
Activity put in context: Identifying implicit task context
within the user’s document interaction

Karl Gyllstrom
UNC-Chapel Hill / HP Labs

karl@cs.unc.edu

Craig Soules
HP Labs

craig.soules@hp.com

Alistair Veitch
HP Labs

alistair.veitch@hp.com

ABSTRACT
Modern desktop search is ill-fitted to our personal document
workspace. On one hand, many of the methods which render web
search effective cannot be applied on the desktop. On the other,
desktop search does not take full advantage of attributes that are
unique to our personal documents. In this work, we present Con-
fluence, a desktop search system that addresses this problem by
capturing the task context within which a user interacts with their
documents. This context is then integrated with traditional desktop
search techniques to enable task-based document retrieval.

Building upon Connections, a system that identifies task context
by passively monitoring the user’s interaction with their documents
within the file system, Confluence also traces user activity within
the user interface and incorporates methods to analyze and integrate
this new stream of information. We show that this approach signif-
icantly improves the accuracy of task identification, achieving 25%
to 30% better recall.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering

General Terms
Human Factors, Experimentation

Keywords
Contextual search

1. INTRODUCTION
Personal document management is difficult. Due to the inherent

challenges in manual organization, search is an appealing approach
to document management, as it is generally fast and allows users
to defer or bypass placing documents into rigid hierarchies. How-
ever, due to large structural differences between the web and one’s
personal document space, desktop search performs comparatively
worse to web search in retrieval tasks [12]. On the web, hyperlinks
between documents describe their contextual relationships, provid-
ing the foundation for structural search algorithms like PageRank

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IIiX’08, Information Interaction in Context, 2008, London, UK.
Copyright 2008 ACM 978-1-60558-310-5/08/10 ...$5.00.

as well as techniques for classifying non-textual data. This rich,
meaningful structure is built collectively by the world community
of web authors and users; when we issue a successful web search,
then, we are in essence leveraging the organizational work of those
who came before us. As a personal data set, only users can mean-
ingfully organize their personal document workspaces; a task they
are loathe to do because the cognitive load required in such com-
plex organization is often prohibitively high [7, 10]. Hence, the
difference in quality between local and web searches is inherent in
the separation of the personal and public document spaces, and will
likely persist even in the face of better system support for manual
organization.

On the other hand, there is an important attribute (among many
others) unique to personal data that is not effectively used by desk-
top search systems: task context. In attempts to recall a given docu-
ment, users often remember other documents which were used with
it as part of a common task [1, 4]. Hence, search systems would be
improved by supporting the retrieval of misplaced documents by
contextually related files which are better remembered — a form
of task-based retrieval. What is needed is accurate techniques for
identifying and applying contextual relationships among personal
documents in the absence of user supervision or intervention.

Temporal locality, the idea that events which occur at closer
points in time are more likely to be conceptually related, has been
applied with success in numerous settings involving user activ-
ity [8, 9, 12]. Specifically, file accesses by the user have been
shown to exhibit this property, allowing the inner-file relationships
to be identified independently of their contents [12]. For exam-
ple, if we see someone read three PDF files in a row, we can infer
a likely relationship among those files without knowledge of their
contents or the purpose of the task (e.g., literature review, assign-
ment grading).

Unfortunately, by monitoring the user’s activity within the filesys-
tem, we observe that the abstraction of file interaction by modern
applications has created a divergence between the way users inter-
act with their documents and the way that interaction manifests on
the filesystem. This divergence limits a purely filesystem based per-
spective. On the other hand, requiring application support to iden-
tify the user’s file activity is not only problematic from an adoption
standpoint; rather, it defies a fundamental need for applications to
manage the presentation, interaction, and storage of information.
The challenge, then, is to monitor the user at a low enough level to
obviate application support while accounting for the ways in which
information at this level fails to accurately reflect the user’s activity.
Overcoming this file interaction abstraction is essential for any sys-
tem attempting to deeply support activity context on the desktop.

To address this challenge, we designed Confluence, a context-
enhanced document retrieval system that builds information about

51

the user’s activity by events from the filesystem and graphical user
interface. These two event sources provide complementary infor-
mation which allows us to address the file abstraction problem with-
out losing generality through application-specific design. This work
builds on Connections, a context-enhanced retrieval system that
uses inter-file relationships identified by access patterns to improve
both the recall and precision of personal file system search over
traditional content-only means [12]. By adding UI layer events,
Confluence improves the quality of these relationships, further im-
proving retrieval. In our controlled study, Confluence recalls nearly
70% more correct files in total than Connections with at least 20%
better precision at all recall levels. In our field study, Confluence
recalls between 25% and 30% more correct files at 30 results than
Connections.

2. BACKGROUND
Multiple systems adopt the approach of viewing the user’s doc-

ument workspace from a task perspective. UMEA [5] and Task-
Tracer [2] organize data according to discrete tasks that the user
explicitly defines, and monitor various events which are then as-
sociated with the task identified by the user as currently ac-
tive. Haystack [6] enables users to collect disparate data objects
(e.g., emails, web pages, personal documents) into a single con-
textual grouping; while very flexible and using a more fine-grained
information unit than the document, this system requires applica-
tion specific adapters. The limitation in these systems is that (a)
they require the user to explicitly organize their data or identify
tasks, and (b) they require some level of application support.

Some systems have approached task support by identifying data
relationships from the user’s activity. TaskPredictor is an extension
to the aforementioned TaskTracer that uses file content similarity
to identify the user’s current task from the set of user specified
tasks [11]. CAAD uses file access activity to inform a task visu-
alizer interface, but the tracing approach is somewhat application
specific (e.g., relying on methods such as file-locks which are not
universally adopted by applications) — further, the accuracy of task
identification is not rigorously evaluated.

3. MOTIVATING PROBLEMS
Applications appear to offer users a way to interact with files

directly (e.g., Microsoft word, Photoshop, etc.). However, most
applications place abstractions between the user and their files, ob-
fuscating the user’s intent from the file system layer and forming a
large source of noise. The disparity between user-perceived events
at the application layer and system-perceived events at the file layer
presents a difficult challenge for systems that rely on noisy system-
level tracing alone (e.g., Connections or TaskPredictor) often re-
sulting in inaccuracies. There are two primary problems that we
address within this disconnect.

Background applications: While the user’s current task gen-
erates a stream of activity within the file system, a large number
of user and system applications may be performing any number of
tasks in the background on the user’s behalf. For example, while
the user is editing a text document, other applications may be scan-
ning for viruses, downloading new emails, playing music, etc. Any
background file events interleave the file events of the user’s cur-
rent task, making it difficult to identify the events of user origin.
As we describe in Section 5.1, this problem is enormous; our ex-
periment shows that only 4% of the file event stream corresponds
to files with which the user directly interacts.

Hidden activity: Active user applications can also generate file
events without application layer activity. Many applications em-

User

Relation
Graph

Content−based
Search

Applications

Tracer

File system

Results Keywords

Results

Context−enhanced Search

Figure 1: Connections framework.

ploy numerous configuration and state maintenance files which are
invisible or unavailable to the user but necessary for the process’s
execution; frequent accesses by the application to these files create
the illusion that these files are part of the user’s task when they are
conceptually foreign to it. For example, a user opening a set of
presentation slides considers only the slides themselves to be part
of his context, however, the slide-authoring application may access
configuration files, template files, libraries, etc. in the process of
displaying the slide deck.

The disconnect between the application and file layers created
by these problems indicates that file access patterns will not always
conform to the manner in which users work, and may only glanc-
ingly reflect the user’s conceptual interaction with their documents.
Furthermore, the relationship between the application and file layer
varies among applications, making programmatic identification of
contextual relationships from the file layer both sensitive and brit-
tle.

On the other hand, the array of applications and file types avail-
able to the modern user is ever-changing and increasing, obviating
approaches that limit themselves to some subset of them. The only
way to capture all file activity is to trace at the lowest layer — the
file system itself. Unfortunately, by expanding the amount of in-
formation exposed, we dramatically increase the difficulty in iden-
tifying meaningful information. The problem then becomes one of
signal vs. noise, with Confluence distinguishing itself from prior art
by elevating both to their practical extremes. This approach intro-
duces unique problems that require new methods to solve. Rather
than mitigate the noise by adapting our tracing system to a less in-
formative layer (e.g., the application), we introduce an additional
stream of information — the user interface event stream — to com-
plement and inform the analysis of the user’s file activity.

4. CONFLUENCE
Confluence builds on the existing Connections framework by

introducing novel algorithms to integrate event streams from two
distinct sources: the user interface and the file system. This sec-
tion overviews the relevant components of the Connections frame-
work within which Confluence operates (Section 4.1) and describes
the new algorithms required to enable Confluence (Sections 4.2
and 4.3).

4.1 Connections and Context Building
Figure 1 illustrates the Connections framework. The framework

consists of (1) a tracing module that transparently interposes be-
tween applications and the file system, recording all relevant file
system operations, (2) a relation graph for maintaining a graph of
weighted, directed links among all of the files in the user’s system,
and (3) a content-based search tool for use in context-enhanced

52

search [12]. Connections’s operation relies on two activities: con-
text identification and context-enhanced search.

Context identification converts the gathered traces into the rela-
tion graph using a relation window, which represents the set of all
files which were read within the last n seconds. Conceptually, the
relation window is the time interval within which file operations
are likely to be related. When a new write event occurs, a directed
link from each of the files in the relation window to the written file
is incremented. File accessed together more frequently have higher
link weights and are considered more contextually related.

To perform context-enhanced search, Connections runs the
user’s query through a traditional content-only search tool, gener-
ating a ranked list of results. For each result, Connections iden-
tifies a subgraph of contextually related files using a modified
breadth-first search of the relation graph, limited both by a min-
imum link strength and a maximum hop distance. It then merges
the subgraphs for each result, and applies a graph ranking algorithm
(e.g., PageRank) to the merged graph, creating a new ranked list of
results that includes files found both by content and by context.

4.2 Focused task filtering
Confluence traces the user’s interaction with application win-

dows, specifically, when the user switches focus between windows
(e.g., by clicking on a window to bring it to the forefront). The
Focused Task Filtering (FTF) algorithm approaches the file event
noise problem by ignoring file events which are unlikely to be re-
lated to the user’s current task, inferring task from the currently
focused application window. This applies two observations about
desktop use: first, the focused application window generally cap-
tures the user’s current interest within a task, and second, the set of
recently focused application windows reasonably approximates the
user’s task [8]. Hence, FTF ignores all file operations which were
not caused by the process of the currently focused window1, and
builds relationships between files which experience one or more
access events by processes whose application window has gained
focus within the recent past.

Due to noisy data, Connections employed a short (30 seconds),
fixed length relation window. Because FTF’s filtering substantially
reduces the volume of file events considered, it can relax the con-
straints on the relation window. FTF starts a relation window when
an application window gains focus and ends that relation window
when the application window loses focus. This aligns the relation
window’s time span more closely to the user’s task, and so is more
likely to relate file events that share task commonality. The reduc-
tion in file events also provides more flexibility in how the relation
window operates. For example, Confluence’s relation window con-
nects file read operations to other file read operations, a technique
that was plagued by false-positives in Connections [12].

FTF maintains a log of relation windows for each window that
was focused within the last n seconds (e.g., 300 seconds). When
focus changes, the current relation window is ended and the relation
graph is updated in two steps (depicted in Algorithm 1). First, FTF
increases the link weights between each file experiencing an event
within the relation window by the inverse of the count of unique
files read or written during a relation window. This enhances the
strength of the relationships between files during windows where
few events occur. Second, it considers each pairing of previous
relation window RWi in the log with the current relation window
RWc. For each pair, it connects the reads in RWi to the reads in

1Confluence also checks if the file event was caused by a “window-
less" descendant process of the focused application; e.g., when a
command-line shell — within a window — spawns a non-GUI pro-
cess like LATEX.

RWc (and writes, to writes).
Confluence’s FTF algorithm addresses two key problems with

Connections: false-positives generated by the flood of file events,
and false-negatives created by the mismatch of the relation window
size to the user’s perceived context.

Algorithm 1 processNewRelationWindow ftf : behavior of algo-
rithm on each new relation window

RW c ← current relation window
log ← set of relation windows over last n seconds (not including
RW c)
readsc ← getFilesRead(RW c)
writesc ← getFilesWritten(RW c)
{First, update between files in current window}
for all read file ri ∈ readsc do

for all read file rj ∈ readsc ; ri 6= rj do
incrementGraph(ri, rj , 1

|readsc|)
{|readsc| represents the number of unique files read}

end for
end for{Repeat for writes}

{Now, update for each window in the log}
for all relation window RW i ∈ log do

readsi ← getFilesRead(RW i)
writesi ← getFilesWritten(RW i)
for all ri ∈ readsi do

for all rj ∈ readsc do
incrementGraph(ri, rj , 1

|readsc|+|readsi|
)

end for
end for {Repeat for writes}

end for

log ← log ⊕ RW c {Append relation window to list}

4.3 TaskRank
The TaskRank algorithm addresses the hidden activity problem.

As described in Section 3, many applications employ configura-
tion and state-maintenance files throughout their execution, trans-
parently to the user. The frequency with which these supernode
files are accessed increases both their connectedness in the relation
graph and the weights of their individual links, causing them to
falsely appear related to the user’s task.

Manifested on the relation graph, supernodes feature a dispro-
portionately high number of links and tend to bridge otherwise dis-
tinct tasks. In this respect, context-based search diverges from web
search methods, such as PageRank, which infer authority or credi-
bility for a page from a high number of incoming links. The task-
based nature of context means that, generally, quite the opposite is
true: the more tasks with which a file shares strong links, the less
likely it is that file has a meaningful role within any particular task.

The TaskRank function calculates the exclusivity of the relation-
ship between a given file and a given task-based file set. Equation 1
defines the TaskRank for a file f to a task-set T . Let F be the set
of files that are linked to file f . The top half of Equation 1 calcu-
lates the sum of the link weights from f to each file in T ∩ F . The
bottom half of calculates the total weight of all links from f .

TR(f, T) =

 P
fi∈F∩T linkValue(f, fi)P

fi∈F linkValue(f, fi)

!2

(1)

Conceptually, TaskRank represents the amount of a file’s total
link weight that is part of a given file set. A TaskRank value close

53

Processes Create, Close, Fork, Exec
Files Read, Write, Open, Close
UI Focus change for window and widget

Table 1: Traced events

to 1 indicates a file’s relationship to a task is close to exclusive,
while a value close to 0 indicates a file is related to many other file
sets. For example, if file B has TR = 0.9 for the set of files to
which file A is connected, it is likely they are part of a similar task.
Conversely, if file C has TR = 0.1 with respect to the neighbors
of file A, it is unlikely to be part of a common task — even if the
link value between them is high.

GraphSearch is the method for finding contextually related files
to a given file within the relation graph. To execute a GraphSearch
on file fA, we first retrieve the set of files FA that are linked to
fA and assign each fi ∈ FA a ranking-weight equal to the prod-
uct of the link weight between fA and fi and the TaskRank value
TR(fi, FA). The files in FA are then sorted by this rank, which
indicates the relative strength of the contextual relationship.

Note that TaskRank does not exclude files from being part of
multiple tasks; we see in practice that, in cases where a user’s file
is part of multiple tasks, it still yields a high TR value when com-
pared to application configuration files, which are part of every task
that involves that application. Furthermore, TR is applied to pro-
mote the position of files within a result list, rather than as a thresh-
old which removes low scoring files from consideration, affecting
precision, not recall.

5. EVALUATION
The goal of Confluence is to accurately identify contextual inter-

file relationships that can be used by context-aware applications,
e.g., context-enhanced search and browsing or context-based clus-
tering. Correspondingly, our evaluation aims to identify the extent
to which context — as represented by the relation graphs built by
various algorithms — reflects the user’s perceived conceptual rela-
tionships. We conducted two independent user studies to evaluate
Confluence: a controlled study where users worked on a set of pre-
determined tasks and a longitudinal field study.

Data collection for each experiment used Confluence to trace
the process, file system and user-interface events listed in Table
1. Confluence traces process creation and exit events to (1) main-
tain necessary mappings between a process’s file descriptors and
the files they represent and (2) maintain the process hierarchy re-
quired for FTF to identify ownership relationships between window
and processes and subprocesses. From a performance standpoint,
Confluence’s tracing does not contribute a noticeable or significant
performance penalty on modern personal computers.

Our evaluation compares the GraphSearch performance between
Confluence and Connections. Relation graphs were generated us-
ing Connections’s read/write algorithm (as described in [12]) and
Confluence’s FTF algorithm parameterized with relation window
sizes of 5 and 10 minutes. To GraphSearch Connections’s relation
graph, we use its Basic-BFS algorithm (a weight and distance con-
strained variant of breadth-first search, described in [12]).

5.1 Experiment I
Our first experiment was a controlled user study where users

were asked to complete one or both of two predetermined tasks
involving computer use. In the first task, task1, users authored a
summary report for a fictitious conference. This task required users
to create a document which described the conference, read a small

Method task1 task2 Combined
FTF (300 seconds) 0.542 0.682 0.574
FTF (600 seconds) 0.694 0.955 0.755

Connections 0.000 0.307 0.072

Table 2: Total recall in Experiment I

number of ACM papers, and write small summaries of these papers
on the summary document. In the second task, task2, users created
an online photo album with a small number of images (e.g., JPG,
GIF) within a given topic (e.g., dinosaurs). First, users searched
online for images, downloaded them, then uploaded them to an on-
line web album (e.g., Flickr). The users completed the tasks in
succession, using a laptop we provided.

The controlled nature of the study meant that the files used with
each task were well defined. Specifically, each PDF file accessed
was considered part of the review task, while each image file was
considered part of the photo album task. Despite filtering file ac-
cesses to include only those from files under the user’s home direc-
tory, the traces of Experiment I contained 2116 unique files, with
relevant files making up only 4% of these. In total, we recruited 16
volunteers for our study; 13 volunteers accomplished task1 and 13
accomplished task2 (10 accomplished both), resulting in 53 rele-
vant files for task1 and 37 relevant files for task2 (roughly, 3 files
were used during each task, although some volunteers used more
files).

5.1.1 Relation graph
For FTF (300 and 600 seconds), and Connections, we built n+1

relation graphs: one from each user’s individual trace and an addi-
tional graph using all users’ combined traces. To create the com-
bined trace, we modified the time stamp on each trace such that
its initial event occurred immediately after the last event from the
previous trace. We consider the combined graph as a simulation of
a single user performing a sequence of tasks, more closely resem-
bling a single user’s behavior over an extended period of time.

For each file fi in a task T , we executed a GraphSearch on each
of the methods’ relation graphs to determine how many of the other
relevant files within T that were present within its result pool. We
define the metric task recall to be the percentage of files within T
which are returned upon query fi. Conceptually, task recall re-
flects the effectiveness of an algorithm at identifying file relation-
ships with respect to task. In this experiment, we consider only
the subset of the relevant files accessed by that user to be relevant
for that search, while in the combined graph all relevant files are
considered.

Table 2 lists the total recall values averaged across the n + 1
graphs for each method within each task (the recall-precision graph
for FTF-600 is displayed in Figure 2, described later). FTF sig-
nificantly outperforms Connections due to Confluence’s filtering,
which enables it to significantly expand its relation window. The
increase in recall from a 300 second to a 600 second relation win-
dow FTF indicates that user tasks span long periods of time, further
confirming our claim.

When asked to retrieve their files with Google Desktop (a tradi-
tional content-only search tool) most users were unable to generate
keywords for at least one item within their task, although no user
failed to identify keywords for at least one item in the task. This
illustrates a need for Confluence’s contextual retrieval; by remem-
bering any item within their task, users would have had a strong
chance of recovering any forgotten item by using keywords of a
remembered item as a query.

54

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

All users, TaskRank
Single User, TaskRank

All Users, No TaskRank
Single User, No TaskRank

Figure 2: TaskRank on FTF-600 in Experiment I

5.1.2 TaskRank
Because TaskRank minimizes the impact of supernodes, we ex-

pect it to exhibit two properties: (1) improved precision, and (2)
increased effectiveness as the number of tasks increase. We eval-
uated TaskRank’s improved precision by evaluating FTF-600 with
and without TaskRank. We evaluated TaskRank’s increased effec-
tiveness with more tasks by comparing FTF-600 created from a
single user’s trace to FTF-600 created from all users’ traces.

Figure 2 illustrates the precision/recall graph for the four se-
tups that represent the cross-product of our two evaluations. As
expected, TaskRank improves the average precision of results and
this improvement grows with more user activity. The fact that the
worst performance was observed when considering all the users’
data without TaskRank emphasizes the need for its noise reducing
abilities.

5.2 Experiment II
Our second experiment evaluated the utility of Confluence’s re-

lation graph when generated over a longer period and on live sys-
tems. Users installed and ran the Confluence tracing software on
their primary-use computers for 3-6 weeks, which maintained the
relation graphs for five schemes as they worked. Because we did
not control any of the user’s tasks, and were not exposed to the
user’s data, it was impossible for us to know the complete set of
files that made up any single user task, thus making the evaluation
technique used in our controlled study impossible.

Instead, after the tracing period completed, each user was asked
to identify from memory a set of 5-10 disjoint tasks with which
they were engaged at some point during the tracing period. “Task"
was defined as any goal that required at least two files to accom-
plish. “Disjoint" was defined to mean that the tasks have minimal
overlap of files with other tasks. For example, two separate home-
work tasks could refer to the same document containing needed
equations, meaning they overlap. For each identified task, the user
selected a seed file that was used as part of that task.

We used Confluence to perform a GraphSearch on the seed file in
each relation graph, creating a list of related files for each scheme.
Rather than having users rank each exhaustive list separately — a
time consuming and frustrating task that can quickly introduce user
fatigue — we pooled the related files for each seed file into a single
merged list of unique results, sorted alphabetically. To increase
coverage of potentially related files, we also merged results from
a directory search algorithm that produced a list of all files that
existed at some point within the same directory as the seed file,

Result size
Method 5 10 15 20 25 30

FTF (300) 0.17 0.23 0.30 0.37 0.42 0.46
FTF (600) 0.17 0.22 0.29 0.33 0.40 0.42

Connections 0.11 0.13 0.16 0.17 0.17 0.17

Table 3: Task-recall by result size. Shaded cells indicate a sta-
tistically significant difference with Connections, derived from
one-sided t-test (df = 70). Dark gray is significant with P <
0.01, light gray is P < 0.05.

Result size
Method 5 10 15 20 25 30

FTF (300) 0.46 0.31 0.27 0.25 0.23 0.21
FTF (600) 0.46 0.30 0.26 0.23 0.22 0.19

Connections 0.30 0.18 0.15 0.12 0.09 0.08

Table 4: Task-precision by result size.

under the premise that user’s directory organization of their files at
least partially reflects the commonality of those files2. To further
reduce user fatigue, we capped the size of the merged list to 100
items, removing the lowest ranked item from each list of related
files in a round-robin fashion until the limit was reached.

Users were presented with the merged list for each seed file, and
asked to rate each listed file on a 0-3 Likert scale, with 3 indicating
a strong task relationship (i.e., the files are used as part of the same
task) to the seed file and 0 indicating no task relationship. Because
of ambiguity in defining a file that is “partially” related to another,
we conservatively treated any file which did not receive a rank of 3
as unrelated. The remaining files were used as the ground-truth ap-
proximations for which we evaluated each algorithm’s task-recall.
As tasks can vary widely in number of files, we observed a variety
of pool sizes.

5.2.1 Findings
Our field study involved 6 volunteers, a combination of univer-

sity graduate students and industrial researchers, who were traced
for a period of 3-6 weeks. During the evaluation, the users’ file
selections identified 36 seed files across all users. The number of
files in the approximate ground-truth averaged 13.66 per query.

Table 3 depicts each algorithm’s task-recall at 6 result list sizes
ranging from the first 5 to the first 30 results, averaged over the
36 seed files. Connections’s performance is stronger in this exper-
iment than in the previous one, confirming our expectation that it
performs better when given more time to enforce the relationships
generated by repeated behavior. However, Confluence still meets
or exceeds Connections recall at all considered result sizes. At a
result size of 5, the different algorithms performed similarly. As re-
sult size increases, the improvement of the Confluence algorithms
over the pure file-based approach used by Connections grows to
nearly 30%. This improvement is significant based on a one-sided
t-test using 70 degrees of freedom (P < 0.05 for all result sizes 15
or greater; P < 0.01 for all result sizes 25 and greater).

6. DISCUSSION AND CONCLUSIONS
Our experiments did not deploy Confluence as a complete search

engine because we wanted to isolate the effectiveness of each in-
dividual method — hence, these reported numbers do not directly

2Additionally, these pools contained results from variations on the
FTF algorithm which we do not describe in this work.

55

assess Confluence in natural document retrieval tasks. However,
by situating our results within the original Connections evaluation,
we draw more general inferences about the ability of Confluence
to substantially improve end-to-end retrieval tasks. In the original
Connections evaluation, users deployed the tracing and search soft-
ware on their personal computers, using it whenever they needed to
find a misplaced file. Hence, the results reported indicate how it
performed in real, end-to-end retrieval tasks. In the Connections
experiments, it was shown to improve recall by 34% to 74% with-
out a reduction in precision when considering all returned results,
but only increased recall from 18% to 34% when considering the
first 30 results. These results substantiate the ability of context to
greatly enhance personal document retrieval.

Our study directly addresses the core of file-based context build-
ing algorithms; namely, measuring the accuracy of our methods in
identifying file relationships. Though our users did not use Con-
fluence as a search system, we generalize that our significant im-
provements to the context-building core that we would translate
into substantial improvement in typical, end-to-end document re-
trieval tasks.

From our experiments and experience with the system, we draw
the following points:

- In cases where users remember some but not all files from a task,
Confluence would be an effective retrieval tool. This case presented
in our experiments.

- Filesystem noise is significant and damages context building, and
any system attempting to support file-based context on the desk-
top must contend with it. While Connections’s file-based approach
captured the same file activity as Confluence, by mitigating this
noise, Confluence’s UI-aware methods enable relevant relationships
to be more apparent, improving recall at lower result cutoffs.

- The increased relation window duration and file operation flexi-
bility enabled by the filtering is advantageous.

- Noise from hidden file activity grows with more data, and is mit-
igated by TaskRank.

- FTF’s task-recall changes little between 5 and 10 minute dura-
tions. While user tasks often take longer than 10 minutes, the ma-
jority of events between related files occur within 5 minutes of each
other.

- For 28 out of the 36 queries, FTF was successful in producing
highly related files (90% success rate). Furthermore, only one
user experienced more than a single failed query (2 failed queries),
meaning FTF was consistently successful for all users.

7. REFERENCES
[1] T. Blanc-Brude and D. L. Scapin. What do people recall

about their documents? Implications for desktop search
tools. In IUI ’07, pages 102–111, New York, NY, USA,
2007. ACM Press.

[2] A. N. Dragunov, T. G. Dietterich, K. Johnsrude,
M. McLaughlin, L. Li, and J. L. Herlocker. Tasktracer: a
desktop environment to support multi-tasking knowledge
workers. In IUI ’05, pages 75–82, New York, NY, USA,
2005. ACM Press.

[3] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and
D. C. Robbins. Stuff i’ve seen: a system for personal

information retrieval and re-use. In SIGIR ’03, pages 72–79,
New York, NY, USA, 2003. ACM Press.

[4] D. Gonçalves and J. A. Jorge. In search of personal
information: narrative-based interfaces. In IUI ’08, pages
179–188, New York, NY, USA, 2008. ACM.

[5] V. Kaptelinin. UMEA: translating interaction histories into
project contexts. In CHI ’03, pages 353–360, New York, NY,
USA, 2003. ACM Press.

[6] D. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha.
Haystack: A general purpose information management tool
for end users of semistructured data. In CIDR, pages 13–26,
2005.

[7] T. W. Malone. How do people organize their desks?
implications for the design of office information systems.
ACM Trans. Inf. Syst., 1(1):99–112, 1983.

[8] N. Oliver, G. Smith, C. Thakkar, and A. C. Surendran.
SWISH: semantic analysis of window titles and switching
history. In IUI ’06, pages 194–201, New York, NY, USA,
2006. ACM Press.

[9] T. Rattenbury and J. Canny. CAAD: an automatic task
support system. In CHI ’07, pages 687–696, New York, NY,
USA, 2007. ACM Press.

[10] P. Ravasio, S. G. Schär, and H. Krueger. In pursuit of desktop
evolution: User problems and practices with modern desktop
systems. ACM Trans. Comput.-Hum. Interact.,
11(2):156–180, 2004.

[11] J. Shen, L. Li, T. G. Dietterich, and J. L. Herlocker. A hybrid
learning system for recognizing user tasks from desktop
activities and email messages. In IUI ’06, pages 86–92, New
York, NY, USA, 2006. ACM Press.

[12] C. A. N. Soules and G. R. Ganger. Connections: using
context to enhance file search. In SOSP ’05, pages 119–132,
New York, NY, USA, 2005. ACM Press.

56

	Introduction
	Background
	Motivating problems
	Confluence
	Connections and Context Building
	Focused task filtering
	TaskRank

	Evaluation
	Experiment I
	Relation graph
	TaskRank

	Experiment II
	Findings

	Discussion and Conclusions
	References

