
University of North Carolina at Chapel Hill Department of Computer Science
Technical Report TR09-001
ftp://ftp.cs.unc.edu/pub/publications/techreports/09-001.pdf

Performance of 3D Deconvolution Algorithms on
Multi-Core and Many-Core Architectures

Cory W. Quammen, David Feng, and Russell M. Taylor II

Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
Deconvolution algorithms are commonly used to remove optical distortion from fluorescence microscopy images.
Many such algorithms have been proposed, but those that produce the best image restoration results are iterative.
Typically, each iteration involves one or more 3D convolutions, resulting in execution times of tens of seconds to
several minutes for common image sizes on single-core computers. Fortunately, most of the constituent compu-
tational primitives in deconvolution algorithms are readily parallelized on shared memory architectures. In this
paper, we analyze the performance of three deconvolution algorithms implemented on modern multi-core cen-
tral processing units and on many-core graphics processing units. We discuss the computational primitives in the
deconvolution algorithms and their implementations, and compare performance of the two implementations on
recent parallel processing architectures.

1. Introduction

Deconvolution is a signal processing technique for remov-
ing signal distortion inherent in sensing systems. It is widely
used in many fields including seismology [Sil79], astronomy
[SPM02], single photon emission computed tomography
[FJGC85], and fluorescence microscopy [SN06]. Though
we focus on deconvolution algorithms commonly used in
restoration of fluorescence microscopy imaging in this pa-
per, many of the principles discussed can be applied to other
imaging systems.

All sensing systems introduce distortion artifacts in the
data they record. If the distortion introduced is linear and
shift-invariant, the recorded signal can be modeled as a con-
volution of the underlying true signal with the point-spread
function (PSF) of the system as follows:

o = i⊗h. (1)

Here, i is the true signal,⊗ is the convolution operator, and h
is the PSF. Inversion of this equation to yield the true signal
i is desirable for data analysis. Various deconvolution algo-
rithms approach inversion of (1) in different ways.

By the convolution theorem, we can rewrite (1) as

O = I ·H (2)

where O, I, and H are the Fourier transforms of o, i, and
h, respectively, and · represents point-wise multiplication of
complex numbers. A naïve approach to inverting this equa-
tion is to directly solve for i:

i = F−1(O/H). (3)

Unfortunately, h is band-limited in PSFs from fluorescence
microscopes, so H has zero magnitude components. Addi-
tionally, high spatial frequencies introduced by noise in a h
have small Fourier coefficients. Noise frequencies therefore
become dominate in images restored with this linear inver-
sion method [MKCC99].

Many approaches have been proposed that mitigate the
problems with direct linear inversion. One approach, the
Wiener filter, is a one-pass linear filtering method that re-
duces the impact of small coefficients in the Fourier trans-
form. The Jansson-van Cittert and Maximum Likelihood Es-
timation deconvolution algorithms use an iterative approach
to minimize the difference between the original distorted im-
age o and the convolution of the estimated true signal i with
the PSF.

ftp://ftp.cs.unc.edu/pub/publications/techreports/09-001.pdf

Quammen et al. / Performance of 3D Deconvolution Algorithms onMulti-Core and Many-Core Architectures

Iterative deconvolution algorithms typically require 10-
20 iterations to produce adequate restorations. On single-
core central processing units (CPUs), they can take sev-
eral minutes to run, introducing delay in the data analy-
sis pipeline. Fortunately, deconvolution algorithms consist
of several primitives that are readily parallelized on shared
memory architectures. By exploiting multi- and many-core
processors widely available today, deconvolution algorithms
can be significantly accelerated, potentially reducing the
time to scientific discovery.

In this paper, we analyze the performance of the Wiener
filter, Jansson-van Cittert, and Maximum LIkelihood Esti-
mation deconvolution algorithms on modern parallel com-
puting hardware. Specifically, we analyze the performance
of these algorithms on multi-core central processing units
and many-core graphics processing units (GPUs). Our re-
sults show that the maximum achievable performance on the
16-way symmetric multi-processing (SMP) CPU architec-
ture we used for testing is consistently better than a single
GPU for all the deconvolution algorithms running on typical
problem sizes, but performance is best when only 8 of the
CPU cores are used.

2. Prior Work

Parallel deconvolution algorithms are available in vari-
ous commercial software for fluorescence microscopy im-
age analysis, including AutoQuant from MediaCybernetics
(Bethesda, MD), Huygens from Scientific Volume Imaging
(Hilversum, Netherlands), and DeconLIVE from Intelligent
Imaging Innovations (Denver, CO). To our knowledge, no
performance analysis has been undertaken on these multi-
core CPU implementations. Furthermore, we are unaware of
any prior GPU implementation of deconvolution algorithms.

3. Deconvolution Algorithms

In this section, we describe the three deconvolution algo-
rithms we implemented.

3.1. Wiener Filtering

The Wiener filter is a linear filter that optimally minimizes
the mean squared-error between the filtered image and the
signal received by the imaging system [Wie49]. It assumes
an imaging equation

o = i⊗h+n (4)

where n is additive Gaussian noise. Given the image distor-
tion model in (4), a filter ĥ can be constructed and applied to
o to recover an estimated input signal î, as shown in (5).

î = o⊗ ĥ (5)

In the frequency domain,

Ĥ =
H∗

|H|2 +(Pn/Pi)
(6)

where ∗ is the complex conjugate operator and Pn and Pi are
the estimated power spectra of n and i respectively [SN06].
In practice, the Pn/Pi term is replaced by a constant ranging
from 0.001 to 0.1 [AHSS89].

The Wiener filter can be computed and applied quickly,
but it has several limitations. First, it is the optimal esti-
mator for images with additive Gaussian noise, so it is not
strictly appropriate for fluorescence microscopy where noise
follows a Poisson distribution. Second, fluorescence images
are non-stationary (image statistics change over space), vi-
olating one of the assumptions on which the optimality of
Wiener filter is based. Finally, the Wiener filter is unable to
restore the input signal at frequencies higher than the PSF
bandwidth [SN06]. Nevertheless, the Wiener filter is fast and
can be used to obtain a less noisy initialization for other de-
convolution algorithms.

3.2. Jansson-van Cittert Deconvolution

The Jansson-van Cittert algorithm belongs to the constrained
iterative family of deconvolution techniques. These tech-
niques iteratively improve an estimate of i by adding a
weighted difference between the original image and the con-
volution of the estimate with the PSF. Values in estimates of
i must be non-negative because they represent the number of
photons counted by a sensor. Projection of negative values
to zero maintains the non-negativity constraint.

The Jansson-van Cittert algorithm entails repeated execu-
tion of several steps:

(a) ok = ik⊗h
(b) ik+1 = ik + γ[o−ok]
(c) ik+1 = max(ik+1,0).

The initial guess is the unprocessed microscope image o.
Each corrective factor is determined as the difference be-
tween o and the convolution of the kth true signal estimate
and the PSF, ok. If ok is blurrier than o, the image will be
sharpened by subtracting from the current guess image in-
tensities proportional to the difference. As ok converges to
o, the magnitude of the corrective factor diminishes. The pa-
rameter γ is set to 1−(ok−A)2/A2 where A is the maximum
intensity value of o divided by 2; γ restricts intensities to the
range [0,2A] [Aga84]. The algorithm can be run for a pre-
set number of iterations or until some convergence criterion
is met [SN06]. Empirical experiments with a synthetic ex-
ample image and PSF show that between 10-20 iterations is
usually sufficient for obtaining a restored image that closely
matches a known input image.

This algorithm tends to emphasize contrast as well as

Quammen et al. / Performance of 3D Deconvolution Algorithms onMulti-Core and Many-Core Architectures

noise in images. The noise enhancement is usually mitigated
by applying a smoothing filter such as a Gaussian or Wiener
filter before starting the algorithm, and smoothing interme-
diate results every few iterations. Smoothing the estimate at
intermediate steps works against the goal of sharpening the
image, but is often a necessary regularization step [Sib05].

3.3. Maximum Likelihood Estimation Deconvolution

Maximum Likelihood Estimation (MLE) deconvolution al-
gorithms are designed to restore an image such that the like-
lihood that it could give rise to the observed image is maxi-
mized. The algorithms are derived from an image formation
model that includes noise following a given probability dis-
tribution. In the case of fluorescence microscopy, the domi-
nating noise source comes from the stochastic nature of pho-
ton emission and therefore follows a Poisson distribution.

The Richardson-Lucy MLE algorithm is commonly used
in deconvolution of optical images. One iteration of the al-
gorithm involves the following steps:

(a) a = ik⊗h
(b) b = o/a
(c) ik+1 = cik(b⊗h)

where c is a normalization constant and multiplication and
division are performed point-wise [Ric72, Luc74].

This deconvolution method does not require a projection
step to maintain the non-negativity constraint because it in-
volves only multiplication and division of positive numbers.
Noise may be enhanced with this algorithm, but it can be re-
duced through Gaussian smoothing of the initial image or by
terminating the algorithm before convergence [Sib05]. MLE
deconvolution tends to produce better results than Jansson-
van Cittert deconvolution, but each iteration requires two 3D
convolutions instead of one.

4. Parallel Deconvolution Implementations

The deconvolution algorithms we implemented consist of
three common computational primitive operations:

Mapping Various operations can be composed into a com-
putational kernel that is mapped to one or more arrays
of numbers yielding one or more result arrays. Point-
wise operations in the deconvolution algorithms are im-
plemented as mapping primitives.

Reduction Reduction applies an associative operator to an
array of numbers yielding a single number. Normalization
and energy preservation constants in the MLE deconvo-
lution update equations are obtained through a reduction
with the addition operation.

Fast Fourier Transform (FFT) The FFT algorithm com-
putes the discrete Fourier transform of a signal. The FFT
algorithm enables efficient computation of convolutions
via multiplication in the Fourier domain.

In our implementation, these algorithms operate on image
data stored as linear arrays of 32-bit floating point values.
Arrays of complex values are stored with real and imaginary
components interleaved. This data arrangement is required
by the FFT libraries we used and is a convenient layout for
other algorithms.

4.1. Multi-core CPU Implementation

We implemented the three deconvolution algorithms de-
scribed in Section 3 on multi-core CPUs using C++ and
OpenMP for parallelization [DM98]. The programs were
compiled with the Intel C++ Compiler 11.0 which can auto-
matically identify data-level parallelism and insert vector in-
structions. Streaming kernels were implemented as OpenMP
parallel for regions using the default static schedul-
ing. Summation reductions were implemented using the
OpenMP reduction clause. We used the FFTW library
for computing 3D discrete real-to-complex and complex-
to-real Fourier transforms [FJ05]. FFTW was compiled
with the -with-openmp option using the Intel compiler.
FFTW uses the concept of plans to determine FFT algo-
rithm parameters that reduce run time. We use the default
FFTW_ESTIMATE option to avoid potentially costly initial-
ization.

4.2. Many-core GPU Implementation

We used NVIDIA’s CUDA programming environment to
implement the three deconvolution algorithms on NVIDIA
GPUs. Problem decomposition in the CUDA programming
model involves several layers of granularity. At the coarsest
level are individual tasks that correspond to steps in the algo-
rithm. At a finer level are subproblems within a task that can
be solved independently of each other but using the same set
of instructions. At the finest level are pieces of the indepen-
dent subproblems involving a small number of cooperative
data-parallel threads that can communicate through a shared
memory cache [NVI08a].

This model of problem decomposition is realized in
CUDA through grids, blocks, and threads. A grid specifies a
task that is broken down into a user-defined number of inde-
pendent blocks. A block specifies the user-defined number
of cooperative threads that can communicate through shared
memory and which can synchronize with a thread barrier in-
struction. To split up work in the parallel task, each thread
is assigned an index within the block and each block is as-
signed an index within the grid. Each thread has access to
these indices and can use them to determine which part of
the task to solve. Indices are 3D for potential convenience
when accessing 3D structured data, but they can be treated
as 1D or 2D indices by ignoring dimensions.

Implementing the deconvolution computational primi-
tives in CUDA for best performance is more complex than
the implementation on multi-core CPUs. In this section, we

Quammen et al. / Performance of 3D Deconvolution Algorithms onMulti-Core and Many-Core Architectures

!" #" $" %" #&" #'" #(" #)" %" *#" %"

!"#$%&'('

!"#$%&')'

!"#$%&'*'

+'

!"#$%&'),'

-.#/0'1223'.0$#%425'

6$725&'1223'.0$#%425'

89:';12<%1'=$=2#>'

Figure 1: Memory access pattern in a CUDA mapping prim-
itive run with 16 total threads. Each thread iterates over
a maximum of bN/numT hreadsc+ 1 array elements, ac-
cessing the array with stride numT hreads. This pattern as-
sures that reads of 32-bit float-point numbers are coalesced
because threads with contiguous indices access continuous
memory addresses in order.

describe the implementation of the computing primitives and
discuss how the implementation choices best use the GPU
hardware.

4.2.1. Mapping

Mapping a kernel onto a buffer containing 3D image data
can be implemented in several ways using the CUDA de-
compositional model. One way is to specify 3D grid and
block dimensions in such a way that the number of threads
matches the number of voxels, and the number of threads in
each dimension matches the dimensions of the image. Each
thread then applies the kernel to the data for which it is re-
sponsible.

There are two problems with this approach. One problem
is that the dimensions of the 3D data may not be even mul-
tiples of the grid and block dimensions. The grid and block
dimensions could be factorized so that their products match
the dimensions of the image, but doing so may result in grid
and block sizes that do not make best use of the GPU re-
sources. Alternatively, the grid size could be expanded so
that it is slightly larger than the image. A conditional would
then be necessary to handle the cases when the 3D thread
index lies outside the image bounds. If the index is not valid,
that thread will not do any work, reducing efficiency.

A more important problem in terms of performance
occurs when the major dimension of the image (the x-
dimension by our convention) is not a multiple of the size
of an aligned memory segment on the hardware. Individual
thread requests for memory can be coalesced into a single
memory transaction when the pattern of memory accesses

satisfies certain criteria. Coalesced memory accesses greatly
increase memory bandwidth and are necessary for achiev-
ing maximal performance. For the most recent NVIDIA
GPUs (those with CUDA Compute Capability 1.2), a sepa-
rate memory transaction is issued for every memory segment
accessed in the request. On older NVIDIA GPUs (Com-
pute Capability 1.0 and 1.1), memory requests that do not
fall with the same memory segment or which do not follow
strict ordering requirements result in a separate transaction
for every request, significantly reducing memory bandwidth.
Thus, if the major dimension of the image is not a multiple
of the size of a memory segment, many additional memory
transactions will occur, hurting algorithm performance. The
image data could be padded to a multiple of the segment
size, but doing so wastes memory and can complicate index-
ing calculations in other algorithms that operate on the data.

A better approach is to treat the image data as a 1D buffer.
To iterate over every voxel, we choose a fixed grid and block
size appropriate for the number of streaming multiproces-
sors (SMs) on the GPU and independent of the image size.
Each thread is responsible for processing a share of the vox-
els in the image. The kernel executed by each thread contains
a for loop that iterates over the thread’s share of voxels.
Because memory accesses are coalesced when sequentially-
indexed threads access sequentially-indexed memory loca-
tions, we interleave thread memory accesses to the image
buffer. Specifically, the stride with which each thread ac-
cesses the image should equal the total number of threads
in the grid to obtain this memory access pattern and thereby
achieve maximum memory bandwidth [NVI09]. Figure 1
depicts this memory access pattern. For the best performance
on current GPUs, the number of threads should be a multiple
of 16 [NVI08a]. We have found that on an NVIDIA Quadro
FX 5600, a grid of 128 blocks, each consisting of 64 threads,
provides the best performance for the mapping operations
we evaluated.

For complex-valued images where the real and imaginary
components are interleaved, memory accesses can be coa-
lesced when each complex number is requested as a single
aligned 64-bit structure consisting of two 32-bit floats. In
our implementation, we typecast a pointer to the float ar-
ray containing the complex values to a float2 data type
pointer defined by the CUDA library [NVI08a]. This data
type satisfies the 64-bit alignment criteria.

4.2.2. Reduction

In reduction primitives, we efficiently read image data fol-
lowing the same pattern as in the mapping primitive. Instead
of computing a result and writing it back to memory, how-
ever, each thread collects a partial reduction of the elements
it accesses and stores the results in the shared memory cache.
This cache is as fast as registers when groups of threads
access the memory in a way that produces no bank con-
flicts [NVI08a]. For reductions on real-valued images, the

Quammen et al. / Performance of 3D Deconvolution Algorithms onMulti-Core and Many-Core Architectures

shared memory allocation is large enough to hold one 32-bit
floating-point value per thread in the block.

After all partial results have been read into shared mem-
ory, we iteratively apply the reduction operation across
threads. In each iteration, half of the values remaining in
shared memory are combined with the other half through the
reduction operator using a set of active threads. The indices
of the active threads relative to the block always start at 0.
We split the shared memory logically into upper and lower
halves. Each active thread with index tid applies the reduc-
tion operator to elements with index tid + lowerIndex and
tid + upperIndex where lowerIndex is the starting index of
the lower half (always 0) and upperIndex is the starting in-
dex of the upper half. All the threads synchronize to ensure
the shared memory contains the updated values, and the up-
per half of active threads are deactivated. The final reduction
result for the block is stored in the first shared memory lo-
cation [NVI09]. This result is written into a special global
memory buffer allocated to hold the results of each block
reduction. Because the number of blocks is relatively small,
we read this buffer back into CPU memory and perform the
final reduction pass serially on the CPU rather than perform-
ing another pass on the GPU. Figure 2 depicts data flow in
reduction operations.

4.2.3. FFT

We use the CUFFT library provided by NVIDIA [NVI08b]
to compute the discrete Fourier transform of a 3D image.
Recent work has shown up to a three-fold performance im-
provement over CUFFT [GLD∗08, NOEM08], but these li-
braries were not available for testing.

5. Performance Analysis

In this section we compare the performance of the imple-
mented deconvolution algorithms on two parallel computing
architectures. One architecture consisted of a set of multi-
core CPUs connected by a high-bandwidth interconnect. The
other resource was a single modern GPU. We present re-
sults in three parts, first giving scalability results, then a
breakdown of the performance of computational primitives
in each algorithm, followed by a comparison of CPU and
GPU performance.

5.1. Experimental Setup

We ran the algorithm CPU implementations on a Sun Fire
X4600 M2 16-way symmetric multi-processing (SMP) node
with 32 GB RAM on the Biomedical Analysis and Simu-
lation Supercomputer at the University of North Carolina
at Chapel Hill. The node hardware consists of 8 dual-core
2.8 GHz AMD Opteron processors connected by a Hyper-
Transport network of direct processor-to-processor connec-
tions. The GPU implementations were evaluated on a single
NVIDIA Quadro FX 5600 card in an NVIDIA QuadroPlex

!"#$%&'()&$

+',-$

"+,./0,+)1$

,+23&/2$45$

!"#$20),+1$

+',-$

!" #" $" %" &" '" (")" *"

!" #" $" %" &" '" (")" *"

6&'78$9$

!" #" $" %" &" '" (")"

!" #" $" %"

!" #"

6&'78$,+23&/2$

45$!"#$%&'()&$

+',-$

!" #" $" %" &" '" (")" *"

!" #" $" %" &" '" (")" *"
6&'78$,+23&/2$

/,)52:+,,+1$/'$

;"#$*+*',-$

!"<45)&$,+23&/$

=0,+)1$

,+137>'5$

?0)2+$

6&'78$

,+137>'5$

?0)2+$

<45)&$

,+137>'5$

?0)2+$

@+23&/2$:,'*$

'/0+,$(&'782$

Figure 2: Efficient reduction on the GPU. Per-thread par-
tial reduction results are stored in the shared memory cache.
Per-block partial reduction results are then computed and
written to a specially-allocated global memory buffer on the
GPU. A CPU core performs the final reduction after reading
the per-block results from the GPU.

Model IV with sixteen 8-way streaming multiprocessors and
1.5GB RAM connected via 16× PCI Express to a node con-
sisting of 4 dual-core 2.6 GHz Opteron processors with 8 GB
RAM. We used version 2.0 of the CUDA Toolkit. All nodes
ran RedHat Enterprise Linux 5.3.

All the times we report are averaged over ten runs. GPU
performance numbers include the time taken for data trans-
fer to and from the GPU. It is important to note that the input
image and PSF image are padded to handle the cyclic na-
ture of convolution via multiplication in the Fourier domain.
Therefore the dimensions of an image processed by the de-
convolution algorithms is actually the sum of the dimensions
of the input image and PSF. The times reported here exclude
the time required for padding the input image and PSF image
and clipping the final image; these operations are common to
both implementations. In all tests, the PSF had dimensions
64×64×32.

5.2. SMP Scalability

To test the scalability of each algorithm on multi-core sys-
tems, we varied the number of cores from 1 to 16. Figure

Quammen et al. / Performance of 3D Deconvolution Algorithms onMulti-Core and Many-Core Architectures

3 shows scalability of the three algorithms applied to four
different problem sizes. We use percentage of ideal linear
speedup as the measure of scalability. All three algorithms
exhibit a sharp drop-off in scalability beyond 8 cores. The
drop-off is present in timings of FFTW’s transform algo-
rithms, but not in the mapping or reduction primitives. It is
not clear whether the source of this drop-off is caused by re-
source contention in the hardware, by a software limitation,
or by the operating system. In any case, the best wall clock
time was achieved when all three algorithms were run with 8
cores (see Figure 4). All three algorithms scaled well for the
largest image size (512× 512× 64), reaching from 82-88%
of the ideal linear speedup.

5.3. Performance of Computational Primitives

We measured the execution time of each computational
primitive on both parallel processing architectures when de-
convolving a 512× 512× 512 image with a 64× 64× 32
PSF. Tests of the SMP implementations were run with 8
cores. As shown in Table 1, real-to-complex forward (R2C)
and complex-to-real inverse (C2R) FFT algorithms clearly
dominate the running time in each algorithm implementa-
tion. The FFT algorithms take 91.4%, 80.6%, and 83.0%
of the total execution time for the SMP implementations of
the Wiener filter, Jansson-van Cittert algorithm, and MLE
method, respectively, and 66.5%, 91.7%, and 93.8% of the
GPU implementation execution times. Efforts to improve the
performance of FFT algorithms is therefore the most effec-
tive way to further accelerate the deconvolution algorithms.

Mapping primitives in the SMP implementations make up
a larger percentage of the running time than on the GPU
implementations. Considering that these algorithms perform
relatively little floating-point computation per memory ac-
cess, this result is not surprising. GPUs are engineered to
support higher memory bandwidth than CPUs (76.8 GB/s
peak for the NVIDIA Quadro FX 5600 versus 42.8 GB/s
peak for four dual-core processors in the Sun Fire X4600
M2 server).

Reduction operations in the MLE algorithm are 1.4 times
faster on the GPU than on the SMP implementation. The
GPU reduction operation runs more than twice as long as a
mapping operation on the GPU that applies a scale factor to
an array. This is somewhat surprising as the reduction op-
eration reads the same amount of data from global memory
as the mapping algorithm, but writes significantly less data.
We attribute the slowdown to the logarithmic number of re-
duction steps in the algorithm as well as overhead from data
transfer to CPU memory for calculating the final reduction
value.

The GPU implementations suffer some overhead when
transferring data from the CPU memory to the GPU. For the
Wiener filter, the overhead is high (30.6%). In the iterative
algorithms, however, the overhead is amortized over many

0 

0.2 

0.4 

0.6 

0.8 

1 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

%
 Id

ea
l S
pe

ed
up

 

CPU Cores 

Wiener Filter Deconvolu9on 
SMP Scalability 

64x64x64  128x128x64  256x256x64  512x512x64 

(a)

0 

0.2 

0.4 

0.6 

0.8 

1 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

%
 Id

ea
l S
pe

ed
up

 

CPU Cores 

Jansson‐van Ci6ert Deconvolu:on 
SMP Scalability 

64x64x64  128x128x64  256x256x64  512x512x64 

(b)

0 

0.2 

0.4 

0.6 

0.8 

1 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

%
 Id

ea
l S
pe

ed
up

 

CPU Cores 

Maximum Likelihood Deconvolu<on 
SMP Scalability 

64x64x64  128x128x64  256x256x64  512x512x64 

(c)

Figure 3: Scaling behavior of the three deconvolution algo-
rithms on multi-core CPUs. Performance is represented as
the percentage of ideal linear speedup.

iterations where no data transfer is required and accounts for
less than 5% of the execution time.

5.4. Comparison of CPU and GPU

In our performance measurements, we found that 8 cores
on the 16-way SMP node consistently outperforms a single
GPU. The SMP implementation is 1.7-2.8× faster than the
GPU on the Wiener filter. For the iterative algorithms, the

Quammen et al. / Performance of 3D Deconvolution Algorithms onMulti-Core and Many-Core Architectures

0 

10 

20 

30 

40 

50 

60 

70 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Ru
n 
Ti
m
e 
(s
ec
on

ds
) 

CPU Cores 

Run Time vs. Number of SMP Cores 

Wiener Filter 

Jansson‐van Ci;ert 

Maximum Likelihood 

Figure 4: Run time of three deconvolution algorithms versus
number of cores for a 512× 512× 64 image. The Jansson-
van Cittert and MLE algorithms were each run with 10 itera-
tions. Scalability peaks at 8 cores. Notably, the performance
of 9-16 cores is worse than 2 cores for each algorithm.

GPU is somewhat more competitive. The SMP implementa-
tion of the Jansson-van Cittert algorithm is 1.3-2.3× faster,
and the Maximum Likelihood algorithm is 1.3-2.0× faster.
For the large problems typically encountered in fluorescence
microscopy, the SMP Wiener filter implementation is 1.9×
faster while both iterative deconvolution algorithms are 1.3×
faster. Figure 5 shows the speedup of 8 cores over one GPU
for all three algorithms on a variety of problem sizes.

Another way to compare the CPU and GPU implemen-
tations is to determine how many CPU cores are needed to
outperform a single GPU. For the Wiener filter, 3 cores are
faster than the GPU for all problem sizes. For the Jansson-
van Cittert and MLE algorithms, it takes 6 cores to beat the
GPU on a large problem size (512× 512× 64). For smaller
problem sizes, 4 or 5 cores outperform the GPU.

0 
0.5 
1 

1.5 
2 

2.5 
3 

64
x6
4x
64
 

12
8x
64
x6
4 

25
6x
64
x6
4 

51
2x
64
x6
4 

64
x1
28
x6
4 

12
8x
12
8x
64
 

25
6x
12
8x
64
 

51
2x
12
8x
64
 

64
x2
56
x6
4 

12
8x
25
6x
64
 

25
6x
25
6x
64
 

51
2x
25
6x
64
 

64
x5
12
x6
4 

12
8x
51
2x
64
 

25
6x
51
2x
64
 

51
2x
51
2x
64
 

Sp
ee
du

p 

Problem Size 

Speedup of 8 CPU Cores Over GPU 
(Quadro FX 5600) 

Wiener filter  Jansson‐van Ci;ert  Maximum Likelihood 

Figure 5: Performance comparison of 8 CPU cores versus
a single GPU. The 8 CPU cores are almost always twice as
fast for the Wiener filter and are consistently faster than the
single GPU.

Computational Time (% total) Time (% total)
Primitive 8 CPU cores GPU

Wiener Filter
Total 636 1232
FFT R2C 387 (60.8%) 531 (43.0%)
FFT C2R 195 (30.6%) 290 (23.5%)
Map (kernel) 25 (4.0%) 6 (0.5%)
Copy to GPU - 157 (12.7%)
Copy from GPU - 221 (17.9%)

Jansson-van Cittert
Total 4960 6171
FFT R2C 2126 (42.9%) 2842 (46.0%)
FFT C2R 1868 (37.7%) 2821 (45.7%)
Map (modulate) 256 (5.2%) 61 (1.0%)
Map (update kernel) 532 (10.7%) 105 (1.7%)
Copy to GPU - 138 (2.2%)
Copy from GPU - 219 (3.6%)

Maximum Likelihood Estimation
Total 9325 11702
FFT R2C 4038 (43.3%) 5367 (45.9%)
FFT C2R 3706 (39.7%) 5600 (47.9%)
Map (modulate) 492 (5.3%) 122 (1.0%)
Map (division) 195 (2.1%) 53 (0.5%)
Map (scale) 119 (1.3%) 45 (0.4%)
Reduce (sum) 154 (1.7%) 107 (0.9%)
Copy to GPU - 142 (1.2%)
Copy from GPU - 203 (1.7%)

Table 1: Time (in milliseconds) required for all invocations
of each computational primitive on a 512×512×64 image
with a 64× 64× 32 kernel. The percentage of total execu-
tion time is given in parentheses. FFT forward and inverse
transforms clearly dominate the running time of all algo-
rithm implementations.

6. Conclusions and Future Work

We have analyzed the performance of 3D deconvolution
algorithms on modern parallel computing architectures.
The source code for these algorithms has been released
in the Clarity Deconvolution Library, available at http:
//cismm.cs.unc.edu/downloads. The algorithms
consist of parallel primitives capable of efficient operation
on many-core architectures. On the architectures we tested,
the best performance is available on 8 CPU cores, but a sin-
gle GPU performs competitively with 4 or 5 CPU cores.

In the future, we would like to evaluate the GPU imple-
mentations with a faster FFT library, such as those devel-
oped by [GLD∗08] or [NOEM08]. Furthermore, we would
like to test the GPU implementation on more recent graph-
ics hardware that features nearly twice as many cores as the
Quadro FX 5600. Finally, We would also like to investigate
whether parallelizing the algorithms across distributed mem-

http://cismm.cs.unc.edu/downloads
http://cismm.cs.unc.edu/downloads

Quammen et al. / Performance of 3D Deconvolution Algorithms onMulti-Core and Many-Core Architectures

ory nodes breaks the apparent scalability limitations on the
SMP hardware we tested. Such a parallelization effort would
also enable the use of several GPUs.

Acknowledgements

This work was supported in part by NIH grant P41
EB002025. The BASS supercomputer is funded through the
NIH National Center for Research Resources, award number
NIH 1S10RR023069-01.

References

[Aga84] AGARD D. A.: Optical sectioning microscopy:
cellular architecture in three dimensions. Annual Review
of Biophysics and Bioengineering 13 (1984), 191–219.

[AHSS89] AGARD D. A., HIRAOKA Y., SHAW P., SE-
DAT J.: Fluorescence microscopy in three dimensions.
Methods in Cell Biology 30 (1989), 353–377.

[DM98] DAGUM L., MENON R.: OpenMP: An industry-
standard API for shared-memory programming. IEEE
Computational Science and Engineering 5, 1 (Jan-Mar
1998), 46–55.

[FJ05] FRIGO M., JOHNSON S.: The design and imple-
mentation of FFTW3. Proceedings of the IEEE 93, 2
(2005), 216–231.

[FJGC85] FLOYD CAREY E. J., JASZCZAK R. J., GREER

K. L., COLEMAN R. E.: Deconvolution of Compton
Scatter in SPECT. The Journal of Nuclear Medicine 26,
4 (1985), 403–408.

[GLD∗08] GOVINDARAJU N. K., LLOYD B., DOT-
SENKO Y., SMITH B., MANFERDELLI J.: High perfor-
mance discrete Fourier transforms on graphics processors.
In SC ’08: Proceedings of the 2008 ACM/IEEE confer-
ence on Supercomputing (2008), IEEE Press, pp. 1–12.

[Luc74] LUCY L. B.: An iterative technique for the rec-
tification of observed distributions. Astronomical Journal
79 (June 1974), 745–+.

[MKCC99] MCNALLY J. G., KARPOVA T., COOPER

J., CONCHELLO J. A.: Three-dimensional imaging by
deconvolution microscopy. Methods 19, 3 (November
1999), 373–385.

[NOEM08] NUKADA A., OGATA Y., ENDO T., MAT-
SUOKA S.: Bandwidth intensive 3-D FFT kernel for
GPUs using CUDA. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing (Piscataway,
NJ, USA, 2008), IEEE Press, pp. 1–11.

[NVI08a] NVIDIA: Compute Unified Device Architec-
ture programming guide, June 2008.

[NVI08b] NVIDIA: CUFFT library user manual, April
2008.

[NVI09] NVIDIA: CUDA SDK Code Samples, Feb.
2009.

[Ric72] RICHARDSON W. H.: Bayesian-based iterative
method of image restoration. Journal of the Optical Soci-
ety of America 62 (1972), 55–59.

[Sib05] SIBARITA J.-B.: Deconvolution microscopy,
vol. 95 of Advanced Biochemical Engineer-
ing/Biotechnology. Springer-Verlag, Berlin/Heidelberg,
2005, pp. 201–243.

[Sil79] SILVIA M. T.: Deconvolution of geophysical time
series in the exploration for oil and gas. Elsevier Scien-
tific Publishers Co., New York, 1979.

[SN06] SARDER P., NEHORAI A.: Deconvolution meth-
ods for 3-D fluorescence microscopy images. IEEE Signal
Processing Magazine 23, 3 (May 2006), 32–45.

[SPM02] STARCK J. L., PANTIN. E., MURTAGH F.: De-
convolution in astronomy: a review. Publications of the
Astronomical Society of the Pacific 114 (2002), 1051–
1069.

[Wie49] WIENER N.: Extrapolation, Interpolation, and
Smoothing of Stationary Time Series. Wiley, New York,
1949.

	Introduction
	Prior Work
	Deconvolution Algorithms
	Wiener Filtering
	Jansson-van Cittert Deconvolution
	Maximum Likelihood Estimation Deconvolution

	Parallel Deconvolution Implementations
	Multi-core CPU Implementation
	Many-core GPU Implementation

	Performance Analysis
	Experimental Setup
	SMP Scalability
	Performance of Computational Primitives
	Comparison of CPU and GPU

	Conclusions and Future Work
	References

