
Online Submission ID: 0399

Selective ray tracing for interactive high-quality shadows

Figure 1: Soft shadows: Our selective ray tracing algorithm can
render the 12.7M triangle Powerplant model at 16 fps with hard
shadows (left) and over 2 fps with soft shadows with 16 light sam-
ples (right) running on a NVIDIA GTX 280 GPU.

Abstract

We present novel algorithms to achieve interactive high-quality il-
lumination with hard and soft shadows in complex models. Our
approach combines the efficiency of rasterization-based approaches
with the accuracy of a ray tracer. We use conservative image-space
bounds to identify only a small subset of the pixels in the rasterized
image and perform selective ray tracing on those pixels. The algo-
rithm can handle moving light sources as well as dynamic scenes.
In practice, our approach is able to generate high quality hard and
soft shadows on complex models with millions of triangles at al-
most interactive rates on current high-end GPUs.

1 Introduction

The state of the art in interactive rendering is constantly mov-
ing towards greater physical realism and detail. This is primarily
driven by the rapid increase in performance provided by commodity
GPUs. The underlying rasterization algorithms utilize parallelism
along with high coherence in memory accesses and computations.
As a result, current GPUs are able to render models with millions of
triangles at interactive rates. However, there are still two main chal-
lenges for generating high-quality images using rasterization: first,
visibility and occlusion computations used for shadows can suffer
from accuracy and aliasing problems. Second, secondary effects
such as reflections, refractions and full global illumination that are
recursive do not seem to fit well into the rasterization framework.

It is well known that ray tracing offers a simple and elegant solu-
tion to many of the problems highlighted above and generates high
quality images. Over the last decade, many fast algorithms have
been proposed for ray tracing that utilize the parallel capabilities
of current CPUs and GPUs. In practice, current ray tracing sys-
tems can achieve close to interactive performance for primary rays
on a single desktop system. However, for many applications they
are still one or two orders magnitude slower than GPU-accelerated
rasterization algorithms. As a result, there is limited use of full ray
tracers in interactive applications such as computer games or virtual
environments.

In this paper, we address the first challenge faced by rasterization

algorithms in the area of shadow generation. The main problems
in these algorithms is aliasing error and many techniques have been
proposed to alleviate these problems. In practice, these approaches
either do not scale well to complex, general models composed of
millions of triangles or do not fully address all of the sources of
error.

Main results: In this paper, we present a selective ray tracing al-
gorithm to generate high quality hard and soft shadows on current
many-core GPUs. Our approach uses a hybrid strategy that first ras-
terizes the scene using shadow mapping techniques. Next, we iden-
tify the regions or the pixels of the frame that are potentially inac-
curate and perform selective ray tracing to compute correct shading
information only for those pixels. In practice, the subset of inac-
curate pixels is small and our selective approach shoots relatively
few rays as compared to a full ray tracer, resulting in a significant
speedup. We use conservative techniques to identify all potentially
inaccurate pixels (PIP) and present an efficient technique for cou-
pling with a GPU ray tracer to provide the missing information for
those pixels. Therefore, the overall rendering algorithm is able to
combine the efficiency of the rasterization algorithms with the ac-
curacy of ray tracers.

Overall, our approach provides several key advantages:

• High-quality shadows: In the benchmark scenes our hard and
soft shadow generation algorithms result in almost no per-
spective or projective aliasing artifacts and the image quality
is very close to a full ray tracer.

• Efficiency: We use compact hierarchical representations to
accelerate the ray intersections and allow ray tracing on GPUs
with low memory overhead. As compared to pure rasteriza-
tion, our hybrid algorithms are 30-70% slower and about 4-10
times faster as compared to full ray tracing.

• Generality: We place no restriction on models or light posi-
tions and can handle all data sets that fit into GPU memory.

We demonstrate our implementation on several models ranging
from game-like scenes with dynamic objects to massive CAD mod-
els with millions of triangles at interactive rates on a high-end GPU.

2 Previous work

There is considerable literature on fast ray tracing and shadow algo-
rithms. Due to space limitations, we only give a brief overview of
techniques that address shadow aliasing and real-time ray tracing.

Shadow algorithms: We refer the readers to [Hasenfratz et al.
2003; Lloyd 2007; Laine 2006] for recent surveys on shadow al-
gorithms. At a broad level, prior techniques to alleviate aliasing
artifacts using rasterization methods are based on shadow maps
[Williams 1978] and shadow volumes [Crow 1977]. The latter is
an exact object-space technique but may not scale well on com-
plex models. Most current interactive applications use variants of
shadow mapping, but may suffer from projective or perspective
aliasing problems. Many practical algorithms have been proposed
to alleviate perspective aliasing [Stamminger and Drettakis 2002;
Wimmer et al. 2004; Lloyd 2007] as well as projective aliasing
[Lefohn et al. 2007]. Other shadow mapping algorithms can elim-
inate blocking artifacts [Aila and Laine 2004; Johnson et al. 2005;
Sintorn et al. 2008] by implementing a rasterizer that can process
arbitrary samples on the image plane. Soft shadows can be imple-
mented by sample-based methods such as using averaging visibil-
ity from multiple shadow maps to calculate visibility or ray tracing.

1

Hierarchy
Geometry

Framebuffer(s) unshaded FB with pixels marked

Open ray buffer Traced ray results

FB shaded with ray results

PIP detection
Ray generation

and compaction
Ray tracing Shading

Rasterization

Figure 2: Overview: Pipeline model of our hybrid rendering algorithm. After GPU-based rasterization is run, the PIP computation detects
and marks pixels that need to be ray traced. The ray generation step generates a dense ray list from the sparse buffer of potentially incorrect
pixels and then generates one or more rays per pixels as required. A selective ray tracer traces all the rays using the scene hierarchy and
then applies the results to the original buffer. Finally, the pixels are shaded based on the ray results.

Both these methods can be slow, so many approaches have been
developed to generate plausible soft shadows with methods such
as post-filtering shadow maps or special camera models [Mo et al.
2007], which produce correct results only for simple scenes. More
accurate approaches evaluate the light source visibility from the
image samples by backprojection [Assarsson and Akenine-Möller
2003; Schwarz and Stamminger 2007; Sintorn et al. 2008; Bavoil
et al. 2008] or by generating shadows from environment lighting
[Annen et al. 2008].

Hybrid rendering and ray tracing: Several approaches combine
rasterization and ray tracing to generate higher quality images
[Stamminger et al. 2000] or use GPU rasterization for visibility and
shading [Foley and Sugerman 2005; Horn et al. 2007]. Animated
scenes can be used with ray hierarchies [Roger et al. 2007]. Other
work includes scattering in participating media [Zhou et al. 2008]
or adding secondary effects such as refractions [Sun et al. 2008].

3 Selective ray tracing

In this section we give a brief overview of our hybrid rendering
algorithm that performs selective ray tracing. The main idea behind
selective ray tracing is to only shoot rays corresponding to a small
subset of the pixels in the final image in order to accelerate the
overall rendering.

Our assumption for the selective ray tracing approach is that we
have underlying fast rasterization algorithms that compute the cor-
rect result for most of the frame, but may include localized error
such as aliasing artifacts in parts of the image. We try to identify
these regions of potentially incorrect pixels (PIP) in a conservative
manner, since any additionally selected pixels will not change the
image whereas missed ones may result in artifacts. As Fig. 2 il-
lustrates, this is a multi-step process that starts with the results of a
GPU rasterization algorithm that provides a first approximation to
the desired result (e.g. shadows). As a next step, we test the accu-
racy of each pixel and classify it accordingly, marking each pixel in
a buffer, e.g. as pass/fail. The buffer with all marked and unmarked
pixels is then passed into the ray tracer where the first step filters
out all non-marked pixels and keeps just the potentially incorrect
pixels. For each pixel in the PIP set, we shoot one or more rays to
compute the correct visibility or shading information for the under-
lying problem (e.g. shadows.) All rays are stored in a dense list
that can be used as input for any data parallel, many-core GPU ray
tracer. After the rays have been evaluated, the results are then writ-
ten back to the original pixel in the PIP set. Back in the rasterizer,
a shading kernel is used to compute colors for all the pixels.

In general, this hybrid approach is one of the ways to augment the
weaknesses of current GPU-based rasterization algorithms. The
most important issue that governs its performance is the fraction

of pixels that are in the PIP set. If only a small number of pixels
are correct then the overhead of the hybrid approach may outweigh
the savings compared to full ray tracing. This also means that the
PIP computation algorithm should try to limit the number of pix-
els it marks while still being conservative. Also, any rasterization
algorithm that is used as input for the first step should be efficient
so that it is able to compute visibility and shading information for
the initial image quickly even on complex models. Otherwise, the
typically logarithmic scalability of ray tracing may make a full ray
tracing solution faster. The next section describe our algorithms for
shadow generation that are based on these characteristics.

4 Shadows

In this section, we present our algorithms for generating high qual-
ity shadows based on hybrid rendering and selective ray tracing.
We first describe our approach for hard shadows and then extend
the approach to soft shadows.

4.1 Hard shadows

Shadow mapping is one of the most widely used algorithms for
generating hard shadows for interactive applications. It works on
general, complex 3D static and dynamic scenes and maps well onto
current GPUs. However, the shadow maps may need high reso-
lution to avoid aliasing artifacts. These errors can be classified
into perspective and projective aliasing [Stamminger and Drettakis
2002]. Perspective error occurs due to the position of the surface
with respect to the light and viewpoint, can result in the ’blocki-
ness’ of shadows in the algorithm. Projective error stems from the
orientation of the receiver to light and viewpoint. Geometric errors
from under-sampling can also include missing contributions from
objects that are too small or thin in light space, e.g. surfaces that
are oriented close to coplanar with the view direction. Artifacts
from this error result in missing and interrupted shadows for these
objects. Finally, shadow map self-shadowing error occurs from in-
accuracies in the depth values computed in the light view and the
camera view. It stems both from depth buffer precision (numeri-
cal error) as well as orientation of the surface (geometric error). We
consider this mainly an artifact that can be minimized by increasing
depth precision and using slope-dependent bias and do not address
it directly in our algorithm.

Pixel classification: We now discuss our method for estimating the
set of pixels in the image that can potentially be incorrect (PIP)
due to the error described above. We first note that most of the
error in shadow mapping appears at shadow boundaries while the
shadow interiors (as well as the interiors of lit regions) tend to be
accurate. Thus, we can assume that when we look up the corre-
sponding sample in the shadow map for a given image sample, it
should not be considered accurate if it is adjacent to an edge in

S

n

L

X
X

S

S

X

a) b)

= shadow map sample = image sample

X
X

SS

c) d)

X

X

S

n

Figure 3: PIP computation: a) For a given image sample X we
project back to the shadow map and find the corresponding sample
S. We then test the depths of the surrounding shadow map samples
and select the one with the maximum difference ∆ in depth value to
S and label it as Ŝ. b) We now determine whether the surface at X

can be affected by an edge at S and Ŝ by finding the closest point X̂

on the surface within the angle α of one shadow map pixel and find

its depth d̂. c) If d̂ is within the shaded region of depth ∆ around S

or on the other side of the region as seen from X, then it needs to
be ray traced. In this case, the pixel can be classified as shadowed.
d) Counter-example: X̂ is in the region and thus the pixel is ray
traced.

the shadow map. We therefore modify the standard depth buffer
look-up to test the 8 texels around the sample value with depth
s in the shadow map and find the maximum absolute difference
∆ = max(‖s − s′‖,s′ ∈ depth around S) in depth. If ∆ exceeds a
threshold value, e.g. a fraction of the possible scene depth as de-
termined by z-buffer near and far planes, we assume that there is a
shadow edge at this image pixel. In this case, we need to make sure
this edge can affect the shadow generation at the current shading
sample X that is at distance d from the light source (see Fig. 4.1 for
illustration.) This is to prevent that a relatively small shadow dis-
continuity at one side of the model does still affect pixels far away.
To achieve this, we find the closest distance to the light d̂ that the
receiver surface can reach within the angle α of one texel of the
shadow map. Intuitively, the closer to parallel the receiver surface
is to the light direction, the larger the difference between d̂ and d

becomes. If d̂ overlaps the interval [s−∆,s + ∆] or d and d̂ are on
different sides of S then we conservatively mark the pixel as part of
the PIP set.

The actual computation of d̂ for a local point light source follows
from trigonometry such that d̂ = d sinβ/sinα +β . Given the nor-
mal vector n and normalized light direction L, then this is easily
computed by using sinβ = n ·L. A similar calculation for direc-
tional lights is relatively straightforward. Note that is also possible
to precompute ∆ for the shadow map and store it for each pixel in
addition to the depth value. This may be useful if the light source is
mostly static since it reduces the memory bandwidth needed during
the lighting pass of the rasterization algorithm.

One case that the method above does not detect is the geometric
aliasing problem when a primitive is too small (e.g. a thin wire)
as seen from the light view and thus not even drawn during scan-
line rendering. Some of the pixels that are actually covered by the
object may not get rasterized and thus not detected during edge fil-
tering. This can cause missing shadows regions in the actual image.
Our solution is to identify these small objects during rasterization
from the light view and employ conservative rendering techniques
to assure that they are actually part of the PIP set. We use geometry

Figure 4: Detecting shadow artifacts: Shadow on City model.

Top left: shadows with shadow mapping at 20482 resolution. Top
Right: pixels marked for ray tracing in red. Bottom left: pixels
marked by conservative rendering. Bottom right: final result. The
image is identical to the fully ray-traced result.

shaders to implement the conservative triangle rendering method
described in [Hasselgren et al. 2005] and modified by [Sintorn et al.
2008]. In essence, each triangle is transformed into a polygon with
6 corners by extruding at the original vertices. The new extruded
primitive is then guaranteed to cover the center point of each pixel
that it touches. Since extending all the triangles in the scene could
be extremely costly, the shader also tests the area and aspect ratio of
each triangle in image space and only uses conservative rendering
for those that are thin and thus likely to be missed. At the same time,
this technique automatically avoids very small but regular triangles
(e.g. as in scanned models) where conservative rendering is not
needed. Note that an even more efficient culling method would be
needed to detect whether the triangle also has a silhouette edge, but
we found that this adds more constraints on the rendering pipeline.
e.g. by having to provide adjacency information. Figure 4 illus-
trates the effect of our conservative rendering approach on the very
thin spokes of the bicycle wheels in the model, as well as the bench.

4.2 Soft shadows

We now describe an extension of the approach presented above that
can also be used to render high quality soft shadows. Ray tracing
approaches stochastically generate a number of samples on the area
light source for each hit point, evaluate their visibility using shadow
rays and then average the results to find an estimate of how much
of the light source is visible from the hit point. We can emulate
this approach by rendering multiple shadow maps, each from one
of the light source samples and then averaging the visibility results
as well. However, this approach has two disadvantages: first, it
is equivalent to testing the same light samples at each pixel which
cause visible sampling artifacts. Second, and more importantly, a
high number of samples are needed to avoid high frequency alias-
ing error, which means that the scene has to be scanline rendered
numerous times from multiple viewpoints on the light to get a high-
quality result. This could be too slow for interactive applications.

Our approach for soft shadows modifies the naive approach de-
scribed above to reduce the number of shadow maps needed. The
main idea is that it is sufficient if we can accurately classify the
pixels in terms of whether they are in full shadow (umbra), fully
lit or in the penumbra region. The exact computation of umbra
and penumbra region for area light sources are expensive. In terms
of sampled-based approximation, a high number of light samples
may be needed to correctly evaluate the penumbra region. We use

this classification of penumbra-region pixels only to mark them for
evaluation with a high number of samples using ray tracing. The
problem then simplifies to finding the pixels in penumbra regions.
We generate a fixed number of light samples (e.g. four to six) and
then use the shadow mapping approach above to compute the light-
ing information for all pixels. If the results from all these fixed
light samples match then we assume the pixel is fully lit or fully
shadowed. All other pixels as well as those marked by the previous
shadow mapping step are sent to the ray tracer for stochastic vis-
ibility evaluation such that the penumbra regions can be lit with a
higher number of samples per pixel.

The advantage of this approach is that it can produce a correct sam-
pling for the penumbra regions via ray tracing for general models
where methods using back-projections are more limited. However,
since we only use four initial samples to estimate penumbra sta-
tus for a pixel, it is possible that pixels are misclassified as fully
occluded when the four samples hit separate objects but miss the
unoccluded parts. This mainly occurs when the sample density of
the shadow maps is far lower than locally needed.

5 Implementation and Results

In this section, we describe our implementation and highlight the
performance on many complex models.

5.1 Implementation

We have implemented the algorithms described above on a
NVIDIA GPU. We use OpenGL with Cg as the rendering interface
and CUDA for general-purpose programming. In practice, there
are many possible variations to implement our approach. First of
all, the selective ray tracing model is very similar to a manual im-
plementation of allowing a trace() call in the original shader,
but in a more limited form. In particular, the shader cannot ex-
plicitly generate rays, but only mark pixels such that they are then
generated by the ray tracer itself. In practice, it is harder to store
an arbitrary number of rays per pixel in a rasterization framework
compared to a general purpose GPU programming environment be-
cause of limitations in the rasterization interface. Another issue for
an implementation is when to perform the shading for the pixels.
Our implementation assumes that shading for all pixels is deferred
until the very last step such that ray traced pixels are shaded in the
same way as the rasterized samples. As an alternative, the shading
could also be performed at the end of the ray tracer and just written
to the frame buffer instead. While this might be easier to imple-
ment, it would require duplication of all shading kernels both in the
pixel shading as well as GPU computation language.

In our system, we make the simplifying assumption that the rays are
evaluated for visibility only, which sidesteps the problem of how to
handle shading inside the ray tracer. Our ray tracer uses a BVH built
on the GPU as the acceleration structure with a simple stack-based
traversal similar to the one described in [Günther et al. 2007]. This
also allows us to handle dynamic scenes by rebuilding the hierar-
chy each frame. A compaction step groups all the rays generated for
marked pixels into a dense buffer that is then distributed into small
packets, each of which is handled independently. For rendering
massive models, memory for storing the geometry and hierarchy
on the GPU becomes an issue. We use a variant of the ReduceM
representation [Lauterbach et al. 2008], but we modify the strip rep-
resentation such that it is possible to also directly rasterize strips via
OpenGL in order to use the same representation both for rasteriza-
tion and ray tracing. In addition, we also use the top levels of the
scene BVH for view frustum culling and occlusion culling based
on occlusion queries both from the light as well as the camera view.
These culling methods accelerate the performance of the rasteriza-
tion algorithm. In our current implementation,view frustum culling

Benchmarks Tris Hard Soft

SM SRT FRT SM SRT FRT

City 58K 256 103 (3%) 21 200 19 (9.8%) 3.7

Sibenik 82K 150 66 (4%) 13 47 7.3 (6%) 0.64

Buddha 1M 42 29 (1.4%) 8 34 9 (7.7%) 2.5

Powerplant 12M 25 16 (7.1%) 4 4.4 2.1 (11%) 0.8

Figure 5: Performance: Performance of our selective ray tracing
(SRT) approach on our benchmark models, compared to the simple
shadow mapping algorithm (SM) with one point light for hard and
4 point lights for hard shadows, as well as a fully ray traced so-
lution (FRT). The percentages show the fraction of pixels marked
as incorrect. All numbers are frames per second (FPS) at 10242

screen resolution.

0% 20% 40% 60% 80% 100%

City

Sibenik

Buddha

Powerplant

Shadow mapping

Ray Tracing

Ray organization

CUDA/GL overhead

0% 50% 100%

City

Sibenik

Buddha

Powerplant

Figure 6: Timings: Time spent in different parts of the algorithm
for hard (left) and soft shadows (right). Rasterization includes both
shadow map generation, frame buffer rendering and shading. Ray
tracing includes time spent in the ray tracing kernel only, while ray
generation is the time for generating the compact ray buffer from
sparse frame buffer and writing back at the end. CUDA/GL times
represent the cost for buffer transfers and similar as the overhead
of switching between OpenGL and CUDA.

is currently performed on the CPU, but could also be easily imple-
mented in a CUDA algorithm. For soft shadows, we use a simple
stratified sampling scheme for the shadow ray samples that is com-
puted for each pixel with a simple random number generator inside
the ray generation kernel. We base the random seed on sample lo-
cation which allows us to compare our results for selective and full
ray tracing without having to isolate variance in the estimate.

5.2 Results

We now present results from our implementation running on a Intel
Core2 Duo system at 2.83 GHz using a NVIDIA GTX 280 GPU
running Windows XP. Table 5 summarizes the timings for hard and
soft shadows at 1024×1024 screen resolution, including compar-
ison timings for GPU algorithm only, selective ray tracing and full
ray tracing. The data for selective ray tracing also shows the per-
centage of pixels in the PIP set. We selected a wide range of bench-
mark models from relatively low-complexity game-like environ-
ments to high-complex scanned, CAD and architectural models to
highlight the scalability of the algorithm. For shadows, all timings
are for a moving light source, i.e. the shadow map is generated per
frame, and soft shadows are generated by using 16 samples/pixel
and four original samples for the penumbra estimation Note that
our algorithm is typically 5 times faster than full ray tracing.

We present a detailed analysis of the timing breakdown in selective
ray tracing (see Table 6) for several of our benchmark scenes. There
is a relatively constant overhead associated with PIP detection, ray
compaction and parts of the implementation such as the overhead
of CUDA/OpenGL communication in the current programming en-
vironment. Note that the actual tracing of the selected ray samples
only makes up a fraction of the time spent. While we do not explic-
itly show the overhead in rasterization introduced by conservative
rendering in the graph above, we have found that in practice it slows

down the rasterization step by about 10% since only a relatively
small set of primitives are rendered conservatively.

6 Analysis and Comparison

Comparison: A very important aspect for evaluation of our al-
gorithm is the difference in image quality compared to the full
ray tracing solution. We present a detailed comparison for sev-
eral benchmark scenes in the appendix that show the original im-
age generated with shadow mapping at 10242 resolution, selective
ray tracing results and reference full ray tracing (with a difference
image). In practice, for hard shadows we have observed that our al-
gorithm yields images that are almost error free and virtually iden-
tical to fully ray traced results for all our benchmark scenes, with
differences arising from small biasing errors. Unfortunately, we
cannot guarantee full correctness since some features such as very
small holes inside a solid object could theoretically be missed due
to the regular sampling in light space (i.e. geometric aliasing er-
rors). However, despite the theoretical problem we have not run
into this case on any of our benchmark models even for very com-
plex geometric situations and any remaining differences stem from
self-shadowing artifacts.

It is hard to directly compare the quality of our results with only
rasterization-based approaches. The fastest rasterization methods
for hard shadows based on warping and partitioning map well to
current GPUs [Stamminger and Drettakis 2002; Wimmer et al.
2004]. However, they only alleviate perspective aliasing and the
performance can vary based on the relative position of the light
source with respect to the viewpoint. Many techniques to handle
projective aliasing [Lefohn et al. 2007] and alias-free shadow maps
[Aila and Laine 2004; Johnson et al. 2005] can be implemented on
current GPUs. These approaches can generate high quality shad-
ows, but it is not clear whether they can scale well to massive mod-
els. For soft shadows, most of the accurate methods may not be able
to handle complex models at interactive rates on current processors.
Recently, Sintorn et al. [2008] presented a soft shadow algorithm
that can handle models with at most tens of thousands of triangles
at interactive rates. It uses a more accurate method for penumbra
computation, but its scalability on large models with moving light
sources is not clear.

Performance analysis: On current highly-parallel architectures,
algorithms should avoid being limited by memory bandwidth rather
than computation. This is mainly because the growth rate for com-
pute power far exceeds that of memory bandwidth. Previous work
has already shown that ray tracing using hierarchies on GPUs is
in fact limited by memory bandwidth. In contrast, the streaming
model of computation used in the rasterization pipeline has been
shown to be very successful in this regard with memory bandwidth
being mostly used for depth and frame buffer accesses. We analyze
our selective ray tracing approach compared to the full ray tracing
solution to investigate its efficiency.

We look at the memory bandwidth requirements when running both
selective and full ray tracing for two of our benchmark models, in
particular the memory bandwidth used by the actual ray tracing ker-
nel. Since current GPU architectures have limited cache sizes, i.e.
only a texture cache, such analysis is simpler than for CPUs. We
implemented a simple software simulator that emulates the behav-
ior of the memory unit for global memory accesses in CUDA in
device emulation mode running on the host CPU. Care has to be
taken mainly to correctly account for the behavior of the memory
unit in combining data parallel accesses to contiguous memory. Our
results (see Fig. 7) indicate that selective ray tracing consistently
only uses about an order of magnitude less memory bandwidth per
frame than full ray tracing. The bandwidth for selective ray trac-

Model Geometry Full RT SRT SRT+SM SRT % Rays

City 2 MB 1066 MB 113 MB 222 MB 5

Sibenik 2.2 MB 2280 MB 224 MB 859 MB 4

Buddha 27 MB 3148 MB 601 MB 1144 MB 12

Figure 7: Memory bandwidth: Simulated memory bandwidth re-

quirements for rendering one frame at 5122 image resolution with
selective (SRT) and full ray tracing (FRT) on several models (total
storage for geometry and BVH is given in second column to show
the total working set size.) The last column shows the time for SR
plus a very conservative estimation of bandwidth needed by scan-
line rendering of the shadow map.

0
5

10
15
20
25
30
35
40
45
50

1000000 2000000 4000000 8000000

P
e

rf
o

rm
a

n
ce

 F
P

S

#triangles

Hard shadows

Soft shadows (16x)

0

2

4

6

8

10

12

14

16

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20

%
 p

ix
e

ls
 r

a
y

 t
ra

ce
d

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
ce

Light source area

Performance

% pixels

Figure 8: Scalability: Top: Performance vs. model complexity
on several simplification levels of the St. Matthew model. Bottom:
Performance vs. light source size on Buddha model.

ing is still slightly higher than expected from the number of rays
compared to full ray tracing. This is due to the fact that the ray
groups in selective ray tracing are more incoherent and thus will
access more memory. In order to perform a complete analysis, we
also need to compute the memory bandwidth needed by the raster-
izer for scanline rendering of the shadow map. However, this is not
possible for hardware accelerated rasterization (i.e. current GPUs)
since the implementation details are not publicly available. How-
ever, we provide an estimate for the bandwidth used for rasterizing
the shadow map by multiplying the peak bandwidth on the GPU
by the time taken for rasterization, thus providing us a conservative
upper bound. We list the summed memory bandwidth for shadow
mapping plus selective ray tracing in the last column. Note that the
combined bandwidth for this is still significantly lower than full ray
tracing.

We also demonstrate the scalability of our approach with model
complexity. To eliminate bias introduced by different model char-
acteristics, we use different simplification levels of the same model
and then compare the time used for selective ray tracing for each of
the levels. Our results in Fig. 8 show that we can achieve sub-linear
scalability with complexity thanks to the use of ray tracing and oc-
clusion culling techniques. We also look at the performance impli-
cations of increasing the area of the light source for soft shadow
rendering (see Fig. 8 bottom). Similar to other approaches our per-
formance decreases significantly with larger light sources mostly
due to more of the model being in penumbra regions and subse-
quently being ray traced.

Limitations: Overall, the main determining factor for our algo-
rithm is the size of the PIP set. If the set is too large, then our al-

Figure 9: Benchmarks: Left: soft shadows using 16 light samples

in Sibenik cathedral model, running at 7 fps at 10242 resolution.

gorithm cannot achieve a significant speedup over full ray tracing;
however, at worst it can also only be slightly slower to the extent
of shadow mapping overhead. In addition, the rays generated by
selective ray tracing may exhibit less ray coherence than in full ray
tracing which means that tracing these rays will be slightly more
expensive on a per-ray metric. Since the rays still can access any
part of the model, we also can only render models that fit into GPU
memory and need to store an additional ray tracing hierarchy as
well as update or rebuild it for deformable models. Our approach
may also still carry over some of the geometric errors from raster-
ization such as depth buffer errors and resulting shadow map bias.
The accuracy of our soft shadow algorithm is governed by the un-
derlying sampling algorithm.

7 Conclusion and future work

We presented new algorithms for selective ray tracing that augment
existing fast rasterization approaches for shadows. In practice, they
can generate high-quality shadows, similar to full ray tracing and
are about 5 times faster on current GPUs. Our approach is robust
and scales in terms of handling complex models. We also analyzed
its bandwidth requirements compared to full ray tracing and demon-
strate that our approach maps well to current architectural trends.

There are many avenues for improvement. For one, the shadow ac-
curacy detection could be made less conservative by using a better
edge representation in shadow maps, such as silhouette maps [Sen
et al. 2003]. However, in each case the trade-off between a more
expensive rasterization shadow step and the resulting ray workload
will need to be carefully evaluated. Our approach should be directly
applicable to ambient occlusion, as screen-space ambient occlusion
approaches can generate a good approximation of the local indi-
rect illumination using the depth buffer. In general, our selective
ray tracing approach could also be used to evaluate secondary ef-
fects such as reflections and refractions that require shading, but
this would require more flexibility in the rendering pipeline than
current GPUs allow. Upcoming processors such as Larrabee may
provide this functionality. An important aspect in the pipeline is the
implementation of the actual ray tracing algorithm. The traditional
ray tracing paradigm using accelerating structures means that all the
geometry needs to be stored for random access during ray tracing,
which may be incompatible with the GPU streaming model. One
interesting solution here is to use ray hierarchies, i.e. a hierarchy
that is built on top of the total set of rays and is intersected with the
scene.

References

AILA, T., AND LAINE, S. 2004. Alias-free shadow maps. In Proceedings of Euro-

graphics Symposium on Rendering 2004, Eurographics Association, 161–166.

ANNEN, T., DONG, Z., MERTENS, T., BEKAERT, P., SEIDEL, H.-P., AND KAUTZ,
J. 2008. Real-time, all-frequency shadows in dynamic scenes. ACM Trans. Graph.

27, 3, 1–8.

ASSARSSON, U., AND AKENINE-MÖLLER, T. 2003. A geometry-based soft shadow
algorithm using graphics hardware. ACM Transactions on Graphics 22, 3, 511–
520.

BAVOIL, L., CALLAHAN, S. P., AND SILVA, C. T. 2008. Robust soft shadow mapping
with backprojection and depth peeling. Journal of Graphics Tools 13(1).

CROW, F. C. 1977. Shadow algorithms for computer graphics. ACM Computer

Graphics 11, 3, 242–248.

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree acceleration structures for a GPU
raytracer. In Proc. ACM SIGGRAPH/EG Conf. on Graphics Hardware, 15–22.

GÜNTHER, J., POPOV, S., SEIDEL, H.-P., AND SLUSALLEK, P. 2007. Realtime Ray
Tracing on GPU with BVH-based Packet Traversal. In Proc. IEEE/EG Symposium

on Interactive Ray Tracing 2007, 113–118.

HASENFRATZ, J.-M., LAPIERRE, M., HOLZSCHUCH, N., AND SILLION, F. 2003.
A survey of real-time soft shadows algorithms. Computer Graphics Forum 22, 4
(dec), 753–774.

HASSELGREN, J., AKENINE-MÖLLER, T., AND OHLSSON, L. 2005. Conservative
rasterization on the gpu. GPU Gems 2, 677–690.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN, P. 2007. Interac-
tive k-d tree GPU raytracing. In Proc. I3D ’07, 167–174.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R. 2005. The irregular
z-buffer: Hardware acceleration for irregular data structures. ACM Trans. Graph.

24, 4, 1462–1482.

LAINE, S. 2006. Efficient Physically-Based Shadow Algorithms. PhD thesis, Helsinki
University of Technology.

LAUTERBACH, C., YOON, S.-E., TANG, M., AND MANOCHA, D. 2008. ReduceM:
Interactive and memory efficient ray tracing of large models. Computer Graphics

Forum 27, 4, 1313–1321.

LEFOHN, A. E., SENGUPTA, S., AND OWENS, J. D. 2007. Resolution-matched
shadow maps. ACM Trans. Graph. 26, 4, 20.

LLOYD, B. 2007. Logarithmic Perspective Shadow Maps. PhD thesis, University of
North Carolina at Chapel Hill.

MO, Q., POPESCU, V., AND WYMAN, C. 2007. The soft shadow occlusion camera.
Proc. Pacific Graphics 2007, 189–198.

ROGER, D., ASSARSSON, U., AND HOLZSCHUCH, N. 2007. Whitted Ray-Tracing
for Dynamic Scenes using a Ray-Space Hierarchy on the GPU. In Rendering Tech-

niques 2007 (Proc. Eurographics Symposium on Rendering), 99–110.

SCHWARZ, M., AND STAMMINGER, M. 2007. Bitmask soft shadows. Comput.

Graph. Forum 26, 3, 515–524.

SEN, P., CAMMARANO, M., AND HANRAHAN, P. 2003. Shadow silhouette maps.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2003) 22, 3
(July), 521–526.

SINTORN, E., EISEMANN, E., AND ASSARSSON, U. 2008. Sample-based visibility
for soft shadows using alias-free shadow maps. Computer Graphics Forum (Proc.

EGSR ’07) 27, 4, 1285–1292.

STAMMINGER, M., AND DRETTAKIS, G. 2002. Perspective shadow maps. In Proc.

SIGGRAPH ’02, 557–562.

STAMMINGER, M., HABER, J., SCHIRMACHER, H., AND SEIDEL, H.-P. 2000.
Walkthroughs with corrective textures. Proc. Eurographics Workshop on Render-

ing ’00, 377–388.

SUN, X., ZHOU, K., STOLLNITZ, E., SHI, J., AND GUO, B. 2008. Interactive
relighting of dynamic refractive objects. ACM Trans. Graph. 27, 3, 1–9.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces. In Computer

Graphics (SIGGRAPH ’78 Proceedings), vol. 12, 270–274.

WIMMER, M., SCHERZER, D., AND PURGATHOFER, W. 2004. Light space per-
spective shadow maps. In Proc. of the Eurographics Symposium on Rendering,
143–152.

ZHOU, K., REN, Z., LIN, S., BAO, H., GUO, B., AND SHUM, H.-Y. 2008. Real-time
smoke rendering using compensated ray marching. Proc. of SIGGRAPH, 1–12.

