Technical Report TR06-023

Department of Computer Science
Univ. of North Carolina at Chapel Hill

Unsupervised Task Extraction from a Stream
of Window Focus Events

Karl Gyllstrom and David Stotts
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

{karl, stotts}@cs.unc.edu

Unsupervised Task Extraction from a Stream
of Window Focus Events

Karl Gyllstrom David Stotts

1 INTRODUCTION

We describe the process of collection data and analyzing the data for task
extraction. The task extraction method is composed of two parts. First,
we map window-to-window relationships to a directed graph, where nodes
represent individual windows and weighted links represent the relative im-
portance of the linked node to the linking node. Once we have a graph, a
graph partitioning method is used to find clusters of high mutual link value.
These clusters are used to represent conceptual tasks.

2 DATA COLLECTION

Data collection revolved around the collection of window focus events through
a passive, non-intrusive event monitoring system that could be deployed as
users went about their system work. We developed an application for cap-
turing window focus events and maintaining a log. Window focus events
are instances in time when a user driven event changes the window that is
currently focused. Intuitively, a window focus event indicates that a user in-
tends to interact with the contents of the newly focused window, although in
practice, window focus events can sometimes be the result of spurious clicks
or other user errors.

Our monitoring application polls the system for the foremost window by
accessing the system’s depth-ordered list of on-screen windows. The polling
rate is on the millisecond granularity to optimize precision without requiring
substantial system resources. When the foremost window is different from
the foremost window of the previous cycle, an entry is added to the log

featuring the application name, the window number - which is unique within
the system, and the time stamp of the event. Furthermore, an image of the
window is stored to assist future recollection.

3 GRAPH CONSTRUCTION

The theory motivating this work is that windows that are consistently focused
at close points in time are more likely to be related to each other with respect
to a user task. To find the relatedness of window Wp to window Wy, then,
we need to find how likely W}y is to appear soon after or before Wg appears.

A focus event is an instant in time when a window is brought forward by
the user to the focused position, depicted by a two-tuple (w;,t;) where w; is
the window number and t¢; is the moment when the window is focused. A
window interval for window w; consists of

e Boundary focus events w;y;1 and w;y2, occurring at times ¢, and o,
respectively. No focus event for w; can occur between these two focus
events.

e The set of all focus events transpiring between t; and t,.

A window interval is depicted as a 4-tuple (w;,t;,t;,S), where w; is the
window number, ¢; is the time at which the interval began, ¢; is the time at
which the interval ended, and S is the set of focus events occurring between
t; and t;, exclusively. In other words, a window interval is the set of focus
events for other windows occurring between a time that window is brought
forward and the next time it is brought forward. The duration of the window
interval is the time elapsed since the initial window event ended and the last
event starts, and measures the time elapsed within the window interval where
window w; was not the focused window. Henderson and Card[1] provide a
similar treatment to the notion window interval.

If a window is used frequently, it will have many intervals within the total
time it has been used. Other windows that tend to occur often within these
intervals are likely to be task related windows. This metric rates windows by
their likelihood of occuring within a task interval. The function WSV (w;, w;)
represents this value. To compute WSV (w;,w;), we find the number of
window intervals for w; in which w; is brought forward, and divide this by
the total number of intervals within some time interval T'.

Using raw probability for link values makes it difficult to view relation-
ships between different windows along a common currency. For example,
window A might be %20 likely to switch to window B, just as window C' is
%20 likely to switch to B. We cannot infer from this data alone that B is
equally related to window C' as it is to A, as the behavior of C' and A skew
the significance. This issue will be addressed in more detail in the discussion
section.

Thus, we introduce the function Rank(w;, w;) to capture this information.
To compute Rank(w;,w;), we order the list of Link values for w; and order
them from greatest to least, returning the level of w; on the list (Figure 1).
Where ties occur, each link is given the same value, and the next non-tie value
is given a higher rank according to the number of ties. We then construct
a graph from our data, where windows are mapped to nodes and the links
between all w; and w; are given the value Rank(w;,w;).

Figure 1: Link values to rank values Outgoing link values are sorted and
ranked, with ties given equal rank.

4 GRAPH CLUSTERING

While much literature on graph clustering is available, we chose not to apply
an existing implementation for a number of reasons. First, we found that
a user-level understanding of window relationships could help inform the
clustering algorithm to create more accurate results over an algorithm that
operates on generic data. Traditional clustering implementations emphasize
performance and scalability to large data sets; in our case, there is a natural
limitation to the amount of data that a user could produce within a time
interval, and it was thus unnecessary to incorporate the same attention to
performance within our work.

We define a cluster as two sets of nodes: a primary node set and a sec-
ondary node set. The primary set consists of nodes that are fully connected

4

and each node in the set satisfies the fitness metric described below. The fit-
ness metric for the inclusion of a node within a node set relies on the notion
of average outgoing rank and average incoming rank. The average outgoing
rank for node n; with respect to node set NN; is defined as the sum of the
ranks of outgoing values from n; to the nodes in N; divided by the number of
nodes in N;. The average incoming rank is the sum of the incoming ranks of
n; from each node in the set, divided by the number of nodes in set N;. For
a node n; to satisfy the fitness requirement for primary set N;, its average
incoming rank and average outgoing rank must both be less than or equal to
the number of nodes currently in N;. Intuitively, this constraint means that
for node n; to become part of node set N;, where the size of set N; is L, it
must be, on average, at least the L most relevant node to the set.

AIR(n Node, N : NodeSet) = 2= |VNa| ue(n, n) "

Nl Link A
AOR(n : Node, N : NodeSet) = 2= lin |VNa|lue(n,nl))

The secondary set consists of nodes that satisfy only a single part of
the fitness metric; namely, that one of AIR and AOR with respect to the
primary set are satisfied but not both. Note that the node set used in AIR
and AOR is the primary set; the secondary set is not used to test for new
cluster candidates.

The separation of a cluster into two sets allows a cluster to expand without
raising the exclusivity of the task. Because primary set candidacy requires
a node to satisfy a condition that depends on each node within the primary
set, adding a node to the primary set can make it more difficult for another
node to be added later, as that node must satisfy more conditions. Figure 2
depicts such an example.

The secondary set thus allows nodes to be added to a cluster without
affecting future candidates. Nodes in the secondary set represent windows
that are considered related to the task but not as strongly as nodes within
the primary task.

The algorithm for building clusters works as follows. We first generate a
list of 3-tuples (wg, wy, r), representing the rank value r from window w, to
window wy. We then sort this list by rank value, such that tuples appearing
earlier in the list have lower values for r. We then iterate upon the list
while maintaining a set of clusters. For each tuple, we check if either of the

Figure 2: Adding nodes to cluster affect future candidates. Node D would
have qualified before C' was added. After C' was added, the lack of a connec-
tion between C' and D prevents D from qualifying.

Figure 3: Cluster of primary and secondary set windows. D is the only
member of the secondary set, as indicated by the dashed line. Notice the
lower link values.

windows are part of the primary node set of an existing cluster. For each
matching cluster, we evaluate the window with respect to functions AI R and
AOR on the primary nodes set of the cluster. If both pass, and the node is

fully, bidirectionally connected to the nodes of the primary set, it is added
to the cluster. If only AOR passes, the window is added to the secondary
set. If no task contains either node, a new task is created containing both
nodes in the primary set, and this task is added to the list of tasks.

Once the list of 3-tuples is fully processed, we execute some post process-
ing on the set of tasks. First, each task is pruned of orphan windows, where
orphan windows are windows that have no incoming links from the primary
set of that task. This pruning is necessary because some windows that occur
infrequently on the boundaries of the examination interval will have links
pointing to most of the windows focused during the interval.

The second phase of the post processing involves modifying tasks whose
initial task construction violates the rules of cluster construction. The rea-
sons for this happening are subtle. Note that the first two nodes of a new
cluster don’t necessarily satisfy the AIR/AOR rules. Thus, if nodes or links
are not added to the cluster such that both these two nodes belong properly
to the primary set, they are demoted to the secondary set.

The next phase in post processing involves merging redundant and par-
tially redundant tasks. Because all tasks begin with a “seed” link between
windows, there may be multiple clusters that involve the same nodes, as the
clusters grew together. Currently, any cluster C'y is considered a superset of
Cp if the union of the primary and secondary set of C'4 is a superset of the
primary set of Cz. For all ¢, j such that C; D C;, we remove C; and C; from
the cluster set and add a merged cluster C,, such that the primary set of C,,
is the union of the primary sets of C; and C}, and likewise for the secondary
set.

5 DISCUSSION

It is important to note that the conversion of window switch values to rank
enumeration adds a much needed normalization. Before the conversion, we
can only use likelihood of interval precense as a metric, and these values can
vary a lot from window to window. For example, assume the WSV from W4
to Wg is 0.7, while the WSV from Wg to W4 is 0.5. Wp could still have
fewer windows it is more likely to switch to than W, does, although a direct
comparison of the W SVs is not sufficient to understand this relationship.
We thus say that the conversion normalizes the values and allows a more
direct and even comparison.

A further advantage of the conversion is that it avoids the needs to remove
low WSV values from the set. Using a generic graph clustering method
based on connectivity metrics on such a set might produce clusters that
are larger than desired since low WSV values will make the graph more
connected. In such a case, we would be forced to remove WSV values below
a certain threshhold to maintain a meaningfully connected graph. Such a
threshhold would be heuristic, parameterizing the algorithm and possibly
forcing supervision. Figure 4 depicts this scenario.

References

[1] Jr. D. Austin Henderson and Stuart Card. Rooms: the use of multiple vir-

tual workspaces to reduce space contention in a window-based graphical
user interface. ACM Trans. Graph., 5(3):211-243, 1986.

(b) Threshhold of < 0.3

Figure 4: (a) With no WSV threshhold, the graph is fully connected and
cannot be partitioned by connectivity alone. (b) A threshhold of < 0.3 allows
for some clustering

