Technical Report TR08-004

Department of Computer Science
Univ. of North Carolina at Chapel Hill

A Formal Language for Training a
Design Pattern Detector

Hao Xu and David Stotts

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

March 1, 2008

A Formal Language for Training a Design Pattern Detector

Hao Xu, David Stotts
University of North Carolina
Department of Computer Science
Chapel Hill, NC 27599, USA
{xuh,stotts}@cs.unc.edu

ABSTRACT

Research in automated pattern detection from source code
has focused on the efficiency of pattern extraction mecha-
nisms; there are fewer projects on making the act of pat-
tern definition easier and more accessible to practicing soft-
ware engineers. We have developed the Program-Structured
Pattern Definition Language (PsPDL) with the goal of giv-
ing programmers a familiar notation (more algorithmic, less
mathematical) with which to create new pattern definitions
for the catalogs that drive pattern recognition tools. The
syntax of PsPDL resembles that of Java, with a few addi-
tional constructs added to express first-order or set theoretic
concepts (such as quantification over identifiers); PsPDL
also includes a simple module system that faciliates reusing
pattern definitions. The semantics of PsPDL are based on
a translation to first-order logic with a focus on modeling
the dependencies among the semantic entities of OO pro-
grams. PsPDL is a first step towards solving the problem of
training pattern catalogs directly in programming language
source code.

1. INTRODUCTION

Pattern detection systems work from catalogs that con-
tain pattern definitions in formal and semi-formal notations.
These catalogs are not static — they need to be extended as
new patterns are discovered. Writing formal pattern defini-
tions correctly is challenging for the researchers creating the
detection tools; it is certainly beyond the interest level (and
often the capabilities) of the majority of practicing software
engineers who would stand to benefit from the tools.

This reseach is a continuation of the SPQR project[1, 2].
In SPQR, patterns are detected in source code by “min-
ing” the text for thousands of small, easy-to-find facts about
the relationships among OO components: methods, classes,
fields. For example, we might note that there is a depen-
dency between method A and method B, since A calls B;
we might find a read dependency between field X in class C
and field K in class D. Patterns is SPQR are defined as the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

necessary and sufficient set of relationships that must exist
among componets for the pattern to be said to exist. We
then let a formal theorem prover determine if the facts as
gleaned from the source satisfy the various pattern defini-
tions.

Catalog Training: Patterns in SPQR are defined in a de-
notational semantics based on Cardelli’s sigma-calculus[17];
these defintions are converted into first-order logic and com-
bined with the facts gleaned from the source code to form
input to a theorem prover. Writing SPQR pattern defini-
tions requires mathematical sophistication and practice, and
is not something many software engineers will be able to do
successfully as pattern catalogs need to be extended. To
assist with this problem we have developed the concept of
training the catalog. Programmers are good at writing al-
gorithmic code. If we can make pattern definition as much
like programming as possible (and less like writing first-order
formulae) then catalog extension will be a natural activity
for programmers to do as new patterns are discovered.

Canonical Code: The SPQR tools take program source
code and generate first-order formulae (structural and se-
mantic facts) from it. A pattern definition is SPQR is es-
sentially a collection of first-order formulae. Why not have
programmers write small canonical programs that contain
only the components of a pattern to be defined and let SPQR
do the hard formal work? The SPQR tools can be used to
glean from the canonical code the facts about its relation-
ships; those facts would constitute the formal pattern defi-
nition. The quality of this definition would depend on how
successful the programmer was in creating canonical code
that contained only pattern components.

PsPDL: How to automatically train a pattern catalog with
canonical codes in a general programming language is an
open problem. In particular, an algorithm for determin-
ing what part of the SPQR-generated output is necessary
(vs. extraneous) is not yet known; human post-processing
is still necessary to tighten the definitions. However, we
have taken a first step towards the general training solution
with the research reported in this paper. We have devel-
oped the Program-Structured Pattern Definition Language
(PsPDL) to provide a programming-language-like notation
that is limited to expressing only pattern concepts. PsPDL
gives programmers a familiar notation (more algorithmic,
less mathematical) in which to create new pattern definitions
for the catalogs that drive pattern recognition tools. Be-
ing a non-general notation, PsPDL definitions contain only
pattern-specific information and so lead to correct complete
definitions when translated into first-order language via the

SPQR tools.

2. RELATED WORK

A number of research projects have focused on how to
enforce design patterns by adding new language features to
generate elements that constrain a set of classes to imple-
ment design patterns. Slam-sl[3] is a specification language
that can be used to specify design patterns. Based on the
idea of formalizing design pattern as class operators, Slam-sl
can be used as a pattern language. PaL[4] is a programming
notation for design patterns that generates classes from a
program language with feature that support design patterns.
PECI5] is a pattern enforcing compiler that extends a Java
compiler to include the extra checks needed to enforce de-
sign patterns. These languages or language extensions helps
write or generate code that matches certain design patterns,
but does not directly address the problem of creating pattern
definitions that can be used to discover patterns in existing
source code.

Other work has been done in formalizing design patterns.
LePUS3 and Class-Z[6] are a specification and modeling lan-
guage designed to capture design patterns at different levels
of abstraction. LePUS is a very nice language for encod-
ing architectural descriptions, and reasoning about them.
LePUS also has a visual language that show the formal def-
inition as a graph. Abstract syntax graph are also used to
define design patterns which can be should in a UML-like
diagram[8]. Prolog[11] has also been used to encode design
patterns and source code[7]. However, unlike general pur-
pose theorem provers, Prolog programs are often restricted
to Horn clauses. However, LePUS does not provide as much
detail as PsPDL, which makes it less effective for defining
patterns used to match the source code. Also, the syntax
of LePUS, graph-based languages, and Prolog are closer to
logical formulae than programs written in programming lan-
guages. A closely related project from SPQR is POML and
EDPs [1, 2]. POML is an XML based pattern definition
and source code modeling language. It encodes concepts of
object-orient design and patterns in an XML dialect which
can be translated to Otter theorem prover input. Finally,
recent work is showing an increased effort in dynamic dis-
covery of patterns[9].

3. THE PSPDL PATTERN LANGUAGE

The core language presented in this paper is called the
Program-Structured Pattern Definition Language(PsPDL).
PsPDL is designed with a programming-language-like syn-
tax resembling that of Java (for familiarity to program-
mers), with a few additional constructs to allow quantifi-
cation over identifiers. PsPDL also has a simple module
system that facilitates reusing pattern definitions. The se-
mantics of PsPDL are based on a translation to object cal-
culi in First-Order Logic with Strict Variables and Indices
(FOLSVI)[16]. It focuses on modeling the dependency of
semantic entities rather than the actual semantics of evalu-
ation, which is more relevant to design patterns description.
It is designed as a minimal language for design patterns; a lot
of features found in object-oriented programming languages
are left out, and the syntax is more restrictive. However, it
supports other features designed for describing design pat-
terns, such as constructs and directives for explicitly encod-
ing elemental design patterns (EDPs)[1]. We take a two

layered approach: PsPDL has a core language that is easier
to define and perform inference on; other syntax features are
defined in the core to allow writing more legible definitions.

4. PSPDL SYNTAX

The syntax of PsPDL is shown in Figure 1. There are
a few conventions used in the presentation which we intro-
duce now. On the right hand side of a production, optional,
multiple are represented by superscripts “7 and “*, “t,
respectively. If a set of parentheses are followed by one of
the multiplicity modifiers, then they are meta symbols that
delimits subterms in the definition. When parentheses are
not, they are used as a symbol in PsPDL, and are generally
not quoted. If we define a list of terms that are separated
by comma in PsPDL, we write “”. One terminal symbol
is left undefined in the grammar: “(identifiers)” produces
identifiers acceptable in the target language. The grammar
has productions for expressions and statements, directives,
patterns and classes, and first-order features.

The syntax is best illustrated with an example. Figure
2 shows the PsPDL code for two small patterns from the
literature — Object Recursion and Objectifier[14, 15].

There are a few syntactic constructs that need elaboration.
First, identifiers in PsPDL in a definitional position of classes,
methods, and fields denote sets of identifiers in the object
language. If they are followed by “+4”, then they denote
any sets with nonzero finite number of elements, otherwise
they denote singleton sets. To the contrary, other types of
identifier in both the definitional and applicational positions
denote identifiers in the object language. This distinction
leads to defining the selection syntactic construct.

When set identifiers are used in any applicational position,
they must be followed by a selection construct to select one
of the elements. The syntax of selection construct looks like:
n[some k|. Other types of identifier are not and should
not be followed by a selection construct. It seems to be
unnecessary and cluttered to required such explicit selection
even for singleton sets. We will show how to introduce a
syntax sugar to make the program more concise, but we will
stick to this core language for now.

Method overriding has to be explicitly declared, though
it only needs to be declared once for each method. When
we declare that a set of methods overrides another set of
methods, the latter are used as sets, and therefore should
not be followed by a selection construct; this is also the case
in the constraints in the ”extends” clause of patterns.

Method invocations have default semantics which can be
overridden by directives and even reversed. Using the "not”
directive, however, should be done with care. For example,
consider this code:

Handler v {
not redirect
inTypeFamily Abstractor[some di]
v.handleRequest [some k1]1();

This does not match methods that do not make a recursive
call. Instead, it matches code with at least one variable with
no recursive call. Designing a more flexible "not” is part of
the future work.

n,X = identifier patterndef

(identi fier)
T,F,M,N := set identifiers
n cd
n+
t o= type md
T[some X]|
m = method
M[some X]| ms
f = field
F[some X]| pd
s u= statement

new t(n*) new set
n.f=mn; field assignment
n =n.f; field retrival
n.m(n*); method invocation
n =n.m(n*); method retrieval
n = this self
n = super super object dir
n=mn parameter
tn{s} variable
return n; return
5182 sequence
{s} block
dir s directive

= pattern defintion
pattern n((N*))’
(extends n(N = set)*)*)?{cd*}

n= class definition
class class (extends t*)" {md*}

member definition
field
method

t F
abstract’ ms {s}’

BES method signature
t M (pd) (overrides M)’

n= parameters defintion

(tn)™

n= set

N unqualified
N.N qualified
set + set union

{set[some X]}

n= primitive directive
delegate

redirect

inObject

inType

inSuperType

inTypeFamily ¢

not

Figure 1: Syntax of PsPDL

The scope of a local variable is explicitly delimited by
curly braces. The variables that occur in the selection con-
struct will be converted to strict first-order variables, mean-
ing that their scope is within the whole pattern definition.
They can even be exported to other pattern definitions.
Therefore, we need to use a fresh variable in each new selec-
tion construct unless we intend to select an object selected
before.

The module system is quite simplistic. A pattern may
declare some of the identifiers that are exported and visible
outside of the definition. When extending a pattern, the
exported identifiers of the patterns referred may be bound
to local identifiers. A pattern that extends other patterns
may create mixins to classes defined in the other patterns,
as shown in the sample pattern definition. The Objectifier
pattern, for example, adds new constraints to the methods
defined in the ObjectRecursion patterns to form two distinct
classes of objects: Recursors and Terminators.

5. SEMANTICS

5.1 Predicate Generation Rules

This section defines Predicate Generation Rules (PGR)
that generate the logical structural semantics of a pattern
defined by PsPDL. The Rules are compositional and the ob-
ject language used to define the semantics is the “Predicate
Logic with Strict Variables and Indices”[16].

5.1.1 First-Order Logic with Strict Variables and In-
dices

In order to keep our translation rules compositional and
yet allow cross references between difference formulas, we
extend first-order logic with strict variable and indices. We
list the syntax of our extension in Figure 3.

Our logic FOLSVI is essentially equivalent to FOL, but
it solves a few problems relevant to pattern definition lan-
guages. The semantics of FOLSVI rely on converting FOLSVI
to prenex normal form (PNF). Because for each FOL for-
mula there is an equivalent FOL formula in PNF, and as we
will introduce below, our additional transform rules do not
affect non strict variables, our extension is a conservative
extension in the sense that if FOL formulae are regarded as
FOLSVI formulae, their semantics do not change.

First, strict variables are basically variables that are not
subject to renaming. If we have a strict variable that is
outside of the scope of a quantifier of the variables, it will
be captured by the quantifier when in PNF. We don’t allow
strict variables to be quantified twice in a formula, which
means that our syntactic rules do not always produce well-
formed formulae, but we allow an exception that a strict
variable may be existentially quantified multiple times, and
the outermost quantifier will be retained while other quan-
tifiers are discarded. The intuition is that we want strict
variables to represent classes, methods, and fields that can
be referenced outside of current scope. Because FOL does
not have a scoping mechanism, we are essentially adding the
scoping mechanism to FOL. The second production of strict
variables In[s] is a qualified form of strict variable. Some-
times, we may want to encapsulate the strict variables, we
add the scope construct As(f) to FOL so that only variables

pattern Objectifier(
Abstractor, ConcreteClass+,
Client, Client.someMethod,
Abstractor.method+, ConcreteClass+.method+)
class Abstractor {
abstract AT1 method+();
¥
class ConcreteClass+ extends Abstractor {
AT2 method+()
overrides Abstractor.method+ {
}
}
class Client {
ConcreteClass ref;
AT3 someMethod() {
ConcreteClass v {
v = ref;
v.method[some i] ();
}
}
}
}
pattern ObjectRecursion(
Handler, Recursor,
Terminator, Initiator,
someMethod, handleRequest)
extends Objectifier(
Abstractor = Handler,
ConcreteClass+ = Recursor+ + Terminator+,
Client = Initiator,
Client.someMethod = Initiator.someMethod,
Abstractor.method+ =
Handler.handleRequest) {
ConcreteClass+.method+ =
Recursor+.handleRequest +
Terminator+.handleRequest) {
class Recursor+ {
AT4 handleRequest() {
Handler v {
redirect
inTypeFamily Abstractor[some d]
v.handleRequest [some k] ();
}
}
}
class Terminator+ {
AT5 handleRequest() {
not Handler v {
redirect
inTypeFamily Abstractor[some di]
v.handleRequest [some k1] ();
}
}
}
}

Figure 2: Pattern Definition of the Objectifier and
Object Recursion Patterns in PsPDL

index d = index

0 Zero

succ(d) successor
strict s = strict variables

formula

[Te(f) indexed universal
>te(f) indexed existential
) scope

Figure 3: Syntax of FOLSVI

(1>

(3 1311 Ye(vn € e(4))
1

In[ny, na, ..., ngl

ML Vil [T3elry
1
M Deetn M]eeet -1
3> Yeet) (3D Yelectny)
(311 Ye(f) e = {3 Je(Singular(e) A f))
1

(1>

(1>

(8412 Ye(N e £ {31 Ye(Plural(e) A)
+
Singular(e) £ Fsc(e={se})
Plural(e) 2 Jsc(se €e€)

Figure 4: Abbreviation of FOLSVI

5 are visible outside the construct; other strict variables are
converted to variables beyond this scope. All non-strict free
variables are existentially quantified.

The indices are easier to understand. The indices are like
de Bruijn indices, exception that they only index variables
in the indexed universal and existential. This construct is
usefully for defining rules that are compositional.

The translation of FOLSVI to FOL is a two step trans-
lation. The first step converts all indices to the variables
indexed. The second step converts FOLSVI to PNF. If a
scope construct with empty list of strict variables is implic-
itly added to each FOLSVI formula, then each well-formed
FOLSVI formulate can be translated into a PNF of FOL,
and each FOL formula can also be regarded as a well-formed
formula of FOLSVI. The formal definition of the translation
rules are defined in [16].

For this paper we introduce a few abbreviations. To dis-
ambiguate, when we write in the abbreviated forms we omit
the strictness modifier “!” in the brackets, for example, In[nq] =
Inflng].

5.1.2 Meta-functions

Keyword in Sans Serif are meta-predicates that are used
at translation time. There is also a typing environment F
of local variables. All local variables have to be declare by
variable definition statements. F is a map that maps local
variables and to their declared type. The semantics of meta-
predicates are summarized informally as follows:

e N singular: N is in the singular form.
e N plural: N is in the plural form.

e n param: n is a parameter.

e nvar: n is a local variable.

e nset: m is a set identifier.

e F[N’/N]: Syntactically substitute strict variables N’
for N in F.
5.1.3 Preprocessing
The preprocessing step are:
e Transforming a program to canonical form; this step

de-sugars the pattern definition (which is not necessary
if the pattern is written in the core language).

N set (Set)
————(Se
IVl =tV

N1 set
[N2.Ni|[; =!Ni[N2]
X occurs in some class definition
[[{ N[some X]||, = singleton(!X)
llsills = N1 |ls2]l, = N2
Is1 + s2||, = union(N1, N2)

(QualifiedSet)

(Singleton)

(Union)

Figure 5: Semantics of Set Terms

e Gathering enough information to evaluate the meta-
predicates such as n param and n var; these predicates
can be decided from the syntactic analysis.

e Checking that all identifiers are properly defined in
scope; this can also be checked syntactically.

e Checking that no local variables are assigned twice.

e Checking that the specification is well-typed. This step
should be done to ensure that a specification can match
some program; however, it is not essential as there
is no problem in progress as in normal programming
languages since we are defining the semantics for a
pattern.

5.1.4 Judgments

E + |JA||= P the logical structural semantics of A is P
E + n:T the local varible n has type T'
[|[Alls =T the semantics of set expression A is T'
5.1.5 Rules

First we define the semantics of set terms: |[o],.

The Set rule basically translates a set identifiers to a strict
variable, which are variables that are not subject to renam-
ing. We use the same name for the variable in the object
language (refering FOLSVI from here on). The Qualifed-
Set rules do similarly, but construct a strict variable using
the qualifier. The Singleton rule selects a element X from
the set N. The reason for the requirement that X occurs
in some class definitions is that we can not generate a log-
ical formula here, because the semantics of set are terms.
The identifier before the selection construct is not reflected
in the semantics, but merely used as an annotation that X
should come from this set. In the current semantics, there
is no rules for ensuring that the specification is well-typed
because progress is not a problems as we mention before.
However, there is good reasons that we enforce certain type
system that ensure that the patterns are not absurd and
that catches unintended errors. We will discuss this point
in the future work section.

The rules for meta-predicates are generally easy. For ex-
ample:

——(Singular)
n singular

—— (plurar
n + plural (P)

Now, we define the PGRs of PsPDL: ||o||. The rules are
composed of three sections dealing with different aspects of

the semantics of PsPDL, respectively. The Structural Sec-
tion, which consists Rules Specification to Rule Local Vari-
able, addresses the structures of classes, objects, methods,
and fields. Specifically, there are two rules for classes, meth-
ods, and field. The singular version defines a pattern of
one class, while the non-singular version defines a pattern
for a set of classes. The Dependency Section, consisting of
Rules Self to Negation, addresses the dependency relations.
The Similarity Section, consisting of the rest of the rules,
addresses the similarity constraints.

We highlight a few rules here. Note that quantifiers do
not occur in antecedents of implications, which means that
we do not need to flip quantifiers when converting to PNF,
unless there is a “not” directive attached to the statements;
this does not affect classes, methods, or objects. We again
assume that all formulae are converted to PNF.

The Specification and Pattern rules generate formulae in
the form of an implication P — M. If we want to query if
some pattern matches some code, we can generate a logical
formula from the code A, and the pattern M, and ask a
theorem prover to prove that A — M is a tautology. We
can see that if we can prove that the query is a tautology,
then we show that the code has the pattern. The scope con-
struction converts all strict variables that are not exported
to normal variables and rewrites all occurrences of the con-
verted strict variables to corresponding normal variables. A
pattern is essentially the scope for all strict variables that

are not exported.

The Extension rule generates constraints in the form of
conjunction. These constraints connect two formulae gener-
ated from different pattern definitions together. To see why
that works, consider formula generated from a pattern that
extends another pattern. The formula looks like

(P—(MAMS'A M")WAP — M

The rewrite function rewrites term M’ and equality con-
straints S by renaming the variables to get a customized
copy of M’. A logical consequence of the formula is

P— (MAS'A M)

which is exactly what we would like to obtain from linking
the two patterns together. If all variables occurred in S are
strict then this rewriting step does not affect the normal
variables, hence does not violate the scoping rules. Note
that if without renaming the variable, when there are two
extensions to the same pattern, the formula leads to a pat-
tern that is practically too restrictive and sometime does not
match any program. If instead rewriting S into M’, then the
resulting formula could be malformed as the right hand side
may be non variables.

The Class rules defines patterns that match classes. Recall
that the [] symbol is for variables that are universally quan-
tified and indexed, and that the indices in Sans Serif refer to
these indexed variables. The curly braces denote that the set
is existentially quantified. For example, []!class{Class(0)}
is equivalent to the following 3lclassVC' € class(Class(C)).
The strict variables followed by brackets !O[C] are qualified
strict variables. The term in the brackets must be strict vari-
ables. We also omit the exclamation symbol in the brack-
ets. The object function denotes the set of objects of a class.
Once the class rules is understood the other structural rules
are quite similar.

The LocalVariable rules use a type to declare a local vari-
able and add it to the typing context. The variable !X is

P =M

: - = — — (Specification)
= Hspeuﬁcatlon n PH = Specification(spec(n)) — N M

F Hextends n(Ny = Q)H =1 Fledl|=M
(Pattern)

- Hpattern n(N) extends n(N; = @){@}H = AN(Pattern(n) - A M)

Iset]|, = S

Constraint
FN = seil| 5 N =5 (Constraint)

[HN = QH =S F |patternn(N)pd|| = AN(Pattern(n) — AM) N’ fresh
- Hextends n(N = Q)H =A(SA AM)N'/N]

(Extention)

E+ Hextends classH =1 EF|md]|= M classplural

>~ !class{I A Class(0)

E+ Hclass class extends class{@}” = A[[!O[0] € object(0)
{Instance(1,0) A M }}

(Class)

E+ Hextends classH =1 EF||md]|= M classsingular

>q!class{I A Class(0)

EF Hclass class extends class{@}H = A[['O[0] € object(0)
(Instance(1,0) A M)}

(Inheritance)

(Class Singular)

E+ Hextends T[some X]H = 3X € T(Inherits(0,!X))

E+ body|| =M FEF ||pd P lural E+ =N
mbody] lpdl| = P_nplural _EF o] Miethod)
> In[1]{Method(2)
AMember(2,1)
E - |[Tlsome X] n(pd) o mbody|| = AX €T (ReturnType(2,!X)

AN AP A M}

Et |lmbody|| = M Et|lpdl|=P Et |o| =N nsingular
Yo !n[1]{Method(2)
AMember(2,1)
E + ||T[some X] n(pd) o mbody|| = AX €T (ReturnType(2,!X)
AN AP AM}

(Method Singular)

Erllpdl=P EF o] =N nplural (Abstract Method)
> In[1]{Method(2)
_ AMember(2,1)
E I ||abstract T'[some X| n(pd) o|| = AJIX €1T(ReturnType(2, X))
AN A P A Abstract(2)}

Etr||lpd]| = P EF|o|| =N mnsingluar
o1 In[1]{Method(2)

AMember(2,1
E F ||abstract T'[some X| n(pd) o|| = AJIX G!T((ReternType(Z X))

AN A P A Abstract(2)}

(Abstract Method Singular)

Method P t
Im[2](MethodParameter(2,n[2]) (Method Parameter)

ANX €T (Type('n[2],!X))
[mlly =N
E + |loverrides m|| = 3X € N(Overrides(2, X))

EF ||T[some X| 7| =

(Overriding)

n plural .
Field
S In[L{Field(2) (Field)
E + ||T[some X]|n| = AMember(2,1)
AX(IX €T A ReturnType(2,!T)}

n singular
S In[1]{Field(2)
E+ ||T[some X] n| = AMember(2,1)
AX(IX €T A ReturnType(2,!T)}

(Field Singular)

Figure 6: Structural Section of PsPDL Semantics

E,n:!XFl|s||=N
E || T[some X]| n{s}|| = In(3'X €!T(Type(n,!X) A N))
n var
EF|n=this|]|=n=1A2<ysen
nvar Etmni:T1 Precede(T,T1)
E F |In = super(T[some X))|| = 3'X €!T(n € object(X)) A2 <use 1
nyvar ng param

(Local Variable)

(Self)

(Superobject)

(Parameter Assignment)

"1 <updateByParameter Ing [2] ‘2

EFfm =mnall= 5 P n1, n2[2])

ni,nevar EbFn;:T
X € FlO, T)(

X <updateByVariable n2|2
A2 <yse!X, n2)

(Field Assignment)

EF ||n:.F[some X] = na|| =

ni,nevar EbFmng:T

10[T] =n1 —
JX elF[Oo, T|(
n2 <update!X‘2
N2 <yse!X, TLQ)

(Field Retrieval)

E F ||ng = n1.F[some X]|| =

ni,nvar Etbny:T
10T =n1 —
31X €!M[0, T(
E+ ||n1.M[some X](F = ﬁ)” = 2 <invoke!X
/\'P[M7 O7T} <updateByVariable ﬁ‘!]M[O[T]]
A2 <yse)

(Method Invocation)

ni,ne,nvar Etny:T
31X €!M[O0, T(
n2 <updateBy1\/Iethod!X|2
A2 <invoke!X
/\'P[Mv O, T] <updateByVariable ﬁl!AI[O[T]]
A2 <yse N2, M)
n var
ny € object(!T)
Ang <updateByC7‘eation!T|2
E+ ||n1 = new T(ﬁ = ﬁ)” = A2 <create!T
/\!P[T) OvT] <updateByVar'Lable ﬁ|!T[O[T]]
A2 <yse N1,
n var
EF |lreturnni|| = 2 ~>n1 A2 <yse N1

(Method Retrieval)

E I ||n2 = n1.M[some X]|(P = n)|| =

(Object Creation)

(Return)
Figure 7: Expression Section of PsPDL Semantics

Er|lsll=N
Et |not s|| = -N
Et ||dir* ny.M[some X|(R)||= N Etn:T

(Negation)

- — (Delegate)
E + ||delegate dir* n1.M[some X|(7)|| = N AIX(IX €!M[O, T A D(2,X))
EF ||dir* ni.M[some X|(R)||= N EFn:T .
: - — (Redirect)
E + ||redirect dir* n1.M[some X|(7)|| = N A3X (!X €!M[O,T] AS(2,X))
EF M X|(n N E+ T
: . [|n1.M[some](nzH = ny (InObject)
E I ||inObject n1.M[some X|(n)|| = N An1 =1AI0(1,n1)
EF|jni.M[some X|(R)||= N EkFni:T
: — (InType)
E I ||inType ni.M[some X]|(77)|| == N AIT(1,n1)
EF M X|(n N Et+ : T
. [|n1.M[some X|(n)|| = v ni (Extend)
E F |linSuperType ni.M[some X]|(7)|| = N A IS(1,n1)
EF M X|(n N Et+ : T
[Iny. Mlsome X](@)|| = s (InTypeFamily)

Et+ inTypeFamily(Ti[some X1]) ni.M[some X|(1) = N A3!X; €!T1(IF(1,n1,!X1))

Figure 8: Directive Section of PsPDL Semantics

——— (InObject Axiom)

I10(n,n)

ny1 € object(T) A na € object(T) — IT (n1,n2)

(InTypeAxiom)

n1 € object(T1) A na € object(T2) N\ Precede(Ty,T2) — IS(n1,n2)

(InSuperTypeAxiom)

ni € object(T1) A na € object(T2) A Precede(T,T1) A Precede(T,T2) — IF(n1,n2,T)

m,n similar

S(m,n)

—(m,n similar)

D(m,n)

(InTypeFamily Axiom)

(Similarity Axiom1)

(Similarity Axiom1)

n € object(Tz) A Precede(T1,T2) — Type(n,T1)

Precede(C, C)

(TypeAxiom)

(PrecedeAxiom1)

Inherits(C, D) — Precede(C, D)

(PrecedeAxiom?2)

Precede(C, D) \ Precede(D, E) — Precede(C, E)

(PrecedeAxiom3)

Figure 9: Definitions of Auxiliary Predicates

strict. Therefore, it is not subject to renaming, which al-
lows us to quantify the variable as eagerly as possible. If the
strict variable !X occurs elsewhere, only the more general
quantifier is retained when converting to the prenex normal
form according to the rules of FOLSVI.

The rules of assignments basically generate dependency
predicates and equalities between local variables and ob-
jects. The equality constraint implies that local variables are
allowed to be assigned only to one identical objects, which
corresponds to local bindings in some functional program-
ming language. However, we can simulate multiple assign-
ment by renaming the variable at each new assignment. The
rules for directives generate the predicates that overrides the
default interpretation of the dependency predicates. We also
need the auxiliary axioms for completeness of the definition.
The similarity predicate is left undefined. They corresponds
to the similarity principles of SPQR. As explained in [1],
there are many ways to define similarities in methods, so
we postpone the definition of similarity of methods to the
application.

5.2 Predicates and Functions

Table 1 shows the predicates used in the semantics and ex-
plain what they mean. The similarity constraints are based
on the similarity principles and EPDs, with a few refine-
ments for the purpose of generality. Table 2 lists predicates
used for general OOP structures and their semantics.

Some predicates and functions may seem to be redundant
and can be defined in terms of the predicates listed and set
theoretic predicates. For example, we may choose to define

object(T) £ collection of M s.t. Type(M,T)

The semantics will have to change a little bit. First the
collection of objects is no longer necessarily a set. More
importantly, all objects of the same type have to have the
same methods. If one method overrides another, then this
would lead to a double constraint which may not match
any actual code. In the object as set definition, however,
an object of some type does not necessarily belong to the
object set of that type. In order to cast an object in the

| Predicates What the predicates denote

SU,V) Similar Member
D(U,V) Dissimilar Member
10(U,V) Same object
IT(U,V) Same type
IS(U,V) Subtype

IF(U,V,T) In the same type family

U <invoke V' Invocation dependency
U <use V Use dependency

Update by Parameter

U <updateByParameter Vs dependency in method S

Update by Variable

U <updateByVariatie Vs dependency in method S

Update by Field

U <updateByrictd Vls dependency in method S

Update by Method

U <updateByMethod Vs dependency in method S

Update by Creation

U <updateByCreation Vs dependency in method S

U <create V Creation dependency

Table 1: Dependency Predicates

object set of some type to an object in the object set of
the super type, we can use the assignment of super object
construct. Also, when we define a local variable as referring
to objects of some type, we do not assume that the object is
a member of the object sets of that type, which corresponds
to dynamic binding. This effectively avoided the problems
incurred by defining the collection of objects of some type
as equivalent to the collection of objects that has that type.

Others do not make critical difference semantically and are
essentially redundant, which we use for clarity. For example,
we can define

Instance(M,T) & Type(M,T)

to make it closer to the “instanceof” keyword of Java. Al-

Predicates

| What the predicates denote

Method(M) M is method.
Parameter(f) f is parameter.
Class(C) C is a class.
Abstract(M) M is abstract.
Field(M) M is a field.

Member(O, M)

M is a method of O.

ReturnType(M,T)

The return type of M is T.

MethodParameters(M, f)

f is a parameter of M.

Inherits(C, D)

C is a subclass of D.

Instance(O, C)

O is an instance of C.

Type(M,T)

The type of M is T.

Overrides(M, N)

M overrides N.

class A {
abstract T m();
}

Converting it to FOL formula yields the following formula.

B = VYO(Class(A) A (O € object(A)) —
(Instance(O, A) A Method(m) A Member(m, O)
AReturnType(m,T) A Abstract(m))))

A natural deduction proof using set theoretic axioms shows
that
B— A

5.4.2 Example 2: Cross referencing between two classes

Table 2: OOP Structural Predicates

though the semantics change a little bit, there is not much
impact on the correctness of how the predicate are to be
used.

5.3 Simplifying Singleton Constraints

As some patterns contain identifiers that denote singleton
sets, the semantics for those identifier can be simplified from
the generated logical formula. We use a technique called
paramodulation, and discard constraints that involve vari-

ables that are not used, we can proof the following theorem.
Suppose that F[o] is a closed FOL formula with a with a
hole in a covariant position, G is an FOL formula, v is free
in F, and ¢ is a term in which no variable is captured in G.
We have
FvF[v =t NG| < F[G[t/v]]

5.4 Examples

We will present a few example of simple pattern definitions
and translate them to formulae of FOLSVI. The source code
are translated in a similar style of the PsPDL. The transla-
tion of code considers identifers to be constants instead of
variables. In the following examples, we will use some of the
extended syntax introduced in the discussion.

5.4.1 Example 1: Class

We first start with a class with a single method.

class Abstractor+ {
abstract AT1 method+();
}

The translated formula looks like

> ! Abstractor{Class(0)
ATI'O[0] € object(0){Instance(1,0)
A Imethod[1[{Method(2) A Member(2,1)
AIX €lAT1(ReturnType(2,!X) A Abstract(2)}}

We convert it to FOL formula and make it easier to read
by renaming the variables.

A= 3FJAT13Abstractor(VC(VO(Imethod(VM (X (
Plural(Abstractor) A C € Abstractor —
(Class(C) A (O € object(C)) —
(Instance(O,C) A Plural(method)
AM € method —
AMethod(M) A Member(M,0) N X € AT1
AReturnType(M, X) A Abstract(M))))))))

To see how this works, suppose that we have the following
class:

Next, we will show an example of cross referencing.
Suppose that we have the following classes

A1 {

abstract T m1();
}
A2 {

abstract A1 m2(Q);
}

We convert translated formulae to FOL formulae and paramod-
ulate all equalities; simplifying the set constraints yields the
following formula. We can make it easier to read by renam-
ing the variables and further simplify the set constraints
by discarding unnecessary constraints. Note that these con-
straints should not be discarded if they word to be exported,
but since we are considering only one pattern now, they can
be discarded without affecting the semantics.

(F =) 3T3s13s2301302
3533543 X 13X 2(

(Class(sl) A (O1 € object(sl)) —
(Instance(O1, s1)
AMethod(s3) A Member(s3,01) AN X1 €T
AReturnType(s3, X) N Abstract(s3)))

A(Class(sl) A (O2 € object(sl)) —
(Instance(02, s2)
AMethod(s4) AN Member(s4,02) A X2 = sl
AReturnType(s4, X2) A Abstract(s4))))

Suppose that we have classes which looks exactly the same
as the pattern definition, but is program code. Converting
it to FOL formula yields the following formula, where un-
quantified symbols are constants.

(G =) VYO1VO2(Class(Al) A (O1 € object(Al)) —
(Instance(O1, A1) A Method(m1)
AMember(ml,01) A ReturnType(m1,T)
AAbstract(m1l)))

N(Class(A2) A (02 € object(A2)) —
(Instance(02, A2) A Method(m2)
AMember(m2,02) A ReturnType(m2, Al)
NAbstract(m2))))

By natural deduction using set theoretic axioms, we can
proof that G — F

The pattern defined above can also match the following
program code.

A {
abstract A m();
}

which, when converting it to FOL formula, yields the fol-
lowing formula, where unquantified symbols are constants.

(G =) VYO(Class(A) A (O € object(A)) —
(Instance(O, A) A Method(m)
AMember(m, O) A ReturnType(m, A)
AAbstract(m))))

With a similar proof technique, we can proof that G’ — F

5.4.3 Example 3: Method invocation
Suppose that we have the following pattern definition

Al {

abstract ... m1();
¥
A2 {

Al f1;

. m2() {

Al vi, A2 v2 {
v2=this;
vi=v2.f1;
vi.m1(Q);

}

}
}

After all singleton constraints are simplified, ignoring the
return types of the methods, and converted to FOL formula,
the formula looks like the following. We make it easier to
read by renaming the variables.

(F =) 3JA13A2Y01V02
Im13£13Im23v1302(

Class(Al1) A (O1 € object(Al) —
(Instance(O1, A1)
AMethod(m1)
AMember(ml,01) A Abstract(m3)))

AClass(A2) A (O2 € object(Al) —
(Instance(02, A2)
AMethod(m2)

AMember(m2, 02)
AType(vl, A1) A Type(v2,!A2)
Av2 = O2 A m2 <yse V2

ANO2 =02 —
vl <update f1|m2 Am2 <yse fl,v2
/\(Ol =vl —

m2 <invoke Mllm2 A M2 <yse m1,v2))))

Suppose that we have classes, which looks exactly the
same as the pattern definition, but is program code. Con-
verting it to FOL formula yields the following formula, where
unquantified symbols are constants.

(G=) YO1vO2(

Class(Al) A (O1 € object(Al) —
(Instance(O1, A1)
AMethod(m1)
AMember(ml,O01) A Abstract(m3)))

AClass(A2) A (02 € object(Al) —
(Instance(02, A2)
AMethod(m?2)

AMember(m2, 02)
AType(vl,!Al) A Type(v2,1A2)
Av2 = O2 A m2 <use v2

ANO2 =02 —
vl <ypdate fllma2 Am2 <yse f1,v2
ANO1 =vl —

M2 <invoke M1|ma A m2 <yse m1,v2))))

By natural deduction using set theoretic axioms, we can
proof that G — F

The pattern defined above can also match the following
program code.

A1 {
abstract ... mi();
}
A2 extends Al {
Al f1;
. ml overrides A1.m1() {
Al vi, A2 v2 {
v2=this;
vi=v2.£f1;
vi.m1(Q);
}
}
}

The next example shows how to distinguish these two source
code.

5.4.4 Example 4: Directives

We modify the pattern in Example 3 by changing the
method invocation statement.

inSuperType vi.m1();

The directive indicates that vl must have a type that is a
super type of Al. Therefore, if we feed the two program
listed in Example 3, only the latter will be matched by this
pattern. If we want to match only the former, we can write
two statements one with the not statement, another without,
by changing the method invocation statement.

not inSuperType v1.m1();
vi.miQ);

6. DISCUSSION

We can add a little syntactic sugar to the core language to
make it easier to read and write. We can define the trans-
lation of the simplify the syntax to the core language by
the following rule. We denote the normalization relation by
A ~ B. The Singleton Set rule eliminates the requirement
that even singleton sets have to be followed by the selec-
tion constructs when in an applicational position. We allow
multiple local variable definitions be compressed into one
using the Local Variables rules. We can also use low dots to
generate fresh variables.

The basic forms of statements are limited. It is tedious to
write pattern definition in the basic forms of statements as
shown in the example. We introduce several constructs to
address this problem. We use £ to denote the term with a
hole in it and £[X] to be the term to be translated. The rules
in Figure 10 should be applied repeated until the syntax form
is in the PsPDL forms.

Combining these rules, we can rewrite the pattern defini-
tion given in Example 3 as

A1 {
abstract ... m1(Q);
}
oo
Al f1;
.m20) {
this.f1.m1Q);
}
}

n singluar X fresh
n in an applicational position
other than extends or overrides

Singleton Set
n ~» n[some X]| (Singleton Set)

Lt 2 b M 5] — (Local Variables)
b yr ey bw w

t1 nl{tz ’I’LQ{A .. {tw nw{s}} .. }}

x fresh L
——— (Omission)
LT

v fresh
E[this] ~
. v{v = this; £[v]}

(Self)

v fresh

E[super] ~ (Superobject)

. v{v = super(t); £[v]}
v fresh
. v{v = X; €]}

(Parameters)

Figure 10: Translation of Extended Syntax

Efficiency is another issue that is usually considered when
implementing an algorithm that discover patterns in source
code. The formulae generated from the PGRs can be quite
inefficient to handle by general purpose theorem provers be-
cause a lot constraints on singleton sets are not simplified.
We can simplify the constraints using a technique that is
often referred to as paramodulation in theorem proving lit-
erature, and discard the constraints when the simplification
is accomplished. This will result in much simplified for-
mulae which we have demonstrated in the examples. Also,
handling set theoretic axioms is much faster for some theo-
rem provers that have specialized strategies for set theoretic
formulae. These theorem provers usually have switches for
formulae involving set theoretic axioms that can be turned
on to handle the queries used in our approach.

We have a translator of PsPDL to TPTP format[13, 12]
using ANTLR and Java so that the generated FOL formulae
can be read by theorem provers like Prover9 (which is the
successor of Otter), Vampire, Darwin, and OSHL, among
others. The previous work on SPQR provides a very good
modeling tool for C4++ programs into both POML and input
for Otter. Other filters can be written to translate from
programs written in other programming languages to POML
and translating POML to TPTP format.

7. REFERENCES

[1] Smith, J., and D. Stotts, "Intent-oriented Design
Pattern Formalization using SPQR,” Design Pattern
Formalization Techniques, T. Taibi, ed., IGI
Publishing, 2007, pp. 123-155.

[2] Smith, J., and D. Stotts, "SPQR: Flexible Automated
Design Pattern Extraction from Source Code,” Proc.
of Automated Software Engineering 2003, Montreal,
Oct. 6-10, 2003, pp. 215-224.

[3] Herranz, A., J.J. Moreno and N. Maya, “Declarative
Reflection and its Application as a Pattern Language,”
WFLP 2002 11th Intl. Workshop on Functional and
(Constraint) Logic Programming, in Electronic Notes
in Theoretical Computer Science Volume 76, Nov.
2002, pp. 197-215.

[4]

[5]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Biinnig, S., P. Forbrig, R. Ldmmel, N. Seemann, “A
Programming Language for Design Patterns,” GI
Jahrestagung 1999, pp. 400-409.

Lovatt, H. C., A. M. Sloane, and D. R. Verity, “A
pattern enforcing compiler (PEC) for Java: using the
compiler,” Proc. of the 2nd Asia-Pacific Conf. on
Conceptual Modelling - Volume 43, S. Hartmann and
M. Stumptner, eds., Conferences in Research and
Practice in Information Technology Series, vol. 107,
Australian Computer Society, Darlinghurst, Australia,
2005, pp. 69-78.

Eden, A., E. Gasparis, J. Nicholson, "LePUS3 and
Class-Z Reference Manual,” Dept. of Computer
Science, University of Essex, Tech. Rep. CSM-474,
ISSN 1744-8050, 2007.

Kramer, C. and L. Prechelt, “Design Recovery by
Automated Search for Structural Design Patterns in
Object-Oriented Software,” Proc. of the 3rd Working
Conference on Reverse Engineering (WCRE ’96),
IEEE Computer Society, Washington, DC, 1996, 208.
Niere, J., W. Schéfer, J. P. Wadsack, L. Wendehals,
and J. Welsh, “Towards pattern-based design
recovery,” Proc. of the 24th Intl. Conference on
Software Engineering, ICSE 02, ACM, New York,
NY, 2002, pp. 338-348.

Pettersson, N. “Measuring precision for static and
dynamic design pattern recognition as a function of
coverage,” Proc. of the 3rd Intl. Workshop on Dynamic
Analysis, ACM, New York, NY, 2005, pp. 1-7.
Bosch, J., “Design Patterns as Language Constructs,”
JOOP 11(2), 1998, pp 18-32.

ISO/IEC 13211: Information technology —
Programming languages — Prolog. International
Organization for Standardization, Geneva.

Sutcliffe, G. and C. B. Suttner, “The TPTP Problem
Library: CNF Release v1.2.1,” Journal of Automated
Reasoning, Volume 21, 2, 1998, pp. 177-203.
"SyntaxBNF”,

http://www.cs.miami.edu/ tptp/TPTP/SyntaxBNF.html.
Woolf, B., “The object recursion pattern”, Pattern
Languages of Program Design 4, N. Harrison, B.
Foote, and H. Rohnert, eds., Addison-Wesley, 1998.
Zimmer, W., “Relationships between design patterns,”
Pattern Languages of Program Design, Coplien and
Schmidt, eds., Addison- Wesley, 1995, pp 345-364.
Xu, H., “FOLSVI: First Order Logic with Strict
Variables and Indices,” Tech. Report, Computer Sci.
Dept., Univ. of North Carolina at Chapel Hill, 2008.
Abadi, A. and L. Cardelli, “A Theory of Objects,”
Monographs in Computer Science (Gries and
Schneider eds.), Springer-Verlag, New York, 1996.

