
Statistical Methods for User and Team Identification in Multiplayer Games

Christopher M. VanderKnyff Darrell J. Bethea Michael K. Reiter Mary C. Whitton∗

The University of North Carolina at Chapel Hill

Abstract

We present a new machine learning approach to detect collusion in
networked games. Our approach analyzes logs of selected game
events as observed at the game server. We tested our approach in
multiplayer Quake III Arena games, with promising results. In par-
ticular, we report the results of applying our approach in both stan-
dard game modes and in a game mode that we crafted in order to
make collusion detection more difficult. Our approach accurately
identified player collusions in all but one game mode, including the
one we crafted. We further examine reasons for the failure of our
detection mechanism in the cases where it failed.

CR Categories: I.5.2 [Pattern Recognition]: Design
Methodology—Classifier Design and Evaluation; H.5.3 [Infor-
mation Interfaces and Presentation]: Group and Organization
Interfaces—Collaborative Computing—Synchronous Interaction;
K.8.0 [Personal Computing]: General—Games

Keywords: collusion, gaming, deathmatch, boosting, classifica-
tion, principal component analysis

1 Introduction

Cheating still remains an endemic problem in online gaming. Play-
ers caught cheating are disconnected from their game server and
may be banned from reconnecting, but there are typically thousands
of servers running for a popular game, reducing the impact of the
ban. Additionally, without a global player-ban enforcement sys-
tem such as those provided by Valve Anti-Cheat [Val 2002], Punk-
Buster [Eve 2000], or Xbox Live [Mic 2002], the in-game reper-
cussions for being caught cheating are effectively nil. Even the
banning systems previously mentioned can be avoided simply by
switching accounts. While this may be cost-prohibitive for many,
some cheaters have access to compromised accounts and can sim-
ply switch identities rather than purchase new copies of their fa-
vorite games or subscriptions to Xbox Live. A means of identify-
ing repeat players without reliance on account information would
therefore be advantageous.

Collusion is one way by which game state can be conveyed to play-
ers who should not ordinarily receive it. To use the popular online
game Counter-Strike: Source [Val 2004] as an example, players
flagged as “dead” in the game become intangible spectators, able
to fly throughout the level and watch the surviving players continue
to battle. Spectators can give a great tactical advantage to their
teammates by conveying the locations of nearby enemies. While
in-game chat messages from spectators do not reach active players,
the same restriction does not apply to out-of-game communications
media such as instant messengers, the telephone, or even speech.

∗e-mails: {chrisv, djb, reiter, whitton}@cs.unc.edu

Table 1: Summary of scoring in Quake deathmatch and CTF
modes.

Game Mode Victim
Suicide Teammate Enemy

Deathmatch −1 n/a +1
Team Deathmatch −1 −1 +1

Capture the Flag −1 n/a1 +1

Similarly, colluding players in free-for-all games can increase their
scores by sharing information on enemy players or through simple
nonaggression pacts.

Our Game Testbed. Quake III Arena [id 1999] (hereafter, sim-
ply “Quake”) was a popular first-person shooter (FPS) in the early
2000s. In it, each player controls an avatar, which runs through
a virtual environment firing weapons at the opposition. When an
avatar takes a sufficient amount of damage, it plays a death anima-
tion and respawns (reappears) elsewhere in the game level with full
health and no equipment. Upon causing the death of a player, the
attacking player scores a point. Players that fall to zero health with-
out damage inflicted by other players (generally through falling or
weapon misfires) are considered to have suicided, and the suiciding
player loses a point. At the end of the round the player with the most
kills wins, and the game resets on a different level. This free-for-
all game style is known as deathmatch. A variation exists wherein
players are divided into two teams, Red and Blue, and score points
for killing only players of the opposite team; this mode is known
as team deathmatch. The final game mode provided by retail ver-
sions of Quake is called Capture the Flag (CTF). CTF games are
played on special levels, where players must infiltrate the enemy
team’s base, steal its flag, and bring it back to their own base to
score. Damage from friendly fire is usually disabled in CTF games.
The points awarded for each type of kill in these three game modes
are shown in Table 1.

New Knowledge. We instrumented the Quake game code to log
gameplay events to an XML file. A group of volunteers played
deathmatch games using our modified code, and we constructed a
multilevel classifier using boosted decision stumps to identify these
player profiles in a test game. Our classifier correctly identified
players in 65.12 percent of test cases, a statistically significant in-
crease over random selection. Additionally, we tested the efficiency
of principal component analysis (PCA) in identifying groups of
colluding players in free-for-all and team games. As Quake sup-
ports only two teams in its default team game types, we developed
a four-team game type with an asymmetric hostility graph (“Para-
noia”) and tested our algorithm with this mode in addition to team
deathmatch and CTF. Our algorithm was 83.33 percent accurate in
team deathmatch games, 64.71 percent accurate in CTF games, and
82.35 percent accurate in Paranoia games.

1Not possible under usual circumstances. Attacker loses one point when
damage from friendly fire is enabled.

2 Previous Work

Behavior Identification. Adaptive boosting, a technique for im-
proving classifier accuracy by chaining weaker classifiers, was ini-
tially proposed by Freund and Schapire [1997]. Using boosted de-
cision trees for classification is an active research topic in many
other problem domains. Lu et al. [2006] explored the use of boost-
ing to identify and enhance Web search queries used for navigat-
ing to known Web addresses; their feature space included sub-
string commonalities and frequency of clicks and hypertext an-
chors. Wang et al. [2006] used boosting to identify users biomet-
rically from their palmprints, basing their features on the presence
or absence of patterns in the image data. Additionally, Dettling
and Bühlmann [2003] examined the efficiency of boosting for tu-
mor classification in genome data, classifying using the position of
known gene sequences.

While the boosting meta-algorithm can be implemented with a
wide variety of weak classifier techniques, the most popular weak
learners are decision trees, specifically the one-level decision trees
known as decision stumps [Dettling and Bühlmann 2003]. Sev-
eral boosting techniques have since been proposed to address weak-
nesses in the original AdaBoost algorithm. We use LogitBoost, a
boosting technique developed by Friedman et al. [1998] that uses
logistic regression to weight the individual decision stumps. Log-
itBoost is less susceptible to overtraining than its predecessor and
does not overly weight features with low observed variance.

Cheating. Real-time Internet games are subject to a number of
popular attack types [Yan and Randell 2005], three of which are
skill enhancement, denial of play, and information compromise.
Skill-enhancement attacks are best exemplified by aimbots, pro-
grams that automatically aim the player’s virtual weaponry at on-
screen enemies, ensuring significantly better accuracy (and thus a
higher score) than that of an average player. Denial-of-play attacks
may be literal denial-of-service attacks, such as by flooding the net-
work connections or triggering disconnection of other players, or
metaphorical, in which client or server bugs are exploited to render
the game unwinnable for others. Information-compromise attacks
seek to obtain knowledge of game state not normally available to
players, usually by modifying game clients or system infrastruc-
ture.

We agree with Webb and Soh [2007] that the general problem of
collusion is unsolvable, especially in anonymous Internet games
where proctored matches are impractical. A sufficiently subtle
group of colluders in an FPS will always be indistinguishable from
genuinely skilled (or just lucky) honest players. Spectator proxy
systems such as Half-Life TV introduce deliberate delays [Otten
2001] into broadcast gameplay to mitigate the effects of cheat-
ing. In FPS games, the state of the game typically changes quickly
enough for a thirty-second delay to minimize the effects of specta-
tor/player collusion.

Online card games are a favorite domain for anti-collusion research.
Vallvè-Guionnet [2005] proposes a collusion detection technique
for the card game Botifarra. Yan [2003] discusses techniques for
collusion detection and mitigation in contract bridge. In an FPS,
however, the only significant interaction between players is the
exchange of gunfire. Team members refrain from shooting each
other but typically do not hesitate to attack all other players. This
shoot/don’t-shoot decision manifests itself in the amount of damage
done by each player to the others over the course of a match, and we
hypothesize that PCA will reveal the underlying team relationships
between players.

PCA is a well-studied statistical technique [Harman 1976] we ap-
ply to the gaming domain. Given a sample, the basic objective of

PCA is to extract the primary factors (“components”) that explain
the majority of variance observed in the data. The output of PCA
is a list of factors ordered by the amount of variance explained,
and a correlation matrix linking the input observations to these fac-
tors. The first few components generally account for the majority
(greater than ninety percent) of observed variance. Successive com-
ponents contribute diminishing amounts, and are typically ignored.
We believe in the case of player damage matrices, the high-orders
factors can be interpreted as archetypal team behaviors; the scores
of individual team members should align strongly with one of these
teams plus a random error factor representing individual variance.

3 Data Collection

We made a number of modifications to the reference Quake code
base [id 2005]. Many of these were minor changes to aid our exper-
iment protocols (e.g., per-user configuration profiles for public lab
machines running Microsoft Windows), but we also created a new
game mode and added logging infrastructure to the game’s server
code. Data collection was considered a user study by the university
and we received Institutional Review Board (IRB) approval before
running the games.

3.1 Logging Modifications

We modified the Quake III Arena source code to record a subset of
gameplay events as they occur on the server. While Quake already
provides similar functionality in the form of demo recording, de-
mos in Quake are recorded from the perspective of the client. This
is disadvantageous for our purposes for two reasons. First, the client
typically operates with a much shorter time step than the server. To
ensure smooth in-game animation, the client interpolates player and
entity positions using a dead-reckoning algorithm. Rendered player
positions may therefore be inaccurate when compared to the author-
itative server state, additionally causing “warping” effects if the
client must resynchronize frequently. A client-side configuration
option called “g synchronousClients” can be used to disable dead
reckoning [id 2005], but this causes a noticeable degradation in the
simulation frame rate, which has been linked to decreased perfor-
mance in other applications [MacKenzie and Ware 1993]. Second,
Quake demos are generated from network messages received by the
client. For security and performance reasons, a player’s state is in-
cluded in updates only for nearby players. Distant events are not
transmitted to other clients, so recorded demos are not representa-
tive of the entire game except in very small levels.

To overcome these limitations, we record client events from the au-
thoritative copy of the game state held by the server. Rather than
store events as opaque network messages, we use an XML-based
format to aid interpretation. We store player positions and orienta-
tions for each frame of the simulation, which typically updates ev-
ery fifty milliseconds. In addition, we record server configuration
variables at server startup, time of game termination, and times-
tamped discrete events such as player injuries as they occur. As
the overwhelming majority of data associated with each event is
numeric, conversion to canonical XML format is trivial; the perfor-
mance impact of writing these data as XML tags is negligible. (See
the appendix for details on our logging format.)

3.2 New Game Mode: Paranoia

As a first step toward general collusion detection, we analyzed team
games of Quake. Here the colluding factions are obvious, unchang-
ing, and easily verifiable (we disallowed switching teams during
data collection). One drawback to testing collusion-detection al-
gorithms on popular FPS games is that most team game designs

Table 2: Points scored by a member of each team for killing mem-
bers of each other team in Paranoia mode.

Victim
Red Blue Green Yellow

Attacker

Red −1 +1 −1 0
Blue 0 −1 +1 −1

Green −1 0 −1 +1
Yellow +1 −1 0 −1

Figure 1: Diagram showing relationships between the four teams
in Paranoia.

(Quake included) involve only two factions: Red and Blue, Axis
and Allies, humans and aliens. When additional factions exist, the
basic gameplay remains essentially unchanged; enemy uniforms
simply come in more than one color. Naı̈ve approaches to collusion
detection may therefore not scale well to games with more than two
distinct factions.

We added a four-team deathmatch variant largely inspired by The
Ship [Out 2006] which we dubbed “Paranoia.” This mode intro-
duces three twists to the standard team deathmatch gameplay. First,
each team scores points only by killing members of one specific
other team, and loses points for killing friendlies (team members)
and neutrals (see Table 2). Second, the hunter/prey relationship is
not symmetric, as shown in Figure 1. The Blue team is assigned
to hunt members of the Green team, while Blue is itself hunted by
Red. Players who kill their hunters score no points: they are neither
directly rewarded nor otherwise penalized. They are, however, still
alive to hunt their own prey. Third, players receive imperfect infor-
mation on other players’ team affiliations. From a player’s perspec-
tive, only two teams are instantly and reliably identifiable on sight:
their own team, and their prey. Members of both the team hunting
them and the neutral team receive a default, ambiguous appearance
(see Figure 2). Players must therefore rely on behavioral cues to
assess hostility and identify enemies.

This new gameplay style is designed to hamper naı̈ve attempts at
team identification in several ways. The increased number of teams
prevents players from simply being categorized as “Blue” and “Not
Blue,” with the latter being identically equal to the only other team.
In addition, team games are typically not characterized by large
amounts of fire directed at teammates or noncombatants. By elim-
inating the visual distinction between neutral and hostile players,
we enabled a subtler style of play characterized by deception and

Figure 2: Members of the (from left) Red, Blue, Green, and Yellow
teams from the perspective of a Red player.

increased the amount of uncertain weapons fire2 exchanged. We ob-
served that some players, when low on health, would occasionally
seek out a presumed neutral player (i.e., not a current attacker) and
behave aggressively through continued following (as if tailing the
other player) and shooting to miss. The second player would fre-
quently interpret this behavior as an attack from the other team, and
retaliate, killing the first (neutral) player and losing a point. Con-
versely, we observed some hunters low on health or ammunition
disguising themselves as neutrals by ignoring their prey.

3.3 Participant Demographics

Fifty men and four women played games of Quake in one of
our building’s computer labs using our modified client and server.
Thirty-nine participants were graduate students at the time of play,
eleven were undergraduates, two were professors, and the remain-
ing two were members of the public. All players were recruited
via postings to mailing lists or through word of mouth. The me-
dian age for participants was twenty-four. Each participant also
self-rated his experience with first-person games (including games
other than Quake, such as Halo or Team Fortress 2) on a scale from
one (“I never play FPS games”) to five (“I play FPS games daily”).
The results of this survey are shown in Figure 3. After each session,
participants gave feedback on the games they played.

4 Results

4.1 User Identification

Five players and two of Quake’s built-in artificial intelligences
(“bots”) played four rounds of deathmatch on the same game level.
The first three rounds of gameplay were used to train the classifier;
the fourth round was withheld for validation. To construct a clas-
sifier for player identity, we delimited each prerecorded gameplay
sequence along player lifespans, i.e., the time from (re)spawning to
death. Rather than analyze motion profiles, we computed a num-
ber of gameplay features from logged events associated with each
player. These features were selected by applying expert knowledge
of typical player behaviors. The precise feature space measured for
the classifier may be seen in Table 3. Upon player death or server
termination, the feature vector was appended to the sample data set

2We refer to weapons fire where the attacker is uncertain whether his
target is a member of a hostile team.

Figure 3: Self-reported frequency of play of Quake-like games
among participants.

and then reset for the next life. Each life vector was then labeled—
simply the player’s nickname if human, or “AI” if a bot—and input
into the classifier.

In total, the training data set used to construct the classifier (three 20
minute games) included 794 feature vectors distributed among the
six player classes. The verification data (a single 20 minute game)
yielded eighty-six feature vectors for analysis. We then constructed
a multilevel LogitBoost classifier from the training data following
the procedure described by Dettling and Bühlmann [2003]. We then
tested the (default) twenty-round classifier against the validation
data. The classifier correctly identified fifty-six player profiles and
missed thirty, yielding an overall accuracy of 65.12 percent. Pear-
son’s chi-square test shows a strongly statistically significant differ-
ence between our algorithm and naı̈ve random association of player
to feature vector. In this case, χ2 = 150.5, with 1 df, p < 0.001.

4.2 Team Identification

We used two games of Capture the Flag, four games of team death-
match, and seven games of Paranoia for this work. For each n-
player game, we created an n × n matrix where cell (i, j) is de-
fined as the number of damage points player i inflicted upon player
j during the game according to 〈player-hurt〉 events in the game log.
Cells along the diagonal (i.e., cells (i, i)) represented self-damage
from weapon misfires, falling, and hazardous level features. Play-
ers did not change teams or drop out during play, so each row of
the matrix is the result of allegiance to a single team. We then
performed PCA on each matrix, selecting the minimum number of
factors necessary to explain ninety percent of observed variance.
After obtaining an initial factor set from PCA, we used varimax ro-
tation to maximize factor loadings as discussed in Harman [1976].
All statistical procedures were done using SAS 9.1.3. We then ver-
ified our results by comparing the reported factor loadings for each
player to the team he joined during the game.

Our technique’s accuracy in the three game types is shown below
in Table 4. In a k-team game (k = 2 for team deathmatch and CTF,
k = 4 for Paranoia), a player’s team affiliation is considered cor-
rectly identified for our results if the following conditions are met:
First, the player’s damage vector must be strongly (|r| > 0.65)
correlated to one and only one of the first k principal components.
Second, the majority of the other players strongly correlated to the
player’s factor must be the player’s actual teammates during the
game. In the PCA results from the damage matrix, it typically took
more than two factors to account for ninety percent of observed
variance. In order to evaluate the discriminative power of our sec-

ond criterion, we performed the PCA technique a second time in
these cases, but took only the first two principal components regard-
less of the amount of variance explained (average eighty-six percent
of variance for team deathmatch, sixty-nine percent for CTF). The
results of these secondary tests are shown as the “forced” game
types in the table.

Finally, we recorded six deathmatch games with six players each.
Three of these games each featured a pair of players in collu-
sion, and the other three were true free-for-alls used for compari-
son. These colluding players were not hostile toward one another,
though to allay suspicion they did not otherwise act as a team. PCA
was unsuccessful at detecting this collusion, generally assigning the
observed players to factors with no obvious pattern. There were no
highly-correlated factors in common between the colluding play-
ers.

5 Discussion and Future Work

User Identification. We consider our boosting technique to be ef-
fective in discriminating between player profiles stored on a death-
match server. Construction of the classifier from sample data took
approximately two minutes on an Athlon 64 with two gigabytes of
RAM. Further code optimization can probably speed classifier con-
struction, which will be beneficial as multilevel LogitBoost scales
linearly with both class count and training set dimensionality. Once
constructed, however, the decision stumps that make up the classi-
fier can be evaluated trivially; our implementation required no more
than fifty milliseconds per classification.

Further inspection of the user identification results revealed that a
majority (63.33 percent) of the erroneous classifications occurred in
cases where insufficient data were provided to the classifier due to
abnormally short lives. Using player lives to delimit feature vectors
magnifies the data’s existing variance in player ability: good players
live longer and inflict damage more often, so many of the per-life
feature totals are higher for good players than bad. Even the best
players, however, are subject to misfortune. Battling players may
be near the randomly-chosen respawn point and can kill the newly
respawned player in the crossfire. The victim’s log for this lifespan
will be short, including very few item pickups and zero accuracy
with his favorite weapons. Such values are more typical of low-skill
players, causing this particular feature vector to be misclassified as
that of a novice player.

Future in-game player classification algorithms should use a
sliding-window approach instead, examining player performance
over the past n seconds rather than over the past life. In addition
to providing more continuous feedback (as expert players can often
go for several minutes without dying, especially in CTF scenar-
ios), this new feature extraction process should be less sensitive to
such variations in observed player skill. Another direction for fu-
ture work is improvement of the feature selection process. While
easy to calculate from a prerecorded data file, our feature space does
not take movement patterns into account beyond the simple count
of room changes. Some people who played in the Paranoia mode
reported an ability to identify frequent opponents based solely on
their movement patterns and modified their strategy accordingly.
Consequently, further refinement to the feature space used would
be warranted, especially inclusion of maneuvering patterns.

Team Identification. Analysis of team deathmatch games gener-
ally revealed three principal components rather than the expected
two. The first two factors corresponded well to the two teams
present, with each factor exhibiting high positive correlations for
most of the respective teammates and weak correlations for every-
one else. In each case, however, a third factor correlated strongly

Table 3: List of features used in player classification.

Feature Events Used Notes
Lifespan in seconds player-spawn, player-kill —
Points scored player-score —
Source of death player-kill, server-terminate Whether killed by enemy, suicide, or server shutdown
Weapon preferences weapon-fire Proportions of damage dealt with each weapon
Weapon accuracies weapon-fire, player-hurt Percentages of hits for each weapon
Total damage inflicted player-hurt Includes self-damage from explosives
Proportion of splash damage inflicted weapon-fire, player-hurt Refers to explosive damage not inflicted by direct hits
Total damage received player-hurt Includes self-damage and falling
Maximum damage received player-hurt Over a single simulation frame
Average shot damage multiplier weapon-fire Affected by possession of Quad Damage
Number of room transitions player-room-change —
Number of jumps player-jump —
Total time spent crouching duck-begin, duck-end —
Number of healing items picked up item-pickup Includes both health and armor
Average value of healing items item-pickup For each of health and armor
Number of weapon items picked up item-pickup Includes both weapons and ammunition
Number of powerup items picked up item-pickup Examples: Quad Damage, personal teleporter

Table 4: Accuracy of principal component analysis in identifying team affiliations. Significant tests are shown in boldface.

Number Factors Correct Incorrect Overall Chi-Squared Test
Game Type of Games Identified Guesses Guesses Accuracy (Vs. Random Selection)
Team Deathmatch 4 3 30 6 83.33% χ2 = 16.8, df = 7, p < 0.019
Capture the Flag 2 4 11 6 64.71% χ2 = 4.5, df = 3, p < 0.213
Paranoia 7 4 56 12 82.35% χ2 = 36.4, df = 13, p < 0.001
Team DM forced 4 2 34 2 94.44% χ2 = 28.8, df = 7, p < 0.001
CTF forced 2 2 14 3 82.35% χ2 = 9.2, df = 3, p < 0.027

with those players not linked to the other factors. The loadings
for this factor typically showed the previously unclassified players:
players on one team had high positive correlations, and the players
on the other team had high negative correlations. For these extra
players, inspection revealed no strong correlation to either of the
two “team factors.” While the sign change in correlation correctly
indicated opposition between the two players during the game, we
do not consider our analysis technique to have correctly identified
team affiliations for the players correlated with factors other than
the first two. Visual inspection of the logs indicated these players
typically fought each other more than the other enemies present,
probably contributing to their damage totals being organized around
an extra axis.

Similarly, CTF games typically revealed five principal components
rather than two. These additional factors exhibited similar charac-
teristics to the extraneous factors in team deathmatch as described
above. We hypothesize, and visual inspection of the gameplay logs
supports, that in fact a four-team analysis of CTF may be valid. In
this game type, players typically divide themselves into “offense”
and “defense” roles. Offensive players raid the enemy base in order
to capture their flag, and defensive players stay near the flag to pre-
vent this from happening. As a result, defensive players typically
engage only the enemy attackers, and rarely come into contact with
enemy defenders. Defender/defender fights typically occur only
when a flag is being captured, as the entire team tries to kill the en-
emy flag carrier and stop the capture. Visual inspection of recorded
player behaviors (e.g., proximity to friendly base) confirms the di-
vision between offense and defense roles for these players.

Paranoia game logs were generally categorized accurately, but
would frequently add an extra factor with one affiliated player. In
five of these six cases, the player so categorized was a total novice
(“Never” played FPS games) and attained a much lower score than

his teammates. Given the relative lack of team coordination these
novices usually exhibited, this negative result is perhaps unsurpris-
ing.

We find that PCA is a useful technique for detecting groups of play-
ers directly collaborating or competing in team games. The input
data are easy to obtain from the game logic, and anecdotal evidence
suggests similar results may be obtainable from player kill counts
rather than inflicted damage totals, though this approach would be
less tolerant of uneven player skill.

We do not, however, consider our PCA-based technique suitable
for detecting isolated instances of collusion. Colluding players had
no highly-correlated principal components in common, and player-
factor correlations were typically weak (|r| < 0.65). This result
may stem from the basic structure of deathmatch games; with n
players, each with a differing agenda, there are too many player
behavior archetypes (i.e., everyone against player one, everyone
against player two, and so on) for the available set of observations.
Principal component analysis seeks factors that explain multiple ob-
servations at once, which is unlikely to map well to player agendas
in such an individualist scenario. Additionally, the level we used
for our deathmatch experiment contained hazardous environmen-
tal features that resulted in a higher-than-usual proportion of player
suicides. Ignoring self-damage before performing PCA appears to
greatly improve the accuracy of the collusion detection results, and
we plan to verify this observation in future work.

Acknowledgements

The authors wish to thank our funding agencies: the Office of Naval
Research (VIRTE Project), the NIH National Institute for Biomedi-
cal Imaging and BioEngineering, and SAIC. Additionally, we thank
Leonard McMillan for his initial suggestion to use boosting.

References

DETTLING, M., AND BÜHLMANN, P. 2003. Boosting for tumor
classification with gene expression data. Bioinformatics 19, 3,
1061–1069.

EVEN BALANCE, INC. 2000. Punkbuster. http://www.
evenbalance.com/.

FREUND, Y., AND SCHAPIRE, R. 1997. A decision-theoretic gen-
eralization of on-line learning and an application to boosting.
Journal of Computer and System Sciences 55, 1, 119–139.

FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. 1998. Additive
logistic regression: A statistical view of boosting. Annals of
Statistics 28, 2, 337–407.

HARMAN, H. 1976. Modern Factor Analysis. University of
Chicago Press.

ID SOFTWARE. 1999. Quake III Arena. http://www.
idsoftware.com/games/quake/quake3-arena/.

ID SOFTWARE. 2005. Quake III Arena 1.32b Source Code.
ftp://ftp.idsoftware.com/idstuff/source/
quake3-1.32b-source.zip.

LU, Y., PENG, F., LI, X., AND AHMED, N. 2006. Coupling
feature selection and machine learning methods for navigational
query identification. In CIKM ’06: Proceedings of the 15th ACM
international conference on Information and knowledge man-
agement, ACM, 682–689.

MACKENZIE, I. S., AND WARE, C. 1993. Lag as a determinant of
human performance in interactive systems. In INTERCHI ’93:
Proceedings of the INTERCHI ’93 conference on Human factors
in computing systems, ACM, 488–493.

MICROSOFT CORPORATION. 2002. Xbox Live. http://www.
xbox.com/live/.

OTTEN, M. 2001. Broadcasting virtual games in the internet.
Tech. rep., Valve Corporation, http://www.slipgate.
de/download/BroadcastingVirtualGames.pdf.

OUTERLIGHT LTD. 2006. The Ship. http://www.
theshiponline.com/.

SCHAPIRE, R. E., AND SINGER, Y. 1998. Improved boosting
algorithms using confidence-rated predictions. In COLT ’98:
Proceedings of the 11th Annual Conference on Computational
Learning Theory, ACM, 80–91.

SCHLUESSLER, T., GOGLIN, S., AND JOHNSON, E. 2007. Is a bot
at the controls?: Detecting input data attacks. In NetGames ’07:
Proceedings of the 6th ACM SIGCOMM Workshop on Network
and System Support for Games, ACM, 1–6.

VALVE CORPORATION. 2002. Valve Anti-Cheat. http://www.
steampowered.com/.

VALVE CORPORATION. 2004. Counter-Strike: Source. http:
//www.counter-strike.net/.

VALLVÈ-GUIONNET, C. 2005. Finding colluders in card games.
In ITCC ’05: Proceedings of the International Conference on
Information Technology: Coding and Computing - Volume II,
IEEE Computer Society, 774–775.

WANG, X., GONG, H., ZHANG, H., LI, B., AND ZHUANG, Z.
2006. Palmprint identification using boosting local binary pat-
tern. In ICPR ’06: Proceedings of the 18th International Confer-
ence on Pattern Recognition, IEEE Computer Society, 503–506.

WEBB, S. D., AND SOH, S. 2007. Cheating in networked com-
puter games: a review. In DIMEA ’07: Proceedings of the 2nd
International Conference on Digital Interactive Media in Enter-
tainment and Arts, ACM, 105–112.

YAN, J., AND RANDELL, B. 2005. A systematic classification of
cheating in online games. In NetGames ’05: Proceedings of the
4th ACM SIGCOMM Workshop on Network and System Support
for Games, ACM, 1–9.

YAN, J. 2003. Security design in online games. In ACSAC ’03:
Proceedings of the 19th Annual Computer Security Applications
Conference, IEEE Computer Society, 286.

Appendix: Logged Events

Our logging infrastructure records the Quake gameplay events
listed below. Positions are recorded as X/Y/Z triplets in the game
engine’s internal coordinate system. Orientations are recorded in
Euler angles (yaw, pitch, roll) using degrees. All recorded events
are timestamped with the number of milliseconds since sever ini-
tialization.

Server Events

server-init Server initializes.
Details: Server configuration string used by Quake

server-term Server terminates, through match conclusion or oper-
ator shutdown

player-join Player connects to the server, switches teams, or enters
spectator mode
Details: Player nickname, new team name

player-quit Player disconnects from the server
Details: Player nickname

Player Behavior Events

player-spawn Player respawns in the world
Details: Player nickname and new position

player-move Player is alive and server simulation state has up-
dated (every 1/20th of a second)
Details: Player nickname, position, and orientation

item-pickup Player picks up an item (e.g., weapons, health, am-
munition, armor, or special powerups like the Quad Damage
or personal teleporter)
Details: Player nickname, item type

player-jump Player jumps
Details: Player nickname

duck-begin Player begins crouching
Details: Player nickname

duck-end Player stops crouching
Details: Player nickname

Weapon Events

weapon-change Player switches weapons
Details: Player nickname and new weapon type

weapon-fire Player fires a weapon3

Details: Player nickname, weapon type, and damage multi-
plier (usually 1.0, but can be increased by the Quad Dam-
age and Doubler powerups, or decreased by voluntary player
handicap4)

player-kill Player killed by another player or suicide
Details: Killer nickname (or “*nobody*” for
falling/environmental damage), victim nickname, and
means of death (e.g., shotgun, falling, rocket launcher)

player-hurt Player takes damage from a single source
Details: Inflictor nickname, victim nickname, health damage
applied, armor damage applied, and damage type (see player-
kill, “means of death”) if damage is fatal

Scoring Events

player-score Player’s personal score changes
Details: Player nickname and new score

team-score An overall team score (Red, Blue, Green, or Yellow)
changes
Details: Team and new score

flag-steal A flag has been stolen (CTF only)
Details: Nickname of player now carrying the enemy flag

flag-dropped A carried flag is dropped (CTF only)
Details: Team owning (not the team formerly carrying) the
dropped flag

flag-returned A dropped flag returns to its owners’ base (CTF
only)
Details: Team owning the returned flag

Communication Events

chat-broadcast Player sends a text message to all other players
Details: Player nickname, chat message

chat-teamcast Player sends a text message to other players on his
team
Details: Player nickname, chat message

chat-unicast Player sends a text message to one specific other
player5

Details: Sending player nickname, receiving player nick-
name, chat message

3Because of the internal implementation details of Quake’s gauntlet
weapon, we record weapon-fire events for the gauntlet only in frames where
the gauntlet-wielding player inflicts damage.

4No players used handicaps in the experiment.
5No player did this during the experiment, though Quake’s AI will oc-

casionally send messages this way.

