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Abstract— We present an efficient algorithm for complete
motion planning that combines approximate cell decomposition
(ACD) with probabilistic roadmaps (PRM). Our approach
uses ACD to subdivide the configuration space into cells and
computes a localized-roadmap by generating samples within
each cell. We augment the connectivity graph of ACD with
pseudo-free edges that are computed based on these localized-
roadmaps. These roadmaps are used to capture the connectivity
of free space and guide the adaptive subdivision algorithm. At
the same time, cell decomposition is used to check for path non-
existence or generating samples in narrow passages. Overall,
our hybrid algorithm combines the efficiency of PRM methods
with the completeness of ACD-based algorithms. We have
implemented our algorithm and demonstrate its performance
on 3-DOF and 4-DOF motion planning scenarios with narrow
passages or no collision-free paths. In practice, we observe up
to 10 times improvement in performance over prior complete
motion planning algorithms.

I. I NTRODUCTION

Motion planning is a well studied problem in robotics
and related areas. In this paper, we address the problem
of complete motion planning of rigid or articulated robots
among static obstacles. A complete motion planner either
computes a collision-free path from the initial configuration
to the final configuration or concludes that no such path
exists.

Many approaches have been developed for motion plan-
ning among static obstacles. An important concept for mo-
tion planning is the configuration spaceC, where the robot
is represented as a point, and the obstacles in the scene are
mapped to configuration space obstacles or C-obstacle,O.
The problem of finding a collision-free path for a robot can
be mapped to computing a path for the point in the free space
F=C \ O. Most prior approaches can be classified based on
how they represent or compute an approximation ofF orO.

Some of the earlier exact algorithms for motion planning
include criticality-based algorithms, including exact cell de-
composition or roadmap computation [6], [15]. However, no
good implementations of these algorithms are known. Most
practical algorithms for complete motion planning of general
robots are based on cell decomposition [15], [26]. These
include algorithms based on approximate cell decomposition
(ACD), which subdivide theC into rectangular cells in
a hierarchical manner. Each generated cell is labelled as
one of the three types: empty if it is completely inF ,
full if it lies completely in O, or mixed otherwise. These
algorithms compute a connectivity graph based on these cells
and can check for path non-existence based on C-obstacle
query [25]. In practice, these algorithms can generate a high

number of mixed cells and can require a high number of
subdivisions. Moreover, the complexity of the subdivision
algorithm increases exponentially with the dimension ofC
and most implementations are limited to 3-DOF robots.

The practical motion planning algorithms for high DOF
robots are based on sample-based approaches, including
probabilistic roadmaps (PRM). They have been successfully
used to solve many high DOF motion planning problems
because of their simplicity and efficiency. In practice, these
algorithms attempt to capture the connectivity ofF using
a roadmap and use the roadmap for path computation.
However, their performance suffers when there are narrow
passages or no collision-free paths inC.

Main Results: We present a novel approach that combines
the completeness of ACD with the efficiency of PRMs for
motion planning of rigid and articulated models. We compute
a localized-roadmap within each mixed cell of ACD by
generating samples that lie within the cell. Moreover, our
algorithm uses pseudo-free edges in the connectivity graph
to represent the inter-connectivity of localized-roadmaps
between adjacent cells. These roadmaps and connectivity in-
formation provide a compact representation of the free space
that lies within the mixed cells of ACD and considerably
reduce the number of subdivisions. Moreover, the pseudo-
free edges are used to guide the subdivision algorithm and
improve the efficiency of the path non-existence algorithm.

The combination of ACD and PRMs results in many
benefits. We use the knowledge of mixed cells to guide
the sampling towards narrow regions inC, and thereby
resulting in an improved sampling algorithm though our
hybrid algorithm does not extend easily to high DOF robots.
Similarly, we use the connectivity of localized-roadmaps
to perform adaptive subdivision algorithm in portions of
C that lie mostly withinO. Overall, the combination of
localized-roadmaps and ACD provides us with a compact
representation ofC that is used for path computation as well
as path non-existence queries.

We have implemented this algorithm and applied to many
3-DOF and 4-DOF motion planning scenarios. As compared
to prior PRM algorithms, our hybrid approach can easily
handle narrow passages and check for path non-existence.
Moreover, as compared to prior cell decomposition algo-
rithms, we perform fewer subdivisions. This can improve
the overall memory overhead and performance by up to ten
times in our benchmarks.
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A. Organization

The rest of the paper is organized as follows. In Section
2, we briefly survey related work on motion planning. We
introduce our notation and terminology and give an overview
of our hybrid approach in Section 3. Section 4 gives details of
localized-roadmap computation and subdivision algorithms.
We describe our implementation in Section 5 and highlight
its performance on many benchmarks.

II. PREVIOUS WORK

Motion planning has been extensively studied for several
decades. A detailed survey of these algorithms can be found
in [6], [15], [16].

A. Complete Motion Planning

Some of the earlier algorithms for complete motion plan-
ning compute an exact representation ofF or capture its
connectivity using a roadmap. These include criticality-based
algorithms such as exact free-space computation for a class
of robots [2], [9], [17], [13], roadmap methods [5], and
exact cell decomposition methods [20]. However, no efficient
implementations of these algorithms are known for high DOF
robots. Recently, a star-shaped roadmap representation ofF
has been proposed and applied to low DOF robots.

B. Probabilistic Roadmap Methods

The probabilistic roadmap approach (PRM) [12] and its
variants are the most widely used path planning algorithms
for many practical situations. A good summary of this
topic as well as its analysis can be found in [11]. The
PRM-based algorithms attempt to capture the connectivity
of F by samplingF randomly and build a roadmap by
connecting two nearby samples using a local planner. These
algorithms are relatively simple to implement and have been
successfully applied to high DOF robots. However, since
PRM does not compute the exact representation ofF , it
can not decide whether a collision-free path exists or not
for a given planning problem. Moreover, due to the nature
of probabilistic sampling, these algorithms may fail to find
a path, especially through narrow passages. In order to
address the issue of the narrow passages problem, a number
of sampling strategies have been proposed including dense
sampling along obstacle boundaries [1], [3], medial axis-
based sampling [19], [8], [24], visibility-based techniques
[21], workspace information [23], [14], dilation of free space
[10], and bridge tests [22]. However, all these methods are
probabilistically complete.

C. Approximate Cell Decomposition

A number of algorithms based on Approximate Cell
Decomposition (ACD) have been proposed [4], [7], [26].
The ACD-based algorithms attempt to partitionC into a
collection of cells similar to exact cell decomposition. Unlike
exact cell decomposition, the cells in ACD have a simple
shape (e.g. rectangoloids) and each cell is labelled as empty,
full or mixed. The ACD algorithms compute a collision-free
path using an conservative approximation ofF or check for
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Fig. 1. Benefits of hybrid algorithm: This example shows the benefits of
our hybrid algorithm. (a) To capture the connectivity of the free space within
this mixed cell, a large number of subdivisions are required. required. (b)
The localized-roadmaps can capture the connectivity of mixed cells with only
a few samples, and thereby improve the performance of overall planning
algorithm.

path non-existence using a conservative approximation of
O. In order to reduce the number of cell decompositions,
techniques such asfirst graph cutmethod [15] have been
devised that subdivide the cells along the current searching
path.

One of the main challenges in ACD methods is cell
labelling. The cells can be labelled based on contact surface
computations [26]. However it is difficult to implement and
prone to degeneracies. Robust methods based on workspace
distance and generalized penetration depth computation for
cell labelling have been proposed [25], [18].

III. PRELIMINARIES AND OVERVIEW

In this section, we introduce our notation and terminology.
We also give a broad overview of algorithm that combines
ACD and PRM methods.

At a broad level, our algorithm performs adaptive decom-
position of C using rectangular cells and uses an efficient
labelling algorithm [25] to classify them into empty, full or
mixed cells. The empty cells are used to compute a collision-
free path and the full cells are used to check for path non-
existence. In practice, the algorithms used to classify the
cells as full or empty tend to be conservative. As a result, a
high fraction of cells are typically classified as mixed cells
and the resulting algorithms may perform a high number
of subdivisions to classify the new sub-cells as empty or
full. However, the complexity of the subdivision algorithm
increases as an exponential function of number of DOFs and
most implementations ACD algorithms are limited to 3-DOF
robots.

We augment the ACD algorithms with localized-roadmaps,
that tend to capture the free space in the subset of each
mixed cell. Furthermore, we connect the localized-roadmaps
of adjacent cells using pseudo-free edges. These roadmaps
provide a compact representation of the portion ofF within
the mixed cells and a pseudo-free edge implies that there
exists a collision free path between those mixed cells. As a
result, there is a high probability that we can compute a path
through these mixed cells and we give them a lower priority
in terms of adaptive subdivision. In this manner, our hybrid
algorithm performs fewer subdivisions as compared to prior
approaches. Since we only generate random samples in the
mixed cells at any level in the subdivision, our approach
automatically computes more samples near or in narrow
passages. As compared to prior PRM approaches, this results
in an improved sampling algorithm.
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Fig. 2. Pseudo-free edges and connectivity graph: ACD classifies
the cells into empty, such asc1, full such asc7 and mixed such as
c3. The connectivity graphG is a dual graph of ACD and each
empty or mixed cell is mapped to a vertex inG. There are three
types of edges in our connectivity graphG. Two adjacent empty
cells, such asc1 and c2 are connected by a free edge(v1, v2). Two
non-full cells could be connected by an pseudo-free edge, such as
(v3, v4) or an uncertain-edge (v5, v6).

A. Notation

We use symbolsA to denote a robot andB to represent the
static obstacles. Letqinit andqgoal represent the initial and
goal configurations of the robot for a given motion planning
problem. Let us denote the approximate cell decomposition
of configuration space asP, and useci to represent each cell
in P. Each cell is labelled as empty, full, or mixed.

B. Localized-Roadmaps

In our approach, a small number of mixed or empty cells
c in P are associated with a localized-roadmapMc. We also
maintain a global roadmapM. Initially, the global roadmap
M for P includes all localized roadmapsMc for all c that
have a PRM associated with them; i.e.,M = ∪Mc where
Mc 6= φ. In addition, for two adjacent cellsci, cj whose
associated localized roadmapsMci , Mcj have a collision-
free path to connect samples inMci

,Mcj
, this path is added

toM. Note that in our representation, we only add one such
path toM even when there are multiple such paths. Details
of this computation are given in Section IV-C.

C. Connectivity Graph

In P, the connectivity graphG is a dual graph ofP that
represents the connectivity between the cells. It is defined as
follows: each empty or mixed cell inP is mapped to a vertex
v in G; if two cells ci, cj in P are adjacent to each other, their
corresponding vertices,vi, vj , respectively, are connected by
an edgee(i, j) in G. Furthermore, an edgee(i, j) is classified
into one of the following three types (Fig.2):

• Free: If ci and cj are both empty,e(i, j) is a free
edge. This implies that there exits a collision free path
between any configurationq0 in ci to any configuration
q1 in cj .

• Pseudo-free: If e(i, j) is not a free edge, but two
localized roadmapsMci andMcj associated withci, cj

can be connected by a collision-free path,e(i, j) is

called apseudo-free edge. The existence of a pseudo-
free edge indicates that it is highly likely that there
exists a collision-free path between anyq0 in ci and
q1 in cj .

• Uncertain-edges:If e(i, j) is neither free nor pseudo-
free, it is classified as anuncertain-edge.

We further define some of subgraphs ofG as follows: the
free connectivity graphGf is a subgraph ofG that includes
all free edges ofG and their incident vertices; the pseudo-free
connectivity graphGsf is a subgraph ofG that includes both
the free edges and all the pseudo-free edges and their incident
vertices. The three types of connectivity graphs represent
different levels of approximations of the free spaceF and
are used by the path computation algorithm. Some of their
properties include:

• G: It represents the connectivity of regions inC of
whichF is a subset. It is useful for deciding path non-
existence forA, since no path in the space represented
by G implies that there is no path inF .

• Gf : This graph represents a conservative approximation
or a subset ofF . It is useful for finding a collision-free
path forA.

• Gsf : This graph represents the regions that are either
completely insideF (i.e. free cells) or the regions that
contain a collision-free path forA but may not lie fully
in F . We compute localized-roadmaps to capture the
connectivity of these regions and use them to search
for a collision free path.

IV. H YBRID PLANNING ALGORITHM

In the previous section, we had introduce many data struc-
tures that are used by our hybrid algorithm. In this section,
we present algorithms to compute these data structures and
also describe our motion planning algorithm.

A. Algorithm

Fig. 3 gives an overview of our algorithm. Our algo-
rithm consists of two stages:finding a collision-free path
and checking for path non-existence. These two stages are
performed in an alternate manner until a collision-free path
is found or the path non-existence is decided. Furthermore,
we use the three graphs (G, Gf , Gsf ) to compute different
levels of approximation ofF , and perform graph search on
them.

Our hybrid algorithm starts with building an initial, coarse
approximate cell decompositionP of C and proceeds in the
following manner:
I. Path Finding Stage

1) Locate the cells inP that containqinit,qgoal and their
corresponding verticesvinit, vgoal in G.

2) SearchGf to find a path that connectsvinit andvgoal.
If a path is found inGf , this is a collision-free path
since the regions represented byGf are a conservative
approximation ofF . More details are given in Sec.
IV-B.

3) If no path is found inGf , we continue to search for
a path between the vertices usingGsf . If no path is

3
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Fig. 3. Two stages of our hybrid planner. Both these stages proceed
in an alternate manner till one of them terminates. Stage I tries to
compute a collision-free path and Stage II checks for path non-
existence.

found in Gsf , this means that there is no collision-
free path within our current approximation ofF and
we need to compute a finer approximation ofF .
Therefore, our algorithm proceeds to Stage II to decide
whether a collision-free path exists at all.

4) If a path, sayLsf , is found inGsf , it suggests that a
collision-free path may indeed exist. In order to verify
its existence, we search the PRMs of∪Mc for all the
cellsc that are dual to the vertices inLsf to compute a
collision-free path. If such a path exists, our algorithm
terminates. More details are given in Sec. IV-B.

5) If no path can be found, we identify which cells along
the pathLsf disconnect the reachability fromqinit

to qgoal in PRM using depth first search (see Sec.
IV-C). These cells are further subdivided and extra
sampling are generated within these cells to compute
their localized-roadmaps. After the subdivision, the
graphsG, Gf andGsf are updated accordingly. Then
the path finding algorithm is applied recursively on the
new graphs.

II. Path Non-Existence Determination Stage

1) We preform a graph search onG to find a path
connectingvinit andvgoal. If no path can be found, our
algorithm can safely conclude that the given planning
problem has no solution sinceF is a subset of the
space induced byG.

2) Otherwise, we compute a pathL in G, which connects
vinit and vgoal and perform cell subdivisions and
sampling on thecritical cells alongL (see also Sec.
IV-C). A critical cell c is defined as a cell, which has
more than one connected graph component ofMc, or
does not have a pseudo-free edge with its adjacent cell
along the computed pathL. After the subdivision, the

paths are updated. Then, the algorithm returns to the
Path Finding stage.

B. Computing a Collision-free Path

Our algorithm checks for a collision-free path by per-
forming searches onGf and Gsf . If a path Lf is found
as a result of graph search onGf , it implies that we have
found a collision-free path for the given initial and goal
configurations. Otherwise, we continue to search for a path
in Gsf , but we need to verify whether the found pathLsf

yields a collision-free path.
Let PLsf

be a sequence of cells inP corresponding
to the vertices inLsf . Let MLsf

be a subgraphMLsf

of M that lies within PLsf
. To verify whetherLsf can

yield a collision-free path, we search the global roadmap
M. However, before starting to search the global roadmap
M, we search a subgraphMLsf

first. In practice, this can
be easily implemented by restricting the graph search only
within the samples that lie in the cells inPLsf

. If no path is
found inMLsf

, then we search the entire roadmapM. If
no collision-free path is found withinM, this implies that
the current PRM representation is not fine enough in order
to compute a collision-free path. Therefore, we need a more
accurate (or finer) representation ofF .

C. Improved Sampling and Cell Subdivision

If the Stage 1 of the algorithm is not able to find a
collision-free path inGf or Gsf , we need to expand the
search space by generating additional samples forM and
subdivide the cells inP (i.e., step 5 of Stage I). The simplest
algorithm would subdivide all the mixed cells inPLsf

and
generate additional samples in the new cells. In order to
perform this step efficiently, we identify thecritical cells
that have a higher priority than other cells in terms of cell
subdivision and generating additional samples. The critical
cells are defined as those cells that would makeMLsf

disconnected so that there is no path fromqgoal to qinit. The
notion of critical cells is based on the following observations.
First of all, there may exist cells that actually disconnect the
part of free space. These types of cells are useful in terms of
checking for path non-existence. Therefore, we concentrate
on classifying these cells by performing further sampling and
cell subdivisions. Secondly, poor sampling in one of these
cells can result in a disconnected roadmapMc and thus this
cell requires additional samples. As a result, we rebuild the
PRMs only for a small number of these critical cells, not for
all the mixed cells inP and not even for all the mixed cells
in PLsf

. Thus, the size ofGsf is typically slightly larger than
that ofGf , but it provides us a much better approximation of
F . Therefore, our algorithm can efficiently find a collision-
free path by performing fewer subdivisions.
Critical cell computation: In order to identify the critical
cells in PLsf

, we use a propagation algorithm based on
depth first search (DFS) that has a linear time complexity
with respect to the number of samples and local paths
between samples inMLsf

. As Fig. 4 shows, we search
MLsf

starting fromqinit using DFS. During the DFS search,

4
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Fig. 4. Critical cell computation: The cellsc2 andc4 are classified
as critical cells, since the roadmapM within PLsf is disconnected.
These can be computed using DFS algorithm.

we check whether a sample inMLsf
can reachqgoal and

set its reachability flag indicating whether the sample can
reachMLsf

or not. Then, we find a cellcb
i that contains

an unreachable sample inMLsf
and whose corresponding

vertex in Lsf has the longest sequence starting from the
initial vertex vinit in Lsf . This cell is classified as critical.
SinceLsf was obtained fromGsf , cb

i should have an pseudo-
free edge with one of its adjacent cellci+1 in Lsf . This
pseudo-free edge connects a sampleqj in cb

i with another
sampleqk in ci+1. Now we resume the DFS search starting
from qj . This search process continues until we findcb

i that
containsqgoal.
Path non-existence:During Step 2 of the path non-existence
algorithm (i.e., Stage II), when a pathL is found inG, we
need a more accurate representation ofO. Let us denote
the sequence of cells corresponding to the vertices inL
asPL. Typically in ACD, all the mixed cells alongL are
subdivided. This type of technique is known asfirst graph
cut [15]. However, in our algorithm, we reduce the number
of decomposed cells by identifying the critical cells based on
the sampling information embedded in the PRM associated
with the cells inPL. In order to identify critical cells, we
use the following techniques:

1) Within each cell c, if there exists more than one
connected graph component inMc, c is classified as
critical.

2) For every two adjacent cells on the pathL, we test
whether exists a pseudo-free edge between the cells.
If not, these two cells are critical.

Only these critical cells inPL are further subdivided and
extra samples are generated to build the localized-roadmaps.

V. I MPLEMENTATION AND PERFORMANCE

We have implemented our hybrid planner and tested
its performance on 3-DOF and 4-DOF robots in complex
motion planning scenarios. In this section, we address some
implementation issues. We analyze the performance of our
planner, and compare it with priori complete motion planning
algorithms.

A. Implementation

The two main components of our algorithm are graph
search and roadmap computation. In order to search for a
shortest path in the connectivity graphG, we assign different

5-gear star star(no-path) Notch

Total timing(s) 33.855 16.197 48.453 102.076
Cell Labelling(s) 4.025 9.562 31.793 20.915

Sample 5.313 0.265 1.096 5.147
Link computation 8.829 4.172 14.345 27.623

Gf , Gfs search (s) 1.123 0.462 2.037 3.185
G search(s) 5.472 1.218 6.139 13.574

Subdivision (s) 9.093 0.518 6.130 31.632

TABLE I

PERFORMANCE : THIS TABLE HIGHLIGHTS THE PERFORMANCE

OF OUR ALGORITHM ON DIFFERENT BENCHMARKS. WE SHOW

THE BREAKUP OF TIMINGS AMONG DIFFERENT PARTS OF THE

ALGORITHM . THE 5-GEAR IS A 3-DOF BENCHMARK AND THE

REST ARE4-DOF BENCHMARKS.

5-gear Star Star(no path) Notch

# of cells 50,730 48,046 82,171 164,446
# of empty cells 1,272 12,159 15,651 7040
# of full cells 20,761 10,063 31,984 108,983

# of mixed cells 28,697 25,824 34,536 48,423

# of Samples inM 6,488 465 2,791 5,494
# of edges inM 15,298 732 5,040 12,707

Avg degree of sample 4.72 3.15 3.61 4.63

# of mixed cells asso w/tM 2,457 69 353 1,584
# of free cells asso w/tM 568 335 2,078 2,804
Peak Memory Usage (MB) 67 51 75 130

TABLE II

PERFORMANCE : THIS TABLE GIVES DIFFERENT STATISTICS

RELATED TO THE BENCHMARKS.

types of edges with different weights. The underlying idea
is to assign a higher weight to the uncertain edges, so that
the search algorithm tends to find a path through the free
edges and pseudo-free edges. This results in a path with
fewer uncertain edges and results in fewer subdivisions. In
our current implementation, the weight of a free edge is set
as zero and the weight of a pseudo-free edge is also set as
zero. The weight of an uncertain edgee(i, j) is set as the
distance between the centers of cellsci andcj .

During the improved sampling, more samples are gener-
ated for mixed cells than free cells. In our experiments, the
maximum number of free samples in each mixed cell,Nm,
is set as5. The maximum trial number of random samples
used to generate each free sample in the cell,Ntrial, is 5.
For each free cell, we only generate a sample at its center.
Moreover, we use C-obstacle and Free-cell query algorithm
[25] to label the cells during subdivision.

B. Results

We have tested our hybrid planner on different bench-
marks. Our current implementation is unoptimized. We also
compare our algorithm with the complete motion planning
algorithm presented in [25]. The performance and various
statistics are summarized in tables I, and II. All timings are
generated on a 2.8GHZ pentium IV PC with 2G RAM.

1) 3-DOF five-gear benchmark with narrow passage:
This is a difficult 3-DOF motion planning. There are narrow
passages for this example, and the boundary of C-space
for this example is very complex. Our hybrid planner can

5
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Fig. 5. 5-gear example with narrow passage. This ia 3DOF planning problem with narrow passages. There are five gear-shaped static
obstacle on the plane. The problem is to move the gear-shaped robot from the red placement to the green placement. The configuration
space is shown in the left and middle figures. Our approach can generate samples close or in the narrow passage (left figure), and the
global roadmap constructed can well capture the connectivity in free space. The right figure shows the histogram of the cells with different
level of subdivision.

Hybrid Planner ACD Planner Speedup
Total timing 33.855(s) 85.163(s) 2.52
Total cells 50,730 168,008 3.31

TABLE III

COMPARISON : WE ACHIEVE UP TO3 TIMES SPEEDUP OVER

PRIORACD METHOD FOR THE5-GEAR EXAMPLE. FOR THE

4-DOF STAR EXAMPLE, THE ACD VERSION WE HAVE COULD

NOT TERMINATE WITHIN 10MINS. BUT OUR PLANNER CAN

REPORT THE RESULT LESS THAN1 MIN .

compute a collision-free path within33.855s, which is about
three times faster than previous method. The number of cells
in the approximation cell decomposition is50, 730, which is
only 30.2% of the number in the previous ACD method.
Fig. 5 highlights that our approach can generate the samples
and construct the probabilistic roadmap effectively near or in
narrow passages. The roadmapM for this example includes
6, 488 samples and15, 298 edges. Each sample inM has
only average4.7 neighbor samples. This can be observed in
the Fig. 5 where each sample is connected with a few other
samples.

Table II demonstrates that only a subset of mixed cells in
ACD are associated with localized roadmaps. This confirms
that our approach is able to generate and utilize the samples
effectively.

2) 4-DOF star benchmarks:Figs. 6, 7 show a 4-DOF
robot (3T + 1R). The star-shaped robot is allowed to translate
freely in 3D space and to rotate around its Z axis (indicated
by the yellow line) in its local coordinate system. We test this
example for two scenarios: finding a collision free path for
the star-shaped robot, and deciding path non-existence when
the robot is uniformly scaled by1.3 times. The performance
and various statistics for this example are summarized in the
Tabs I, II.

C. 4-DOF notch benchmark

Fig 8 shows a shows a 4-DOF example with very narrow
passage. for narrow passage. The star-shaped robot needs to
pass through the notch. Our approach can find a collision-free
path within166.464s, and only generates5, 494 samples.

Fig. 6. 4-DOF star example for narrow passage. The star-shaped
robot is allowed to translate freely in 3D space and to rotate
around its Z axis (indicated by the yellow line). This planning
problem is to move the robot from the red placement to the green
placement by passing through the star-shaped narrow hole. Our
approach can find a collision-free path within16.197s. For the
purpose of the visualization, we project the configuration space
from R3 × SO(1) into R3. (a, c) shows the path and the robot’s
intermediate configurations on the path. (b,d) shows the roadmap
from two different viewpoints.

VI. L IMITATIONS

Our hybrid approach has a few limitations. In the worst
situation, our algorithm has exponential complexity with the
number of DOF of the robot. However, the experimental
results show that our algorithm can work well for com-
plete motion planning problems as compared to the prior
approaches. Moreover, when we apply our hybrid planner
to 4-DOF or higher DOF problems, graph search becomes
one of the major bottlenecks. This is because the size of
the connectivity graphG increases more quickly than the
number of the cells in ACD. Secondly, there is additional
overhead of two stage algorithm. If there is a collision-free
path, then the work performed in path non-existence stage is
unnecessary.

VII. C ONCLUSION

We have presented an approach that combines the com-
pleteness of ACD with the efficiency of PRMs for motion

6
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Fig. 7. 4-DOF star example for path non-existence. We modified the scene in Fig. 6 by scaling the robot by1.3. Our planner can report
path non-existence for this example within48.453s. (b, c) shows the samples and the roadmap generated by our approach. (d) shows the
subset of mixed cells in ACD, which are associated with localized roadmaps. (e) shows the set of C-obstacle regions, which separate the
robot from its initial to goal configurations.

Fig. 8. 4-DOF notch example for narrow passage. The star-shaped robot needs to pass through the very narrow notch. Our approach
can find a collision-free path within166.464s.

planning of rigid and articulated models. Overall, the com-
bination of localized-roadmaps and ACD provides us with a
compact representation ofC that is used for path computation
as well as path non-existence queries.

We have implemented this algorithm and applied to many
3-DOF and 4-DOF motion planning scenarios. As compared
to prior PRM algorithms, our hybrid approach can easily
handle narrow passages and check for path non-existence.
Moreover, as compared to prior cell decomposition algo-
rithms, we perform fewer subdivisions. This can improve
the overall memory overhead and performance by up to five
times in our benchmarks.

A. Future Work

There are many avenues for future work. We are interested
in addressing the limitations in our current implementation.
Specially, we would like to use more compact representation
for the connectivity graph such that we can extend our com-
plete approach for higher DOF problem. Also we would like
to handle the complaint motion planning using our hybrid
approach. Finally, we would like to extend this approach to
higher DOF robots.
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