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Abstract—
We demonstrate a new visualization technique to help researchers answer specific questions about 2D vector fields. Rather than
directly display the vector field, the visualization isolates the integrable part of the field, integrates it to find a scalar potential, and
displays the scalar potential as a height field. Scalar potential representation can be combined with direct field representation, by
overlaying a representation of either the original field or its divergence-free part. Representing a vector field by its scalar potential is
useful for answering questions about bulk flow across a flow field, and for comparing vector fields. It leverages human intuition about
how water flows downhill.

1 INTRODUCTION

Many visualization techniques exist for vector fields in two dimen-
sions, and their relative utility has been throughly studied [7]. Inter-
estingly, the inanimate techniques for vector field visualization share
an important similarity: they all directly represent the vector field
lines. Essentially, they emulate the effect of iron filings on paper in
the presence of a magnet, conveying by their orientation and density
the strength and direction of the field.

Naturally, these techniques are so prevalent precisely because sci-
entists can use them to answer questions they ask when interpreting
vector fields. Using the metaphor of flow along the surface of a fluid,
some of the common questions are:

1. To where does a floating cork travel, given a starting position?

2. How fast does a floating cork move?

3. What are the sources and sinks of fluid?

4. Where are the saddle-points of fluid flow?

Direct representation of the vector field is less effective at conveying
information about bulk characteristics of vector fields. For example,
it can be difficult to answer the following questions using direct field
representation:

1. What is the net fluid flow across a region of an image?

2. What is the relative output of sources in the field?

3. Are there similar features (sources, sinks, saddles) at different
locations in two different vector fields?

In the present work, we demonstrate a new visualization technique
designed to answer these questions. It is an alternative to direct field
representation that isolates the integrable part of the field, integrates it
to find a scalar potential, and displays the scalar potential as a height
field.
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1.1 Prior Work
Vector field display technique have a long history. Modern approaches
fall under glyph- and texture-based techniques. These can be extended
by mixing the two, using animation, or analyzing the field prior to
display.

Glyph-based methods present characteristics of the flow at various
locations. Straight or curved lines indicate local flow, and adding ar-
rowheads disambiguates flow direction. Careful placement greatly im-
proves the display [18].

Texture-based methods generate a dense display of flow information
on surfaces. Spot noise parameterized by the flow field can produce
patterns indicating flow [20]. Line-integral convolution (LIC) advects
a noise texture along the flow direction, producing a dense display
of flow direction [2]. Anisotropic nonlinear diffusion has been used to
produce dense textures that indicate flow direction and magnitude [13].
Reaction-diffusion simulations can produce patterns that indicate flow
direction and speed [14]. Gabor filters parameterized by the flow can
indicate flow and flow magnitude [22].

Mixed methods. Sometimes these display techniques are used
in combination, as when overlaying simplified arrow representations
on top of LIC [16], or when using painterly layering techniques to
display combined tensor, vector, and scalar fields in the same dis-
play [6]. Streamlines can be used at high density to produce LIC-
like textures [21]. Coloring individual strands of texture-based meth-
ods enables the display of multiple scalar fields along with the vector
data [19]. Animated LIC[9, 15, 23] disambiguates the flow direction.

Analytic methods. There is work on converting from vector rep-
resentation to scalar fields for display, including pattern-matching to
locate desired flow features [3]. There are techniques for decompos-
ing flow fields into source/sink, vortex, and other portions [17].

Using this nomenclature, the scalar potential representation on
which we report here is an analytic method that can be mixed with
either glyph or texture-based methods.

2 VECTOR FIELD DECOMPOSITION AND INTEGRATION

Formally, a scalar potential exists for all curl-free vector fields. For
an arbitrary field, the part with curl can be subtracted from the original
field and the difference can be integrated to find a scalar potential. This
requires decomposing the vector field.

An arbitrary vector field AAA(x,y) can be expressed as the sum of three
fields

AAA(x,y) = vvv(x,y)+www(x,y)+ zzz(x,y), (1)

such that

∇∇∇××× vvv = 0 ∇∇∇ ···www = 0 zzz = AAA− vvv−www.
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where ∇∇∇ is the vector operator

∇∇∇ =
∂

∂x
x̂xx+

∂

∂y
ŷyy+

∂

∂ z
ẑzz,

x̂xx, ŷyy, and ẑzz are the unit vectors along the x, y, and z axes, and ∇∇∇··· and
∇∇∇××× are the vector operations divergence and curl.

The curl-free fields vvv and zzz are conservative, such that the field FFF =
vvv+ zzz is integrable1 (and the vector field www is not):∮

(vvv+ zzz)dl = 0,

where l is any closed path integral inside the image. For conservative
fields, there exists a single-valued scalar potential Φ(x,y), such that

−∇∇∇Φ(x,y) = vvv(x,y)+ zzz(x,y) = FFF(x,y). (2)

The scalar potential Φ is unique up to a constant. The core approach
of the technique presented here is to calculate Φ and map it as a height
field.

Fig. 1. The metaphorical scalar potential for the vector field AAA =−x̂xx(2−
3sin πx

10 ). For reference, AAA is projected onto the surface. Notice a droplet
placed at any location on this surface will slide in the same direction as
AAA.

2.1 Metaphorical Scalar Potential for a 2D Force Field
Before describing how to calculate Φ, we offer an explanation of why
this visualization technique works. We intuitively interpret a common
type of vector field—the force due to gravity—using its scalar poten-
tial. The scalar potential of a force field is the potential energy stored
by an object as it is displaced through the field. Pushing a block up a
hill stores gravitational potential energy in the block. We understand
intuitively that there is a direct relationship between the potential en-
ergy in the block and how high it has gone up the hill. Specifically,
gravitational potential energy is proportional to height:

U ∝ h.

By looking at the topography of a surface, we can easily predict where
a block would slide given a starting position.

Although we have good intuition for interpreting this simple sys-
tem, it is a three dimensional problem and not obviously extensible to
arbitrary 2D vector fields. Like many other visualization techniques,
this one relies on a metaphor: where the original data encode, say, the
velocity of a fluid over a 2D area, the visualization will invite the user
to imagine a droplet sliding on a 2D surface in a 3D environment.

1Here we define integrable as the gradient of a unique scalar potential.

In detail, we construct a metaphorical scalar potential Φm from a
metaphorical surface gradient mmm, given the integrable 2D vector field
FFF of Equation 2. We are looking to create Φm such that motion due
to gravity of a probe on its surface mimics the motion of a probe in FFF .
Because the metaphorical surface is in 3D and relies on our intuition
about gravity, it is not obvious what the relationship between mmm and FFF
should be. However, in the Appendix we demonstrate that the simplest
possible relationship, mmm = FFF , is acceptable.

2.2 Implementation

In the present work, Matlab was used for all calculations and to gen-
erate all figures. For an arbitrary 2D vector field AAA(x,y) we begin by
calculating www:

JJJ(x,y) = ∇∇∇×××AAA

www =
∫

S

JJJ(x′,y′)
|rrr− rrr′′′|3

× (rrr− rrr′′′)dr′,

where S is the area of the image and r and r′ are the radial position
vectors from the image origin to a point (x,y) and (x′,y′), respectively.
We used Matlab’s curl and trapz functions for differentiation and
integration. With www in hand, we find the integrable field vvv + zzz from
AAA−www, using Equation 1.

Using the result of Section 2.1, we can find Φm by integrating FFF
over the area of the image. We use the technique of Frankot and Chel-
lappa [5] because this method enforces integrability; we use it in the
hope of suppressing any artifacts generated during the calculation of
www. Briefly, we calculate the Fourier transform of mx and my, then in-
tegrate the field in the frequency domain. The resultant scalar field is
transformed back to the spatial domain.

Discontinuity in FFF can be problematic for this method of integra-
tion, but many vector fields are non-zero at the boundary. Therefore,
to ensure proper behavior at the boundaries during integration, we pad
the image by repeating its border, making the image approximately
6-8 times its original size, then scale the field by a 2 dimensional ham-
ming window. After integration, we remove the padding. To ensure
proper integration of any constant background field, we separate out
the average value of the field, integrate it in the spatial domain, and
add the resulting linear scalar field to Φm.

This implementation is relatively straight-forward, but other ap-
proaches may be more appropriate for specific applications. We
note that Polthier and Preuss have reported on vector field decom-
position using both the variational technique and Hodge decomposi-
tion [11, 12]. For applications where all field sources reside outside
the image (namely, AAA = zzz), or generally whenever www = 0, the vector
field is already known to be integrable, so no decomposition of AAA is
required and it is sufficient to set FFF = AAA.

3 ANSWERING QUESTIONS

To use this visualization to interpret flow fields, the user must learn to
interpret the height field of Φm. Figure 1 shows a simple vector field
in which ∇∇∇Φm =−FFF =−AAA (i.e, www = 0). How can the user answer the
question, “Where will a probe travel?”

Imagine a droplet of liquid, which moves when the slope is nonzero,
but which stops as soon as it reaches a flat surface. A droplet of water
starting at the top right of the image would slide into the first trough,
then stay there permanently. Checking against the direct field repre-
sentation, we see that indeed, each trough in Φm is sink and each ridge
is a source, running vertically along the image.

Why is the “sliding droplet” metaphor the correct interpretation?
Intuitively, we imagine a probe on the surface Φm being pulled by
gravity. But the original vector field AAA is a velocity field, so our imag-
ined probe-surface interaction should be the kind where the probe ve-
locity is proportional to the force applied by gravity. Such systems
are called over-damped. In the sliding droplet metaphor, the friction
between the droplet and the surface halts the low-mass droplet as soon
as it reaches a local minimum.

We are now ready to analyze sample vector fields.

2
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3.1 Basic Questions
Scalar potential topography can be used to interpret the field from
which it was integrated. Following are common questions about vec-
tor fields, and the interpretation used in direct field and scalar potential
representations.

1. Where does the flow go?

Direct field representation: the user imagines a floating
cork being pushed along the field lines.

Scalar potential representation: the user imagines a sliding
droplet.

2. How fast is the flow?

Direct Field Representation: the user examines glyph prop-
erties (e.g. size of arrow) or field line density.

Scalar potential representation: the user examines the slope
of the height field.

3. Where are the sources and sinks?

Direct field representation: the user looks for divergence
and convergence of field lines.

Scalar potential representation: the user looks for peaks
and pits in the surface.

4. Where are the saddle points in the flow?

Direct field representation: the user looks for divergence
along one axis and convergence along another.

Scalar potential representation: these points appear explic-
itly as saddles in the surface.

For curl-free vector fields, all of the information in AAA is included in
the scalar potential. But common simulations and experiments result
in turbulent or otherwise non-integrable fields. With such fields, scalar
potential topography can still be used to identify sources and sinks of
flow, as these are due to the diverging field vvv.

The scalar potential representation of the integrable part of AAA can
be misleading, particularly in areas where |www| ≥ |FFF |. In these regions,
the actual direction or magnitude of −∇∇∇Φ may deviate wildly from AAA.
Overlaying a direct field representation of |AAA|, as in Figures 1, 3, and 6,
can mitigate confusion while permitting the interpretations discussed
in the following sections.

Under certain circumstances, it may be illuminating to instead over-
lay www, as in Figures 4 and 7.

3.2 New Questions
3.2.1 Comparing Source Output
Because the scalar potential is the integral of a vector field, its advan-
tages emerge when interpreting field behavior over large areas. As a
simple example, consider the flow field in Figure 2 produced by two
sources. A direct field representation leaves it unclear which source
pumps in more fluid. However, the scalar potential represents the vol-
ume of fluid per time moving away from a given point in the image.
Therefore, simply comparing the heights of the two peaks in the scalar
potential representation reveals which source is greater.

3.2.2 Bulk Flow and Field Comparison
Our collaborators, who are studying microfluidic fluid transport as de-
tailed in Section 4, are among those who ask the question, “What is the
bulk flow across a region of a vector field?” Bulk flow may take many
forms, including net flow across the whole image, or divergence from
a source inside the image, but it necessarily indicates some global mo-
tion of fluid over some region. Scalar potential proves to be a useful
way to reveal whether and where there is bulk flow in an image.

Figure 3 presents two vector fields both directly and as scalar po-
tentials. The direct field representations are complicated, and the bulk
flows in the image are difficult to determine and describe. The scalar

Fig. 2. The direct (top) and scalar potential (bottom) representations
of a curl-free field (www = 0). Although the source in the bottom right is
stronger at the center, its total output is lower.

potentials, however, clearly demonstrate that a droplet on either sur-
face would slide in−ŷ. The sources are also easy to identify; these are
the regularly spaced ridges and the peak present in both images.

We also note that the scalar potential representations are easy to
compare across images. The scalar potentials reveal that there are two
peaks that have similar shape and stand similar heights above the back-
ground field, indicating sources of similar output. Similarly, there is a
sinusoidal topography in x̂xx that is of similar frequency in both images,
but varies in phase, indicating that there are vertical sources and sinks,
regularly spaced, but offset in x̂xx.

3.2.3 Compatibility with Direct Representation
The height field representation of a vector field is conveniently com-
patible with existing glyph-based techniques, making it possible to
overlay both in the same display. One possibility is to texture map
a direct representation of the original field AAA. In cases where www = 0,
as in Figure 1, overlaying a direct representation of the field itself
can serve to redundantly encode information about the flow. In cases
where www 6= 0, as in Figure 3, it can provide context. For example, the
overlay highlights that in certain parts of the image, the fluid sources
are overwhelmed by the swirling field.

Alternatively, it is possible to overlay just the part of AAA that is not
represented by the scalar potential—namely, www. In Figure 4 we project
www onto Φm, so all of the data from AAA is represented. Note that display-
ing www separate from the rest of AAA helps us compare the vortical parts
of the two fields. Separated from the integrable parts of the field, the
centers of these vortices can be located and their differences in radial
dependence examined.

4 APPLICATION: MICROFLUIDIC FLOW AND MIXING

Our research group builds high-aspect ratio, superparamagnetic, poly-
mer nano-rods that can be magnetically actuated [4]. Mechanisms for
controlling flow and enabling mixing of microliter quantities of fluid
are attracting increasing attention [8, 10]. We have found that scalar
potential topography is a useful tool for interpreting the fluid flow gen-
erated in these environments.

We film fluorescent tracers in the liquid around the nanorods, then
apply an optical flow computation to the movie using in-house soft-

3
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Fig. 3. Direct representation and scalar potentials for two vector fields. Note that it is difficult to interpret bulk flow or compare the fields using the
quiver plots (top) or LIC (middle). The scalar potentials (bottom), rendered with a low-contrast LIC overlay of AAA, reveal similarities and differences
of the fields, including: (1) a source is hidden in the upper left corner of the field on the left, which is similar in output to the source in the lower right
corner of the field on the right, (2) there is a similar bulk flow from the top to bottom of these images, and (3) periodic sources and sinks exist in
both fields, but are shifted horizontally from one image to the other.

4
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Fig. 4. Overlaying only www on the scalar potentials from Figure 3 makes it possible to compare the position, size, and radial dependence of the
curling part of the field.

Fig. 5. (left) An inverted maximum intensity projection (similar to stream-
lines) of a video showing fluorescent tracer particles moving due to fluid
flow generated by nanorod actuation. (right) A single contrast-enhanced
frame highlights circular artifacts in the center of the image. These cor-
rupt the optical flow computation and appear as artifacts in the scalar
potential (Figure 6, bottom right). They are encircled by the curling part
of the field, as seen in Figure 7.

ware, ImageTracker. The computation combines local texture infor-
mation and a global smoothness constraint as in [1]. In the present
work, ImageTracker outputs a 2D vector field of the fluid flow inte-
grated over the length of the movie.

In Figure 6 we present two such fields, one of the integrated flow
after four seconds, and one after 30 seconds. The movie is 30 fps.
In this experiment we vary the integration window because the flow
behavior may change as we increase the timescale.

The direct field representation presents some problems for interpret-
ing these flow fields. At short timescales, it is difficult to interpret a
quiver plot of the flow, due to a few large-magnitude glyphs that over-
whelm the rest of the field. LIC is agnostic of field magnitude, and so
clarifies the texture of the field at the expense of communicating the
field strength. A long timescales, it is not clear how consistent the bulk
flow of the field is.

We can interpret the flows more fully using the fields’ scalar
potential topographies. We can simultaneously interpret the large-
magnitude and small-magnitude areas of the short timescale image.
We can see that the wild fluctuations in magnitude disappear at long
timescales, and we can resolve the constant background flow across
the image.

There is a divot in the scalar potential of the long timescale video
(Figure 6, bottom right) that highlights an error in the image flow com-
putation. Tracer particles occasionally stick to the nanorods, produc-
ing circular artifacts (Figure 5, right). Interestingly, this region of cor-
rupted flow computation is encircled by the dominant flow in www, as

shown in Figure 7. Thus, we speculate that the non-integrable field
may help identify artifacts in future video analysis.

5 CONCLUSIONS

We have implemented a new visualization technique, scalar potential
representation of 2D vector fields, that helps users more easily answer
specific questions about vector data. These questions include issues
relating to field comparison and characterizing bulk flow in an image.

Additionally, we have demonstrated that scalar potential represen-
tation integrates well with existing techniques for direct field represen-
tation, and have used this combination to gain insight into a specific
research problem.

6 APPENDIX: EQUATING METAPHORICAL AND MATHEMATI-
CAL POTENTIALS

For an integrable 2D vector force field FFF , we want to calculate a
metaphorical surface on which a block would slide according to FFF3D,
the net force on the block, such that the block’s velocity would have
the same speed and the same horizontal direction as a probe in the
original field FFF . We proceed by finding relationship between FFF3D and
the gradient of the metaphorical surface.

Consider the force on a block of unit mass, sliding over a surface.
The force varies with the surface gradient mmm:

|FFF3D(x,y)|= gsin(θ(x,y)), sin(θ(x,y)) =
|mmm(x,y)|√

1+ |mmm(x,y)|2
, (3)

where θ is the angle the surface makes with the horizontal, and g is
a constant implying the acceleration of the block due to metaphorical
gravity. Note that FFF3D is a 3-dimensional vector with a 2-dimensional
input. We can now solve Equations 3 for the magnitude of the surface
gradient,

|mmm|= |FFF3D|
√

g2−|FFF3D|2

Our perception of the block’s motion on the surface does not depend
critically on the scaling of the surface, so we can divide mmm by g with
impunity. We can also obtain the direction of mmm by noting that it always
points in the direction of FFF . Finally, we choose |FFF3D(x,y)|= |FFF(x,y)|,
so we may drop the 3D subscript from FFF :

mmm = FFF

√
1− |F

FF |2
g2 (4)

5
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Fig. 6. Direct field representation of fluid flow at short (left) and long (right) timescales. Sharp variations in field magnitude make it difficult to
interpret the field when the glyphs are scaled by field magnitude (top). Exchanging quiver plots for LIC (middle) clarifies the texture of the field at
the expense of communicating the field strength. From scalar potential topography (bottom) we can interpret the field everywhere in the image and
resolve the constant background flow. The flow direction is redundantly encoded by overlaying LIC of AAA

6
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Fig. 7. Overlaying www helps highlight locations of strongly beating nanorods in the image. Overlay is presented both as quiver (left) and LIC (right).

We must now choose the acceleration, g, due to metaphorical grav-
ity. Clearly, it must be at least great enough to match the largest force
exerted by FFF , so g ≥ |FFF |max, where |F |max is the largest magnitude
of FFF over the area of the image. Aside from this constraint, we are
apparently free to choose g as we please.

As explained in Section 2.1, we prefer the limiting case where mmm =
FFF ; this is the case of g� |FFF |max. To our knowledge, there is no reason
to stray from this choice, though we note that choosing g = |FFF |max
suppresses discontinuities in m̂mm where they exist in F̂FF .
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