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Abstract— Models of traffic demand are fundamental
inputs to the design and engineering of data networks.
In this paper we use real measurement data from a large
wireless infrastructure to address this requirement in the
context of large wireless networks. Our modeling effort
focuses on capturing the demand variation in both the
spatial and temporal domain in a way that scales well
with the size of the wireless network. Traffic workload is
modeled in terms of sessions and flows and buildings are
viewed as the elementary entities of demand aggregation
in the spatial dimension. We combine heuristics with
clustering techniques to group buildings into clusters with
similar traffic characteristics. Our modeling framework
features elements that are reusable in the temporal and
spatial dimensions. The parametric distributions for the
session- and flow-related traffic variables successfully cap-
ture aggregate traffic demand in two different monitoring
periods. Moreover, the same distributions can be used to
model traffic demand at finer spatial scales, such as the
single building or a group of buildings. Synthetic traffic is
generated to compare our models with trace data and assess
the trade-off between model scalability and reusability, on
the one hand, and accuracy in capturing local-scale traffic
dynamics on the other. Our main contribution is a novel
methodology for traffic demand modeling in large wireless
networks that features high flexibility in the exploitation of
the spatial and temporal resolution available in data traces.

I. INTRODUCTION

The modeling of traffic workload in large-scale wire-
less networks is the main focus of this paper. Although
this task has been addressed in numerous research
studies in the context of wired networks [1]–[4], there
have been significantly fewer contributions for wireless
networks.

One reason for this is that only recently have traces
from large-scale wireless infrastructures with statistically
significant network usage been made available. Further-
more, wireless network measurements are more complex
than those in wired networks. Depending on how detailed
view of the demand is required at the spatial dimension,
e.g., at an access point (AP), APs co-located in a building
or set of buildings, and the architecture of the network
(single link-level subnet or multiple subnets), one needs

to capture traffic at multiple physical locations. Since
IEEE 802.11 MAC-layer frame sniffers are not com-
monly available, researchers often have to build custom
equipment or resort to expensive commercial platforms
for capturing the over-the-air traffic with the required
level of detail. Finally, the transient characteristics of the
radio propagation and user mobility make the analysis
of the traffic-demand dynamics in both the spatial and
temporal dimensions challenging. It comes as no surprise
that the majority of the measurement studies, [5]–[7],
make high-level observations about traffic dynamics in
both the temporal and spatial domains without getting
into the detail that modeling requires.

Arguments related to scalability and reusability, which
are particularly desirable properties in modeling, com-
plicate the problem further. Previous modeling studies
have either attempted to model traffic demand over
hourly intervals at the level of individual APs [8] or
studied the problem at system-level deriving models for
the aggregate network-wide traffic demand [9]. Clearly,
both approaches have their strong and weak points. The
second approach results in datasets that are amenable
to statistical analysis and provides a concise summary
of the traffic demand at system-level. However, it fails
to capture the variation of this demand at finer spatial
detail that may be required in the evaluation of system
functions with focus on the AP-level (e.g., load balanc-
ing). While working at the AP-level achieves that, it
fails in other respects: the approach does not scale for
large wireless infrastructures and data do not always lend
to statistical analysis. Moreover, the modeling results
are highly sensitive to the specific AP layout of a
particular network and short-term variations of the radio
propagation conditions.

This study has been motivated by the aforementioned
challenges. We take advantage of the large wireless
infrastructure of University of North Carolina (UNC) to
obtain large amounts of measurement data. Our datasets
provide considerable insights to the traffic load dynamics
across the network and allow us to derive models of



adequate detail for the traffic demand variation in space
and time.

Our methodological choices attempt to strike a good
trade-off between the two extreme approaches to traffic
modeling that were outlined earlier, namely AP-level
vs. network-level modeling. As in [9], we model traffic
workload in terms of sessions and flows. Only now we
look in more detail into the spatial dimension, using
buildings as basic entities of traffic demand modeling.
Major features of user activity, such as the traffic patterns
they generate and their mobility within the wireless
network, are studied at the building level. We then
apply heuristics and more formal clustering techniques to
group together buildings with similar traffic characteris-
tics and achieve the scalability objective in our modeling.

Considerable effort is devoted to the validation of
our modeling methodology. Synthesizing traffic after our
models and comparing with the trace data, we assess
the reusability of system-wide models to smaller spatial
scales, the accuracy-scalability trade off and the possible
contributions of clustering techniques to its resolution.
Moreover, the availability of datasets from two differ-
ent monitoring periods, spaced one year apart, lets us
identify modeling elements that are time-persistent.

Our contributions are summarized in the following:
• A hierarchical framework for modeling traffic work-

load both system-wide and at finer spatial scales
(i.e., at building level and over groups of buildings).
We find that the same set of parametric distributions
describe our session- and flow-related traffic vari-
ables at various spatial scales and over two different
monitoring periods.

• A novel methodology for scalable modeling of the
spatial variation of traffic demand in large wireless
networks drawing on heuristics and statistical clus-
tering techniques.

• Validation of our modeling approach assessing the
model accuracy and scalability. Our results suggest
that the two approaches, heuristics and clustering,
are complementary in that they result in clusters
with high purity in different traffic variables.

• A set of analysis tools that have been made pub-
licly available to the research community to enable
further comparative studies [10].

The next section briefly describes the UNC wireless
network infrastructure and the collected traces. Section
III outlines the principal building blocks of our modeling
approach, while Section IV focuses on the spatial vari-
ation of the traffic variables we model at various level
of spatial aggregation. We apply clustering techniques
to our problem in Section V and assess the modeling
alternatives coming out of it in Section VI. Related work
is reviewed in Section VII, while Section VIII concludes

this report summarizing our main findings.

II. DATA COLLECTION AND PROCESSING

Two types of data are used in this study, packet
header traces and Simple Network Management Protocol
(SNMP) data, drawn from the wireless network of the
UNC campus at Chapel Hill. We analyze datasets com-
ing from two separate eight-day long monitoring periods;
the first dataset corresponds to the period April 13-20,
2005, whereas the second one covers the interval Apr
28-May 5, 2006.

The UNC campus wireless network comprised 488
APs by April 2005 and 741 APs one year later. Almost
all of them belong to the Cisco Aironet series [11] and
they are standalone APs according to the terminology
in [12]1. The network APs are spread over more than
220 in-campus buildings, including student residence
halls, academic buildings, sport halls, and libraries, and a
few off-campus administrative offices, providing wireless
access to 26,000 students, 3,000 faculty and 9,000 staff
members.

SNMP data are collected from all the network APs
with a period of five minutes. We implemented a custom
SNMP-polling system relying on a non-blocking SNMP
library. APs are polled independently, so that delays
incurring during the processing of SNMP polls by the
slower APs do not affect the other APs. The collection
of SNMP data is a 24/7 process, which has been running
almost without interruption since September 2004.

Packet header traces are collected with a high-
precision monitoring card (Endace 4.3GE). The card was
installed in a high-end FreeBSD server and captured
all packets traversing the link between UNC and the
Internet in both directions. The monitoring period was
178.2 hours in April 2005 and 192 hours in April
2006, yielding 175GB and 365GB of packet headers
respectively. The sharp increase in the collected amount
of packet headers is primarily due to the significant
growth of the network infrastructure between the tracing
periods. Our measurement data are summarized in Table
I.

A dedicated set of IP addresses is reserved in the
UNC network for WLAN clients. They are dynamically
assigned via DHCP an IP address and they maintain it
as they roam within the network, i.e., the campus back-
bone network behaves like a single link-layer domain.
Filtering with the respective address prefixes, we can
extract the wireless portion of traffic out of the full UNC
campus traffic, wired and wireless, monitored in the link
connecting the UNC campus with the Internet. More
significantly, we can directly correlate the SNMP data

1In summer 2006, these standalone APs were replaced by “thin”
APs and Wireless Network Controllers of the same brand



drawn from the APs with the packet header traces and
infer sessions and connections, which are central to our
modeling approach as explained in Section III.

III. MODELING METHODOLOGY

A. Wireless sessions and network flows

Starting point for the work presented here are the
results presented in [9] for the aggregate network traffic
demand. We adopt a hierarchical modeling approach
that organizes the client activity into two levels, the
wireless session and the network flow. The wireless
session delineates the interval that the user is connected
to the infrastructure and active in producing traffic. It
can be viewed as an episode in the interaction of a client
and the wireless infrastructure: a wireless client arrives
at the network, associates to one or more APs for some
period of time, and then leaves the infrastructure. In our
approach, sessions account for the traffic non-stationarity
in time and are modeled by a time-varying Poisson
process. On the other hand, network flows, such as TCP
connections and UDP conversations, are well-separated
collections of packets between a pair of Internet hosts,
i.e., packets that share the same transport-layer “5-tuple”.
The well-established advantage of flow-level modeling
is its higher independence from the specific network
topology and measurement conditions when compared
with packet-level modeling [13]. The flow-related ses-
sion attributes we model are the in-session number of
flows, in-session flow interarrivals and flow sizes. In the
floowing two paragraphs, we describe how we derive
these attributes out of out measurement data.

1) Wireless session duration inference: It is possible
to infer the duration of wireless sessions using either the
Syslog or the SNMP measurement data. Each method
has its own inherent advantages and weaknesses, ef-
fectively posing hard constraints to the accuracy of the
modeling approach.

Syslog messages are event-based. It is thus fea-
sible to know exactly when a WLAN client was
(re)associated/disassociated to/from the network. Nev-
ertheless, the problem is that the client is not pro-
ducing traffic (active) throughout his association with
the network. Taking a more detailed look into at the
measurement data, we found that there is a significant
number of cases, where the client remains connected to

the network, although there is no use of the wireless
device (usually laptop). In these cases, the disassociation
of the client only takes place after a given interval of
client inactivity, upon expiration of a protocol timer.
As a result, relying on Syslog messages to infer the
end of a client session provides a positively biased
estimate of the session duration, as shown in Figure 1b.
Similar concerns, although at smaller extent, relate to the
inference of the session start.

On the other hand, SNMP pollings allow to figure
out when a client is actually producing traffic and when
it stays idle. Therefore, the estimates for the session
duration do not suffer from the bias related to Syslog
messages. However, the disadvantage of SNMP data is
their resolution, which is upper bounded by the SNMP
polling period. Whereas the information drawn from
SNMP tables allows to infer precisely the start of the
session, the end of the user activity can be known only
with a precision in the order of the SNMP polling period
(see Figure 1c). Even worse, the SNMP polls fail to
report on clients that associated to and disassociated
from one or more APs inbetween two successive SNMP
polling instants, as shown in Figure 1d.

Despite their lower resolution, SNMP data result in
tighter estimates for the client session duration. There-
fore, they were taken as the basis for inferring the start
and end of client sessions and the derivation of the
modeled flow-related attributes, as it will be discussed in
the next paragraph. It is left as future work to investigate
the additional accuracy we can gain by considering
jointly the Syslog and the SNMP data in inferring the
client session durations.

2) Correlation with packet header data: Irrespective
of the way the wireless session duration is estimated,
we need to derive the number of flows and the flow
interarrival durations within each session and the flow
sizes. This task is simpler. The SNMP tables provide
the IP address assigned to a client during his session.
Remember that this address remains the same irrespec-
tive of where the client moves within the UNC campus
WLAN, i.e., the backbone network behaves as a single
link-layer domain. When sessions exceed the DHCP
lease period (1 hour), the same address is reassigned
to the WLAN client upon the DHCP lease renewal. Two
or more IP addresses for a client during a given session

TABLE I
ANALYZED MEASUREMENT DATASETS FROM UNC CAMPUS

Dataset Monitoring period Number of APs Number of WLAN clients seen Size
Packet headers 05 Apr 13-20 2005 488 9777 175GB
SNMP pollings 05 320MB(compressed)
Packet headers 06 Apr 28 - May 5 2006 741 12484 365GB
SNMP pollings 06 657MB(compressed)



were only noted in a small percentage of sessions.
The start and end times of a network flow (TCP

connection or UDP conversation) can be extracted from
the packet header traces. In this case, inaccuracy may be
due to the loss of packets, in particular of those signalling
the start/end of a flow (e.g., TCP SYN, SYN/ACK, FIN
packets). When this happens, the start(end) of a flow is
assumed to coincide with the timestamp of the first(last)
packet seen on the wire for the specific flow.

With the four time instants at hand (start and end times
of wireless sessions and flows), it is then straightforward
to derive the number of flows carried out within a
session, the interarrivals between flows within a given
session and the flowsizes, as outlined in Figure 2.

3) Network-wide modeling distributions: Notably, we
found out that the same statistical distributions, though
with different parameter sets, model our traffic variables
in both the 2005 and 2006 monitoring periods. The in-

session number of flows and the flow sizes are well mod-
eled by the BiPareto distribution, whereas the Lognormal
distribution is the best fit for in-session flow interarrivals
out of a set of common distributions, including Weibull,
Gamma, and Pareto. A time-varying Poisson process
with constant rate over intervals of an hour captures
the non-stationarity of session arrivals. The results for
the 2005 monitoring period are detailed in [9], whereas
the fitted distributions for the 2006 dataset are shown in
Figure 3. In the same figure, we show sample results of
the statistical test for the time-varying Poisson process
of session arrivals within intervals of an hour [14]. The
same results are obtained for all one-hour intervals in
our 192-hour long 2006 packet header trace. Table II
summarizes the distributions and their parameters for the
two periods.
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TABLE II
SUMMARY OF MODELS FOR NETWORK-WIDE TRAFFIC DEMAND VARIABLES.

Modeled variable Model Probability Density Function (PDF) Parameters 2005 Parameters 2006
Session arrival Time-varying N : # of sessions between t1 and t2 Hourly rate: 44 (min), Hourly rate: 75 (min),

Poisson(λ(t)) λ =
t2�
t1

λ(t)dt, Pr(N = n) = e−λλn

n!
, n = 0, 1, . . . 1132 (max), 294 (med.) 1171 (max), 460 (med.)

Flow interarrival/session Lognormal p(x) = 1
√

2πxσ
exp � − (ln x−µ)2

2σ2 � µ = −1.37, σ = 2.79 µ = −1.49, σ = 2.92

Flow number/session BiPareto p(x) = kβ(1 + c)β−αx−(α+1)(x + kc)α−β−1 α = 0.06, β = 1.72, α = 0.09, β = 1.49,
(βx + αkc) , x ≥ k c = 284.79, k = 1 c = 585.4, k = 1

Flow size BiPareto Same as above α = 0.00, β = 0.91, α = 0.00, β = 1.03,
c = 5.20, k = 179 c = 18.41, k = 152

B. Buildings rather than APs

Whereas modeling traffic demand at system-level
gives a good insight to the user activity patterns and
forms a valuable input for the network design and
dimensioning, many system functions work at smaller
spatial scales. For example, load balancing algorithms
usually consider the traffic load of a set of APs that are in
close proximity when making their decisions. Evaluation
of these functions requires traffic demand models of finer
detail in the spatial dimension.

There are more than one ways to study and capture the
spatial traffic demand variation in our wireless network.
In fact, in that same work [9], two possibilities are de-
scribed. The one offering the most detail is the separate
modeling of each network AP. The same set of traffic
variables that are explicitly modeled for the network-
wide traffic demand, may be modeled for individual APs.
This is also the approach followed in [8], although the
actual modeling decisions are different (see discussion
in Section VII). Another approach is to start from the
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(a) Independent and exponentially distributed Rij s during the 7th
hour of the dataset.
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(b) Independent and exponentially distributed Rij s during the 9th
hour of the dataset.
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(c) Independent and exponentially distributed Rij s during the 7th
hour of the dataset.
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single set of statistical distributions in Table II and
rely on weighting functions for capturing the spatial
variation. The AP-preference distribution in [9] is one
such example. The distribution defines the probability
with which a session of the aggregate session arrival
stream is initiated at a network AP.

One of the main advantages of working at the system-
level is that there are statistically significant data for
all modeled variables. This is not always the case with
individual APs; in fact, only a limited number of hot-spot
APs are amenable to modeling. A second major concern
with AP-level modeling is scalability. The number of
distributions that have to be derived and simulated grows
linearly with the number of APs, which is not desirable
when studying large-scale wireless infrastructures.

In our approach, we work with buildings. We view
buildings as more reliable entities for modeling the
spatial variation of traffic demand. In fact, we could draw
an analogy between flows-packets and buildings-APs.
Much as packet-level dynamics are subject to network
topology and instantaneous conditions, AP-level user
activity is sensitive to radio propagation dynamics and
environmental setting. One good example is the ”ping-
pong” effect, where a stationary user may be alternately
associated with two, or even more, APs due to short-term
radio signal propagation variations.

The notable advantage of working with buildings is
that many of our findings for the aggregate network
traffic demand also hold for the per building traffic de-
mand. Session arrivals, for example, can still be modeled
by time-varying Poisson processes. Figure 4 shows the
exponential quantile plots and autocorrelation functions
for the variables Rijs, which are functions of the session
arrival time series in several campus buildings.

As explained in [9], under the null hypothesis that the
arrival rate is constant within each time interval (here, an
hour), the {Rij} will be independent standard exponen-
tial variables. The maximum likelihood estimate of the
exponential parameter are plotted along with the expo-
nential quantile plots and are reasonably close to unity.
The bottom plots of the figures are the autocorrelations
of the Rijs up to 20 lags. The sample autocorrelations
are always within the confidence intervals, suggesting
that the Rijs do not exhibit any significant correlations.
We got similar results when repeating the same analysis
for other buildings.

In our network there are approximately 250 buildings,
which can be grouped according to their main/exclusive
usage into nine main categories. Table III lists the
main building categories and their number in the UNC
campus. In the following, one of the questions we
attempt to answer is what level of modeling the traffic
demand variation in the spatial dimension yields the best

trade-off between modeling efficiency and scalability. In
generally, for each traffic variable listed in Table II, the
spatial detail of modeling could be the building, building
type, or in the extreme case the network as a whole.
Besides these intuitive ways to aggregate data, we apply
clustering techniques for grouping buildings with similar
traffic characteristics. As it will be shown in Sections V
and VI, clustering allows us to better address the tradeoff
between scalability and model accuracy.

IV. SPATIAL CHARACTERISTICS OF TRAFFIC DEMAND

The type of building, the population of clients that
access the network, the patterns of usage, and the
environment are a non-exhaustive list of factors that
contribute to the spatial and temporal variation of traffic
demand. In this section, we show how the modeled traffic
variables of Table II vary across various time (hour, day,
week) and spatial scales (building, building-type).

A. Variation of session-arrival rate within day/week

Figure 5 plots the hourly session arrivals over the
whole trace duration (192 hours) for some representative
campus buildings. Although the absolute numbers of
session arrivals and their exact variation are specific to
each building, these profiles exhibit clear patterns that
are, to a large extent, intuitive and closely related to the
building type and usage. For example:

• Administrative and business buildings show
strongly similar daily and weekly patterns in their
profiles. The activity window is quite narrow
during weekdays (6-8 hours long), in agreement
with the working hours, whereas the activity during
weekend is almost zero.

• Residential buildings show distinctly different pat-
terns. The number of session arrivals is more uni-
formly distributed across the week and hours within
the day. The activity is also significant during the
evening hours, often resulting in a daily or weekly
peak.

• Academic buildings lie somewhere in between these
two patterns. The daily window of activity is clearly
broader than administrative and business buildings,
since they host WLAN clients for longer time
intervals during the day. Weekends see fewer ses-
sion arrivals and shorter windows of activity when
compared with residential buildings, but traffic is
non-negligible.

B. Variation of session-level flow-related variables

The variation of traffic demand is also evident in the
session-level variables we model. One way to see this
variation is to draw their empirical distribution functions
at the building-type level, as shown in Figure 6. Figure
6(a) shows the broad variation of the per building-type
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Fig. 4. QQplots and autocorrelation function for the Rijs for different campus buildings. Rij s are independent and exponentially distributed.

TABLE III
SUMMARY OF UNC CAMPUS BUILDING TYPES.

Building type Academic Administrative Athletic Business Clinical Library Residential Social
Number 51 25 17 8 18 4 117 10

distribution tails of the in-session number of flows. The
number of flows related to residential buildings sessions
has a strikingly heavier tail, largely related to the more
active Web browsing behavior of residential users. The
plots also suggest that the BiPareto distribution can be
applied for modeling the per building-type in-session
number of flows. Table IV lists the parameter sets for
the different building types.

More similar are mean flow sizes across different
building types. Figure 6(b) suggests that some building
types cluster together, such as Library, Residential and
Academic, Administrative, Athletic, Social with flow
sizes in Clinical buildings having a more distinct be-
havior, yet closer to the 2nd group of building types.

The behavior of flow interarrivals across different
building types is captured in Figure 6(c). Again, the
plots of mean in-session flow interarrivals suggest that
the variables could be potentially modeled by the same
type of distribution for all building types, though with
different parameters.

Less wide is the differentiation of client sessions with
respect to mobility, at least when this is viewed at the
building type level. Building-roaming sessions, during
which a WLAN client visits more than one building,
account for less than 10% of the overall sessions. Figure
6(d) plots the per building type building path length
distribution, expressing the probability that a session
initiated at buildings of a certain type visits a given num-
ber of buildings. The plot clearly shows that building-
roaming flows are a small percentage of the overall client
sessions and there is little dependence on what kind of
building a session is initiated.

Overall, the plots in Figure 6 show clearly that the
modeled traffic variables exhibit strong variation in the
spatial dimension. Although the building type is an
intuitive, heuristical basis for grouping buildings, it is
not the best one. In fact, in the section that follows, we
use clustering techniques to come up with alternative
groupings of buildings of higher utility for our modeling
task.
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Fig. 5. Hourly session arrival rates for representative UNC campus buildings over the Apr-May 2006 monitoring period.

TABLE IV
BIPARETO DISTRIBUTION PARAMETERS FOR THE IN-SESSION NUMBER OF FLOWS IN DIFFERENT BUILDING TYPES

Building type Academic Administrative Athletic Business Clinical Library Residential Social
BiPareto Parameters (0.11, 2.15, (0.15, 1.73, (0.15, 1.65, (0.16, 2.39, (0.13, 2.6, (0.06, 2.33, (0.08, 1.34, (0.09, 2.24,
(α, β, c, k) 702.99, 1) 523.72, 1) 1033.84, 1) 1008.76, 1) 819.5, 1) 862.24, 1) 961.71, 1) 571.21, 1)

V. ENHANCING MODELING SCALABILITY WITH
CLUSTERING

Our hierarchical modeling framework evolves around
individual buildings at the finest and the entire system
at the coarsest detail. As mentioned in the introduction,
both approaches have weaknesses. We address them by
enhancing this framework with an intermediate level of
detail, namely clusters of buildings that exhibit similar
behavior with respect to the traffic variables we model.

A. Clustering with respect to session arrival rate

Sessions are the main modeled entities in our two-
level model and the ones where the traffic non-
stationarity is captured via the time-varying Poisson
processes, as shown in Section III-B Hence, we apply
clustering techniques at the session level with the aim
to come up with groups of buildings featuring similar
variation of session arrivals in time. We work with the
2006 trace resulting in a time series of 192 hourly

session arrival rates for each building. The time series
are the features or attributes of the data matrix X input
to clustering. The matrix has 250 rows, one for each
campus building.

The ultimate aim of our building clustering is to use
the same cluster-level hourly session arrival rate time
series, hereafter called cluster profile or signature, for a
group of buildings instead of a separate time series for
each building, the building profile. Therefore, our clus-
tering needs to take into account the size displacement
between different building profiles. This requirement
cannot be satisfied if we consider heuristic ways to group
buildings, e.g., the building type as defined in Section III,
which result in building groups with high similarity in
shape but large size displacements. To get clusters of
buildings with the desired properties we combine clus-
tering with dimension reduction techniques. Whereas the
clustering algorithm is the same in all cases, we consider
three alternatives for reducing the dimensionality of our
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Fig. 6. Behavior of session attributes across different types of campus buildings.

dataset and bring out the size element. They rely on
Principal Component Analysis (PCA) and Singular Value
Decomposition (SVD).

1) Data dimensionality reduction via PCA and SVD:
In the first method, centering is applied to the data
matrix by subtracting the column means of X , which
correspond to the average building session arrival rates.
We then perform PCA [15]. The aim is to reduce the
dimensionality of the dataset whilst preserving most of
the variation in data in the first few Principal Components
(PCs). To decide how many PCs to extract, we employ
the scree plot, which plots the percentage of variance in
data that is explained by PC i.

The other two alternatives do not apply any centering
on the data matrix. In the first approach, we take the
original data matrix X and standardize the time series for
each building by dividing over the scale factor, calculated
as the square-root of the sum of squares of session
arrivals over the 192 hours. We then apply SVD to the
standardized matrix to obtain the same number of left
PCs as the one that came out of the PCA-based method
described earlier. The scale factor vector is then used
as an additional dimension, in addition to the PCs that
came out of SVD, to be input to the actual clustering
algorithm. The second alternative is similar to the first
one, only now the additional dimension is the vector

of average numbers of session arrivals over the whole
tracing period for the 250 buildings.

In the rest of the section we present in more detail the
clustering results for the PCA-based clustering. We then
give the results that came out of the two SVD-based
clustering alternatives and compare them on the basis
of validity indices assessing the compactness of clusters
and their degree of separation.

2) Building Clustering: The first thing to do before
proceeding with the actual clustering is the determination
of the number of PCs to use. Figure 7 shows the scree
plot for the first seven PCs. The knee is located at PC3
indicating that the first three components can capture
most of the variability in our dataset (approximately
90%). The plots of the first three loading vectors in Fig-
ure 8 suggest that PC1 is highly correlated with the mean
session arrival rate, PC2 captures the difference between
day (6am-7pm) and night, whereas PC3 expresses the
difference between the first 12 hours of day (12pm -
11am) and the last 12 hours of day.

Clustering is subsequently carried out on the projected
space, i.e., the space spanned by the orthonormal PC1-
PC3. We employ agglomerative hierarchical clustering.
Dissimilarity between buildings and clusters is mea-
sured by the standardized Euclidean distance and the
unweighted pair-group method using arithmetic averages
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(UPGMA), respectively. They are both popular choices
for clustering tasks [16]. The final segmentation of build-
ings is the one that maximizes cluster compactness and
separation, as measured by the inconsistency coefficient
[17].

An additional processing step we take after clustering
is to exclude from subsequent analysis buildings with
few session arrivals. Those buildings actually group
together in the same cluster. To assist visualization
of results and since the major challenges to system
engineering come from the heavily loaded buildings, we
use heuristics to filter them out. After trial and error, the
rule we set for filtering is to exclude those clusters, in
which all buildings have mean session arrival less than
50, and the average of their maximum hourly session
arrival rate does not exceed a threshold equal to 5. The
remaining 74 buildings are shown in Figure 9.

Figure 9 plots the PC1-PC3 using different colors and
symbols to present the various clusters obtained by the
hierarchical clustering. To characterize each cluster, we
calculate the cluster centroid in the projected space. To
capture the main behavioral and statistical characteristics
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of each cluster, we then back-transform its centroid
to get the “signature” session arrival rate series that
corresponds to the specific centroid. This signature then
works as a profile for that particular cluster. Figure 10
plots the signature profiles for the obtained clusters. For
example, clusters 5 and 10, which are mostly populated
by residential buildings, exhibit a high arrival rate during
afternoons and a similar pattern during weekends; on
the other hand, clusters 9 and 16 consist of academic
buildings, which have a strong session arrival rate peak
during the mornings on weekdays and a distinct drop
during weekends.

3) Cluster validation: To validate the clustering re-
sult, we can use some internal criteria to measure how
well a clustering fits the geometric structure of the data
with no reference to information known a priori, such
as the silhouette index [18]. A silhouette index value
close to unity implies that the corresponding building is
assigned to an appropriate cluster. An index value close
to zero suggests that the building could also be assigned
to the nearest neighboring cluster, i.e. such a building
lies equally between both clusters. A building should
be considered misclassified when the index is close to
-1. Moreover, for any given partition, we can define the
global silhouette index, GSu. GSu equals to the average
silhouette index over all clusters and can be used as
an effective validity index for a given clustering. The
plot of the silhouette indices for the 74 buildings that
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Fig. 12. Silhouette cluster validation index for the 24h feature-set.

remain after the filtering step indicates that the PCA-
based method performs sufficiently well (Figure 11).

As part of the cluster validation process, we repeated
clustering with a reduced 24-element feature set. Each
one of the 24 features corresponded to the mean hourly
session arrival rate estimated over all days of the tracing
period. This feature set is more compact, while it can
still capture the diurnal effect. However, it results in
a significant reduction of the GSu value, 0.21 vs. 0.39
for the 192-element feature set (12). It comes out that
the 192-element feature set reflects better the temporal
variation across week days. Averaging daily session
arrival rates, the 24-element feature set results in loss
of detail in our data with negative impact on clustering.

With the first clustering alternative, combining SVD
with the scale factor vector, we obtain 9 clusters. The
largest cluster contains 216 buildings, all of which sat-
isfy the filtering criteria for low-utilized buildings. The
remaining 8 clusters all appear reasonable; the GSu index
is 0.76 when all clusters are considered. The second
SVD-based clustering alternative produces 26 clusters;
eighteen are filtered out when applying our filtering rules
corresponding to 181 buildings. The estimated GSu index

is 0.40. Out of the three approaches, the SVD-scale
factor approach results in the best separation between
high/low traffic buildings, whereas the one huge cluster
produced consists of buildings with low session arrival
rates.

B. Clustering with respect to session-level flow-related
variables

After clustering the buildings according to session
arrival rate, we need to model the session-level flow-
related variables (see Table II). There are different al-
ternatives for this task in light of the clustering work
for session arrivals. One option would be to perform
a separate clustering of buildings for each flow-related
attribute. However, this approach would give rise to a
large total number of clusters and would complicate
the modeling effort, effectively canceling the clustering
benefits. A variant of this would be to carry out the
additional clustering within each cluster obtained from
the session arrival rate clustering. Another alternative
is to consider modeling flow-related variables using the
same building groups that come out of the clustering
on session arrival rates. In our validation analysis, we
will compare this last approach against more heuristic
groupings (i.e., based on the building-type).

VI. VALIDATION

A. Methodology

In this section we evaluate the different modeling
alternatives described in Sections III and V. We work
with individual buildings and compare how the models’
capability to capture the traffic demand at the building
level changes as we zoom in/out of the trace data and
consider different levels of detail in our modeling.

We consider two alternatives for parameterizing the
time-varying Poisson process for the session arrivals:
the hourly session arrivals of the specific building we
study and the signature of the cluster this building was
assigned to. For the flow-related variables, the levels we
consider in increasing order of spatial aggregation are
the building, cluster, building-type and, for comparison
reference purposes, the network level. We combine these
alternatives into six scenarios and use them alternately
in our simulations to assist the illustration of our main
findings and support our discussion. Table V summarizes
these scenarios and their requirements in terms of sam-
pling distributions when the whole wireless network is
to be modeled. 2

Given the heavy-tailed session durations, our simula-
tion times are in the order of days rather than hours.

2Regarding the numbers in the 3rd column, note that, irrespective
of the modeling scenario, we always need to model four variables: the
session arrival process and the three flow-related variables.



TABLE V
MODELING ALTERNATIVES-SCENARIOS FOR SIMULATION VALIDATION.

Modeling scenario Description Sampling distributions
bldg-bldg Both session arrivals and flow-related variables are modeled after bldg-specific data 4*N

for the whole trace duration N : number of bldgs
bldg-bldg (day) The same with bldg-bldg, only now different distributions are derived 4*N*D

for each day of the monitoring period D : number of days
bldg-bldgtype Session arrivals are modeled after bldg-specific data and flow-related variables over data N + 3*M,

aggregated at bldg type level M : num. of bldg types
cluster-bldg The cluster signature is used for session arrival modeling, whereas the C + 3*N,

distributions for flow-related variables are drawn from building-specific data C : number of clusters
cluster-cluster Both session arrivals and flow-related variables are modeled after clustering 4*C
bldg-network Bldg-specific data for session arrivals, network-wide distributions for the flow-related variables N+3

We have implemented the thinning process described in
[19] to simulate the time-varying Poisson process for the
session arrivals.

We compare synthetic traffic against traces with re-
spect to building-level traffic variables not explicitly
addressed by our models. Such variables are the aggre-
gate flow arrival count process and the aggregate flow
interarrival time-series for the building under study. We
examine first-order and second-order statistics of the
flow interarrival process and hourly flow arrival counts.
We present results for two buildings, one academic (Mc-
Coll) and one residential (Hinton James). They are two
of the busiest campus buildings and represent the two
main building types. In the same time they exemplify the
value of heuristics (McColl) and clustering techniques
(Hinton James) for achieving a good trade-off between
model accuracy and scalability.

B. McColl academic building

McColl is the busiest campus building in terms of
session arrivals. Irrespective of the clustering approach
followed in Section V, the McColl building does not
group with other buildings but rather forms a separate
cluster on its own. Therefore, the cluster signature coin-
cides with the building hourly session arrival rate and
the modeling alternatives are only relevant to the set
of distributions for the flow-related variables, which are
listed in VI

A first view of the “noise” that averaging introduces
is given in Figure 13. The plot compares the cumulative
empirical distribution function of the in-session number
of flows for the McColl building with those estimated
for all academic buildings and network-wide. The devi-
ation between the curves increases with the degree of
spatial aggregation of data. The way these discrepancies
affect the aggregate flow-related metrics we described in
Section VI-A is summarized in Figures 15-17

With respect to aggregate flow interarrivals, the syn-
thetic traffic generator tracks most closely the trace
when we model the in-session flow number and flow
interarrivals separately for each one of the three days of
simulation time. Considering a single set of distributions
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Fig. 13. Number of flows per session : ccdf under different building-
grouping alternatives.

over the whole trace, does not give better results than
when using the aggregate distributions for academic
buildings. This implies that the averaging in the time-
dimension may cancel out the benefit of getting higher
spatial resolution out of the trace data. In the same time,
staying at the building-type level gives us comparable
precision with that obtained when zooming into the
building-specific data. Figure 15 clearly suggests that
reuse of the network-wide distributions for modeling
traffic demand at finer spatial scales is not an attractive
alternative. Looking at the autocorrelation process in
Figure 16, one notes that the bldg-bldgtype curve is not
much worse than the one corresponding to the bldg-bldg
scenario. In fact, the former seems to underestimate less
the short-term autocorrelation than the latter.

Finally, inferior in absolute terms is the match for the
hourly flow counts, which is the most demanding metric.
Figure 17 plots the averages over 40 simulation runs
along with their 95% confidence intervals. In this case,
further improvement would be obtained by modeling the
flow-related variables over shorter time periods than over
the full monitoring period or a day. In fact, the standard
practice is to focus the modeling attention on short
time windows where the building activity experiences
its peak (busy hour). In any case, the aggregation along
the building type performs only marginally worse than



TABLE VI
MCCOLL ACADEMIC BUILDING : PARAMETERS FOR THE FLOW-RELATED VARIABLE DISTRIBUTIONS UNDER VARIOUS LEVELS OF SPATIAL

AGGREGATION IN MODELING
McColl Academic Network-wide

Flow number/session α = 0.09, β = 2.69, α = 0.11, β = 2.17, α = 0.09, β = 1.49,
(BiPareto) c = 1026.37, k = 1 c = 713.85, k = 1 c = 585.4, k = 1
Flow interarrivals/session µ = −1.69,σ = 3.01 µ = −1.65,σ = 2.99 µ = −1.49,σ = 2.92
(Lognormal)
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Fig. 15. McColl building: cumulative empirical distribution function
of aggregate flow interarrivals

the bldg-bldg scenario. The required number of sampling
distributions for modeling each campus building under
the bldg-bldg scenario would be 4*N*D = 3000, for N =
250 and D = 3. When all buildings of the same type are
modeled after a common set of distributions for flow-
related variables, their number is reduced down to N +
3*M = 274, for M = 8.

C. Hinton James residential building

Contrary to McColl, the Hinton James building was
clustered together with other buildings under all clus-
tering alternatives described in Section V. We consider
for further analysis the cluster that came out of the
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Fig. 17. McColl building: aggregate hourly flow arrivals

SVD-scale factor technique, which is the one that gave
the highest global silhouette index amongst the three
alternatives. This cluster comprises three other buildings,
two of the social and one of the library type. Therefore,
one additional modeling alternative now is to consider
the cluster signature instead of its hourly session arrival
rate for modeling the session arrivals (Figure 18).

We consider four alternative scenarios in our simula-
tor. In two of them we model session arrivals after the
building hourly session arrivals and in the other two we
use the cluster signature. For the flow-related variables,
we have three alternatives for getting the respective sam-
pling distributions: consider only the building-specific
data, aggregate over data from all four buildings in



TABLE VII
HINTON JAMES RESIDENTIAL BUILDING : PARAMETERS FOR THE FLOW-RELATED VARIABLE DISTRIBUTIONS UNDER VARIOUS LEVELS OF

SPATIAL AGGREGATION IN MODELING
Hinton James Residential Clustering Network-wide

Flow number/session α = 0.08, β = 1.95, α = 0.08, β = 1.34, α = 0.081, β = 1.87, α = 0.09, β = 1.49,
(BiPareto) c = 1357.34, k = 1 c = 968.37, k = 1 c = 680.18, k = 1 c = 585.4, k = 1
Flow interarrivals/session µ = −1.62,σ = 2.99 µ = −1.44,σ = 2.8 µ = −1.62,σ = 2.97 µ = −1.49,σ = 2.92
(Lognormal)
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Fig. 18. Hourly session arrivals : Hinton James vs. cluster signature

the cluster and, aggregate over data from all residential
buildings in campus. The parameters of the sampling
distributions in each case are given in Table VII.

Figures 19-22 summarize the relative performance of
the four alternatives. Now, the precision vs. aggregation
level trade-off is even more clear than with the Mc-
Coll building. Interestingly, the cluster-bldg combination
presents a good compromise with matching score too
close to the one obtained when we consider the specific
building session arrival rates.

The bldg-bldgtype alternative is inferior to the cluster-
bldg one, implying that modeling in-session flow number
and flow interarrivals by simply aggregating data from
all residential buildings has some cost. However, it is still
better than reusing the clustering results obtained for the
hourly session arrival rates to the modeling of the flow-
related variables. This becomes clear in Figures 19 and
20, which show that when this happens the mismatch is
the worst of all scenarios. It comes out from these plots
that the building type can be most useful in grouping
buildings with respect to the session-level flow-related
variables we model.

The relative performance of the four scenarios is pre-
served with respect to the second-order statistics (Figure
22) and the flow-counts (Figure 21). In the second case,
as with the McColl building, the implication is that
additional detail in the time domain may be necessary to
get higher precision. Nevertheless, considering the clus-
ter signature instead of the per-building session arrival
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function of aggregate flow interarrivals

rates gives almost identical performance. Again, this
happens at the benefit of scalability, since the required
number of sampling distributions (parameter sets) to be
input to the simulator is C+3*N = 770, for C = 20
versus 4*N = 1000, respectively. Even better scalability
in this case would be achieved under a combination
cluster-bldgtype, i.e., if we used the clustering results
to model the session arrival process and aggregate data
at the building-type level for the flow-related variables.
The required number of sampling distributions would be
C+3*M = 44, resulting in an impressive reduction of
complexity in the simulator.
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Fig. 21. Hinton James building: aggregate hourly flow arrivals
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Fig. 22. Hinton James building: autocorrelation of aggregate flow
interarrivals

VII. RELATED WORK

Measurement-based studies of WLAN traffic demand
have a much shorter history than those for wired net-
works (for example, [2]–[4], [13], [20]). High-level
observations about the temporal and spatial variation of
the traffic demand appear in a number of papers [5]–
[7], [21], [22], which have drawn measurement data
from different types of wireless infrastructures: campus
WLANs [5], [21], [22], enterprise WLANs [6], confer-
ence hotspots [7]). Traffic load diurnal/weekly period-
icities have been noted in [5], [6], [21], [23]. Almost
all studies describe traffic demand variations amongst
the monitored APs, with [5], [6], [14] also describing
building and building-type dependencies.

Nevertheless, the first study that addressed the WLAN
traffic modeling at higher detail is the one by Meng et
al. [8]. They use measurement data from the University
of Dartmouth campus WLAN to model flow arrivals at
15 APs in one-hour intervals. They propose a Weibull
distribution and capture the non-stationarity of traffic in
the variation of its scale parameter, which is estimated
via Weibull regression. Furthermore, they model flow

sizes with a Lognormal distribution. The authors find
that a small percentage of the flows is roaming, i.e.,
accessing data from more than one AP, and model the
number of AP visits within an session with a geometrical
distribution. They also observe strong similarity in the
flow arrival processes at neighboring APs.

In earlier work in [9], we look into traffic demand
at network-level. Contrary to [8], the non-stationarity of
traffic workload is captured at the session- rather than
flow-level via a time-varying Poisson process for ses-
sion arrivals. We believe that this hierarchical approach
provides better insight to the underlying causes of the
temporal variation of the workload. In this study, we
draw on the work in [9], only now we take a closer look
at the spatial variation of traffic demand. We work with
buildings rather than APs and propose ways that enable
scalable yet accurate modeling of the traffic demand in
the network.

VIII. CONCLUSIONS

Our paper addresses the problem of traffic demand
modeling in large wireless networks. We emphasize on
the spatial dimension of the traffic load variation looking
at various scales of spatial aggregation in the wireless
network.

In earlier work [9] we proposed a hierarchical mod-
eling framework for aggregate network-wide traffic de-
mand drawing on wireless sessions and network flows.
In this paper, we derive two notable results related to it.
Firstly, we find out that the statistical distributions pro-
posed for network-wide traffic demand, i.e., time varying
Poisson process for session arrivals, BiPareto for in-
session flow numbers and flow sizes, and Lognormal for
in-session flow interarrivals, are valid over two different
monitoring periods, spaced one year apart. Secondly,
the same distributions apply when we look at traffic
at finer spatial scales, such as the single building or
groups of buildings with similar usage. Given the second
result, we promote buildings as the primary entities
for traffic demand modeling in the spatial dimension.
Working at building level circumvents several problems
emerging when working at AP-level: non amenability
to statistical processing, higher sensitivity of monitored
traffic variables to the short-term propagation conditions,
lack of scalability.

We elaborate on this last aspect and propose a novel
methodology for coming up with models that scale
with the size of the network whilst preserving mod-
eling accuracy. The methodology involves the use of
heuristics and statistical clustering techniques to group
buildings for traffic demand modeling purposes. By way
of example, we show that both of them can benefit the
traffic modeling task. Interestingly, the two approaches



are complementary. Heuristical segregation of buildings
scores better with flow-related variables, whereas cluster-
ing combined with PCA and SVD performs better with
the modeling of session arrivals, where the requirement
is to group buildings with similar volume and not only
pattern of arrivals.

To encourage further experimentation along the lines
drawn in this paper, we have made our datasets and tools
available to the research community [10].
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