Logarithmic Perspective Shadow Maps

Technical Report TR07-005
University of North Carolina at Chapel Hill
June 2007

1

D. Brandon Lloyd! Naga K. Govindaraju? Cory Quammen Steve Molnar®  Dinesh Manocha'

! University of North Carolina at Chapel Hill 2 Microsoft Corporation 2 NVIDIA Corporation

L ' SN -
‘ 2
-

PSM cube map

Figure 1: Night-time scene of robots in a hangar with a point light. We compare our algorithm (LogPSM) to Kozlov’s improved perspective
shadow map (PSM) algorithm. Both algorithms use a cube map with a total resolution of 1024 x 1024. The images have a resolution of
512 x 512. (Left) Compared to a standard cube map, the PSM cube map greatly reduces aliasing artifacts near the viewer, but some aliasing is
still visible. The shadows are severely stretched on the back wall. LogPSMs provide higher quality both near the viewer and in the distance. The
shadow map grid has been superimposed to aid visualization (grid lines every 20 texels). (Right) An error visualization for both algorithms.
We use an error metric m that is essentially the maximum extent of a shadow map texel projected into the image. Green represents no aliasing
(m = 1) and dark red (m > 10) represents high aliasing. LogPSMs provide significantly lower maximum error and the error is more evenly

distributed.

Abstract

We present a novel shadow map parameterization to reduce
perspective aliasing artifacts for both point and directional
light sources. We derive the aliasing error equations for both
types of light sources in general position. Using these equa-
tions we compute tight bounds on the aliasing error. From
these bounds we derive our shadow map parameterization,
which is a simple combination of a perspective projection
with a logarithmic transformation. We then extend existing
algorithms to formulate three types of logarithmic perspec-
tive shadow maps (LogPSMs) and analyze the error for each
type. Compared with competing algorithms, LogPSMs can
produce significantly less aliasing error. Equivalently, for the
same error as competing algorithms, LogPSMs can produce
significant savings in storage and bandwidth. We demon-
strate the benefit of LogPSMs for several models of varying
complexity.

1 Introduction

The shadow map algorithm [Williams 1978] is a popular ap-
proach for hard shadow computation in interactive applica-
tions. It uses a depth buffer rendered from the viewpoint
of the light to compute shadows during image rendering.
Shadow maps are relatively easy to implement, deliver good
performance on commodity GPUs, and can handle complex,

dynamic scenes. Other alternatives for hard shadows, like
shadow volumes or ray tracing, can produce high-quality
shadows, but may exhibit poor performance on complex
models or dynamic scenes.

A major disadvantage of shadow maps is that they are
prone to aliasing artifacts. Aliasing error can be classi-
fied as perspective or projection aliasing [Stamminger and
Drettakis 2002]. Possible solutions to overcome both kinds
of aliasing include using a high resolution shadow map,
an adaptive shadow map that supports local increase in
shadow map resolution, or an irregularly sampled shadow
map. However, these techniques either require high memory
bandwidth, are more complex to implement in the current
pipeline, or require major changes to the current rasteriza-
tion architectures.

Among the most practical shadow mapping solutions are
those that reduce perspective aliasing by reparameterizing
the shadow map to allocate more samples to the undersam-
pled regions of a scene. Several warping algorithms, such
as perspective shadow maps (PSMs) [Stamminger and Dret-
takis 2002] and their variants [Wimmer et al. 2004; Martin
and Tan 2004], have been proposed to alter a shadow map’s
sample distribution. However, the parameterization used
by these algorithms may produce a poor approximation to
the optimal sample distribution. Therefore existing warp-
ing algorithms can still require high shadow map resolution
to reduce aliasing. Recent work suggests that a logarith-
mic parameterization is closer to optimal [Wimmer et al.



2004; Lloyd et al. 2006; Zhang et al. 2006a]. Other algo-
rithms produce a discrete approximation of a logarithmic
parameterization by partitioning the view frustum along the
view vector and using a separate shadow map for each sub-
frustum [Zhang et al. 2006a; Engel 2007]. These algorithms,
however, generally require a large number of partitions to
converge.

Main Results

In this paper, we present logarithmic perspective shadow
maps (LogPSMs). LogPSMs are essentially extensions of
an existing perspective warping algorithms. Our algorithms
use a small number of partitions in combination with an
improved warping function to achieve high performance with
significantly less error than competing algorithms. Some of
the novel aspects of our work include:

1. Error analysis for general configurations. We
compute tight bounds on perspective aliasing error for
point and directional lights in general configurations.
The error analysis performed in previous work has typi-
cally been restricted to directional lights in a few special
configurations [Stamminger and Drettakis 2002; Wim-
mer et al. 2004].

2. LogPSM parameterization. Based on this analy-
sis we derive a new shadow map parameterization with
tight bounds on the perspective aliasing error. We show
that the error is O(log(f/n)) where f/n is the ratio of
the far to near plane distances of the view frustum.
In contrast, the error of existing warping algorithms is
O(f/n). The parameterization is a simple combination
of a logarithmic transformation with a perspective pro-
jection.

3. LogPSM algorithms. Our algorithms are the first to
use a continuous logarithmic parameterization and can
produce high quality shadows with less resolution than
that required by other algorithms.

We perform a detailed comparison of LogPSMs with other
algorithms using several different techniques. We demon-
strate significant error reductions on different models of
varying complexity.

The rest of the paper is organized as follows. Section
2 reviews related work. Section 3 presents our derivation
of the aliasing error equations. In Section 4 we use these
equations to derive tight bounds on the error. In Section 5
we derive the LogPSM parameterization. Section 6 describes
the various LogPSM algorithms. We present our results and
comparisons with other algorithms in Section 7 and then
conclude with some ideas for future work.

2 Previous Work

In this section we briefly review the approaches currently
used to handle shadow map aliasing. The approaches can
be classified as sample redistribution techniques, improved
reconstruction techniques, and hybrid approaches. Besides
shadow mapping, other algorithms for hard shadow gener-
ation include ray tracing and shadow volume algorithms.
However, these approaches are unable to handle complex dy-
namic environments at high resolution and high frame rates.

TRO7-005: Logarithmic Perspective Shadow Maps

2.1 Sample redistribution techniques

We categorize sample redistribution techniques according to
the method that they use: warping, partitioning, combina-
tions of warping and partitioning, and irregular sampling.
Warping. The use of warping to handle aliasing was intro-
duced with perspective shadow maps (PSMs) [Stamminger
and Drettakis 2002]. A PSM is created by rendering the
scene in the post-perspective space of the camera. Light-
space perspective shadow maps (LiSPSMs) [Wimmer et al.
2004] are a generalization of PSMs which avoid some of
the problems of rendering in post-perspective space. Trape-
zoidal shadow maps (TSMs) [Martin and Tan 2004] are sim-
ilar to LiSPSMs, except that the parameter for the perspec-
tive projection is computed differently. Chong and Gortler
[2006] propose an optimization framework for computing a
perspective projection that minimizes aliasing in the scene.
Partitioning. Plural sunlight buffers [Tadamura et al.
1999] and cascaded shadow maps [Engel 2007] use a sim-
ple partitioning approach that splits the frustum along the
view vector at intervals that increase geometrically with dis-
tance from the eye. Adaptive shadow maps [Fernando et al.
2001] and resolution matched shadow maps [Lefohn 2006]
represent the shadow map as a quadtree of fixed resolution
tiles. While the quadtree-based approaches can deliver high
quality, they may require dozens of render passes. Tiled
shadow maps [Arvo 2004] partition a single, fixed-resolution
shadow map into tiles of different sizes guided by an error
measurement heuristic. Forsyth [2006] proposes a partition-
ing technique that uses a greedy clustering of objects into
multiple shadow frusta.

Warping + partitioning. Chong [2003] presents an algo-
rithm for 2D flatland which performs perspective warping
combined with partitioning. Chong and Gortler [2004] use a
general projective transform to establish a one-to-one corre-
spondence between pixels in the image and the texels in the
shadow map, but only for a single plane within the scene.
They use a small number of shadow maps to cover a few
prominent, planar surfaces. Kozlov [2004] uses a cube map
in the post-perspective space of the camera. Parallel-split
shadow maps (PSSM) [Zhang et al. 2006a] combine warping
with a partitioning similar to that of cascaded shadow maps.
Queried virtual shadow maps [Giegl and Wimmer 2007] com-
bine LiSPSMs with an adaptive partitioning scheme. Lloyd
et al. [2006] analyze various combinations of warping and
partitioning.

Irregular sampling. Instead of inferring sample locations
from a parameterization of a regular grid, irregular shadow
maps [Johnson et al. 2004; Aila and Laine 2004] sample ex-
plicitly at the query locations generated during image ren-
dering. The results are equivalent to ray tracing. Since
graphics hardware is optimized for rasterizing and storing
samples on a regular grid, irregular shadow maps can be dif-
ficult to implement efficiently on current graphics architec-
tures. A hardware architecture to support irregular shadow
maps has been proposed [Johnson et al. 2005], but requires
significant modifications of current GPUs to support efficient
data scattering.

2.2 Improved reconstruction techniques

Aliasing artifacts arise from the use of nearest-neighbor fil-
tering when reconstructing the visibility “signal” from sam-
pled information in the shadow map. Standard filtering tech-
niques, such as interpolation, cannot be applied directly to a
depth-based shadow map. Percentage closer filtering (PCF)



shadow map
——+—

light image
plane

eye/y

eye image
plane

shadow map !

Fny

<y

N

L d,

Figure 2: Computing aliasing error. (Left) Sample locations corresponding to shadow texzels and image pizels. Aliasing error can be quantified
as the ratio of the spacing these shadow map and image sample locations. (Right) The sample spacing is related to the derivatives of the
function that maps a point t € [0, 1] in the shadow map to p; on the light’s image plane 7, and projects it first through the light onto a planar
surface w and then through the eye to a point p. on the eye’s image plane ..

[Reeves et al. 1987] first computes visibility at sample lo-
cations and then applies a filter to the results. Variance
shadow maps [Donnelly and Lauritzen 2006] store a sta-
tistical representation of depth to which standard texture
filtering techniques can be applied. Both of these improved
filtering techniques replace jagged reconstruction errors with
a blurred shadow edge. Silhouette shadow maps [Sen et al.
2003] reconstruct a hard edge by augmenting the shadow
map with extra information about the location of the sil-
houette edges of shadow casters.

2.3 Hybrid approaches

Hybrid techniques combine shadow maps with object-space
methods. The shadow volume algorithm [Crow 1977] is a
popular object-space method that does not suffer from alias-
ing artifacts but does require high fill rate and memory band-
width. Shadow maps have been combined with shadow vol-
umes to address the fill problems. McCool [2001] constructs
a shadow map from edges in a shadow map, yielding a simpli-
fied shadow volume. Chan and Durand [2004] use a shadow
map to mask off shadow volume rendering in regions that
are not near shadow boundaries.

3 Shadow Map Aliasing Error

In this section we describe how to quantify aliasing error and
derive the equations for it for a 2D scene. To our knowledge,
ours is the first analysis that quantifies perspective aliasing
error for point lights in general position. The analysis also
extends to directional lights. The analysis in previous work
is typically performed for a directional light for a few spe-
cific configurations [Stamminger and Drettakis 2002; Wim-
mer et al. 2004; Lloyd et al. 2006]. A notable exception
[Zhang et al. 2006b] computes perspective aliasing error for
directional lights over a range of angles, but only along a
single line through the view frustum. We then extend our
2D analysis to 3D.

3.1 Quantifying aliasing error

Aliasing error is caused by a mismatch between the sample
locations used to render the shadow map from the view-
point of the light and the image from the viewpoint of the

TRO7-005: Logarithmic Perspective Shadow Maps

. surface

Figure 3: Computing the projected eye beam width on a surface. we is
the actual width of the beam, w! is the width of the projection onto
the surface, and wtZe is the width of beam measured perpendicular

to Ze.

eye. Ideally, the eye samples would correspond exactly with
the light samples, as with the raytracing or the irregular z-
buffer. Shadow map warping methods instead seek to match
sampling rates. For our derivations we choose to work with
the spacing between samples since it is geometrically more
intuitive. Figure 2 shows the sample spacing correspond-
ing to eye and light samples at various locations in a simple
2D scene. Aliasing error occurs when the light sample spac-
ing is greater than the eye sample spacing. If j € [0,1] and
t € [0,1] are normalized image and shadow map coordinates,
then aliasing error can be quantified as:

ridj
Tt dt’

(1)

where r; and 7; are the image and shadow map resolutions.
(The choice of j and ¢ as coordinates is due to the fact that
we are essentially looking at the side view of a 3D frustum.
We will also use the coordinates ¢ and s later when we look
at the equations for 3D). Aliasing occurs when m > 1.

3.2 Deriving aliasing error

To derive dj/dt in Equation 1 we compute the function j(t)
from Figure 2 by tracing a sample from the shadow map to
its corresponding location in the image. We begin by intro-
ducing our notation. A point p and a vector V are expressed
as a column vectors in affine coordinates with the last entry
equal to 1 for a point and 0 for a vector. Simpler formulas
might be obtained by using full homogeneous coordinates,
but we are interested in an intuitive definition of aliasing in
terms of distances and angles, which are easier to compute



with affine coordinates. v is a normalized vector. A plane
(or line in 2D) 7 is a row vector (|, —D), where D is the
distance to the plane (line) from the origin along the normal
n. wp gives the signed distance of p from the plane and 7¥
gives n - v = cos @, where 0 is the angle between n and v.

A function G, the inverse of the shadow map parameteri-
zation F', maps a point t in the shadow map to the normal-
ized light plane coordinate v € [0,1]. The point p; on the
light image plane 7r; corresponding to v is given by:

Pt = puwo + oWy, (2)

where W, is the width of the portion of 7; covered by the
shadow map. Projecting p; onto a planar surface w along
the line L through the light position 1 yields:

TP
P=DpP 71_(pl_l)(p ) (3)
This point is then projected onto the eye image plane 7.
along the line E through the eye position e:

m:p——iﬁgjw—p» (4)

we(e—p

The eye image plane is parameterized similarly to Equation
2 using j instead of v. The j coordinate can be computed
from p. as:

. Je: (Pe = Pe0) _ ¥e (Pe — Peo)
j= W = W - (5)

To compute dj/dt we use the chain rule:

dj _ 9j 9pe Op Opi dv

dt ~ dp. Op Op. Ov dt (6)
9 _ye .
ope We
ape TeP Tee
=1 * I- - e 8

op e (m(ee_p)z TP ®
8p Ly o 1l
=¥ 11— I+ » o
Ipi o —1) | (n(p—1)? ((p1 — 1)) (9)
8 A
B0 =W (10)
dv dG

e di” (11)

Equations 7 — 10 are expressions for Jacobian matrices. The
derivative dj/dt can be reduced to a simpler form. We first
multiply together Equations 9-11:

op _ Op Opi Ov

ot Opy Ov Ot

. dG  wl . Ty
i (1 ) 0

The wl and 7 (p; — 1) terms are proportional to d; and ny,
respectively, so their ratio can be replaced with d;/n;. The
angle between z; and n is §;. Therefore wy; = —sin ;.
We substitute (p; — 1) = ||pi — 1||¥1, where —V is the light
direction vector. The ||p; — 1|| terms cancel leaving only V.
We then replace wv with — cos;:

0 dG d; (. i .
L R0 B

TRO7-005: Logarithmic Perspective Shadow Maps

aliasing error
perspective aliasing error

NEIE

maximum m along a line L through the light
shadow map parameterization and its inverse
eye image plane coordinates

shadow map coordinates

light image plane coordinates

frustum field of view

angle between beam and image plane normal
angle between beam and surface normal
angle between image plane and surface normals
spacing distribution function

perspective factor

a lower bound on Sc

image resolution

shadow map resolution

parameterization normalizing constant
critical resolution factor

storage factor

maximum R over all light positions
maximum S over all light positions

angle between light and view directions

e
2 Q

A

£
<

=

SR ES D

S, O
ST

T X Tj
Ts X Tt

L UVITN I

Table 1: Important symbols used in this paper

We then expand y; an v; in terms of n and b:
yi = cos Bib —sin fn (14)
v = fsinwlf)fcoswlﬁ. (15)

Substituting these equations into Equation 13 and utilizing
the fact that ¢, — 8, = ¢ yields:

d7p _ gﬂ (cos 4y cos B + sin; sin G;) b
dt ~ e ny cos Yy
dG dl COS(l[)L — Bl) ~
=W————"—b
! dt n, cos Y
dG d; cos ¢y
=W —— b. 16
Fat ny cos Yy (16)
Now we multiply together Equations 7, 8, and 16 and sub-
stitute wee = n., w.(e — p) = d., and (e — p) = ||e — p||Ve:
dj _ Wined ( vy (3 9e)(meb)
- = —— b——=———21. 1
dt We ny de <ye 776‘76 ( 7)

Substituting ¥. b = cos Be, ¥o Ve = sin¢e, web = — sin Be,
and w.Ve = cos ¢ and utilizing the fact that B — ¢ = e
yields the simplified version of dj/d¢:
dj _ Wine di (cos e cos e + sin de sin Be)
dt W(j nl de COS ¢6
Wi n. di cos(B. — 6.)

We ni de  €OS e

Wi ne di cos e

= . 1
We ny de cos ¢e (18)

Plugging dj/dt into Equation 1 yields the final expression
for aliasing error:
r; dG Wi ne di cos ¢y cos e

=t . 19
m re dt We ny de cos ¢e cos (19)




Intuitive derivation. Some basic intuition for the terms in
Equation 19 can be obtained by considering an equivalent
but less rigorous derivation of m from the relative sample
spacing on a surface in the scene (see Figure 2). A beam
from the light through a region on the light image plane
corresponding to a single shadow map texel projects onto the
surface with width w;. A beam from the eye through a pixel
also projects onto the surface with width w.. The aliasing
error on the surface is given by the ratio of the projected
beam widths:
wj
m=—. (20)

we
By the properties of similar triangles, the width of a pixel
on 7, at a distance of n. from the eye becomes w2 at a
distance of d. where the beam intersects the surface:
2 We d.
wpte = Z£ =< (21)
Ti Ne
For a narrow beam, we can assume that the sides of the beam
are essentially parallel. From Figure 3 we see that multiply-

ing wi?e by cos¢. gives the actual width of the beam w.
and dividing by cos . gives the width of its projection w?:

We = wé‘ie COS e (22)
;o We _We%cos%
€os Ye Tj Me COStYe

(23)

Similarly, a shadow map texel maps to a segment of width
(Wi /r¢)(dG/dt) on the light image plane producing a pro-
jected light beam width on the surface of:

, Wi dG d; cos ¢y
W= ———

. 24
re dt m; cosyy (24)

Plugging Equations 23 and 24 into Equation 20 yields Equa-
tion 19.

Directional lights. As a point light at 1 moves away towards
infinity along a direction 1 it becomes a directional light.
Equation 3 converges to:

TT ~
p=pi— oL (25)
ml
Equation 9 becomes:
op 1 -
—=1-—=lm. 26
Opi l (26)

In Equation 19, the n;/d; term converges to 1 and the cos ¢;
term becomes constant.

The formulation for m in Equation 19 is similar to those
used for aliasing error in previous work [Stamminger and
Drettakis 2002; Wimmer et al. 2004; Zhang et al. 2006b].
However, our formulation is more general because it is valid
for both point and directional lights and it takes into account
the variation of eye and light beam widths as a function of
¢e and ¢y, respectively.

3.3 Factoring aliasing error

Our goal is to compute tight bounds on the aliasing error
m which we can then use to formulate a low-error shadow

TRO7-005: Logarithmic Perspective Shadow Maps

map parameterization F'. For convenience we split m into
two main parts:

m= 5 o
(Av), = %% = %51
(Av)e = %%} = %65
5= _ (j‘f) (28)
onm o
5. — We i de cos e (30)

e — .
Wi ne d; cos ¢y

Intuitively, (Av); and (Av)e are the spacing in v between
the corresponding light and eye samples (see Figure 2). This
factorization is convenient because (Av). encapsulates all of
the geometric terms while (Av); encapsulates the two factors
that can be manipulated to control aliasing — the parame-
terization which determines the aliasing distribution and the
shadow map resolution that controls the overall scale. (For
a point light the orientation of the light image plane also af-
fects the distribution of light samples and thus the aliasing
error. We make a distinction between the light image plane
and the near plane of the light frustum used to render the
shadow map. The near plane is typically chosen based on
other considerations, such as properly enclosing the scene ge-
ometry in the light frustum. Because one light image plane
is related to another by a projective transformation that can
be absorbed into the parameterization, we can use a “stan-
dard” light image plane that is convenient for calculation.)
The spacing functions depend on a resolution factor and the
spacing distribution functions, 6; and d., which are simply
the derivatives dv/dt and dv/dj, respectively. Because we
wish to derive the parameterization F' we have expressed §;
in terms of F instead of its inverse.

Following Stamminger and Drettakis [2002], . can be fac-
tored into two components — a perspective factor, ., and a
projection factor, coste/ cost. The perspective factor de-
pends only on the position of the light relative to the view
frustum and is bounded over all points inside the view frus-
tum. The projection factor, on the other hand, depends on
the orientation of the surfaces in the scene, and is potentially
unbounded. In order to obtain a simple parameterization
amenable to real-time rendering without incurring the cost
of a complex, scene-dependent analysis, many algorithms ig-
nore the projective factor and address only perspective alias-
ing error m:

T (51 We

T, = — = —. 31
" Tt Je w; 31

m can be thought of as measuring the ratio of the widths of
the light and eye beam at a point. Alternatively, m can be
thought of as the aliasing error on a surface with a normal
that is located half-way between the eye and light directions
ve and —v;. For such a surface the projection factor is 1.

3.4 Aliasing error in 3D

So far we have only analyzed aliasing error in 2D. In 3D we
parameterize the eye’s image plane, the light’s image plane,



and the shadow map by the 2D coordinates i = (i,5) "
(u,v)", and s = (s,t)7, respectively. Each coordinate is in
the range [0, 1]. Equation 2 becomes:

7u:

P! = pio + uWiX; + oWy, yi. (32)

Equations 3 and 4 remain the same. We replace We in Equa-
tion 5 with the direction-specific We, and add the equation
to compute i:

ST
. Xe (pe - peO)
=T (33)

The light image plane parameterization is now a 2D function
u = G(s). With these changes the projection of a shadow
map texel in the image is now described by a 2 x 2 aliasing
matrix Mg:

—Ti 0 81 % 0
w-fi A%
N 0i Op. Op Op; Ou
9 |2 %] 9. p oot 0w s

Las ot Pe Op Opt ou 0s

[ T
oi 7

= | Y5 (36)

8pe _Vb[l/iiy
opi . .
8711 = [lexl leyl] (37)
ou 0G
s = os (38)

To obtain a scalar measure of aliasing error it is necessary
to define a metric h that is a function of the elements of
M,. Some possibilities for h include a matrix norm, such as
a p-norm or the Frobenius norm, or the determinant, which
approximates the area of the projected shadow map texel in
the image.

In 3D the spacing distribution functions §; and §. are 2x 2
Jacobian matrices:

oG [(oF\ !
=% = (5) (39

5. = <§i)1. (40)

The factorization of §. into perspective and projective fac-
tors is not as straightforward as in 2D. Several possibilities
exist. Based on the intuition of the 2D perspective error, one
approach might be to compute the differential cross sections
X, and X; of the light and eye beam at a point and define
perspective aliasing error as the ratio m = h(X;)/h(Xe).
Another possibility would be to take m = h(M,) where the
normal of the planar surface used to compute M, is oriented
half-way between V. and —¥;. But unlike the 2D case, these
two approaches are not guaranteed to be equivalent.

4 Computing a parameterization with tight
bounds on perspective aliasing error

We can control perspective aliasing error by modifying the
sample spacing on the light image plane. The sample spac-
ing is controlled by the resolution of the shadow map and
the parameterization F. In this section we discuss how to

TRO7-005: Logarithmic Perspective Shadow Maps

compute F' and in 2D from a given sample distribution func-
tion 8. We then compute a spacing distribution J, that pro-
duces tight bounds on the perspective aliasing error. This
naturally leads to a partitioning of the shadow map into re-
gions corresponding to the view frustum faces. Finally, we
extend the analysis to 3D. Unfortunately, the parameteriza-
tions based on ¢, are too complicated for practical use, but
they provide a good baseline for evaluating simpler param-
eterizations in the next section.

4.1 Computing a parameterization in 2D

Given a spacing distribution function §(v), the parameter-
ization F' that produces §; ~ d(v) can be computed from

Equation 28:
dF\ ™!
<E) ~6(v)

daF 1
dv ~ pé(v) (41)
1 /1

p is the constant of proportionality. Normalizing F' to the
range [0, 1] gives:

!
P :/0 Tv)dv' (43)

This process will work with any 6(v) so long as it is positive
over the domain of integration.

4.2 Tight bounds on perspective aliasing error

Ideally we would like to ensure that m = 1 everywhere in the
scene, thus eliminating aliasing while using the least amount
of shadow map resolution. From Equation 27 we can see
that m = 1 implies that §;(v) ~ de(v) and r+ = p.r;. In
a scene with multiple surfaces, d. might not be expressible
as a function of v. Along any line L(v) there may be a set
of multiple points P that are visible to the eye, each with a
different value of d.. One way to handle this is compute a
lower bound on de:

Je,min(v) = min (de(p)). (44)

PEP(v)

Because §¢,min depends on scene geometry it can be arbi-

trarily complex. A lower bound on the perspective factor &,
yields a simpler, scene-independent function:

(b (P))- (45)

V is the set of points inside the view frustum. Using &, we
can define a tight upper bound on the perspective aliasing

oy = min
pe{L(v)NV}

error M expressed as a function of v:

~ - r; 01(v)
M) = =7
(v peinax (m(p) e 3y (0)

For a given §;(v), the resolution required to guarantee that
there is no perspective aliasing in the view frustum, i.e.

max, (M) =1, is 7, = Ryr;, where R; is given by:

o= mx (557 n

We call R; the critical resolution factor. R, is the smallest
when §; ~ Jp, in which case R; = py,.

. (46)




[ XoJ

end faces exit faces

(@) (b)

Figure 4: Face partitioning. (a) The minimum perspective factor
Se along a line segment L through the view frustum can be tightly
bounded using a function whose minimum wvalue occurs either at
the faces where L enters or ewits the frustum. (b) Based on this
observation we can bound the perspective aliasing error by using a
separate the shadow map for the region corresponding to the appro-
priate view frustum faces. For this light position, we use the exit
faces.

4.3 Computing J,

The points in the view frustum along a line L(v) can be
parameterized as shown in Figure 4a:

p(n) =1+ p¥(v). (48)

From Equation 30 we compute Se(,u):

5.(p) = Z((Z; cos g (1) (49)
de(p) = —2e - (P(p) —€) = —p(Ze - V1) — 2 - (1= ?)50)
di(p) = =21 (p(p) — 1) = —pu(21 - ¥1) (51)
cos __ de(p)
?U) = l50a) — e
_ We ny 1
€= Wi ne cos ¢;

The value of ¢ is constant on the line. Note that since d; is
also constant along the line that max(m) for any parameter-

ization occurs at the same location as min(d.). We want to

find min, (0.(p)) on the interval u € [uo, 1] inside the view
frustum. To simplify the analysis we assume a symmetric
view frustum and bound . (x) from below by replacing the
cos ¢ term with its smallest possible value, cos 6:

U

B(0) = 1 cost < (1), (52)

56 can be at most 1/cos@ times larger than B, i.e. when
cosp. = 1. For typical fields of view, B is a fairly tight
lower bound. For example, with § = 30°, 1/cos is only
about 1.15.
We take the derivative of B(u) to determine where it
reaches its minimum value:
4B = (ccos0) Z-(1- j ei)A(il .Q‘A’l).
du (1(21 - ¥1))

The first term and the denominator of the second term are
strictly positive and the (2; - V) term in the numerator is

(53)

TRO7-005: Logarithmic Perspective Shadow Maps

strictly negative. Therefore, the sign of d B/du depends only
on z. - (1 —e). Since z. - (1 — e) is constant for all u, the
location pZ;, of min(B) must be at one of the boundaries of
the interval:

B = argmin (B —JHo Ze-(1-€) >0, 54
When z. - (1—e) = 0, B is constant over the entire interval.
For directional lights, the (1 — e) term is replaced by the
light direction 1. Equation 54 shows that min(B) occurs on
the faces where L(v) either enters or exits the view frustum,
depending on the position of the light relative to the eye.
When pZ;, is on a side face, B(uZ2;,) is the actual minimum
for d.. This can be seen from the fact that along a side face
cos ¢ = cos 6 so Se = B. Because B is never greater than SE,
this means that the actual minimum of é. over the interval
cannot be smaller than the minimum B and must therefore
be the same. Based on this observation we choose min(B)
for dy:

55 = B(/Lr?nn)
_ We ﬂ% cosf
" Wi ne dy cos ¢y’

(55)

where d. and d; are the values for points along the appropri-
ate faces. At the point where p2;, transitions from entry to
exit faces or vice versa, min(B) is the same on both sets of
faces. Thus the abrupt transitions in p2;, as the light and
camera move around do not cause temporal discontinuities
in dp.

Intuitively, bounding the perspective aliasing error by se-
lecting 0;/7: = puds/r; can be thought of as ensuring that
no light beam is wider than the lower bound on the width
of any eye beam that it intersects.

4.4 Computing a parameterization in 3D

One approach to computing a parameterization in 3D is to
simply follow the same process that we used for 2D. We start
from a d (u,v) that is a 2 X 2 matrix that describes that the
sample spacing distribution on the light image plane, invert
4, and integrate to get F(u,v). However, this approach has
several complications. First, it is not clear how to compute
a d that is a lower bound on 58. The main problem is that
4 now contains information about orientation, whereas in
2D it was simply a scalar. Second, even if we come up with
an invertible d, there is no guarantee that we can integrate
it to obtain F. The rows of OF/Ju are the gradients of
multivariable functions s(u,v) and ¢(u,v). Thus the mixed
partials of the row entries must be equivalent, i.e.:

s _ &%s and 8%t _ &%t
oudv  Ovdu Oudv  Ovdu’

(56)

If this property does not hold for a general § ~*(u,v) then
it is not the gradient of a function F(u,v). Finally, even if
& '(u,v) is integrable, it is not guaranteed to be one-to-one
over the entire domain covered by the shadow map.

Our approach is treat the parameterizations s and t as es-
sentially two instances of the simpler 2D problem. We choose
scalar functions s s and ds+ derived from Equation 55 and
integrate their multiplicative inverses w.r.t. u and v, respec