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Abstract—We present an efficient algorithm for complete number of mixed cells and can require a high number of
motion planning that combines approximate cell decomposition  subdivisions. Moreover, the complexity of the subdivision
(ACD) with probabilistic roadmaps (PRM). Our approach  giaorithm increases exponentially with the dimensionCof

uses ACD to subdivide the configuration space into cells and . . 7
computes a localized-roadmap by generating samples within and most implementations are limited to 3-DOF robots.

each cell. We augment the connectivity graph of ACD with ; ; ; ; ;
pseudo-free edges that are computed based on these localized- The practical motion planning algorithms for high DOF

roadmaps. These roadmaps are used to capture the connectivity robots are based on sample-based approaches, including

of free space and guide the adaptive subdivision algorithm. At Probabilistic roadmaps (PRM). They have been successfully
the same time, cell decomposition is used to check for path non- used to solve many high DOF motion planning problems
existence or generating samples in narrow passages. Overall, pecause of their simplicity and efficiency. In practice, these
our hybrid algorithm combines the efficiency of PRM methods — 514qrithms attempt to capture the connectivity Bf using

with the completeness of ACD-based algorithms. We have .
implemented our algorithm and demonstrate its performance a roadmap g\nd use the roadmap for path computation.
on 3-DOF and 4-DOF motion planning scenarios with narrow However, their performance suffers when there are narrow

passages or no collision-free paths. In practice, we observe up passages or no collision-free pathsCin
to 10 times improvement in performance over prior complete

motion planning algorithms. Main Results: We present a novel approach that combines
the completeness of ACD with the efficiency of PRMs for
. INTRODUCTION motion planning of rigid and articulated models. We compute

Motion planning is a well studied problem in roboticsa localized-roadmap within each mixed cell of ACD by
and related areas. In this paper, we address the problgmnerating samples that lie within the cell. Moreover, our
of complete motion planning of rigid or articulated robotsalgorithm uses pseudo-free edges in the connectivity graph
among static obstacles. A complete motion planner eithéo represent the inter-connectivity of localized-roadmaps
computes a collision-free path from the initial configuratiorbetween adjacent cells. These roadmaps and connectivity in-
to the final configuration or concludes that no such patformation provide a compact representation of the free space
exists. that lies within the mixed cells of ACD and considerably

Many approaches have been developed for motion plareduce the number of subdivisions. Moreover, the pseudo-
ning among static obstacles. An important concept for mdree edges are used to guide the subdivision algorithm and
tion planning is the configuration space where the robot improve the efficiency of the path non-existence algorithm.

is represented as a point, and the obstacles in the scene A . combination of ACD and PRMs results in many
mapped to configuration space obstacles or C-obstatle, benefits. We use the knowledge of mixed cells to guide

The problem of finding a collision-free path for a robot Cao sampling towards narrow redions @ and thereb
be mapped to computing a path for the point in the free space pling 9 y

5 ) o resulting in an improved sampling algorithm though our
F=C \ O. Most prior approaches can be c_Iass_|f|ed based qﬂ/brid algorithm does not extend easily to high DOF robots.
how they represent or compute an approximatiotFaidr O.

: qSimiIarIy, we use the connectivity of localized-roadmaps
include criticality-based algorithms, including exact cell de-2 perform adaptive subdivision algorithm in portions of

composition or roadmap computation [6], [15]. However, n?C that lie mostly within ©. Overall, the combination of

. . . ?calized-roadmaps and ACD provides us with a compact
good implementations of these algorithms are known. Mos . : .
representation of that is used for path computation as well

practical algorithms for complete motion planning of genera{liS path non-existence queries
robots are based on cell decomposition [15], [26]. These '
include algorithms based on approximate cell decomposition We have implemented this algorithm and applied to many
(ACD), which subdivide theC into rectangular cells in 3-DOF and 4-DOF motion planning scenarios. As compared
a hierarchical manner. Each generated cell is labelled &s prior PRM algorithms, our hybrid approach can easily
one of the three types: empty if it is completely i, handle narrow passages and check for path non-existence.
full if it lies completely in O, or mixed otherwise. These Moreover, as compared to prior cell decomposition algo-
algorithms compute a connectivity graph based on these cellfims, we perform fewer subdivisions. This can improve
and can check for path non-existence based on C-obstatthe overall memory overhead and performance by up to ten

query [25]. In practice, these algorithms can generate a higimes in our benchmarks.
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A. Organization F

The rest of the paper is organized as follows. In Section
2, we briefly survey related work on motion planning. We
introduce our notation and terminology and give an overview
of our hybrid approach in Section 3. Section 4 gives details of

localized-roadmap computation and subdivision algorithm&ig. 1. Benefits of hybrid algorithm: This example shows the benefits of

: : : : : - 1~ Ur hybrid algorithm. (a) To capture the connectivity of the free space within
We describe our |mplementat|on in Section 5 and hlgh“grﬁwis mixed cell, a large number of subdivisions are required. required. (b)

its performance on many benchmarks. The localized-roadmaps can capture the connectivity of mixed cells with only
a few samples, and thereby improve the performance of overall planning
Il. PREVIOUSWORK algorithm.

Motion planning has been extensively studied for several _ _ _ o
decades. A detailed survey of these algorithms can be fouR@th non-existence using a conservative approximation of

in [6], [15], [16]. O. In order to reduce the number of cell decompositions,
_ _ techniques such afirst graph cutmethod [15] have been
A. Complete Motion Planning devised that subdivide the cells along the current searching

Some of the earlier algorithms for complete motion planpath.
ning compute an exact representation Bfor capture its ~ One of the main challenges in ACD methods is cell
connectivity using a roadmap. These include criticality-basg@belling. The cells can be labelled based on contact surface
algorithms such as exact free-space computation for a claggmputations [26]. However it is difficult to implement and
of robots [2], [9], [17], [13], roadmap methods [5], andprone to degeneracies. Robust methods based on workspace
exact cell decomposition methods [20]. However, no efficierflistance and generalized penetration depth computation for
implementations of these algorithms are known for high DOEell labelling have been proposed [25], [18].
robots. Recently, a star-shaped roadmap representatign of

has been proposed and applied to low DOF robots. Il PRELIMINARIES AND OVERVIEW

In this section, we introduce our notation and terminology.

B. Probabilistic Roadmap Methods We also give a broad overview of algorithm that combines
The probabilistic roadmap approach (PRM) [12] and itACD and PRM methods.

variants are the most widely used path planning algorithms At a broad level, our algorithm performs adaptive decom-
for many practical situations. A good summary of thigposition of C using rectangular cells and uses an efficient
topic as well as its analysis can be found in [11]. Thdabelling algorithm [25] to classify them into empty, full or
PRM-based algorithms attempt to capture the connectivitpixed cells. The empty cells are used to compute a collision-
of F by sampling F randomly and build a roadmap by free path and the full cells are used to check for path non-
connecting two nearby samples using a local planner. Thesgistence. In practice, the algorithms used to classify the
algorithms are relatively simple to implement and have beegells as full or empty tend to be conservative. As a result, a
successfully applied to high DOF robots. However, sincbigh fraction of cells are typically classified as mixed cells
PRM does not compute the exact representatioFofit and the resulting algorithms may perform a high number
can not decide whether a collision-free path exists or n@f subdivisions to classify the new sub-cells as empty or
for a given planning problem. Moreover, due to the natur&ll. However, the complexity of the subdivision algorithm
of probabilistic sampling, these algorithms may fail to findncreases as an exponential function of number of DOFs and
a path, especially through narrow passages. In order post implementations ACD algorithms are limited to 3-DOF
address the issue of the narrow passages problem, a numisgots.
of sampling strategies have been proposed including densé/Ve augment the ACD algorithms with localized-roadmaps,
sampling along obstacle boundaries [1], [3], medial axisthat tend to capture the free space in the subset of each
based sampling [19], [8], [24], visibility-based techniquegnixed cell. Furthermore, we connect the localized-roadmaps
[21], workspace information [23], [14], dilation of free spaceof adjacent cells using pseudo-free edges. These roadmaps
[10], and bridge tests [22]. However, all these methods afgovide a compact representation of the portiorFFowithin

probabilistically complete the mixed cells and a pseudo-free edge implies that there
. - exists a collision free path between those mixed cells. As a
C. Approximate Cell Decomposition result, there is a high probability that we can compute a path

A number of algorithms based on Approximate Celthrough these mixed cells and we give them a lower priority
Decomposition (ACD) have been proposed [4], [7], [26]in terms of adaptive subdivision. In this manner, our hybrid
The ACD-based algorithms attempt to partitichinto a algorithm performs fewer subdivisions as compared to prior
collection of cells similar to exact cell decomposition. Unlikeapproaches. Since we only generate random samples in the
exact cell decomposition, the cells in ACD have a simplenixed cells at any level in the subdivision, our approach
shape (e.g. rectangoloids) and each cell is labelled as emmytomatically computes more samples near or in narrow
full or mixed. The ACD algorithms compute a collision-freepassages. As compared to prior PRM approaches, this results
path using an conservative approximationfofr check for in an improved sampling algorithm.
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called apseudo-free edgelhe existence of a pseudo-
free edge indicates that it is highly likely that there

exists a collision-free path between aqy in ¢; and
q1 in Cj.
Ces &“ « Uncertain-edges:If ¢(i, j) is neither free nor pseudo-

| free, it is classified as anncertain-edge
y y We further define some of subgraphs@fas follows: the
P ° free connectivity grapl@; is a subgraph o that includes
all free edges of7 and their incident vertices; the pseudo-free
Pseudo-free edge connectivity graplGs is a subgraph ofs that includes both

the free edges and all the pseudo-free edges and their incident
vertices. The three types of connectivity graphs represent
Fig. 2. Pseudo-free edges and connectivity graptCD classifies different levels of approximations of the free spageand

the cells into empty, such as, full such asc; and mixed such as gre ysed by the path computation algorithm. Some of their
cs. The connectivity graplz is a dual graph of ACD and each properties include:

empty or mixed cell is mapped to a vertexGh There are three o ]
types of edges in our connectivity gragh Two adjacent empty o Gt It represents the connectivity of regions h of

cells, such ag; andc; are connected by a free edge;, v2). Two which F is a subset. It is useful for deciding path non-
non-full cells could bg connected by an pseudo-free edge, such as gaxjstence ford, since no path in the space represented
(vs, va) OF an uncertain-edge, vs). by G implies that there is no path i.

_ » Gy: This graph represents a conservative approximation
A. Notation or a subset ofF. It is useful for finding a collision-free

We use symbolsi to denote a robot antl to represent the path for A.
static obstacles. L&d;,;; andq..; represent the initial and  « Gsy: This graph represents the regions that are either
goal configurations of the robot for a given motion planning ~ completely insideF (i.e. free cells) or the regions that
problem. Let us denote the approximate cell decomposition ~contain a collision-free path fad but may not lie fully

of configuration space @8, and use; to represent each cell in 7. We compute localized-roadmaps to capture the
in P. Each cell is labelled as empty, full, or mixed. connectivity of these regions and use them to search
for a collision free path.

B. Localized-Roadmaps IV. HYBRID PLANNING ALGORITHM

In the previous section, we had introduce many data struc-
tures that are used by our hybrid algorithm. In this section,
we present algorithms to compute these data structures and
also describe our motion planning algorithm.

In our approach, a small number of mixed or empty cells
¢ in P are associated with a localized-roadnyafy.. We also
maintain a global roadmap1. Initially, the global roadmap
M for P includes all localized roadmap$1.. for all ¢ that
have a PRM associated with them; i.84 = UM, where
M. # ¢. In addition, for two adjacent cells;,c; whose A. Algorithm
associated localized roadmapd..., M., have a collision-  Fig 3 gives an overview of our algorithm. Our algo-
free path to connect samplesM.,, M., this path is added ithm consists of two stagedinding a collision-free path
to M. Note that in our representation, we only add one sucng checking for path non-existenc&hese two stages are
path toM even when there are multiple such paths. Detailgerformed in an alternate manner until a collision-free path
of this computation are given in Section IV-C. is found or the path non-existence is decided. Furthermore,
we use the three graph&(G¢,G,s) to compute different
levels of approximation ofF, and perform graph search on

In P, the connectivity grapléz is a dual graph ofP that them.
represents the connectivity between the cells. It is defined asOur hybrid algorithm starts with building an initial, coarse
follows: each empty or mixed cell i is mapped to a vertex approximate cell decompositigR of C and proceeds in the
vin G, iftwo cells¢;, ¢; in P are adjacent to each other, theirfollowing manner:
corresponding vertices,, v;, respectively, are connected byl. Path Finding Stage

an edge:(i, j) in G. Furthermore, an edggi, j) is classified 1) Locate the cells ifP that containg,.;, qge and their

C. Connectivity Graph

into one of the following three types (Fig.2): corresponding Vertices; ¢, Vgoal in G.

o Free: If ¢; and ¢; are both emptye(s,j) is a free 2) SearchG to find a path that connects,;; andvgoq;.
edge This implies that there exits a collision free path If a path is found inG¢, this is a collision-free path
between any configuratioty in ¢; to any configuration since the regions represented @y are a conservative
qi in ¢j. approximation ofF. More details are given in Sec.

« Pseudo-free: If e(i,7) is not a free edge, but two IV-B.
localized roadmap3/., and M., associated witle;, c; 3) If no path is found inG¢, we continue to search for
can be connected by a collision-free pati, j) is a path between the vertices usigg . If no path is



Fig. 3. Two stages of our hybrid planner. Both these stages procquund in M
in an alternate manner till one of them terminates. Stage | tries to L
compute a collision-free path and Stage Il checks for path no
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Input paths are updated. Then, the algorithm returns to the
Path Finding stage.

B. Computing a Collision-free Path

Our algorithm checks for a collision-free path by per-
forming searches oii7; and G¢. If a path Ly is found
as a result of graph search @ry, it implies that we have
found a collision-free path for the given initial and goal
configurations. Otherwise, we continue to search for a path
in Gsf, but we need to verify whether the found pathy
yields a collision-free path.

Let P, be a sequence of cells i® corresponding
to the vertices inL,;. Let My , be a subgraphMp_,
of M that lies within P .. To verify whetherL,; can
yield a collision-free path, we search the global roadmap
M. However, before starting to search the global roadmap
M, we search a subgraphy, first. In practice, this can
be easily implemented by restricting the graph search only
within the samples that lie in the cells ., . If no path is
.;» then we search the entire roadmagp. If
1o collision-free path is found withig\, this implies that

Yes
4 Poes the path yield=
ollision free path2

No

existence. the current PRM representation is not fine enough in order

4)

5)

II. Path Non-Existence Determination Stage

1)

2)

to compute a collision-free path. Therefore, we need a more

found in Gy, this means that there is no collision-accurate (or finer) representation 5t
free path within our current approximation gf and

we need to compute a finer approximation &%

Therefore, our algorithm proceeds to Stage Il to decide !f the Stage 1 of the algorithm is not able to find a
whether a collision-free path exists at all. collision-free path inG; or G,¢, we need to expand the

If a path, sayL,;, is found inG.,;, it suggests that a searqh_ space by g_ene_rating additional sampIeS/\fb_rand
collision-free path may indeed exist. In order to verifySuPdivide the cells irP (i.e., step 5 of Stage I). The simplest
its existence, we search the PRMsLok., for all the algorithm would subdivide all the mixed cells iR, and
cellsc that are dual to the vertices i to compute a generate a}dditional §amp|es in t.he new cel!g. In order to
collision-free path. If such a path exists, our algorithnfPerform this step efficiently, we identify theritical cells
terminates. More details are given in Sec. IV-B. that ha_\v_e a higher prlorl_ty than _o_ther cells in terms of _c_eII
If no path can be found, we identify which cells a|ongsubd|V|5|on and generating additional samples. The critical

the pathZ,; disconnect the reachability from;,;: cells are defined as those cells that would makg ,

{0 qgoar in PRM using depth first search (see SeCQisconnected so that there is no path frggg.; to q;ni:. The

IV-C). These cells are further subdivided and extraotion of critical cells is based on the following observations.

sampling are generated within these cells to compu@rSt of all, there may exist cells that actually disconnect the

their localized-roadmaps. After the subdivision thdoart of free space. These types of cells are useful in terms of

graphsG, G andG,; are updated accordingly T'hen checking for path non-existence. Therefore, we concentrate
’ S .

the path finding algorithm is applied recursively on thé®" classifying these cells by performing further sampling and
new graphs. cell subdivisions. Secondly, poor sampling in one of these

cells can result in a disconnected roadrdefy and thus this
cell requires additional samples. As a result, we rebuild the
We preform a graph search o to find a path PRMs only for a small number of these critical cells, not for
connectingu;,;; andv,,;. If N0 path can be found, our all the mixed cells irf® and not even for all the mixed cells
algorithm can safely conclude that the given planningn Pz ,. Thus, the size ofr is typically slightly larger than
problem has no solution sincg& is a subset of the that of G, but it provides us a much better approximation of
space induced byi. F. Therefore, our algorithm can efficiently find a collision-
Otherwise, we compute a pathin GG, which connects free path by performing fewer subdivisions.

Vinit aNnd vg0q; and perform cell subdivisions and Critical cell computation: In order to identify the critical
sampling on thecritical cells alongL (see also Sec. cells in Pr ., we use a propagation algorithm based on
IV-C). A critical cell ¢ is defined as a cell, which has depth first search (DFS) that has a linear time complexity
more than one connected graph componentf, or  with respect to the number of samples and local paths
does not have a pseudo-free edge with its adjacent célttween samples ioVz, .. As Fig. 4 shows, we search
along the computed path. After the subdivision, the M, starting fromq;,;; using DFS. During the DFS search,

Improved Sampling and Cell Subdivision

4
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< [ [[ 5-gear | star [ star(no-path)] Notch ]
Q| @ 4 v Total timing(s) 33.855 [ 16.197 48.453 102.076
« e ® Vinie Cell Labelling(s) 4.025 | 9.562 31.793 20.915
— Sample 5313 | 0.265 1.096 5.147
— | A s V2 :3 :4 Link computation 8.829 | 4172 14.345 27.623
JEC TR N a; Gy, Gys search (s)|| 1.123 | 0.462 2.037 3.185
G search(s) 5.472 | 1.218 6.139 13.574
G, G (N, cs ®v,. Subdivision (s) 9.093 | 0.518 6.130 31.632
qgoaIO
Cells along L, Pseudo-free connectivity graph TABLE |

PERFORMANCE : THIS TABLE HIGHLIGHTS THE PERFORMANCE
Fig. 4. Critical cell computation: The cellsc; andc, are classified  OF OUR ALGORITHM ON DIFFERENT BENCHMARKS WE SHOW
as critical cells, since the roadmapt within P, is disconnected. 1 BREAKUP OF TIMINGS AMONG DIFFERENT PARTS OF THE
These can be computed using DFS algorithm. ALGORITHM. THE 5-GEAR IS A 3-DOFBENCHMARK AND THE

) REST ARE4-DOFBENCHMARKS.
we check whether a sample ik, can reachqy.. and

set its reachability flagindicating whether the sample canl [ 5-gear [ Star [ Star(no path)] Notch |
reach M, , or not. Then, we find a celt? that contains # of cells 50,730 | 48,046] 82,171 | 164,446
hable sample i and whose correspondin # of empty cells 1,272 | 12,159 15,651 7040
an unreacha P Ly resp g # of full cells 20,761 10,063 | 31,984 | 108,983
vertex in L,y has the longest sequence starting from the # of mixed cells 28,607 | 25,824 34,536 48,423
initial vertex vy, in Lgy. This cell is classified as critical. # of Samples inM 6,488 | 465 2,791 5,494
SinceL,; was obtained frond, s, ¢ should have an pseudo- # of edges inM 15,298 | 732 >,040 12,707
free edge with one of its adjacent cell;, in L. This ?Vg_ dzgrei of samp';’w 24'47 527 3(‘3;5 33:; 14;56;4
: b . Ol mixed cells asso wi , ,
pseudo-frge edge connects a sampleén ¢; with another' F of free cells asso WM =58 335 2078 2.807
samplegy, in ¢;1. Now we resume the DFS search starting—peak Memory Usage (MB)|| 67 51 75 130
from ¢;. This search process continues until we fificthat
containsqgoqi- TABLE Il
Path non-existenceDuring Step 2 of the path non-existence PERFORMANCE : THIS TABLE GIVES DIFFERENT STATISTICS
algorithm (i.e., Stage Il), when a pathis found inG, we RELATED TO THE BENCHMARKS

need a more accurate representation(oflLet us denote

the sequence of cells corresponding to the verticed. in types of edges with different weights. The underlying idea

gﬁ@?\}iggglﬂé I? Aecg)f’ tixl(lzr:r?ie urzl)i(:dkr(l:;l:/i g:;?gr;rﬁ is to assign a higher weight to the uncertain edges, so that
) yp 9 9'aph  +he search algorithm tends to find a path through the free

cut [15]. However, in our algorithm, we reduce the numbe%dges and pseudo-free edges. This results in a path with
of decomposed cells by identifying the critical cells based OP '

the sampling information embedded in the PRM associateg "o uncer.taln edges "’.‘”d results n fewer subdmsmps. In
) . . ) . our current implementation, the weight of a free edge is set
with the cells inP. In order to identify critical cells, we . .
. . ] as zero and the weight of a pseudo-free edge is also set as
use the following techniques:

o ) ] zero. The weight of an uncertain edgg, j) is set as the
1) Within each cellc, if there exists more than one jistance between the centers of ceflsand c;.

connected graph component.ivl, c is classified @ pyring the improved sampling, more samples are gener-

critical. _ ated for mixed cells than free cells. In our experiments, the
2) For every two adjacent cells on the path we test  mayimum number of free samples in each mixed c¥ll,,
whether exists a pseudo-free edge between the cell§.set as5. The maximum trial number of random samples
If not, these two cells are critical. used to generate each free sample in the @él};.;, is 5.
Only these critical cells inP;, are further subdivided and For each free cell, we only generate a sample at its center.
extra samples are generated to build the localized-roadmapgoreover, we use C-obstacle and Free-cell query algorithm

[25] to label the cells during subdivision.
V. IMPLEMENTATION AND PERFORMANCE

We have implemented our hybrid planner and testef- Results
its performance on 3-DOF and 4-DOF robots in complex We have tested our hybrid planner on different bench-
motion planning scenarios. In this section, we address somgarks. Our current implementation is unoptimized. We also
implementation issues. We analyze the performance of oapmpare our algorithm with the complete motion planning
planner, and compare it with priori complete motion planningilgorithm presented in [25]. The performance and various
algorithms. statistics are summarized in tables I, and II. All timings are
generated on a 2.8GHZ pentium IV PC with 2G RAM.

1) 3-DOF five-gear benchmark with narrow passage:
The two main components of our algorithm are grapfThis is a difficult 3-DOF motion planning. There are narrow
search and roadmap computation. In order to search forpassages for this example, and the boundary of C-space
shortest path in the connectivity graph we assign different for this example is very complex. Our hybrid planner can

A. Implementation
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Fig. 5. 5-gear example with narrow passage. This ia 3DOF planning problem with narrow passages. There are five gear-shaped static
obstacle on the plane. The problem is to move the gear-shaped robot from the red placement to the green placement. The configurati
space is shown in the left and middle figures. Our approach can generate samples close or in the narrow passage (left figure), and tt
global roadmap constructed can well capture the connectivity in free space. The right figure shows the histogram of the cells with differen
level of subdivision.

»
o

#of Cells
P

o
3]

9

4 5 6 7 8
Level of Cell Decomposition

Hybrid Planner| ACD Planner | Speedup
Total timing 33.855(s) 85.163(s) 2.52
Total cells 50,730 168,008 3.31
TABLE Il

COMPARISON: WE ACHIEVE UP TO3 TIMES SPEEDUP OVER
PRIORACD METHOD FOR THE5-GEAR EXAMPLE. FOR THE
4-DOFSTAR EXAMPLE, THE ACD VERSION WE HAVE COULD
NOT TERMINATE WITHIN 10MINS. BUT OUR PLANNER CAN
REPORT THE RESULT LESS THANL MIN.

(@) E (b

¥

compute a collision-free path with8.855s, which is about
three times faster than previous method. The number of cells ©
in the approximation cell decompositioni8, 730, which is

only 30.2% of the number in the previous ACD method. _.
Fia. 5 highliahts that our approach can generate the sam Fl%. 6. 4-DOF star example for narrow passage. The star-shaped
g. > highlig pp 9 PiBot is allowed to translate freely in 3D space and to rotate

and construct the probabilistic roadmap effectively near or iround its Z axis (indicated by the yellow line). This planning
narrow passages. The roadm&p for this example includes problem is to move the robot from the red placement to the green
6,488 samples and 5,298 edges. Each sample ivM has Placement by passing through the star-shaped narrow hole. Our
only averaget.7 neighbor samples. This can be observed igpproach can find a collision-free path withit6.197s. For the

. . . urpose of the visualization, we project the configuration space
the Fig. 5 where each sample is connected with a few othgf ., rs SO(1) into R?. (a, c) shows the path and the robot's

samples. intermediate configurations on the path. (b,d) shows the roadmap
Table Il demonstrates that only a subset of mixed cells ifiom two different viewpoints.

ACD are associated with localized roadmaps. This confirms

that our approach is able to generate and utilize the samples VI. LIMITATIONS

effectively.
y Our hybrid approach has a few limitations. In the worst

2) 4-DOF star benchmarksFigs. 6, 7 show a 4-DOF g jation, our algorithm has exponential complexity with the
robot (3T + 1R). The star-shaped robot is allowed to translaige, her of DOF of the robot. However. the experimental

freely in 3D space and to rotate around its Z axis (indicateflg,;ts show that our algorithm can work well for com-

by the yellow line) in its local coordinate system. We test thi%lete motion planning problems as compared to the prior
example for two scenarios: finding a collision free path fo'épproaches. Moreover, when we apply our hybrid planner
the star-shaped robot, and deciding path non-existence when, pog or higher DOF problems, graph search becomes
the robot is uniformly scaled by.3 times. The performance ;.o of the major bottlenecks. This is because the size of

and various statistics for this example are summarized in thg, connectivity graphG increases more quickly than the

Tabs I, II. number of the cells in ACD. Secondly, there is additional
overhead of two stage algorithm. If there is a collision-free
path, then the work performed in path non-existence stage is
unnecessary.

(d)

C. 4-DOF notch benchmark

Fig 8 shows a shows a 4-DOF example with very narrow
passage. for narrow passage. The star-shaped robot needs to
pass through the notch. Our approach can find a collision-freeWe have presented an approach that combines the com-
path within 166.464s, and only generates 494 samples. pleteness of ACD with the efficiency of PRMs for motion

VIl. CONCLUSION
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(a) (b) ()

(d)

Fig. 7. 4-DOF star example for path non-existence. We modified the scene in Fig. 6 by scaling the ral®it®@yr planner can report

path non-existence for this example withi®453s. (b, c) shows the samples and the roadmap generated by our approach. (d) shows the
subset of mixed cells in ACD, which are associated with localized roadmaps. (e) shows the set of C-obstacle regions, which separate t

robot from its initial to goal configurations.

Fig. 8. 4-DOF notch example for narrow passage. The star-shaped robot needs to pass through the very narrow notch. Our approacl

can find a collision-free path within66.464s.

planning of rigid and articulated models. Overall, the com-[3]
bination of localized-roadmaps and ACD provides us with a
compact representation 6fthat is used for path computation
as well as path non-existence queries. [4]
We have implemented this algorithm and applied to many
3-DOF and 4-DOF motion planning scenarios. As compareds
to prior PRM algorithms, our hybrid approach can easily
handle narrow passages and check for path non-existencié]
Moreover, as compared to prior cell decomposition algo-
rithms, we perform fewer subdivisions. This can improve 7
the overall memory overhead and performance by up to five
times in our benchmarks. (8]

A. Future Work

There are many avenues for future work. We are interest
in addressing the limitations in our current implementation.
Specially, we would like to use more compact representatidhil
for the connectivity graph such that we can extend our com-
plete approach for higher DOF problem. Also we would likg;;
to handle the complaint motion planning using our hybrid
approach. Finally, we would like to extend this approach t?13]
higher DOF robots.

B
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