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Abstract

We present a novel algorithm to compute a homotopy preserving bounded-error approximate Voronoi diagram of

a 3D polyhedron. Our approach uses spatial subdivision to generate an adaptive volumetric grid and computes

an approximate Voronoi diagram within each grid cell. Moreover, we ensure each grid cell satisfies a homotopy

preserving criterion by computing an arrangement of 2D conics within a plane. Homotopy equivalence implies a

one-to-one correspondence between various topological components of the approximate Voronoi diagram and the

exact Voronoi diagram. Our algorithm also satisfies Hausdorff distance bounds between the approximate and the

exact Voronoi diagrams. We use distance based culling techniques to reduce number of non-linear arrangement

computations and accelerate the computation. In practice, our algorithm can compute an approximate Voronoi

diagram of complex models with thousands of primitives in tens of seconds.

1. Introduction

Given a set of geometric objects (called sites) and a distance
function, the Voronoi diagram is a subdivision of the space
into cells, such that all points in a cell have the same clos-
est site according to the distance function. The Voronoi dia-
gram is a fundamental geometric data structure and has been
widely studied in computational geometry [Aur91, Sug92].

In this paper, we address the problem of computing the
Voronoi diagram of a 3D polyhedron based on Euclidean
distance function. Un4der the Euclidean distance metric,
the Voronoi diagram of a polyhedral object is also closely
related to its medial axis. The medial axis is a well de-
fined skeletal representation that provides useful informa-
tion about the shape and its topology. Voronoi diagrams and
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medial axes have been used for a number of applications,
including computer vision and medical imaging [PSS∗03],
motion planning and navigation [FGLM01], mesh genera-
tion and finite element analysis [SERB98,Sur03], solid mod-
eling [BBGS99], design and interrogation [PG90, Wol92],
collision detection and proximity queries [LM03, SGG∗06],
and shape simplification [TH03].

The Voronoi diagram of a polyhedron can be represented us-
ing sheets, seams and junctions. Moreover, the sheets, seams
and junctions of the Voronoi diagram of a polyhedral model
have algebraic degree two, four and eight, respectively. Also
the combinatorial complexity of the Voronoi diagram can
be high - the upper bound is between O(n2) and O(n3 + ε)
for any positive ε, where n is the number of faces, edges
and vertices on the polyhedron [SA95]. As a result, the ex-
act algorithms for computing the Voronoi diagrams can only
handle polyhedron composed of a few hundred or thousand
features [SPB96, CKM04]. Moreover, these algorithms can-
not handle degenerate configurations and are susceptible to
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robustness problems. Many techniques have also been pro-
posed to compute approximate Voronoi diagrams. At a broad
level, these methods can be classified into point-sampling
techniques [ABE04, ACK01, Boi86] and spatial subdivision
algorithms [VO98, TT97, ER02, SOM04]. In practice, these
algorithms are relatively simple to implement and can handle
complex polyhedra. However, they may not provide topo-
logical guarantees on the computed approximation. Topo-
logical accuracy is desirable for certain applications of the
Voronoi diagram. In particular, it has been shown that a
bounded polyhedron is homotopy equivalent to its medial
axis [Lie03]. Hence the topological properties of a polyhe-
dron can be analysed by computing a homotopy-preserving
medial axis.

Main Results: In this paper, we present an approach to
compute an approximate Voronoi diagram that is homotopy
equivalent to the exact Voronoi diagram. Homotopy equiv-
alence enforces a one-to-one correspondence between the
connected components, holes, tunnels or cavities and the
way they are related in the exact Voronoi diagram and the
computed approximation. Our approach is based on a spatial
subdivision scheme and performs simple and efficient tests
to compute a simplification of the exact Voronoi diagram.
Moreover, we also describe algorithms to perform topolog-
ical tests to guarantee homotopy equivalence of the approx-
imate Voronoi diagram. Finally, we also provide Hausdorff
distance bounds on the geometric structure of the approxi-
mate Voronoi diagram.

Thus, the homotopy-preserving approximate Voronoi di-
agram is useful for applications that exploit the topo-
logical structure of the Voronoi diagram. Such applica-
tions include homotopy-preserving medial axis computa-
tion [SFM05], motion planning [FGLM01], topology pre-
serving simplification [SS06], shape analysis and fea-
ture identification [BPA01]. Along with hausdorff dis-
tance bounds, the approximate Voronoi diagram can be
used for accelerating nearest neighbor and other proxim-
ity queries [SGG∗06].Some of the main benefits of our ap-
proach include:

• Topological properties: We exploit topological proper-
ties of the Voronoi diagram of a polyhedral model, and use
simple tests to guarantee homotopy equivalence between
the computed approximate Voronoi diagram and the exact
Voronoi diagram.

• Computing arrangement of 2D conic sections: Our
topological tests reduce to computing an arrangement of
2D conic sections on a plane, instead of computing an ar-
rangement of 3D quadric surfaces. The arrangement of 2D
conics has been well studied and good implementations
are available [KCMh99, Be05]. As a result, our algorithm
is relatively simple to implement as compared to exact 3D
Voronoi diagram computation algorithms and is less sus-
ceptible to robustness problems.

• Handling near-degenerate configurations: Our algo-
rithm can provide topological guarantees even in presence
of near-degenerate configurations of the the Voronoi dia-
gram.

We have implemented our algorithm on a PC with 2.4Ghz
AMD Opteron processor and applied it to complex CAD
models consisting of thousands of primitives. Our algo-
rithm is able to compute a homotopy preserving approxi-
mate Voronoi diagram of these models in tens of seconds.
We also use the approximate Voronoi diagram to compute a
simplified medial axis of the original model and give similar
topological guarantees on the medial axis.

Organization: The rest of the paper is organized in the
following manner. We give a brief overview of previous
work in Section 2. We present the background material and
an overview of our algorithm in Section 3. In Section 4,
we present some topological properties of the Euclidean
Voronoi diagram and our homotopy preserving criterion.
Our subdivision algorithm is presented in Section 5. We de-
scribe its implementation and present results in Section 6.
Finally, we analyze our algorithm and compare it with other
approaches in Section 7.

2. Related Work

The problem of Voronoi diagram computation is well studied
in computational geometry, solid modeling and their appli-
cations. In this section, we give a brief overview of previous
algorithms. Previous work on computation of the Voronoi di-
agram and the medial axis of 3D shapes can be categorized
based on the sampling of R

3. The discretization based meth-
ods approximate either the boundary of a polyhedral model
with finite point samples, or sample the domain inside the
polyhedron using spatial subdivision. The analytic methods
trace the components of the Voronoi diagram using algebraic
techniques.

2.1. Discretization based methods

Voronoi Graph of finite point samples: These methods ap-
proximate the boundary of the 3D polyhedron by a finite set
of points and compute the Voronoi graph. Robust and effi-
cient methods for computing the Voronoi diagram of point
samples are well known. We refer the reader to a survey
by [AK00]. The Voronoi graph of a finite set of points pro-
vides an approximation to the exact Voronoi diagram of the
polyhedron [ACK01]. The convergence to the exact Voronoi
diagram has been shown for a sufficient dense sampling of
smooth shapes. However, these methods algorithms may fail
to provide a high quality approximation near sharp features
of the original. Dey and Zhao [DZ02] present an algorithm to
approximate Voronoi diagrams and also give a convergence
guarantee.
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Spatial Subdivision techniques: These methods subdivide
the space into cells and compute an approximate Voronoi
diagram of a polyhedral model. The key step common to
these algorithms is to compute and label each cell with a
set of Voronoi governors and compute an approximate ar-
rangement of Voronoi elements inside each cell. Vleugels
and Overmars [VO98] present a technique to compute an
approximate Voronoi diagram by determining cells that
lie near Voronoi region boundaries. Approaches to effi-
ciently perform labeling of a cell using propagation tech-
niques have been presented for tetrahedral [TT97] and oc-
tree grids [BCMS05]. Etzion and Rappoport [ER02] de-
couple the computation of the symbolic part (the topology)
of the Voronoi diagram from the geometric part and trace
Voronoi elements across cell boundaries. Stolpner and Sid-
diqui [SS06] identify cells containing points on the medial
axis using the average flux of the distance field gradient
through the boundary of the cell and use this property for
guiding the subdivision. We provide more detailed compari-
son with these approaches in Section 7.

There is also work on computing a discrete approximation to
the Voronoi diagram by sampling the domain on a uniform
grid. In such methods, the Voronoi regions are approximated
using a finite set of points along a uniform grid. These ap-
proaches are well suited for interactive computation using
graphics hardware [HCK∗99, Den03, SOM04].

However, previous spatial subdivision approaches cannot
provide topological guarantees and may require extremely
high level of subdivision to resolve near degenerate configu-
rations in the Voronoi diagram.

2.2. Analytic methods

These methods detect topological events in the structure of
the Voronoi diagram by tracing through a continuous do-
main. The correctness of continuous methods are not re-
stricted by sampling parameters. Rather, these algorithms
trace the 3D Voronoi edges (seams) [Mil93, SPB96, RT95].
The approaches are highly sensitive to numerical preci-
sion. While robust 2D implementations have been pre-
sented [Hel01], robust 3D implementations are difficult
since it requires solving systems of tri-variate non-linear
equations. In presence of degenerate configurations of the
Voronoi diagram, such algorithms may fail to produce a
valid output. A technique based on exact curve tracing is pre-
sented in [CKM04], however it does not scale well to large
models. Furthermore, extremely high arithmetic precision is
required to resolve near-degenerate configurations.

2.3. Topological Approximations

Under the Euclidean distance metric, the concept of Voronoi
diagram is also closely related to the medial axis of a poly-
hedron. In particular, given a homotopy preserving approx-
imation of a Voronoi diagram, Sud et al. [SFM05] present

an algorithm to compute a homotopy preserving simpli-
fied medial axis of a polyhedral model. Hence the homo-
topy preserving approximate Voronoi diagram can be used
as an input for their work. Attali, Boissonat, and Edels-
brunner [ABE04] survey different techniques that generate
a stable and homotopy preserving medial structure. The ho-
motopy relationship between an object and its medial axis
has been proven in a particularly general form by Lieu-
tier [Lie03], who shows that homotopy preservation holds
for any bounded open subset of R

n. Chazal and Souf-
flet [CS04] present smoothness constraints on the bound-
ary of a solid, which need not be polyhedral, under which
the medial axis obeys certain stability and finiteness condi-
tions. Chazal and Lieutier [CL04] have also proven results
about stability, and present a homotopy preserving medial
axis simplification.

3. Overview

In this section, we introduce some of the terminology used
in the rest of the paper and provide an overview of our ap-
proach.

3.1. Terminology

The detailed notation used in the paper is summarized in Ta-
ble 3.1. We explain some of those terms below.

Notation Meaning

X Closure of a set X
X c Complement of X

Int(X ) Interior of X
∂X Boundary of X
|X | Cardinality of X
O A polyhedral solid in R

3

pi A face, edge or vertex site in R
3

car(pi) Carrier of a site pi

d(q,p) Distance between points q and p

d(q, pi) Distance between a site pi and point q

d(q, pi) = minp∈pi(d(q,p))
πpi(q) Projection of a point q on a site pi

X ∼ Y Sets X , Y are homotopy equivalent
X ∼= Y Sets X , Y are homeomorphic

Bd A topological ball in d dimensions

Sd A topological d-sphere in d +1 dimensions

Table 1: This table highlights the notation used in the paper

Given a closed polyhedral solid O in 3D, its boundary ∂O
can be decomposed disjointly into vertices, open edges, and
open faces, which we refer to collectively as sites. We shall
denote the set of sites in ∂O as A.

The carrier of an edge (face) site is the infinite line (plane)
containing the site. The carrier of a vertex site is the vertex
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itself. The projection of a point q on a site pi, represented as
πpi(q), is the closest point on the the site pi to the point q:

πpi(q) = {x ∈ pi | d(q,x) ≤ d(q, pi)},

where d() is the distance function.

The closed Voronoi region of a site pi is defined as:

V(pi) = X , where X = {q | d(q, pi) < d(q, p j)∀p j ∈ A}.

For each point x, we define the set of governors, G(x), to
be the set of sites for which x belongs to the closed Voronoi
region.

G(x) = {pi | x ∈ V(pi), pi ∈ A}

The governor set of a set of points is the union of gover-
nors of each point. Let α denote a set of two or more sites.
The boundary of the Voronoi region is composed of bisec-
tors with other sites called Voronoi faces. A Voronoi face or

a sheet, denoted fα, is a maximally connected 2-manifold
surface which has the same 2 governors, i.e. |α| = 2. The
2-D Voronoi faces meet in maximally connected 1-manifold
curves called Voronoi edges or seams, which have the same
set of governors. Each Voronoi edge has 3 or more gover-
nors. A Voronoi edge is denoted eα, |α| ≥ 3. Finally, the
Voronoi edges meet at points called Voronoi vertices or

junctions which are equidistant from four or more sites. A
Voronoi vertex is denoted vα, |α| ≥ 4. The set of all Voronoi
faces, edges and vertices is the generalized Voronoi diagram
of A, represented as VD(A) [AK96]. Formally,

VD(A) =
[

pi,p j∈A,i6= j

V(pi)∩V(p j).

The Voronoi diagram decomposes the space into Voronoi re-
gions. For each point x ∈ V(pi), |G(x)| = 1. The Voronoi
faces, edges and vertices are collectively called the elements
of the Voronoi diagram.

We use the formulation described in [ER02] and define the
Voronoi graph VG(A) as an undirected graph with the fol-
lowing properties:

1. Each node in VG(A) corresponds to a Voronoi element
(face, edge or vertex).

2. Two nodes in VG(A) share an arc iff there is an incidence
relationship between the two corresponding Voronoi ele-
ments.

3. Each node is labeled by the governor set of its corre-
sponding elements.

The Voronoi graph encodes the symbolic part of the Voronoi
diagram. Our algorithm computes an approximate Voronoi
graph. The approximate Voronoi graph computed by our
algorithm has the following additional property: a node in
the approximate Voronoi graph replaces a sub-graph in the

exact Voronoi graph such that the corresponding approxi-
mate Voronoi diagram is homotopy equivalent to the exact
Voronoi diagram.

A cell in the spatial subdivision of the space is denoted C,
and is homeomorphic to a closed ball B3. The elements of
a cell are the cell faces, edges and vertices. For a cell C,
G(C) is the set of sites whose Voronoi regions intersect C.
A cell C is called a boundary cell if C∩A 6= ∅, i.e. the cell
intersects one or more sites. A cell which is not a boundary
cell is called an interior cell.

3.2. Homotopy Equivalence

The notion of homotopy equivalence between topological
sets enforces a one-to-one correspondence between con-
nected components, holes, tunnels or cavities. Formally, two
maps f : X → Y and g : X → Y are homotopic if there ex-
ists a continuous family of maps ht : X → Y , for t ∈ [0,1],
such that h0 = f and h1 = g. Thus, a homotopy is a deforma-
tion of one map to another. Two spaces X and Y are homo-

topy equivalent if there exist continuous maps f : X → Y
and g : Y → X such that g ◦ f and f ◦ g are homotopic to
the identity maps on their respective spaces. As an example,
f could be the inclusion of a circle into an annulus, and g

could be radial projection of the annulus onto the circle.

In situations such as this one, where f is an inclusion and f ◦
g is actually equal to the identity map, the homotopy equiva-
lence is called a deformation retraction. See Spanier [Spa89]
for details of these definitions. Our approximate Voronoi
computation algorithm implicitly performs a sequence of de-
formation retractions on the exact Voronoi diagram to gen-
erate a simplified Voronoi diagram with the same homotopy
type as the original.

3.3. Overview

We now provide an overview of our approach for computing
the homotopy preserving approximate Voronoi diagram of a
3D polyhedron. We assume that the Voronoi diagram is de-
fined with respect to the Euclidean metric. We construct the
Voronoi diagram by separately computing the symbolic and
geometric parts. We compute an approximate Voronoi graph,
such that the corresponding approximate Voronoi diagram is
homotopy equivalent to the exact Voronoi diagram.

The computation of the symbolic part of the Voronoi dia-
gram is based on spatial subdivision that is used to com-
pute the incidence relationships between Voronoi diagram
elements. During spatial subdivision, each cell and the cell
elements are labeled by their respective governors. The sub-
division is terminated when the portion of the Voronoi di-
agram constrained to the interior of the cell is homotopy
equivalent to a point. Under this condition, multiple vertex
nodes in the Voronoi graph inside the cell can be replaced by
a single vertex node. An example is shown in figure 1.
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(a)                   (b)

Figure 1: Homotopy Preserving Approximate Voronoi Dia-

gram: A subset of a 2D polygon is shown in bold. (a) The ex-

act Voronoi diagram is shown in green. Two cells of a spatial

subdivision are shown with dotted lines. Brown points rep-

resent Voronoi vertex nodes. (b) Each cell satisfies the ho-

motopy preserving criterion. The corresponding homotopy

preserving approximate Voronoi graph is shown in blue. The

red points represent nodes approximating the Voronoi sub-

graph inside the cell.

To guarantee homotopy equivalence, we first highlight some
topological properties of Voronoi regions under the Eu-
clidean distance metric. Moreover, we present a criterion to
guarantee that the Voronoi diagram computed within a cell
is homotopy equivalent to a point. The criterion is based on
computing the arrangement of conics (i.e. degree two alge-
braic curves) on a plane and involves solving univariate quar-
tic equations. The criterion is presented in Section 4. In or-
der to accelerate the computation and reduce the number of
non-linear tests, we perform spatial subdivision and update
the governor set associated with each cell. The algorithms to
evaluate the homotopy criteria and computing a homotopy
preserving approximate Voronoi graph are presented in Sec-
tion 5.

Given the graph of homotopy preserving approximate
Voronoi diagram, we compute a geometric approximation to
the Voronoi diagram using techniques presented in [ER02,
BCMS05]. This involves computing an approximation of the
seams and sheets. Furthermore, the diameter of the cell used
for spatial subdivision algorithm provides bounds on the two
sided Hausdorff distance between the geometric approxima-
tion and the exact Voronoi diagram. In other words, the cell
size is chosen as a function of the Hausdorff bound.

In our approach, we ignore degenerate Voronoi regions. A
Voronoi region V(pi) is said to be degenerate if it has zero
volume, i.e. there does not exist an open ball B3 such that
B3 ⊂ V(pi). Such Voronoi regions belong to an edge shared
between two co-planar triangles, or a vertex for which all in-
cident triangles are co-planar. Sites with degenerate Voronoi
regions are removed from A as a preprocess. Note that re-
moval of degenerate Voronoi regions does not change the
homotopy type of the Voronoi diagram, since a degener-
ate Voronoi region is a subset of the closure of an adjacent
Voronoi region. Furthermore, we constrain the domain of
computation to be inside a bounding box of the polyhedron,
so that each Voronoi region is closed and bounded (i.e. it is
a compact set).

4. Homotopy Preserving Voronoi Diagram

In this section, we present our theoretical results and subdi-
vision criteria to guarantee homotopy equivalence between
the approximate Voronoi diagram and the exact Voronoi di-
agram in a cell. We use this criteria as part of the algorithm
presented in Section 5.

We begin by enumerating a topological property of Eu-
clidean Voronoi regions and then introduce the criteria used
to guarantee homotopy equivalence. Finally, we show that
our criteria are satisfied at some finite level of subdivision,
and thereby proving completeness.

Property 1 (Voronoi regions are topological balls) If each
site pi is a convex set, then each bounded Voronoi region
V(pi), under the Euclidean distance metric, is homeomor-
phic to an open ball B3.

Proof We show that V(pi) is contractible, i.e. homotopy
equivalent to a point in R

3. and rely on the fact that a
contractible compact subset of R

3 is homeomorphic to a
ball B3 [CZ06]. We prove contractibility by constructing
an explicit map. We define a continuous map F : V(pi)×
I → V(pi), such that F(x,0) = x, for any x ∈ V(pi), and
F(x,1) = c for some point c. Here I is the unit interval [0,1].
Let I1 = [0,0.5], I2 = [0.5,1]. We construct F in two stages,

F(x, t) = G(x, t)∀t ∈ I1

= H(G(x,0.5), t)∀t ∈ I2

where, G : V(pi) × I1 → V(pi) and H : pi × I2 → pi,
G(V(pi),0.5) ⊆ pi and H(pi,1) = c.

First we shall construct G. Consider the map πpi(x) :
V(pi) → pi. Let G(x, t) = (1− 2t)x + 2tπpi(x), where t ∈
I1,x ∈ L. To prove that G is continuous, we need to show
that πpi(x) is continuous. Assume that πpi(x) is not con-
tinuous. Then some point x ∈ V(pi) has 2 unique closest
points on pi, let πpi(x) = {p1,p2}. Consider the isosceles
triangle ∆xp1p2 and the mid-point, p = p1+p2

2 . Then xp is
an altitude from x to p1p2 and d(x)p < d(x)p1 = d(x)p2.
Since pi is convex, p ∈ pi and leads to the contradiction
πpi(x) = p. Thus the maps πpi(x) and G are continuous.
Further G(x, t) gives the shortest path from x to pi. Sher-
brooke et al. [She95] show that (a) the shortest path from a
point on the Voronoi diagram (medial axis) to the closest site
lies entirely inside the Voronoi region, and (b) the shortest
paths from two points on the Voronoi diagram to the clos-
est site can intersect only at the site. Thus G(x, t) ∈ V(pi)
for all x ∈ V(pi), t ∈ I1, and G(x1, t) ∩ G(x2, t) = ∅ for
x1,x2 ∈ V(pi),x1 6= x2, t ∈ [0,0.5).

Now we construct the map H. Let c be the centroid of pi.
Since pi is convex, c ∈ pi. Let H(x, t) = 2(1− t)x + 2(t −
0.5)c, t ∈ I2,x ∈ pi. H(x, t) is a continuous function, by def-
inition. Since each site is simply connected, H(x, t) ∈ pi for
all x∈ pi, t ∈ I. By definition, F(x, t) is continuous at t = 0.5.
Thus V(pi) is contractible.
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4.1. Homotopy Criterion

We now present the 2D criteria to check if the Voronoi di-
agram inside a cell in the spatial subdivision is homotopy
equivalent to a point.

Definition (Homotopy Criterion): An Axis Aligned
Bounding Box (AABB) cell C, with governor set G(C), sat-
isfies the homotopy criterion if V(pi)∩∂C is homeomorphic
to a topological disk B2, for each pi ∈ G(C).

We will show that the Voronoi diagram inside a cell satis-
fying the homotopy criterion is contractible (i.e. homotopy
equivalent to a point). Following this result, all Voronoi ver-
tices inside the cell can be replaced by a single vertex while
preserving the homotopy type. We now present some results
that follow from the homotopy criterion and prove that the
Voronoi diagram in the cell is indeed contractible.

Lemma 1 Let C be a cell satisfying the homotopy criterion.
For all pi ∈ G(C), (a) V(pi)∩ ∂C 6= ∅, (b) ∂V(pi)∩C ∼= B2

and (c) V(pi)∩C ∼= B3.

C

p

V(p)V
2

V
1

M
1

M
c

L

Figure 2: Proof of Lemma 1: The Voronoi region V(p), of a

line site p, intersecting a 3D cell C. The boundary of the cell

partitions V(p) into 2 regions: V1 in the interior of C and V2

in the exterior. ∂V1 = M1. Intersection of V(site) with ∂C is

a topological disk, denoted Mc

Proof The result (a) follows from the definition of G(C). ∂C

partitions V(pi) into 2 spaces, V1 = V(pi)∩C,V2 = V(pi)∩
Cc (i.e. V2 is outside the cell C). Let M1 = ∂V(pi)∩C,Mc =
V(pi)∩ ∂C,L = ∂Mc = ∂V(pi)∩ ∂C. We need to show that
M1

∼= B2
,V1

∼= B3. From the homotopy criterion, Mc
∼= B2,

and the boundary L is a simple closed curve, L ∼= S1. This
boils down to proving that V1

∼= B3. From property 1, it fol-
lows that ∂V(pi) ∼= S2. Furthermore, L ⊂ ∂V(pi), and us-
ing the Jordan curve theorem on the 2-sphere, it partitions
∂V(pi) into 2 topological disks. Thus, M1

∼= B2. We now de-
fine a homeomorphism f : ∂M1 → ∂Mc which glues M1 to
Mc. We also have M1 ∩Mc = L ∼= S1. Thus f is the iden-
tity map on L, which maps each point on ∂M1 to the iden-

tical point on ∂Mc. Thus the connected sum of M1 and Mc

is homeomorphic to a 2-sphere. Then M1 ∪Mc
∼= S2, thus

∂V1
∼= S2

,V1
∼= B3.

Using the above results, we provide an explicit construc-
tion to prove that the homotopy criterion is sufficient for the
Voronoi diagram constrained to the cell is contractible. To
prove this, we perform a series of retractions on the Voronoi
regions contained inside a cell.

We define a retraction gi : C → C to be the exclusion of
the interior of Voronoi region from the cell C (see figure 3).
Given a cell C satisfying the homotopy criterion, let Vk be the
subset of C left after k retractions, where k = 0,1, . . . , |G(C)|.
We now prove a result on the retractions.

V(a)

g(v(a))

(v(a))

Figure 3: Deformation retract of a Voronoi region: A 2D cell

is shown with dotted boundary. The solid curves represent a

Voronoi diagram. Each Voronoi region satisfies the homo-

topy criterion (in 2D). The retraction g takes all points in

the Voronoi region V(a) to its boundary ∂V(a).

Lemma 2 Vk+1 is homotopy equivalent to Vk.

Proof Vk+1 = Vk \ Int(V(pi)). Since C satisfies homotopy
criterion, V(pi) ∩ C ∼= B3 and ∂V(pi) ∩ C ∼= B2. Also,
(V(pi)∩C) \ Int(V(pi)) = ∂V(pi)∩C. There exists a de-
formation retract from a ball B3 to a disc B2. This implies
existence of a map G : V(pi)∩C → ∂V(pi)∩C such that:
(a) the restriction of H to ∂V(pi)∩C is equal to the identity
on ∂V(pi)∩C, and (b) H ◦G is homotopic to the identity on
∂V(pi)∩C, where H is the inclusion ∂V(pi) →V(pi).

We then define Ĝ : Vk →Vk+1 to be the identity on Vk+1 ⊂Vk

and equal to G on Int(V(pi)). Then if Ĥ is the inclusion
Vk+1 →Vk, it is clear that Ĝ◦ Ĥ is homotopic to the identity
on Vk and Ĥ ◦ Ĝ is homotopic to the identity on Vk+1. Thus
Vk ∼Vk+1.

Theorem 1 If a cell satisfies the homotopy criterion, then the
Voronoi diagram constrained to the cell is contractible.

Proof Initially V0 = C and finally V f = VD(A)∩C where
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f = |G(C)|. From lemma 2, V0 and V f are homotopy equiv-
alent. We know that the cell C is contractible. Thus V f is
contractible.

4.2. Completeness

In this section, we prove the completeness. To do this we use
the following theorem:

Theorem 2 For any point on the boundary of a Voronoi re-
gion V(pi), there exists an open ball Br of strictly positive
radius r such that ∂V(pi)∩Br

∼= B2.

Proof We perform case analysis on the location of the point.

(a) The point lies in the interior of a Voronoi face. Each face
is a 2-manifold embedded in R

3. Then at each point on the
face, there exists an open ball of finite radius such that inter-
section of the ball with the face is 2-manifold - i.e. homeo-
morphic to a disk.

(b) The point lies in the interior of a Voronoi edge. At a
Voronoi edge, the Voronoi region is bounded by 2 Voronoi
faces. Each bisector surface (i.e. a quadric surface) is dif-
feomorphic to a disk. In a small neighborhood of the point,
the arrangement of the Voronoi faces incident at the Voronoi
edge is homeomorphic to the arrangement of a set of half-
planes incident at an edge. The intersection of a half-plane
with a sphere centered on the edge is a single curve seg-
ment. Then the 2 curve segments, arising from the intersec-
tion of the sphere and the two bounding Voronoi faces meet
at exactly 2 points - the end points of the 2 curves. Thus the
boundary of the intersection of Voronoi region boundary at
a Voronoi edge and the boundary of ball (centered on edge)
is a circle. Therefore, the intersection with the ball is a disk.

(c) The point lies on a Voronoi vertex. The proof for case
(b) extends to this case. The boundary of a Voronoi region in
the neighborhood of a vertex consists of a finite number of
Voronoi faces meeting at Voronoi edges.

Theorem 2 implies that for any point on the Voronoi dia-
gram VD(A), we can find a ball of a finite radius such that
the intersection of the Voronoi regions with the ball satisfy
the homotopy criterion. Thus the subdivision will terminate
once the current cell is contained inside such a ball.

5. Approximate Voronoi Diagram Computation

In this section, we present details of our algorithm. First we
describe how we evaluate the homotopy criterion for each
Voronoi region in a given cell. Then we present our algo-
rithm to compute the graph of the approximate Voronoi re-
gion.

5.1. Homotopy Criterion Computation

Theorem 1 in Section 4 implies that this test reduces to
checking whether the intersection of the Voronoi diagram

with the boundary of a cell is homeomorphic to a disk. This
is equivalent to determining if the intersection of the bound-
ary of a Voronoi region with a cell is homeomorphic to a cir-
cle. We compute the boundary of the Voronoi region along
each face of the cell and compute the union over all faces.

The boundary of a Voronoi region consists of sheets, seams
and junctions. Each sheet is a subset of the bisector between
the carriers of two sites. Given a sheet fα and a cell face F ,
a Voronoi face event is the intersection of fα and F and cor-
responds to a conic curve on F in the general case. We com-
pute an arrangement of the conics on the face [KCMh99].
The intersection of the conic sections gives Voronoi edge

events [ER02], representing intersection of seams with a cell
face. Along with each edge event, we store the set of gover-
nors of the Voronoi edge. If the sheet is a plane tangential to
cell face, we compute the intersection with the face vertices.
In case the Voronoi edge event consists of infinite number of
points, we compute its intersection with the boundary of a
face.

a b

d c

abg

abcd

a
b

e

f

g

Figure 4: Homotopy criterion computation: We show a face

of a cell in the computation of approximate Voronoi diagram

of the L-shape. Each colored region represents the intersec-

tion of a Voronoi region with the face, and is labeled by its

governor. Each region is homeomorphic to a disc, hence sat-

isfies the homotopy criterion. The circles represent Voronoi

edge events: e.g. the point (abcd) represents intersection of

a degenerate Voronoi edge and the face. The bold conic seg-

ments represent the face events, representing boundary of the

Voronoi region of site a, computed by our tracing algorithm.

All intersections of conics do not provide the valid edge
events. We compute the valid edge events based on the al-
gorithm CellFaceVoronoiEdgeIntersection pre-
sented in [ER02]. Given the set of edge events, we trace the
conic segments between edge events sharing a common gov-
ernor to obtain the Voronoi face events. A closed sequence of
face events sharing a common governor provides the bound-
ary of the Voronoi region of the site on the cell face. Two
edge events are connected by a face event if they share at
least two common governors (corresponding to the bisec-
tor between the governors). In case there are multiple points
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Figure 5: L-shape Model: The homotopy preserving ap-

proximate Voronoi diagram is computed for this model. The

edges of the approximate Voronoi diagram are shown in

blue. The vertices are highlighted with red. The orange re-

gion shows a zoomed in view of a degenerate vertex with 6
seams incident on it.

sharing same 2 governor labels, we sort them according to
their parametric coordinates on the conic and connect the
2 closest points. In the presence of degenerate seams, each
conic segment between two edge events may not represent a
valid face event. Checking if a segment is a valid face event
is equivalent to determining if it lies on the boundary of the
Voronoi region of a site pi. In order to perform this test,
we enumerate all conic segments incident on an edge event
and trace along the conic segment which is closer to the pi

than to all other governors of the edge event. Finally, we
join the face events at boundaries of adjacent faces to com-
pute the intersection of the Voronoi region with the boundary
of the cell. A cell satisfies the homotopy criterion if all the
Voronoi region boundaries on the cell boundary form one
simple closed loop.

5.2. Computing cell governors

The homotopy criterion needs to be satisfied for all sites that
belong to the governor set of a cell. Here we present our
scheme to compute a set of governors of the cell. We use a
sequence of culling tests to prune the set of governors of a
cell. A site pi can be removed from the governor set of a cell
C of diameter δ if:

1. Distance exclusion: There exists another governor p j ∈
G(C) such that centroid of C is closer to p j and difference
in distance is greater than δ.

2. Polytope exclusion: The domain polytope (a polytope
bounding the Voronoi region of site pi) does not intersect
C.

Figure 6: Cuboid Model with 2 equal dimensions: The edges

of the approximate Voronoi diagram are shown in blue. The

vertices are highlighted with red.

3. Bisector exclusion: There exists another governor p j ∈
G(C) such the cell C is closer to p j and lies inside the
domain polytope of p j.

Each of these tests involves solving inequalities or a system
of linear equations [Cul00]. These tests provide a conser-
vative estimate of the governors of a cell. The exact set of
governors of the faces of a cell is computed from the ar-
rangement of Voronoi regions on the faces, as described in
section 5.1. We now present a result that ensures computing
the arrangement on the boundary of a cell is sufficient for
computing the cell governors.

Lemma 3 For an interior cell C, if V(p j)∩ Int(C) 6= ∅ then
V(p j)∩∂C 6= ∅.

The proof follows trivially from the facts that the Voronoi re-
gions are connected (topological balls) and contain the site.
A consequence of Lemma 3 is that it suffices to check the
boundary of a cell to compute governors of an interior cell.
For boundary cells, we impose further restrictions on the
governor set of the cell to check if each Voronoi region in-
tersects the cell boundary.

Boundary cell criterion: Given a boundary cell C, with a
set of sites X intersecting C, C satisfies the boundary cell
criterion if:

1. X contains at most one point site pp, and X \{pi} con-
tains sites incident on the point pi.

2. The governor set G(C) is a subset of X .

These two conditions ensure that each non point site in the
governor set G(C) intersects the boundary of the cell - thus
their Voronoi regions must intersect the boundary of the cell.
For each point site, its Voronoi region constrained to the cell
is given by intersection of its domain polytope and the cell,
thus its Voronoi region must intersect the cell boundary if its
domain polytope is non-empty. Condition (1) can be trivially
tested. We conservatively test for condition (2) by checking
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if the conservative governor set does not include any sites
from A\X .

5.3. Approximate Voronoi Diagram Computation

In this section we provide our algorithm for computing a ho-
motopy preserving approximate Voronoi diagram. We first
compute a homotopy preserving approximate Voronoi graph
using spatial subdivision. The steps are given as follows:

1. Compute a discrete distance field on uniform grid at some
fixed resolution.

2. Compute the governor set of each cell using exclusion
tests presented in Section 5.2.

3. Check if a cell satisfies the homotopy criterion. In addi-
tion, check if each boundary cell satisfies the boundary
criterion. If either of the criteria are not met, subdivide
and update the governor sets of the children cells.

4. If a cell satisfies the homotopy and boundary criteria, in-
sert a subgraph node inside the cell. Connect the node to
the edge events on the boundary of the cell.

This algorithm provides us with a homotopy preserving ap-
proximate Voronoi graph. To extract the homotopy preserv-
ing approximate Voronoi diagram, we further refine it to de-
tect unique vertex nodes and edge nodes. We use a result
from [ER02] to detect Voronoi vertices: If the number of in-
tersection points of a Voronoi edge eα and ∂C is odd, then
there exists a Voronoi vertex in C. We subdivide a leaf cell
if it contains more than two edge events with same governor
set. If a cell has exactly two edge events with same gover-
nor set, we remove the subgraph node and directly connect
the two edge events with a subset of the Voronoi edge. The
refined approximate Voronoi graph consists of nodes of type
Voronoi vertex and subgraph and edge nodes connecting the
vertex and subgraph nodes. We follow a loop of Voronoi
edge events joined by the same face event on the boundary
of a cell to extract the Voronoi faces.

6. Implementation and Results

In this section, we briefly describe our implementation and
highlight its performance on different benchmarks. We have
implemented the system in C++, and use OpenGL to display
the results. The timings reported in this paper were taken on
a 2.4Ghz Opteron PC with 1GB of memory. The discrete
distance field and spatial grid is computed efficiently using
graphics hardware [SGGM06]. The resolution of the uni-
form grid was chosen to be half of the length of the smallest
edge of the polyhedron to ensure satisfiability of Condition
(1) of the boundary criterion.

We have tested our algorithm on a set of examples from sim-
ple geometry with known degenerate configurations to more
complex models consisting of thousands of sites. Figure 5
shows an L-bracket with symmetric cubical sections. The

bottom half contains degenerate seams and junctions. Fig-
ure 7) shows a spoon model with 254 sites. Figure 8) shows
a flattened chisel model with a radial axis of symmetry and
random perturbations added to the handle. This benchmark
is particularly difficult to handle with many several degen-
erate configurations near the axis of the handle. As a result,
there is a large governor set for many cells.

Figure 7: Spoon Model: The model has 254 sites, including

84 triangle sites, 126 edge sites, and 44 vertex sites. The

computation for homotopy preserving approximate Voronoi

diagram took 1.7s for this model. The edges and vertices of

the approximate Voronoi graph are highlighted in blue and

red respectively.

Figure 8: Chisel Model: The model has 1,797 sites, includ-

ing 632 triangle sites, 847 edge sites, and 318 vertex sites.

It has many degenerate configurations near the axis of the

handle. Two views of the approximate Voronoi graph are

shown in the bottom. The computation for homotopy pre-

serving approximate Voronoi diagram took 130.3s for this

model. The edges and vertices of the approximate Voronoi

graph are highlighted in blue and red, respectively.

6.1. Homotopy Preserving MAT Approximation

We have applied our homotopy preserving Voronoi diagram
computation algorithm to compute a homotopy preserving
medial axis approximation of 3D polyhedrons [SFM05]. In
practice, this simplification tends to remove unstable fea-
tures of Blum’s medial axis, while preserving the topolog-
ical structure. In particular, we can guarantee that the ap-
proximate medial axis is homotopy equivalent to the orig-
inal shape. The approximate medial axis is extracted from
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approximate Voronoi diagram by removing Voronoi faces
with a governor set such that one governor is a subset of
the closure of the other. The elements of the medial axis are
removed using a stability measure based on the separation
angle formed by connecting a point on the medial axis to its
governors. Some examples of the computed homotopy pre-
serving approximate medial axis are shown in figures 9- 10.

(a) Model (b) Approximate MAT

Figure 9: Knot Model (2.5k polygons). The homotopy pre-

serving Voronoi diagram is used to compute a homotopy

preserving approximate medial axis (shown in green). The

sheets consist of thin and long faces. The Voronoi diagram

computation took 5.2s.

7. Discussion

In this section we perform an analysis of the individual
stages of our algorithm and compare it with prior techniques.

7.1. Analysis and Comparisons

The total running time of the subdivision algorithm is de-
pendent on the depth of the subdivision performed and the
relative configuration of the Voronoi faces. In this section,
we provide time bounds on the computation cost per cell,
specifically the cost of computing the homotopy criterion.
Let the size of governor set of a cell be k. Then the number
of intersection points is bounded by O(k2). Each intersection

Figure 10: Ridged Rod (5k polygons), The model has ridges

near the surface, which leads to many unstable features in

the medial axis. The sheets of the approximate medial axis

are shown in (b). The Voronoi diagram computation took

211s.

point is checked against remaining O(k) governors to deter-
mine if it is a valid edge event. Given the set of edge events,
they are sorted by their governor labels in O(k2 logk2) time.
Next the algorithm used to trace the Voronoi edges in a single
region boundary performs O(1) computations at each edge
event. Thus the total cost of computing the edge events and
tracing the all Voronoi region boundaries on a cell is at most
O(k3). Typically, the number of governors per cell is small,
but in the worst case it can be k = O(N), N = number of en-
tities on the boundary) for degeneration configurations. The
boundary criterion can be computed in O(k) time.

Comparison: We compare our algorithm to prior ap-
proaches for computing the Voronoi diagram of polyhedral
models.

The seam curve tracing methods [CKM04, SPB96, RT95]
compute the exact Voronoi diagram. In practice, they can
compute a topologically correct Voronoi diagram, but they
require use of exact arithmetic to solve a system of tri-variate
non linear equations. Furthermore, they are prone to degen-
erate configurations. As a result, these approaches may not
scale well to large models.

Our work is most similar to work on computing an approx-
imate Voronoi diagram using spatial subdivisionr. The work
of [VO98, BCMS05, SS06] does not provide any topologi-
cal guarantees on the computed approximate Voronoi dia-
gram - instead the subdivision is carried out to a predefined
level. The work of Etzion and Rappoport [ER02] provides
a topologically valid Voronoi graph for cells of size greater
than some predefined constant ε. In general, it is not easy
to select a good value of ε for large models. For degener-
ate and near-degenerate configurations, they compute an ap-
proximate Voronoi graph, with no topological guarantees. In
case of large cells, their approach computes an approxima-
tion that is homeomorphic to the exact Voronoi diagram only
for non-degenerate configurations. Moreover, they require
that the cells are subdivided till the number of governors of
a cell is small (typically 4− 6, except for special cases). As
a result, their approach can be rather conservative.

In comparison, our algorithm provides a less strict topolog-
ical guarantee on the output. We ensure homotopy equiva-
lence between the exact Voronoi diagram and our approxi-
mation, even in the presence of degenerate and near degen-
erate configurations. We exploit the fact that in the neigh-
borhood of a near-degenerate configuration, the Voronoi di-
agram is homotopy equivalent to a point and this property
simplifies the overall computation. The homotopy criterion,
introduced in Section 4.1, also checks for this condition in a
cell containing a degenerate configuration. Furthermore, the
homotopy criterion allows for early termination during sub-
division, even if a call has a large number of governors. This
results in fewer levels of subdivision. In practice, the size of
leaf nodes in the subdivision is of similar scale as the input
geometry.
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7.2. Limitations

Our algorithm has a few limitations. The approximate
Voronoi diagram computed by our algorithm is not home-
omorphic to the exact Voronoi diagram. Since it is based on
spatial subdivision, the cost of computation and the com-
plexity of the approximate Voronoi diagram varies based on
the configuration the subdivision grid. In particular, one may
encounter degenerate configurations in which the intersec-
tion of the Voronoi regions with the boundary of the cell
may be a single point (i.e. a tangential intersection), and such
cases cannot be easily resolved with only subdivisions. We
believe a subdivision scheme which allows for perturbation
of the cell faces may be able to alleviate this problem.

8. Conclusions and Future Work

We have presented an approach to compute a homotopy pre-
serving approximate Voronoi diagram of a 3D polyhedron.
Homotopy equivalence is a weaker topological guarantee
compared to homeomorphism, however it captures all the
topological features of the shape. Our algorithm is based
on an adaptive spatial subdivision, and guarantees that the
Voronoi diagram in each cell is homotopy equivalent to a
point. The topological tests are performed by computing the
arrangement of 2D conic sections.

Hence our algorithm is simpler than exact 3D Voronoi dia-
gram computation and can handle near-degenerate configu-
rations of the Voronoi diagram. We have highlighted its per-
formance on many benchmarks and also used it to compute
a homotopy preserving medial axis approximation.

There are many avenues for future work. The approximate
homotopy preserving Voronoi diagram can have a compli-
cated structure for large models. We would like to study var-
ious methods for simplifying this structure and apply it to
different applications like motion planning, feature identi-
fication and shape analysis. Furthermore, we would like to
evaluate the accuracy of those simplification schemes. We
would also like to combine our algorithm to other subdivi-
sion schemes such as kd-trees, which offer a better choice of
partitioning planes.
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