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Abstract— Campus wireless LANs (WLANs) are complex sys-
tems with hundreds of access points (APs) and thousands of
users. Researchers in wireless networking are faced with the
challenge of constructing simulations and testbed experiments
that reproduce the characteristics of these networks, and taking
them into account in their theoretical work. However, there is
only a limited set of modeling results in this area derived from
real measurement data, and they do not provide a complete
and consistent view of entire WLAN systems. In this work
we propose a first system-wide, multi-level model for campus
WLAN. Our emphasis is on parametric modeling, which provides
a parsimonious characterization and the most flexible foundation
for simulation studies. Our results are derived from large traces
collected at the University of North Carolina.

I. INTRODUCTION

Wireless networks are increasingly being deployed and the
demand for wireless access grows rapidly. However, empirical
and performance analysis studies indicate dramatically low
performance of real-time constrained applications over wire-
less LANs (such as [1] on the VoIP) and clients frequently
experience failures and disconnections. The wireless LANs
have more vulnerabilities, bandwidth, and latency constraints
than their wired counterparts. It is critical to understand the
performance of the wireless networks and develop wireless
networks that are more robust, easier to manage and scale, and
able to utilize scarce resources more efficiently. While in sev-
eral cases over-provisioning in wired networks is acceptable, it
can become problematic in the wireless domain. A number of
mechanisms, such as capacity planning, resource reservation,
link adaptation, and load balancing, need to be employed
to support such networks. To perform meaningful simulation
studies and analysis of those mechanisms, the availability of
models of the network and its demand is critical. Furthermore,
the design of these real-life systems can take advantage of
such traffic models, their temporal and spatial phenomena,
and forecasting algorithms. For example, to perform load
balancing among APs or resource reservation at an AP, the
system needs to monitor the network demand and perform
dynamically short-term forecasting. Capacity planning aims
in the optimal placement of APs, channel assignments, range,
VLAN configuration, and network topology. This requires the
spatial modeling of the demand, and an understanding of the

evolution of the aggregate demand, its temporal characteristics,
and longer-term forecasting.

Improving load-balancing, resource reservation, and capac-
ity planning shapes our empirical measurements and modeling
studies. The most intriguing aspect of such modeling is its
multi-level spatial-temporal dimensions, namely, the different
spatial and system scales (e.g., infrastructure-wide, AP-level
or client-level) and time granularities (e.g., packet-level, flow-
level or aggregate). An important goal of this research is to
model the dynamics of an entire campus wireless infrastruc-
ture and develop a methodology that characterizes the traffic
demand in different levels as well as the interplay of some
critical parameters.

Key elements of the demand are the client associations and
flows and their parameters, namely their arrivals and sizes. We
study client association dynamics using sessions, which group
associations into episodes of continuous activity. The session
level, captures the interaction between clients and APs, and
it is fundamental for any study that deals with the state in
APs (e.g., for energy conservation, load-balancing, resource
reservation and allocation, and roaming). The flow-level is an
important structure above the packet-level for network traffic
analysis and closed-loop traffic generation. How do clients
arrive at an AP or in the campus-wide infrastructure? How
do flows arrive at APs? What are their temporal phenomena?
Sessions and flows are interrelated: for example the load of an
AP is given by the set of network flows that traverse this AP,
generated by the clients associated to it. This paper models
these structures in both spatial and temporal dimensions and
investigates their dependencies and interplay. Finally, it uses
these relations to build models for traffic load and short-term
traffic forecasting (important aspects of load-balancing and
resource reservation).

While there is a rich literature characterizing traffic in wired
networks ([2], [3]), there are only a few studies available that
examined wireless demand. The multi-level modeling of the
wireless demand and its spatial and temporal phenomena has
received very little attention from our community. This study
builds the foundations and the methodology for measuring
flow and session arrivals and their sizes at both the system-
wide and AP-levels. The only closest study is the modeling of



Component Model Probability Density Function (PDF) Parameters
Session Arrivals Time-varying Poisson N : # of sessions between t1 and t2 Hourly rate: 44 (min),

with rate λ(t) λ =
t2�
t1

λ(t)dt, Pr(N = n) = e−λλn

n!
, n = 0, 1, . . . 1132 (max), 294 (median)

Session AP Preference Lognormal p(x) = 1
√

2πxσ
exp � − (lnx−µ)2

2σ2 � µ = 4.0855, σ = 1.4408

Flow-inter-arrival/Session Lognormal Same as above µ = −1.3674, σ = 2.785

# of Flows/Session BiPareto p(x) = kβ(1 + c)β−αx−(α+1)(x + kc)α−β−1 α = 0.06, β = 1.72,
(βx + αkc) , x ≥ k c = 284.79, k = 1

Flow Size BiPareto Same as above α = 0.00, β = 0.91,
c = 5.20, k = 179

TABLE I
SUMMARY OF SYSTEM-WIDE TRAFFIC DEMAND MODEL.

traffic flows by Meng et al. [4].

The main contribution of this paper is a novel methodology
for modeling the demand in large wireless networks using a
system-wide, multi-level parametric approach. Our approach
distinguishes two important dimensions in wireless network
modeling, namely the demand (user-initiated activity through
flows and sessions) and the topology (network, infrastruc-
ture, and radio propagation dependencies). This enables us
to “superimpose” models for the demand on the specific
topology, scaling it up and down, and focusing on the right
level of detail for the performance analysis or simulation study
(e.g., AP-level, system-wide, client-level). This methodology
“masks” network-related dependencies that are not important
for a range of systems, and make the wireless networks
amenable to statistical analysis and modeling. It has been
really a fascinating problem because the analysis of such large
data acquired from different monitoring tools, for extended
periods of times, from a very large wireless infrastructure
is challenging. Furthermore, it is critical to design the right
structures for modeling (e.g., sessions and flows) that are well-
behaved statistically and amenable to parametric modeling.
To the best of our knowledge, this is the first system-wide
multi-level modeling of the wireless networks. Currently, we
are working on the combined modeling of topology, sessions
and flows, developing a complete methodology for modeling
wireless networks.

Besides the methodological aspects of our work, our main
contribution consists of a coherent parametric model of the
workload of the entire WLAN. The statistical models we
propose are summarized in Table I. Our parsimonious descrip-
tion of the workload looks appropriate for simulation studies.
Researchers can simulate the load of the network at both the
client association and flow levels by simulating the compound
process of sessions and flows. Sessions, which are well-defined
episodes of client activity, have a well-behaved arrival process,
which, as we show, can be accurately described using a
time-varying Poisson process. In addition, an AP preference
distribution can be used to distribute session load throughout
the wireless infrastructure in a manner that is representative of
real workloads. The session arrival process provides the seeds
for a cluster process, in which the arrivals of sessions imply
the arrivals of correlated sets of flows. Simulations can first
produce an arrival process of sessions, and then sample from

the distributions of the number of flows and their inter-arrivals
to produce the process of flow arrivals. Each flow is then given
a size from the flow size distribution. Our main contributions
are as follows:

• A novel methodology for the parametric modeling of
wireless demand, in which we rely on robust statistical
methods to study large scale phenomena.

• Models for flow arrivals at AP-level and system-wide
(See Table I) in a more natural framework than the earlier
work [4].

• Analysis of the inter-play of the session arrivals, flow ar-
rivals, and traffic load at APs, their temporal phenomena
and statistical properties (e.g., stationarity).

• A short-term forecasting algorithm at the AP-level
that takes advantage of the aforementioned inter-
dependencies.

Section II describes briefly the wireless infrastructure at
UNC and the data acquisition process. Section III discusses
our statistical methodologies. We describe the BiPareto dis-
tribution, and illustrate how one can use quantile plots and
simulation envelopes to evaluate parametric fits. Also, we
discuss a testing procedure for a time-varying Poisson process.
Our modeling results are discussed in the next two sections.
Section IV considers the spatio-temporal characteristics of the
entire system, and how the modeling results summarized in
Table I are derived. Section V applies the modeling insights
developed in the system-wide analysis to the modeling of the
specific APs. In Section VI, we discuss the implications of
our modeling results. Section VII provides an overview of the
related work. Section VIII summarizes our main results and
discusses future work.

II. DATA ACQUISITION

The data come from the large campus wireless network
deployed at UNC. campus and a number of off-campus ad-
ministrative offices. The university has 26,000 students, 3,000
faculty members, and 9,000 staff members. Personal laptops
are required for undergraduates and almost all of them are
equipped with a wireless interface.

The data in this paper were collected using SNMP for
polling every AP on campus every five minutes. We used
a custom data collection system, being careful to avoid the
pitfalls described in [5]. The system was implemented using



a non-blocking SNMP library for polling each AP precisely
every five minutes in an independent manner. This eliminates
any extra delays due to the slow processing of SNMP polls
by some of the slower APs. The UNC trace was collected
between 9:09 AM, September 29th, 2004 and June 2005. The
monitoring system did not suffer any problems during this
period.

Most of our analysis concentrates on an 8-day period in
which we also collected data about the flows in the wireless
network. Our data set consists of a total of 175 GB of packet
header traces collected from the link between the University of
North Carolina at Chapel Hill and the rest of the Internet. The
data collection took place between 12:06 PM on Wednesday
April 13rd, 2005, and 22:18 PM on Wednesday, April 20th,
2005, resulting in a continuous trace of 178.2 hours. Packet
headers were acquired using a high-precision monitoring card
(Endace DAG 4.3 GE) attached to the receiving end of a fiber
split. The card was installed in a high-end FreeBSD server.
Neither the server nor the card’s driver reported any failures
or packet drops during the monitoring.

We do not examine datasets from other locations in this
report, although we have conducted analysis of the data
from Dartmouth University. In general, we find substantial
similarities in the characteristics of these two WLANs, at least
at the level relevant for our parametric modeling. This is in
agreement with our previous work [6], which carefully com-
pared the system-wide characteristics of UNC and Dartmouth
in an exploratory manner.

III. STATISTICAL METHODOLOGY

Several statistical analysis tools are used in Sections IV and
V for the system-wide and AP-specific modeling. We provide
a description of the relevant techniques in the current section.

A. BiPareto Distributions

The BiPareto distribution is proposed in [7] to model
number of TMP connections per HTTP user session and
the average inter-connection time within a session. Then, [8]
shows that a family of BiPareto distributions can be used to
model wireless session durations of users on a major university
campus using the IEEE 802.11 wireless infrastructure.

The distribution is specified by four parameters (α, β, c
and k), whose complementary cumulative distribution function
(CCDF) is given by

(x

k

)−α
(

x/k + c

1 + c

)α−β

, x ≥ k.

k > 0 is the minimum value of a BiPareto random variable,
which is a scale parameter. The CCDF initially decays as a
power law with exponent α > 0. Then, in the vicinity of
a breakpoint kc (with c > 0), the decay exponent gradually
changes to β > 0.

Basically, the BiPareto distribution has two Pareto tails on
both ends of the distribution. On a log-log plot, a CCDF of the
form x−α (a Pareto tail) would appear as a straight line with
slope −α. Thus, the log-log plot of a BiPareto CCDF has two

nearly linear regimes, one with slope −
(

c
1+c

α + 1
1+c

β
)

and
the other one with slope −β. This is the reason that we use
BiPareto distributions to model number of flows per session
and flow size in Section IV. The parameters (α, β, c and k)
can be estimated via maximum likelihood [7].

B. Quantile plots and simulation envelopes

A quantile plot is a graphical method for assessing the
goodness of fit of a certain distribution to the data [9]. It
plots the data quantiles versus the corresponding theoretical
quantiles from the distribution being tested. The distribution
parameters are estimated from the data using methods like
maximum likelihood, method of moment or quantile matching.
When the theoretical distribution is a good fit, the quantile plot
should follow a diagonal straight line closely.

To account for possible sampling variability, a simulation
envelope of 100 overlaid curves can be superimposed. Each
curve is a similar quantile plot, where the “data” are simulated
from the theoretical distribution. This simulation envelope pro-
vides a simple visual accounting for the sampling variability.
When the theoretical distribution fits the data well, the quantile
plot should lie mostly within the envelope. Several quantile
plots are shown in Sections IV and V.

C. Time-varying Poisson Processes

1) Background: Suppose {Λ(t) : t ≥ 0} is a stochastic
point process, which counts number of events (or arrivals) in
[0, t]. Sometimes, {Λ(t)} is referred to as the arrival process
of the events of interest. For example, in the current paper,
{Λ(t)} is the arrival process of sessions to the whole wireless
system or to a particular AP.
{Λ(t)} is a Poisson process if it has the following two

properties:
1) The number of arrivals in disjoint intervals are indepen-

dent;
2) For some finite λ > 0,

P (Λ(t) = j) = e−λt(λt)j/j!, j = 0, 1, . . ..
Thus, for each t, Λ(t) is a Poisson random variable with mean
λt, which is the product of the arrival rate λ and the interval
length t. Note that a Poisson process is a renewal process
where the inter-arrival times are independent exponential[10].
It is well-known that such a process results from the following
behavior: there exist many potential, statistically identical
arrivals; there is a very small yet non-negligible probability
for each of them arriving at any given time; and arrivals
happen independently of each other. Arrival processes driven
by human behaviors are usually well modeled by Poisson
processes.

A closely related process is a time-varying (or inhomoge-
neous) Poisson process, where the arrival rate is a function
of time t, say, λ(t). Such a process is the result of time-
varying probabilities for an event to arrive, and it is completely
characterized by its arrival rate function. A smooth λ(t) is
familiar in both theory and practice in a wide variety of
contexts, and seems reasonable for modeling session arrivals
in Section IV-A.



Another important variation is a cluster Poisson process.
Such a process starts with an underlying Poisson “seed”
process. Each Poisson seed generates a random number of
additional clustered points. Finally, the combined set of points
are the events of the full process. To characterize this process,
one needs to model the cluster size and the inter-arrival times
between points within a cluster, in addition to the Poisson
seed process. This process makes physical sense for many
IP applications. Web pages are an excellent example, since
each page consists of many embedded objects (such as graphs,
banners and internal links), which need additional connections
for downloading. Such a process has been used to model wired
traffic in [7] and [11], and seems to be a nice candidate for
modeling flow arrivals generated by sessions in Section IV-B.

2) A Statistical Test for Time-varying Poisson Processes: In
this section, we describe a test [12], [13] for the null hypothesis
that an arrival process is a time-varying Poisson process, with
a slowly varying arrival rate.

To begin with, we break up the interval of a day into
relatively short blocks of time. For convenience, blocks of
equal length, L, are used, resulting in a total of I blocks;
though this equality assumption can be relaxed. For the later
analysis in Section IV-A, L is chosen to be 0.1 hour.

Let Tij denote the jth ordered arrival time in the ith block,
i = 1, . . . , I . Thus Ti1 ≤ . . . ≤ TiJ(i), where J(i) denotes the
total number of arrivals in the ith block. Define Ti0 = 0 and

Rij = (J(i)+1−j) ln

(

L − Ti,j−1

L − Tij

)

, j = 1, ..., J(i). (1)

Under the null hypothesis that the arrival rate is constant within
each time interval, the {Rij} will be independent standard
exponential variables as we now discuss.

Let Uij denote the jth (unordered) arrival time in the ith
block. Then the assumed constant Poisson arrival rate within
this block implies that, conditioning on J(i), the unordered ar-
rival times are independent and uniformly distributed between
0 and L. Denote Vij = L

L−Uij
, and it follows that Vij are

independent standard exponential. Note that Tij = Ui(j), thus

Vi(j) = ln
(

L

L − Ui(j)

)

= ln
(

L

L − Tij

)

.

As one can see, Rij = (J(i)+1− j)
(

Vi(j) − Vi(j−1)

)

. Then,
the exponentiality of Rij follows from the following well-
known lemma.

Lemma: Suppose X1, . . . , Xn are independent standard
exponential, then Yi = (n−i+1)[X(i)−X(i−1)], i = 2, . . . , n,
are independent standard exponential.

Any customary test for the exponential distribution can then
be applied to Rij for testing the null hypothesis. For example,
the familiar Kolmogorov-Smirnov test or Anderson-Darling
test [14] could be used. These nonparametric tests are based
on deviations between the empirical cumulative distribution
function (CDF) of the data and the hypothesized theoretical
CDF. However, as noted in [15], statistical significance tests
are not very useful when facing large data sets, because they
always give insignificant results no matter what. Thus, we

prefer to test the exponentiality using a graphical tool, such
as an exponential quantile plot with a simulation envelope as
described in Section III-B.

IV. SYSTEM-WIDE MODELING

The workload of a wireless network is created by clients that
access the infrastructure to communicate with other Internet
hosts. At the most basic level, APs are in charge of forwarding
IP packets, providing a bridging service between the wireless
medium and the wired network. At a higher level, APs are
also in charge of client dynamics, allowing clients to associate
and disassociate from the wireless network, and implementing
transparent roaming, which enables a client to move from
one AP to another while maintaining connectivity. From the
modeling perspective, this creates two levels at which the
workload of the wireless infrastructure can be studied: the
packet forwarding level and the client association level. These
two levels are not independent of each other. Wireless clients
can only use the packet forwarding mechanism when they are
associated to an AP, and problems with the association level
can easily result in the loss of the client’s connectivity. In this
paper, we consider the problem of modeling these two levels
jointly, in a manner that can support more comprehensive
and flexible simulations and testbed experiments. This is a
formidable modeling challenge, since we focus on a large
wireless network with hundreds of APs and thousands of
clients. It is easy to study this problem from many different
points of view, as the growing literature on wireless network
measurement highlights [16], [17], [18], [19], [5], [4]. Our
goal is, however, to create a first solution to this modeling
problem, reducing it to a basic set of characteristics that are
amenable to parametric modeling. One of our contributions is
methodological, in the sense that we propose a reduction of
the modeling to some essential components that could easily
be enriched in many different ways.

Our modeling is based on two fundamental concepts, a
wireless session and a network flow. A wireless session can
be loosely defined as a separate episode in the interaction of a
client and the wireless infrastructure. The most basic example
is a wireless client that arrives at the network, associates to
one AP for some period of time, and then leaves the network.
A single session can also include several associations, as long
as they occur close in time, and visits to several different APs.
The crucial observation is that sessions provide a natural top-
level for the modeling of wireless network workloads. As we
will demonstrate, sessions are statistically well-behaved, which
makes it possible to construct a parsimonious description of
the system. The concept of session is robust to network-
dependencies. As Paxson and Floyd argued, in the context
of their traffic modeling work[20], the most flexible and rep-
resentative type of modeling should not incorporate network
characteristics that are too specific to the network conditions
in the data from which the model is derived. Otherwise,
simulations and experiments that use this model can never
study changes in those conditions or new network mechanisms
that shape those conditions. For example, modeling the precise



sequence of associations and disassociations inside sessions
is too network-specific, since small changes (e.g., in the
network topology, environment, range of the equipment), can
dramatically change association/disassociation dynamics. If a
researcher wants to study a new and more robust algorithm for
AP selection, this new algorithm will also change association
dynamics, so the simulation should not impose an arbitrary
sequence of associations and disassociations. In this regard,
a session, as the unit of continuous use of the infrastructure
by a wireless client, can make simulations more representative.
The simulated session may end up having completely different
association dynamics, but the essence of the workload it
represents, a client utilizing the network for some period of
time, is preserved.

Besides associations dynamics, a session also represents a
unit of load at the packet forwarding level. A session includes
all the packets sent and received by the APs due to the
client’s communication with one or more Internet hosts. As
demonstrated in [4], and again in agreement with the principles
of network-independent modeling from [20], the right way
of modeling the packet forwarding workload is to examine
network flows. Network flows, such as TCP connections and
UDP conversations, are well-separated collections of packets
between a pair of Internet hosts, i.e., packets that share the
same transport-layer “5-tuple”. In our model, a session groups
the set of flows started by a client. Simulating the system
therefore consists of simulating sessions and the flows that
are started inside them, leaving the actual packet-level (and
association) simulation to underlying mechanisms. These other
mechanisms are independent of our model.

The rest of this section presents our modeling as applied
to the characterization of the entire wireless network. We
first discuss the process of session arrivals, in Section IV-A,
which is the starting point of the entire approach. We then
consider joint modeling of sessions and flows in Section IV-
B, where sessions are seen as seeds for the arrivals of groups
of flows. Finally, we consider the sizes of these flows and their
impact on the infrastructure in Section IV-C. This system-wide
characterization, by the virtue of the substantial aggregation,
makes the statistical modeling more tractable. In Section V,
we also examine the modeling of individual APs, and how
findings from the system-wide model apply to the AP-specific
modeling.

A. Session Arrivals

The starting point of our model is the process of session
arrivals. Figure 1 shows the point process of session arrivals
of an 8-day trace. Each dot in the scatterplot corresponds to
the arrival of a session, and each arrival is placed according to
its temporal coordinates (arrival time in x-axis) and its spatial
coordinates (arrival AP in the y-axis). Session arrivals vary
widely, but some patterns are apparent. First, there is a clear
periodicity which is caused by the substantial decrease of
activity in the network during the nights. Another temporal
characteristic of session arrivals is the decrease of activity
during the weekends (days 3 and 4 in the plot). Figure 2

Fig. 1. Arrivals of sessions from wireless clients over time and across the
campus APs.

Fig. 2. Time-series of session arrivals in the entire campus WLAN (1-hour
bins).

Fig. 3. Probability that a session is started in a specific AP, which we call
the AP preference distribution.



provides an even clearer picture of these diurnal/nocturnal
and weekday/weekend periodicities. The plot shows the time-
series of session arrivals for the entire system using 1-hour
bins. The time-series plot shows sharp increase in the number
of session arrivals in the morning, reaching a peak between
1,000 and 1,110 sessions per hour during weekdays and 350
session arrivals per hour during weekends. This pattern holds
across our entire dataset, which includes ten months of session
arrivals, although specific events, such as the Christmas break,
decreased the activity considerably.

In terms of the spatial characteristic of the session arrivals
process, Figure 1 provides a first overview of the way sessions
arrive to specific APs in the infrastructure. Our mapping of the
APs to location in the y-axis is random, but it clearly shows the
wide spatial variability of the workload. The temporal patterns
appear throughout the infrastructure, although some APs seem
more likely to be used at night than others. Figure 3 shows the
probability that a session is started at a given AP. Note that
the numbering is not preserved from Figure 1, since APs in
this plot are sorted from left to right by decreasing popularity
as a session starting point. The plot shows that a few top
APs receive a substantial fraction of all sessions, e.g., almost
20% for the most common starting AP. It also shows a non-
negligible tail, so most APs are starting points of wireless
sessions.

One remarkable aspect of Figures 2 and 3 is the smoothness
of the curves, which suggests phenomena that are amenable
to modeling. Our analysis reveals that session arrivals follow
a time-varying Poisson process, and that AP preference is
accurately described by a lognormal distribution. We model
the session arrival process using the time-varying Poisson
model described in Section III-C. In order for this model to
be valid, the Rijs as defined in (1) during short time blocks
must be exponentially distributed with a parameter of 1, and
uncorrelated. The top part of Figure 4 shows an exponential
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Fig. 4. The Rij s are independent and exponentially distributed. Only one
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Fig. 5. Lognormal model of AP preference distribution.

quantile plot of the Rijs during one randomly chosen hour.
We set L = 0.1 hour in calculating the Rijs. The red quantile
plot follows closely the green diagonal line, and remains well
within the blue simulation envelope. This suggests that the
exponential fit is clearly appropriate. The maximum likelihood
estimate of the exponential parameter is 0.9372, which is
very close to 1, and agrees with the claim that the Rijs
are standard exponential. The bottom plot of the figure plots
the autocorrelations of the Rijs up to 20 lags. The sample
autocorrelations are always within the confidence intervals,
so the Rijs do not exhibit any significant correlations. We
conduct the same analysis for all the 192 hours of the 8-day
dataset considered in this section, and the results are similar.

Our analysis in Figure 5 shows that a lognormal distribution
with parameters µ = 4.0855 and σ = 1.4408 is a good model
for the distribution of AP preference. As we can see, the
original data, shown in red, are within the natural variability
of the lognormal model, since it remains within the blue
simulation envelope. The only departure from lognormality is
for the smallest values, i.e., the most unlikely starting APs,
where the number of samples is very small. Overall, the
lognormal distribution is an excellent description of the data.
We have also considered other models but they are clearly
outperformed by the lognormal fit. For example, Zipf’s law,
a classic way of describing popularity, is very far from the
AP preference distribution in our data. Our AP preference
model characterizes the spatial allocation of session arrivals
in the sense that it captures the way sessions are distributed
throughout the infrastructure. It does not capture AP coordi-
nates in space, which are specific to the infrastructure. This is
a difficult problem, which has to deal with a 3D environment
(latitude, longitude and height), and perhaps with the layout of
the environment (which has high impact on radio coverage).
The ideas from the area of statistical analysis of spatial point
patterns can be helpful here, but we do not present our efforts
in this direction in this report.
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Fig. 7. Stationarity of the distribution of the number of flows per session
(body).

B. Cluster Poisson Model of Flow Arrivals

Below the association level, each session consists of a set
of flows that represent the communication between a wireless
client and one or more Internet hosts. In this view, the arrival of
a session represents the correlated arrival of a group of flows.
It is therefore natural to describe flow arrivals as a cluster
process rather than a point process in which flows arrivals are
described in isolation. Our model considers that the arrival
of a cluster of flows is triggered by the arrival of a session,
which is seen as the seed of the cluster process. Modeling
this process requires to describe the arrival process of sessions,
which is presented above in Section IV-A, the number of flows
associated to each session, i.e., to each cluster, and the inter-
arrivals of flows within sessions. Given that the arrival process
of sessions is a (time-varying) Poisson process, we say that the
process of flow arrivals is a cluster Poisson process. There are
well developed methods for simulating time-varying Poisson
processes, for example, the thinning method described in [21],
[22]. Along with models for session sizes, we can generate
synthetic traffic traces.

Our analysis of the distribution of the number of flows per
session reveals that the most appropriate parametric model is

Fig. 8. Stationarity of the distribution of the number of flows per session
(tail).

the BiPareto distribution described in Section III-A. Figure 6
shows the fit of this distribution to our empirical data using
a log-log plot of the CCDF, i.e., log10(Pr{X > x}) vs.
log10 x. The red circles are an equidistant set of samples
from a BiPareto distribution with parameters α = 0.06, β =
1.72, c = 284.79 and k = 1. These circles are right on
top of the empirical distribution of the number of flows (in
blue) for probabilities between 0 and 0.995, i.e., 99.5% of the
distribution. The fit is worse for the remaining 0.5 %, but this
is already in a region of the tail that is very variable due to
sampling artifact. In any event it is clear that the BiPareto
model fits the empirical distribution very well.

We have also studied the stationarity of the distribution of
the number of flows per session. Figures 7 and 8 show one
empirical distribution for each of the 8 days in the dataset,
demonstrating striking consistency. This is a strong indication
of the feasibility of modeling the system using parametric
models. Figure 7 shows the bodies of the distributions of the
number of flows per session using a log-log plot of the CDF,
i.e., log10(Pr{X ≤ x}) vs. log10 x. The eight distributions are
very similar, with the vast majority of the sessions featuring
between 1 and 1000 flows. The distributions for the weekends
are slightly heavier. Figure 8 shows the tails of the distributions
using CCDFs, again showing similar shapes. The number
of flows per session goes as far as 10,000 for 0.1% of the
sessions.

The second component of our cluster model is the distribu-
tion of the flow inter-arrivals within sessions. We show that a
lognormal model provides good fit, although the distribution
is rather complex. Figure 9 shows the lognormal quantile plot
for the empirical data, and the parameters are estimated to
be µ = −1.3674 and σ = 2.785 using maximum likelihood.
The red quantile plot follows the green diagonal line closely
for all of the quantiles. The simulation envelope is very
narrow in this case, and shows that some deviations from
the lognormal model in the upper part are significant. While
more complex models may provide a better approximation,
i.e., an ON/OFF model, our lognormal fit certainly provides a
reasonable description of the data using only two parameters.
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Fig. 10. Stationarity of the distribution of flow inter-arrivals within sessions
(body).

Fig. 11. Stationarity of the distribution of flow inter-arrivals within sessions
(tail).
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Fig. 12. Average inter-arrival across sessions.
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Fig. 13. BiPareto Model of Flow Sizes.

As in the case of the distribution of the number of flows
per session, we have also studied the stationarity of the
distributions of the flow inter-arrivals within sessions. Figures
10 and 11 show that the flow inter-arrivals are very consistent
when we compare the 8 days in the dataset.

To completely understand flow arrivals, one needs to in-
vestigate the correlation structure among the inter-arrivals as
well. The earlier flow modeling paper [4] shows that flow
inter-arrivals across all sessions are distributed according to
a Weibull model, but does not investigate the correlation
problem. We plan to investigate the correlation issue in future.

C. Flow Sizes and System Load

To capture the load of the system at the packet forwarding
level in a manner suitable for closed-loop simulation and
testbed experiments, it requires to describe not only the way
flow arrives, but also their sizes in terms of the number of bytes
that they carry. Flow arrivals can be modeled using the cluster
Poisson model as established in Section IV-B. Our statistical
analysis reveals that flow sizes can be accurately described
using a BiPareto distribution with parameters α = 0.00, β =
0.91, c = 5.20 and k = 179. Figure 13 shows the BiPareto
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Fig. 15. Sizes of sessions and sizes of flows.

fit (red circles) to the empirical data (blue curve). The fit is
excellent for most of the distribution, and the BiPareto cleanly
captures the transition in the slope between the body and the
heavy tail of the empirical distribution. The approximation
appears heavier than the empirical data at the end of the tail,
which could motivate further refinements of the fit. A more
complex model, such as the double-Pareto lognormal in [23],
could certainly provide a closer fit, but the proposed BiPareto
provides a reasonable parsimonious description.

Figure 14 examines the stationarity of the distribution of
flow sizes. The distributions for 8 different days have very
consistent tails, so our model seems widely applicable. Figure
15 compares the distributions of session and flow sizes. The
size of a session is the sum of the sizes of its flows. The
distribution of session sizes is far heavier than the distribution
of flow sizes. This further reinforces the need for modeling the
clustering of flows into sessions, since the combined impact of
flows with correlated arrivals can stress the wireless network
far more than uncorrelated flows.

V. AP-SPECIFIC MODELING

Our joint modeling of the wireless LAN at session and
flow levels can also be applied to individual APs. Intuitively,
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Fig. 16. The Rij s in AP 222 are independent and exponentially distributed.
One randomly chosen hour is shown.

looking at single APs is more difficult, since the reduction
in the level of aggregation makes the data less well-behaved.
However, we will demonstrate that the modeling insights from
the system-wide modeling in Section IV are also useful here.
We focus on AP 222, one of the hotspots of UNC’s wireless
network. The parameters derived from our modeling of AP
222 are shown in Table II.

Section IV-A shows that the process of session arrivals
to the entire system can be described using a time-varying
Poisson process. This is also the case for the process of
session arrivals to AP 222. Similar to Section IV-A, we random
select one hour during which there are more than 10 session
arrivals to AP 222, and divide it into ten 6-minute blocks and
calculate the Rijs according to (1). The top part of Figure 16
shows an exponential quantile plot of the Rijs, which suggests
that the exponential fit is clearly appropriate. The maximum
likelihood estimate of the exponential parameter is 0.9027,
which is very close to 1. The bottom plot of the figure plots
the autocorrelations of the Rijs up to 20 lags, from which one
can tell that there is no much correlation among the Rijs. We
obtain similar results for all the hours during the 8-day trace,
which have at least 10 arrivals. The threshold of 10 arrivals
is chosen rather subjectively to ensure a large enough sample
for the quantile plots.

The finding of the Poisson session arrival process at AP 222
empirically supports our notion of the AP preference function
shown in Figure 3. It is well known that if a Poisson process is
randomly partitioned into several point processes according to
a set of fixed probabilities, then the resulting point processes
are still Poisson processes, and the rates are proportional to
the respective partition probabilities. In our study, the AP
preference probabilities work as the partition probabilities. As
a result, the session arrival processes to separate APs should
be approximately Poisson. This observation also suggests one
algorithm to allocate session arrivals to the system to specific
APs. After one simulates a certain number of sessions for the
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whole network, one can allocate them to different APs using
their corresponding AP preference probabilities.

When we consider a single AP, the number of flows per
session can also be described with great accuracy using
a BiPareto distribution, as demonstrated in Figure 17. A
BiPareto simulation envelope is superimposed in Figure 18,
which shows that the fit is clearly excellent, even for the values
with the smallest probability located in the far part of the tail.
We next studied the flow inter-arrivals within the sessions that
started in AP 222, and the lognormal model proposed for the
entire system remains applicable here. Figure 19 shows the
corresponding lognormal quantile plot. The two parameters are
estimated to be -1.6355 and 2.6286 using maximum likelihood.
Although the fit is worse than the one for the system-wide
modeling, the quantile plot again follows the diagonal line
closely, and the fit could still be useful.

Figures 20 and 21 consider BiPareto models for the sizes
of flows and sessions that started from AP 222. In both cases,
the BiPareto fits are excellent. Note that the session size
distribution has a much heavier body than the distribution of
flow sizes, but the maximum values are of similar magnitudes
in both tails. Using different traces, [8] show that session
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Fig. 19. Flow inter-arrivals in AP 222 are well-modeled by a lognormal
distribution.
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durations can be modelled using BiPareto distributions as well.
Our current model for session sizes complements the duration
model in [8] nicely.

VI. DISCUSSION

A. Applying models for the AP-level demand on forecasting

Understanding the hourly traffic load characteristics at the
AP-level is important for load-balancing and resource reser-
vation. If the AP can estimate its traffic for the next hour,
it can employ load balancing algorithms among neighboring
APs, advise clients for its traffic load and enhance the AP-
selection process, and notify in case of abnormal patterns
of demand. Forecasting traffic load in wireless network has
received very little attention, and in [24], we analyzed some
simple forecasting algorithms based on recent history, diurnal
pattern, and week-of-day periodicity. The hourly traffic load
at an AP is quite bursty and simple forecasting algorithms
performed poorly. Motivated by the strong correlation in the
log-log scale of the number of active flows and traffic load,
we designed some new traffic demand algorithms based on the
number of active flows.

For each TCP flow (j), we maintain the following infor-
mation, its starting time (s(j)), that indicates the specific
second the flow was initiated, its duration (d(j)), and its
total amount of bytes exchanged (f(j)) between the wireless
client and the AP during that specific time. Based on this
information, we create for each AP (e.g., AP i), two time
series Ti(t) and Ai(t) in an hourly basis. Ti(t) corresponds to
the aggregate traffic of all active flows during that hour t in
AP i and Ai(t) to the total number of such active flows. For
computing the Ti(t), we assumed constant-bit-rate flow during
the period the flow was active and aggregated over all flows
(i.e., Ti(t) =

∑

∀j,s(j)∈[t,t+1) f(j) ∗ (t + 1 − s(j))/d(j)).
We employed the following simple hourly traffic model for

each AP (e.g., AP i). The predicted traffic at AP i at the t-th
hour will be Fi(t). log Fi(t) = a + b ∗ log Ai(t− 1), where a
and b are the resulting weights of multiple regression applied
in the hourly traffic of AP i, Ti(t) and number of active flows
Ai(t).

We identify the hotspot APs (most over-utilized APs based
on their maximum hourly, daily, and total traffic as defined in
[24]) and used the aforementioned forecasting model to predict
the next-hour traffic. Specifically, the forecasting algorithm for
each hotspot AP (e.g., i) looks up the number of active flows
at the previous hour (Ai(t − 1)) and forecasts the traffic for
the current hour Fi(t).

To evaluate the performance of the prediction algorithms,
we compute the prediction error ratio which is the ratio of the
absolute difference of the predicted from the actual traffic over
the actual traffic. We do not consider the entries in which the
actual traffic is equal to zero. A perfect prediction algorithm
has prediction error ratio equal to 0. For each AP, we compute
its mean and median ratio, ēi and êi, respectively. Using this
very simple forecasting algorithm, we were able to reduce
the average mean ratio ē for all hotspot APs significantly.
Specifically, the mean ē using the new forecasting algorithm

is 9 (with a median ê equal to 0.89) as opposed to 185 (with
a median ê equal to 0.67) in [24].

We would like to note that the set of hotspots in each trace
is different. The current analysis considers only a very limited
(3-day) history (Thursday, Friday, and Monday) as opposed to
a five-week period in the earlier work.

The aforementioned forecasting model ignores the temporal
characteristics of the flows. A next step is to use a larger
tracing period, extend the model with additional flow-related
information, such as its diurnal patterns, port numbers, and
client profile. Furthermore, it would be interesting to explore
traffic forecasting not only at the AP-level but also at the client
level, and at different time-scales.

B. Mobility

Although in the campus-wide wireless network most of the
inter-AP transitions are triggered by transient changes in the
environment (e.g., obstacles, density of people around) and
not necessarily by user movement, there is still user mobility.
For example, we found sequences of continuous (i.e., without
disconnection from the wireless infrastructure) AP transitions
that belong to buildings in a relative large geographic range
that can only be explained by actual user mobility [8]. This
mobility analysis was carried out for both sessions and clients
and identified the percentage of mobile sessions for each
client. Furthermore, in [25], we modeled the transitions of
a client as a Markov-chain based on its history, and in [8], the
visit duration at an AP as a BiPareto distribution.

The session and flow structures allow us to separate nicely
the traffic demand from the network-topology dependencies
and radio-propagation effects. Specifically, they give us the
flexibility to superimpose the session and flow models on the
infrastructure models and simulate wireless networks. Such
two-dimension models are very important because they can
provide a more complete picture of the network, and at the
same time, all the important components to scale-up or down
the network, and focus on the required level for a given
performance analysis or simulation study.

We are currently working on modeling the infrastructure as
a graph in which an AP corresponds to a node in the graph, and
an edge between two nodes is created depending on the inter-
AP transitions and characteristics of the APs (e.g., location,
range, channel). Part of this effort is to identify different
characteristics of this graph (e.g., degree of connectivity, in/out
bound edges, connected components).

We believe that given such an infrastructure model, the
distributions of sessions to clients, an AP-preference, and a
distribution of visits to APs, we have all the important building
blocks to simulate the mobility in a wireless infrastructure:
We can use the AP-preference (proposed in this paper) to
distribute the sessions across the infrastructure model, the
visit and session durations ([8]), and the Markov-chain model
for the transitions of a client ([25]) in combination with the
infrastructure model.



Component Model Parameters
Session Arrivals Time-varying Poisson with rate λ(t) Hourly rate: 1 (min), 928 (max), 11 (median)
Flow-inter-arrival/Session Lognormal µ = −1.6355, σ = 2.6286
# of Flows/Session BiPareto α = 0.07, β = 1.75,

c = 295.38, k = 1
Flow Size BiPareto α = 0.00, β = 1.02,

c = 15.56, k = 111

TABLE II
SUMMARY OF OUR AP-SPECIFIC MODEL (AP 222).

VII. RELATED WORK

Balazinska and Castro [17] used SNMP to characterize the
WLAN in three IBM buildings (177 APs). The study examined
the maximum number of simultaneous users per AP (mostly
between 5 and 15), total load and throughput distributions.
Two interesting observations made in this paper are that
offered load and number of users are weakly correlated, and
that user transfer rates are dependent on the location of the
AP. Balachandran et al. [18] performed measurements in a
three-day conference setting, also focusing on the offered
network load and global AP utilization. They characterized
wireless users and their workload and addressed the network
capacity planning problem. The overall bursty behavior and
peaks and troughs are similar at all APs, though the absolute
peak throughput at each AP varies. They observed that offered
load is more sensitive to individual client traffic characteristics
rather than just the total number of clients.

Kotz et al. [19], [5] studied the WLAN at Dartmouth
College using syslog, SNMP, and tcpdump traces. Their first
study [19] reported the distribution of average daily traffic for
451 APs, which ranged from 39 MB to more than 2 GB, and
observed that maximum daily traffic was far larger than the
average daily traffic. In their follow-up study [5], they reported
the average number of active cards per active AP per day (2-
3 in 2001, and 6-7 in 2003/2004), and average daily traffic
per AP by category (2-3 times higher in 2003/2004; twice
or thrice more inbound than outbound traffic). A subset of
the same data (syslog messages and tcpdump traces from 31
APs in 5 buildings) was revisited by Meng et al. [4] for flow
modeling purposes. The authors proposed a two-tier (Weibull
regression) model for the arrival of flows at APs and a Weibull
model for flow residing times, and they also observed high
spatial similarity within the same building. The authors also
study the modeling of flow size, and suggest that a log-normal
model provides the best approximation. This is consistent with
the large body of work on this topic for wired networks and
file systems (e.g., [26], [23], [27]).

The goal of our work is to bridge the results from the
flow modeling in [4] and earlier exploratory work in a more
comprehensive framework that takes into account the different
levels at which the WLAN operates. We also tackle the lack
of analysis and modeling of flow arrival dependencies in [4],
using the compound process ideas from [7].

In an earlier research effort, using syslog traces, we distin-
guished wireless clients based on their inter-building mobility,
their visits to APs, their continuous walks in the wireless

infrastructure, and their wireless information access during
these periods. The user association patterns can be modeled
based on the sequence of APs and their visit duration at each
AP [8]. Such sequence of associations to APs can be modelled
with a Markov chain. For each client, based on this model, we
can predict with high probability (86%) the AP with which it
will get associated [25].

Also, we showed that time-varying Poisson processes can
model well the arrival processes of clients at APs. These
results were validated by modeling the visit arrivals at different
time intervals and APs. Furthermore, there is a clustering of
APs based on their visit arrival and functionality of the area
in which these APs are located [13].

Using snmp-based traces, we characterized the traffic load
of APs and found that both the total traffic load and number
of associations at each AP follow a lognormal distribution.
The logarithms of the total traffic load and total number of
associations at each AP are strongly correlated. There is also
a dichotomy of APs: there are APs with the majority of their
clients to be uploaders and APs in which the majority of clients
are downloaders [6].

Finally, in [25], we analyzed wireless web-traces to inves-
tigate the benefits of different caching paradigms in wireless
networks, namely, the user-local cache, cache attached to APs,
campus-wide caches, and peer-to-peer caching.

VIII. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel methodology for modeling
the wireless access and traffic demand by providing a multi-
level perspective: it models the arrival and size of sessions
and flows system-wide and at AP-level. It investigates their
statistical properties, dependencies and inter-relations. It shows
the stationarity of the number of flows and flow inter-arrival
in a session.

In the wireless community, most of the modeling effort
has been on the AP-level. The shift to sessions and flows
has gained two important advantages: Sessions as opposed to
visits at an AP can mask the network-related dependencies
that are not important in a range of applications and simulation
environments (e.g., brief transitions from one AP to another
due to a transient behavior of the signal) and exhibit nice
statistical properties (such as stationarity) that makes them
amenable to modeling.

A further refinement of our model will consider how the
size of the population of wireless users relates to the process
of session arrivals. Clients are difficult to understand, due to
the wide range of behavior and pervasive non-stationarities.



Some clients use the infrastructure only one or a few times,
and then disappear from the system, while others represent a
more constant load. Understanding this part of the workload
will make simulations more intuitive, in the sense that the input
could be the number of clients and perhaps some parametric
description of their long-term access patterns. It is sometimes
desirable to rely on some concept of the number of users in the
system rather than the more abstract rate of session arrivals.

We will further explore the spatial distribution of the flows
and sessions in the network in various scales. Such spatial
models could be very beneficial in simulating different sizes
of wireless networks (for scaling up or down a network) and
studying their spatial evolution.

We are in the process of applying the proposed methodology
on wireless traces acquired from very diverse infrastruc-
tures (e.g., institute-wide, technological and research park,
metropolitan area and municipalities networks) to validate and
enrich our models.
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