary segments — 4 from each neighbor of A. We exploit the
geometric nature of the problem, and can derive the following char-
acterization (with proof in the appendix):

Lemma 1: If Vfi” is inside PCR, v must lie on the boundary
segment of the FVO of one of the neighbors.

In many simulations, there are other constraints on the velocity of
an agent. For example kineodynamic constraints [LaValle 2006]
which impose certain bounds on the motion (e.g. maximum veloc-
ity or maximum acceleration). In case the optimal solution to the
quadratic optimization problem doesn’t satisfy these bounds, we
relax the constraints by removing the furthest agent from A, and
recompute the optimal solution by considering only N — 1 agents.
This relaxation step is carried on until an optimal solution satisfying
all the constraints is obtained.

3.3 ClearPath Algorithm

We use the mathematical formulation to design a fast algorithm to
compute a collision-free for each velocity. Specially, we exploit
Lemma 1 and compute all possible intersections of the boundary
segments of BE with each other. Consider segment X in Figure 3(c).
The k intersection points of the FVO region labeled as X, .. , Xj.
Note that these points are stored in a sorted order — increasing dis-
tance from the corresponding end point (Xp) of the segment. We
further classify each intersection point as being Inside or Outside
of PCR. After performed this classification, we now classify the
subsegments between these points as being Inside or Outside of the
PCR, based on the following lemma (proof in the appendix):

Lemma 2: The first subsegment along a segment is classified as
Outside iff both its end points are tagged as Outside. Any other
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subsegment is classified as Outside iff both its end points are Out-
side, and the subsegment before it is Inside the PCR.

For example, both Xy and X are tagged as Outside, and hence the
subsegment XX is tagged as Outside. However, X1 X is tagged as
Inside since XyX; is Outside the PCR.

After classifying the subsegments of BE, we simply consider the
Outside subsegments, and compute the one closest to vfffs, and
return the closest point. The ClearPath algorithm performs the

following steps for each agent.

Step 1. Compute the normals of the each of the segments in BE.
Step 2. Compute the intersection points along each segment of BE
with the remaining segments of BE.

Step 3. Classify the intersection points as Inside or Outside.

Step 4. Sort the intersection points for each segment with increas-
ing distance from its corresponding end point.

Step 5. Classify the subsegments along each segment as Inside or
Outside, and compute/maintain the closest point for the Outside
subsegments.

Step 6. In case the resultant solution does not satisty the kineody-
namic or velocity constraints, relaxing the constraints by removing
the FVO corresponding to the furthest neighbor, and repeat the
algorithm with fewer agents.

For M number of total intersections segments in BE, the runtime of
the algorithm for a single agent is O(N(N + M)).

3.4 Guaranteed Collision Avoidance

A key aspect of our algorithm is derive rigorous conditions for col-
lision avoidance during a given interval. This is given by the fol-
lowing theorem (with a proof in the appendix):

Theorem 1: If ClearPath finds a feasible solution for all the agents,
then the resultant path is collision-free.

Based on the collision free guarantees, we use the following algo-
rithm that can compute collision free path for each navigation.

ClearPath-1: Our goal is to compute a collision-free path during
discrete time interval AT. In case there exists a feasible solution to
the optimization algorithm, than we have a collision-free solution.
However, it is possible that the optimization algorithm may not find
a feasible solution. It is possible that there may be no collision-free
solution for the entire interval or our constraints are overly con-
servative. In this case, we reduce the time interval to (AT/2) and
recompute the constraints and the feasible solution for a shorter du-
ration. This process can be repeated till we find a feasible solution.

3.5 Relaxing Collision Constraints

It is possible that the algorithm highlighted above may need to con-
sider a very short interval to find a feasible solution. Every step of
the bisection approach involves solving a new optimization prob-
lem. Furthermore, the Type-II constraint in the optimization formu-
lation can be overly restrictive. In this case, we present an alternate
algorithm that only considers Type-I constraint and therefore have
only 3N, as opposed to 4N constraints. The resulting algorithm,
ClearPath-2, computes v/ w.r.t only 3N constraints. In this case,
some agents can still collide and we use the following scheme to
resolve collisions.

Collision Resolution: In cases when agents are colliding, they
should chose a new velocity which resolves the collision as quickly
as possible. This results in an additional set of constraints in ve-
locity space which we can conservatively approximate as a cone.
In this case, the Potentially Colliding Region is the intersection

1Agent Pool (Agentnext = Agentcurr + K) |
l gather operation :

—>| Agent Pool (Agentnext = Agentcurr ++) |

Gather K agent data structures from
non-contiguous memory space

| Ao | Ar | A2 | ----- |Ak-2|Ak-1|
T

l Take X, Y coordinates per agent

| X coord. | Y coord. | | |

T - - ion :
I Use only two lanes in 4-wide pack operation :

| ssE | Compact agents that takes the same
v V | control flow during ins'ide/o'ut.side'test
Yy Vv v y Vv v
| Step1,2,34,5 | Step 1,2,3,4,5 |

I

scatter operation .
L—" Scatter computation results back to
non-contiguous memory space

(a) Intra-Agent SIMDfication (b) Inter-Agent SIMDfication

Figure 4: Data-Parallel Computations: (a) Intra-Agent SIMDifi-
cation for SSE (b) Inter-Agent SIMDfication for wide SIMD

between two circles. The first circle is the set of maximal veloc-
ities reachable by an agent in a single time step (a circle of radius
Amax X AT). The second circle is the Minkowski difference of the
two agents: B® —A . The region which lies in the 1% circle, but
not the second is the set of velocities which escapes the collision
in 1 timestep. The region which lies in both circles is the set of
reachable velocities which do not. By conservatively approximat-
ing this area with a cone, we can create an additional constraint for
any agents in collisions. This constraint is unioned with the exist-
ing PCR from the neighboring agents. A colliding agent’s preferred
velocity is set to 0 so that the smallest possible velocity which re-
solves the collision is chosen. This will minimize oscillations due
to collision resolution.

4 P-ClearPath: Parallel Collision Avoidance

The current trend is for processors to deliver high-performance
through multithreading and wider SIMD instructions. In this sec-
tion, we describe a data-parallel extension of ClearPath that can
exploit the capabilities of current multi-core CPUs and many-core
accelerators.

ClearPath operates on a per-agent basis, and computes the near-
est neighbors and a collision-free velocity for the next time step.
There are two fundamental ways of exploring Data-Level paral-
lelism (henceforth referred to as DLP).

Intra-Agent: Consider Figure 4(a). For each agent, we explore
DLP within its ClearPath computation. Since the agents operate in
2D, they can perform their X and Y coordinate updates in a SIMD
fashion. This approach does not scale to wider SIMD widths.

Inter-Agent: Operate on multiple agents at a time, with each agent
occupying a slot in the SIMD computation. This approach is scal-
able to larger SIMD widths, but needs to handle the following two
issues:

1. Non-contiguous data access: In order to operate on multiple
agents, ClearPath computation requires gathering their ob-
stacle data structure into a contiguous location. After com-
puting the collision-free velocity, the results need to be scat-
tered back to their respective non-contiguous locations. Such
data accesses become performance bottleneck without effi-
cient gather/scatter operations.

2. Incoherent branching: Multiple agents within a SIMD reg-
ister may take divergent paths. This degrades SIMD perfor-
mance, and is a big performance limiter for ClearPath algo-
rithm with intersection and inside/outside tests. One or more
of the agents may terminate early, while the remaining ones
are still performing their comparison operations.

The current SSE architecture does not have efficient instructions to
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resolve the above two problems. Hence, we used the intra-object
SIMDfication approach and obtain only moderate speedups (see
Section 5). For the remainder of this section, we focus on exploiting
wider SIMD, with the SIMD width being X-wide.

P-ClearPath adopts the Inter-agent approach, and performs compu-
tation on X agents together. Figure 4(b) shows a detailed mapping
of the various steps in ClearPath computation. For collision-free ve-
locity computation, each agent A; is given as input its neighboring
velocity obstacles (truncated cones) and the desired velocity. The
steps performed by each agent are delineated in Section 3.3.

We start by gathering the obstacle data structure of X agents into
contiguous chunks of memory and then loading various fields as
needed by the SIMD operation. Although each of the steps listed
there map themselves well to SIMD, there are a few important con-
cerns that need to be addressed.

1. Varying number of neighbors for each agent: This affects
each of the steps, bringing down the SIMD utilization. For exam-
ple, if one of the agents in the SIMD computation has N neighbors,
and the other one has N/2, for half of the computation, the other
agent is masked out, and does not do any computation. We address
this issue by reordering the agents based on their neighbor count,
and executing agents that have the same number of neighbors to-
gether. Since the number of agents is a relatively small number,
this reordering runs in linear time, and takes up insignificant por-
tion of the runtime.

2. Constraint Relaxation by some agents: After computing the
collision-free velocity, it is indeed possible for some agents not
to have satisfied their kinodynamic or other constraints — thereby
going back to the start and computing the solution with one less
constraint in an iterative manner. We exploit the pack instruc-
tions [Seiler et al. 2008] to improve the efficiency. After all the
agents have completed one iteration, we identify and mask the lanes
that need recomputation, and pack their data structure (i.e. the cone
information) together in a separate memory location. We perform
this step for all the agents. After the first iteration, we have a con-
tiguous list of agents that have failed the constraints, and need to be
operated upon. We again operate on them — loading X agents each
time and operating on them in a SIMD fashion as before. This pro-
cess is carried out in an iterative fashion, with all the cones failing
the constraints in one iteration being operated upon in the subse-
quent iteration. Note that after termination, the computed result
needs to be scattered to the appropriate memory location.

3. Classifying points as inside/outside: This is the most important
part of the algorithm. While classifying points as being inside or
outside of the truncated cones, we test their orientation w.r.t. each
truncated cone, and as soon as it is detected being inside any of the
cones, it does not need to be tested against the remaining cones.
However, it is often the case that some other point within the SIMD
register is still being tested and the computation for other lanes is
wasted. In the worst case, the SIMD utilization may be as low as
1/K. We adapt the ClearPath algorithm to improve the efficiency.
After testing the orientation w.r.t. the first cone, we pack the points
contiguously as described above. In the subsequent iteration, the
points are loaded and tested against the next cone, and the process
repeated. Note that in comparison to the scalar version of the code,
each point is tested against the same number of the cones in the
SIMD code. However, to improve SIMD efficiency, it is packed,
and then retrieved for each cone it is checked against. This increases
the overhead, but improves the SIMD efficiency to around X/3-X/2
in our benchmarks.

With the above discussed modifications, and appropriate support for
gather/scatter and pack instructions, P-ClearPath should achieve
around X/2 SIMD speedup as compared to the scalar version. We
believe it should scale near-linearly with SIMD-width. A detailed

|ZRVO-Library B ClearPath [ P-ClearPath
293366

Evac-500 Evac-5K Stad-25K City-100K

Figure 5: Performance comparison between the multi-agent sim-
ulation systems that use RVO-Library, ClearPath, SSE implemen-
tation of P-ClearPath measured on a single core CPU. This graph
shows the absolute frame rate the multi-agent simulation systems.
The overall simulation using ClearPath is about 5X faster then
multi-agent simulation based on RVO-Library. The SSE capabil-
ity offers additional 25 — 50% speedup.

analysis with SIMD scaling for each of the steps in the CleatPath
algorithm is discussed in Section 5.

5 Implementation and Results

In this section, we describe the implementation of ClearPath and its
parallel extension. We evaluate its performance on different pro-
cessors and highlight their performance on different benchmarks.

5.1 Multi-agent simulation

We used different kind of benchmarks to evaluate the performance
of our algorithms. These use simple game like scenes with a few
hundred agents to complex scenes with tens to hundreds of thou-
sands of agents. We used a multi-agent system that computes the
path of each agent using global and local navigation. The global
navigation is based on a graph-based roadmap that is pre-computed
for a given environment. We sample a number of nodes around the
obstacles in a scene and connect nearby agents with collision-free
paths. At runtime, we search the graph using A* and compute a
desired path for each agent towards its goal position.

Local Navigation: The local navigation step is performed for each
agent at every time step. We use the goal position to compute the
desire velocity, Vﬁe‘, for the agent A.The local navigation is per-
formed in the velocity space and we use ClearPath to compute the
new velocity to reduce collisions with nearby agents. The nearest
neighbors for each agent are determined using a KD-tree and we
also use simple smoothing approaches to avoid sharp turns in the
motion.

In our system, the collision avoidance part of local navigation can
take 50 — 80% of the total runtime and is a major bottleneck in the
the performance of the overall multi-agent system. We evaluated
our algorithms on different scenarios, varying the number of agents
from 500 to 250K. Each agent is modeled as a heterogeneous agent
and we perform separate collision avoidance for it. All timings re-
ported in this section are based on ClearPath-2 algorithm described
in Section 3.5 and also include timings for collision resolution.

Serial Performance Comparison: We compared the performance
of the serial implementation of the collision-avoidance library
with RVO-Library [Berg et al. 2008a] and the implementation of
collision-avoidance in OpenSteer [Reynolds 1999]. All of them
were running on a single Xeon core (running at 3.16 GHz) with
no data parallelism. Note that all these algorithms result in differ-
ent behaviors for the agent and the actual motion and velocities of
the agents is different. So it is hard to make direct comparisons,
esp. with OpenSteer. We observe 8 — 12X improvement over RVO-
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Library (see Fig. 5), and the absolute running time of ClearPath is
comparable to the collision-avoidance routine in OpenSteer. Fig.
5 shows the absolute frame rates of the simulation system that use
RVO-Library, ClearPath and P-ClearPath for collision avoidance.

5.1.1 Behavior Evaluation

We set up artificial scenarios to evaluate the local navigation and
some emergent behaviors of ClearPath. We have observed the
following emergent behaviors from ClearPath in our benchmarks:
lane-formation, vortices, slow down in congestion, respond to colli-
sions, avoiding each other, swirl to resolve congestion, jam at exits,
arching at narrow passages, etc.

Circle-1K: 1,000 agents start arranged uniformly around a circle
and try to move directly through the circle to the their antipodal
position on the other side (see Fig. 2). The scenario becomes very
crowded when all the agents meet in the middle and we observe
swirling behavior.

4-Streams: 2,000 agents are organized as four streams that walk
along the diagonals of the square. This is similar to the benchmark
in Continuum Crowds [Treuille et al. 2006], though ClearPath re-
sults in different behaviors, including smooth motion, lane forma-
tion and some swirls.

5.1.2 Complex Scenarios

We setup different scenarios and also measure the scalability of the
system as we increase the number of agents.

Building Evacuation: We setup initial position of the agents in
different rooms in an office building. The scene has 218 obstacles
and the roadmap consists of 429 nodes and 7.2K edges. As part of
a drill, the agents move towards the goal positions corresponding to
exit signs. The hallway quickly fill up with the agents and there is
congestion at the exits, which allow only for 1 —2 agents to leave at
a time. We use three versions of this scenario with 500, 1K and 5K
agents and they are denoted as Evac-500, Evac-1K, and Evac-5K,
respectively.

Stadium Scene: We simulate the motion of 25K agents as they
exit from their seats out of a stadium. The scene has around 1.4K
obstacles and the roadmap consists of almost 2K nodes and 3.2K
edges. The agents moves towards the corridors and we observe
a lot of congestion and highly-packed scenarios. We denote this
benchmark as Stad-25K.

City Simulation: We have a model of the city with buildings and
streets with 1.5K obstacles. The roadmap has 480 nodes and 916
edges. We simulate the motion of different agents as they walk
around the city and at intersection. The agents move at different
speeds and overtake each other and avoid collisions with oncom-
ing agents. We simulate three versions with 10K, 100K and 250K
agents, and denote them as City-10K, City-100K and City-250K,
respectively.

5.2 Parallel Implementation

We parallelized our algorithm across multiple agents since the com-
putation performed by each agent is local and independent of the
remaining ones. Specifically, focused on two kind of parallel pro-
cessors and systems with different characteristics. They are:

1. Multi-core Xeon processors: We tested the performance of dif-
ferent algorithms on a PC workstation with a Intel quad-core Xeon
processor (X5460) running at 3.16 GHz with 32KB L1 cache and
12MB L2 cache. There is no support for gather and scatter opera-
tions. Each core runs a single thread.

2. Generic Many-core Processor: Modern many-core processors
such Larrabee [Seiler et al. 2008], Cell Processor, or programable

GPUs focus on computing throuput, featuring wide vector units (for
SIMD parallelism) and hardware support for data gather and scatter.
As well as several independant multi-threading processors.

5.2.1 Data-Parallelism

Figure 5 shows the improvement due to SSE instructions for P-
ClearPath on Xeon processors. We observe only about 25 — 50%
speedup with SSE instructions as the Xeon processors don’t support
scatter and gather instructions, have limited support for incoherent
branches.

On wide SIMD processors, we expect resonable SIMD utilization
when using Inter-Agent SIMDfication. Preliminary simulations
suggest that around 8X scaling on 16-wide SIMD is possible.

5.2.2 Thread-level Parallelism (TLP)

One of our goals that affects scaling is the load balancing amongst
different threads. Some of the agents in a dense scenarios may per-
form more computations than the ones in sparse regions, as they
consider more neighbors within the discrete optimization computa-
tion. Hence, a static partitioning of agents amongst the threads may
suffer from severe load balance problems, especially in simulations
with few number of agents for large number of threads. The main
reason is that the agents assigned to some specific thread(s) may fin-
ish their computation early, while the remaining ones are still per-
forming the collision avoidance and other computations. We use a
scheme based on dynamic partitioning of agents to reduce the load
imbalance. Specifically, we Task Queueing [Mohr et al. 1990], and
decompose the execution into parallel tasks consisting of a small
number of agents. This allows the runtime system to schedule the
tasks on different cores. In practice, we improve our scaling by
more than 2X as compared to static partitioning for 16 threads. We
observe this speedup in small game like scenarios with tens or hun-
dreds of agents. By exploiting TLP, P-ClearPath achieves around
3.8X parallel speedup on the quad-core X5460 for all our bench-
marks.

6 Analysis and Comparisons

In this section, we analyze the performance of our approach and
compare with other multi-agent and crowd systems.

6.1 Performance Analysis

A key issue for many interactive applications is the fraction of
processor cycles that are actually spent in collision avoidance and
multi-agent simulation. Note that collision avoidance can take a
high fraction of frame time, especially when we are dealing with
dense scenarios with a high number of agents. On a quad-core Xeon
CPU, P-ClearPath takes up only 20% of the available computation
time for 5K agents. The rest of the remaining 80% time could be
used for Al, Physics, behavior, rendering and related computations.
As a result, P-ClearPath running on commodity many-core proces-
sor may be fast enough for game-like scenes. For an urban simula-
tion with 100K and 250K agents, we achieve interactive rates.

6.2 Comparison

We compared the performance of our serial implementation of
ClearPath with other approaches in Section 5.1. In this section,
we compare the features of the multi-agent or crowd systems that
use the parallel capabilities of a GPU or multiple CPUs.

Our multi-agent system based on P-ClearPath can handle heteroge-
neous agents, global navigation and support collision response be-
tween the agents. Some earlier algorithms also offered similar ca-
pabilities. These include Parallel-SFM [Quinn et al. 2003], which is
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Figure 6: Urban simulation: 25K independent agents walking
in a city model on sidewalks and intersections. P-ClearPath can
efficiently perform local collision avoidance for all agents in this
simulationat 20 fps on Intel quad-core Xeon (3.14GHz) processor

an implementation based on a social force model which parallelizes
the simulation process over 11 PCs and used for simulations with
thousands of agents. A multi-core implementation of RVO-Library
on a 16 Core system is described in [Berg et al. 2008b]. Sud et al.
[2007a] used GPU-based discretized Voronoi diagrams for multi-
agent navigation (MANG), but this approach doesn’t scale to very
high number of agents. It is hard to make direct comparisons with
Parallel-SFM and MANG, as they have very separate behavior than
our system.

There are other approaches that can handle some complex scenar-
ios. But it is hard to make direct comparison with them because
some of the underlying features of these approaches are different.
FastCrowd [Courty and Musse 2004] is an implementation of a sim-
ilar social force model on a single GPU, but it doesn’t include col-
lision response. PSCrowd [Reynolds 2006] implements a simple
flocking model on a Cell Processor with 6 SPUs, but may not sup-
port global navigation. Continuum Crowds [Treuille et al. 2006]
can mainly handle homogeneous group of a large agents and has
impressive performance numbers on a single CPU for large homo-
geneous groups.

6.3 Limitations

ClearPath has some limitations. The FVO constraints highlighted
in Section 3.2 are conservative. It is possible that there is a colli-
sion free path for the agents, but our algorithm may not be able to
compute it. Moreover, we compute a new velocity for each agent,
v which can change the behavior of the agents. The data par-
allel algorithm can obtain up to 50% improvement as a function of
SIMD width and the performance also varies based on cache size
and memory bandwidth.

7 Conclusions and Future Work

In this paper, we present a robust algorithm for collision avoidance
among multiple agents. Our approach is general and works well
on complex multi-agent simulations with tightly-packed and dense
scenarios. The algorithm is almost one order of magnitude faster
than prior VO-based approaches. We describe a parallel extension
using data-parallelism and thread-level parallelism and use that for
real-time collision avodiance in complex scenarios with hundreds
of thousands of agents.

There are many avenues for future work. We would like to port
P-ClearPath to many-core GPUs and evaluate its runtime perfor-
mance. We would like to compare and validate the agent behavior
generated by P-ClearPath with other systems and real-world data.

An interesting extension would be to incorporate other constraints
related to human dynamics and human behavior with ClearPath.
Finally, we would like to integrate ClearPath with some game en-
gines.
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