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We present an efficient path planning algorithm for highly articulated robots
with many degrees of freedom (DoFs). Our approach takes into account phys-
ical and geometric constraints and formulates the problem as constrained dy-
namic simulation. We simulate the motion of the robot using a sub-linear
time adaptive forward dynamics algorithm. We also present fast collision de-
tection and response computation algorithms for articulated models. Our plan-
ner computes an initial path for the articulated robot and refines the path by
performing bounded-error dynamic simulation to ensure non-penetration. In
practice, our planner scales well with the number of DoFs for highly articu-
lated Tobots. We demonstrate its performance on models with hundreds and
thousands of DoFs.

1 Introduction

Highly articulated robots, such as snake or serpentine robots, with many
degrees of freedom (DoFs) have received considerable attention recently
[CB94b, HHC98, WJCT03]. Chirikjian and Burdick first introduced the term
hyper-redundant robots to describe such robots with a very high number DoF's
[CB90, CB94a]. Snake-like robots can serve as suitable alternatives over tra-
ditional robotic systems for difficult terrains and challenging scenarios. These
include search and rescue missions in complex urban environments, planetary
surface exploration, minimally invasive surgery, or inspection of piping and
cabling. Highly articulated robots also have many applications in homeland
security and national defense, as well as enabling inspection of ships, contain-
ers and other structures with narrow, tight workspace. Many computational
biology algorithms also model the molecular chains as articulated models with
hundreds or thousands of links.

Most of the prior work in motion planing for articulated models takes
into account only the geometric constraints, like non-penetration, collision-
free path computation and kinematics of manipulators. It is also important to
account for the physical and dynamic constraints, and deal with the complex-
ity of the hyper-redundant robots in terms of high number of DoFs. Current
physically-based motion planning algorithms are limited to relatively simpler
robots that can be represented as mass-spring systems and do not account
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for all the physical constraints. Additionally, snake-like robots are often rep-
resented as 1D curves.

Main Results: In this paper, we present a novel path planning algorithm
for highly articulated robots. We use the constraint-based planning framework
[GLO2] that treats both geometric and physical constraints and transforms the
planning problem into a constrained dynamics simulation problem. In order
to efficiently handle a large number of joints and modular components, we
adapt a progressively refined forward dynamics algorithm [RGLO05] and select
the most important joints to simulate with bounded errors based on rigorous
motion metrics. We also present algorithms for efficient collision detection
between the articulated robot and the rest of the environment and collision
response computation. Some of the main characteristics of our planning algo-
rithm are:

e Physically-based: We take into account forward dynamics of articulated
joints during motion planning, in addition to the geometric constraints
(e.g. collision detection, contact handling, kinematic constraints, etc).

e Efficiency: We perform lazy dynamics update and achieve sub-linear
running time performance in terms of DoFs when some of the joints do
not move much.

e Real-time: Our algorithm can simulate the forward dynamics and plan
the path for a robot with very high DoFs in real time, using a progressive
refinement framework.

e Error-bounded simulation: Our tight approximation to a robot’s dy-
namics and motion is based on well-defined motion metrics that compute
the regions of simplification with bounded errors.

We have implemented our algorithm and tested the resulting system on
Dell M60 Mobile Workstation, with a 2.1GHz Pentium-M processor and 1GB
of main memory. On moderately complex planning scenarios, our algorithm
is able to compute a path for an articulated robot consisting of up to 2,000
DoF's at interactive rates. Our improved adaptive forward dynamics algorithm
with contact resolution provides up to 10x performance improvement in the
resulting planner.

Organization: The rest of the paper is organized as follows. Section 2 sum-
marizes related work in this area. We give an overview of our approach in
Section 3. We present the forward dynamics algorithm and our extension to
resolve contacts in Section 4 and 5, respectively. We describe our overall plan-
ning algorithm in Section 6 and discuss its implementation in Section 7.

2 Previous Work

In this section, we briefly review some of the related work in motion planning
of the snake-like and flexible robots. We also give an overview on forward
dynamics algorithms for articulated robots.

2.1 Motion Planning of Snake-like and Flexible Robots

Many of the existing work in motion planning can be applied to planning of
general articulated robots [Lat99, CLHT05]. Most of the prior work in motion
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planing for snake-like robots takes into account only geometric constraints
and kinematics of manipulators [CB90, CB94a, CB94b, HHC98]. Most of the
existing algorithms for deformable robots are specialized for snake-like geom-
etry, such as pipes, cables, ropes, and flexible wires [SSL96, NK97, AOLKOO0,
LKO04, MK04, MKO05, GSLMO05]. However, most of these techniques either
are geometric in nature or use optimization techniques that do not consider
some of the physical constraints of highly articulated robots, such as forward
dynamics for a high degree-of-freedom chain, joint limits, collision detection
and contact resolution. A recent planning algorithm deals with more general
deformable robot [RLAO6], but does not consider friction and motion con-
straints (e.g. joint limits), which could be important for realistic modeling of
interaction between the robot and its environment.

Fast specialized algorithms for tying knot [BLMO04] and thin solids [Pai02]
have also been proposed. But, they are designed for small-scale interaction and
relatively focused domains. It is not clear how well they scale up for complex,
lengthy snake-like robots.

2.2 Forward Dynamics

Multi-body systems and forward dynamics is central to simulation of an ar-
ticulated robot. Due to the space limitation, we refer the readers to a recent
survey [FO00] for more details. Our earlier work on adaptive forward dynamics
[RGLO5] also gives a brief overview of recent work in this area.

3 Overview

This section will provide the notation used throughout the paper and formalize
the planning problem as constrained dynamic simulation of an articulated
robot.

3.1 Notation

We simulate our articulated robot, R, as a sequence of m rigid bodies con-
nected by m—1 joints, j1, ..., jm—1. Lhe state or configuration C' of the robot
at time ¢ is the collection of m—1 joint angles Q(t) = {q1(¢), ..., ¢m-1(t)} and

m — 1 joint velocities Q(t) = {¢1(t), ..., dm-1(t)}, or C(t) = {Q(t), Q(t)}. We
also keep track of the joint accelerations, Q(¢) = {G1(¢),...,dm-1(t)}. Each
joint can theoretically have up to six degrees of freedom (DoFs) (three revo-
lute directions, three prismatic), but for articulated robots it is sufficient for
joints to be 1-DoF. With this type of joint, we can construct an articulated
robot that effectively has 2-DoF joints by attaching two joints to each other,
one rotated to have an axis of rotation orthogonal to both the other joint and
the axis of the robot. This construction simplifies the implementation of the
articulated body. Also associated with each joint j; is a pair of joint limits,
(lower Joint Limit, upper Joint Limit), which defines the range of motion for
a particular joint. Additionally, we refer to first link in a serial linkage, or the
root node in a tree linkage as a the base link.

The motion equations for the articulated body are given using the spa-
tial notation introduced by Featherstone [Fea99]. Essentially, spatial notation
includes both translational and rotational components of motions and forces
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in six-dimensional vectors. For example, the velocity field of a rigid body in
a reference frame centered in O is represented by the six-dimensional vector
V = [w v(0)]¥, where w is the angular velocity of the rigid body and v(O) is
the linear velocity of the rigid body at the origin of O. Further information
about spatial algebra, spatial kinematics, and spatial dynamics can be found
in [Fea99, Kok04, Mir96].

The planning environment consists of a set of rigid, static obstacles O =
{01, 09,...} in the workspace W. With these, we can formulate our problem
as follows:

Find a sequential set of robot configurations {C(t,)...C(ty)} such that
no C(t;) intersects any obstacle in O, and C(t;) satisfies environment bound-
ary, non-penetration, joint-limit, and dynamics constraints, where C(t,) is
the initial configuration of the robot and C(ty) is the final configuration.

3.2 Constraint-Based Motion Planning

The core of our planning algorithm builds upon Constraint-Based Motion
Planning (CBMP) [GL02]. CBMP effectively maps the motion planning prob-
lem into a constrained dynamics simulation. The planner links the initial and
final configurations by sequentially computing intermediate dynamic states
that satisfy the given set of constraints.

One key advantage of CMBP is that physical and mechanical properties
of the robots and obstacles are automatically available along with geometric
constraints. Furthermore, while CBMP can operate in high-dimensional con-
figuration spaces, it can plan the path directly in the workspace by posing
the planning problem as simulation of a constrained dynamical system. This
transformation of the problem makes an intractably large configuration space
much more manageable.

The core of the CBMP framework is a physically-based simulation in which
constraints are satisfied by applying virtual forces to the system. The con-
strained dynamical system simulated is then used to guide the robot to a goal
configuration, while ensuring that constraints are satisfied.

3.3 Planning for a hyper-redundant robot

Although multi-body dynamics has been widely studied, it is still compu-
tationally costly to simulate a system with a high number of DoFs. To ef-
ficiently simulate an articulated robot R, we take advantages of a recently
introduced technique called adaptive forward dynamics for articulated
bodies [RGLO05]. This method enhances the performance of our planner by
determining the joints undergoing most significant motion and thereby per-
form updated computations accordingly. The algorithm simulates either a
fixed number of “active joints” or the number needed to reach the desired
error tolerance. Based on motion metrics, it automatically updates the set of
active joints that best represent the overall motion of the robots. This simu-
lation handles the kinematic joint and articulated body dynamics constraints
required for the robot.

However, the original algorithm does not handle contacts. We extend it
to provide efficient collision detection and (possibly) sub-linear time con-
tact response methods to satisfy the boundary, non-intersection, and non-
penetration constraints. Additionally, our formulation can handle the colli-
sion and contact dynamics constraints effectively. The remaining constraints
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enforce joint limits on the robot and encourage it to follow a guide trajec-
tory that can be pre-computed for any given environment using one of the
previously known methods [GL02, GSLMO5].

Finally, we integrate the articulated body dynamics with contact handling
with a simple planner, which is responsible for creating a guiding trajectory
for the robot and locally altering the planned trajectory to avoid obstacles by
enforcing the constraints.

4 Adaptive Articulated-Body Dynamics

We extend the adaptive articulated-body forward dynamics algorithm [RGLO5]
which adaptively recomputes the forward dynamics of a snake robot by only
simulating the joints that best depict the overall motion of the robot with
bounded errors. Precisely, we are able to select the appropriate number of
simulated joints in the articulated body when determining a path for the
robot. The adaptive dynamics algorithm only simulates these many joints,
which results in faster dynamics computations and automatically evolves the
set of simulated joints at runtime based on the forces applied to the articu-
lated body. The set of active joints are selected based on customizable motion
metrics, using an error-bounded approximation of the articulated body accel-
eration.

In the following, we briefly describe the basic components of the adap-
tive articulated-body dynamics. For more details, we refer the reader to the
original paper by Redon et al. [RGLO05].

4.1 Articulated-body dynamics

The adaptive dynamics algorithm is built upon Featherstone’s divide-and-
conquer algorithm (DCA) [Fea99]. Featherstone’s algorithm is a linear time
algorithm to compute the forward dynamics of an articulated body based on
the forces applied to it. The algorithm relies on the following articulated-body
equation:
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where &; is the 6 x 1 spatial acceleration of link i, f; is the 6 x 1 spatial force
applied to link i, b; is the 6x 1 bias acceleration of link i (the acceleration link 4
would have if all link forces were zero), ®; is the 6 x 6 inverse articulated-body
inertia of link ¢, and ®;; is the 6 x 6 cross-coupling inverse inertia between
links ¢ and j.

The DCA employs a recursive definition of an articulated body: an articu-
lated body is a pair of articulated bodies connected by a joint. The sequence
of assembly operations is described in an assembly tree: each leaf node of the
assembly tree represents a rigid body, while each internal node describes an
assembly operation, i.e. a subassembly of the articulated body. The root node
of the assembly tree represents the complete articulated body.
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The forward dynamics of the articulated body are computed in essentially
two steps. First, the main pass recursively computes the inverse inertias, the
inverse cross-coupling inertias, and the bias accelerations of each node in the
assembly tree, from the bottom up. Then the back-substitution pass computes
the acceleration and the kinematic constraint forces relative to the principal
joint of each internal node in the assembly tree, in a top-down way. When the
DCA completes, all joint accelerations and all kinematic constraint forces are
known.

4.2 Adaptive articulated-body dynamics

Featherstone’s DCA is linear in the number of joints in the articulated body:
all nodes have to be processed in each pass of the algorithm, and each joint
acceleration has to be computed. Determining a path or resolving contacts
for a highly articulated body could be prohibitively slow using a typical for-
ward dynamics algorithm. In order to improve the performance of the planner,
we incorporate the adaptive dynamics algorithm by Redon et al. [RGL05] to
lazily simulate the articulated body motion that best represents the overall
motion of the robot with an error-bounded approximation. Essentially, this
enhanced algorithm allows us to systematically choose the appropriate number
of joints that are simulated in the articulated body, by automatically deter-
mining which joints should be simulated, in order to provide a high-quality
approximation of the articulated-body motion.

Essentially, the adaptive algorithm relies on the proof that it is possible to
compute an acceleration metric value A(C) =3, GF A4, i.e. a weighted
sum of the joint accelerations in the articulated body, before computing the
joint accelerations themselves. Specifically, they show that the acceleration
metric value A(C') of an articulated body can be computed from the forces
applied to it:
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where ¥; and ¥;; are 6 x 6 matrices, p; is a 6 x 1 vector, and 7 is in IR. The
coefficients ¥;, ¥;;, p; and n are called the acceleration metric coefficients of
the articulated body.

The acceleration metric is used to predict which nodes have the largest
overall acceleration during the top-down back substitution pass, and to restrict
the computation of the joint accelerations to a sub-tree of the assembly tree
only, while implicitly assuming that the other joint accelerations are zero.
In effect, this allows us to determine an error-bounded approximation of the
articulated-body acceleration, and evolve the set of active joints accordingly.

In summary, the adaptive algorithm is able to automatically determine
which joints move the most, according to the acceleration and a similar ve-
locity motion metric!, based on the forces applied to the articulated body.

! In our implementation, we use identity weight matrices.
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5 Contact, Collision, and Joint Impacts

This section describes a number of constraints for the articulated body. We
first describe how contact, collision, or joint impact situations are detected.
Then, we describe how to add non-penetration, non-intersection, and bound-
ary constraints, as well as dynamics-based contact response.

5.1 Impact Determination
Joint-Impact Determination

A joint impact occurs when a joint position reaches its limits, to ensure that
the robot does not bend too much in any particular direction. In general,
it is only necessary to compare the current position of each joint with its
predefined limits. In order to maintain efficiency with adaptive articulated-
body dynamics, this generalizes to only checking joints which are currently
active. Thus, joint impacts can be found by traversing the assembly tree and
terminating at rigidified nodes. All joints which violate the constraint are
reported to the resolution system.

Collision and Contact Determination

Contacts and collisions are impacts that can occur between the body and the
environment, due to an intersection or penetration between the robot and
the environment. Contacts are distinguishable from collision by comparing
the relative velocity of the bodies at the contact location. This information is
computed during the contact and collision resolution phase. Thus, the remain-
der of this section focuses on finding the impact events. Since the geometric
aspects are identical, collision detection and contact determination are treated
as the same operation with the two terms used interchangeably.

Collision detection has been widely studied for decades. Although collision
detection for snake robots can be handled using a naive application of existing
methods, inefficient collision checks can result in sub-optimal performance for
the overall planning algorithm, as contact queries can take up to 95% or more
of the overall running time for the planner.

We perform two culling steps, based on azis-aligned bounding bozes (AABBs)
and oriented bounding bores (OBBs), to help localize potential collisions,
before performing intersection tests at the triangle level. We pre-compute
and store one hierarchy of oriented bounding boxes for each rigid robot link
and each rigid environment obstacle. We also precompute one axis-aligned
bounding box for each obstacle in the environment. The OBB hierarchies and
AABBEs of environment obstacles do not have to be updated during planning.

At runtime, we determine the intersections between the robots and the
environment obstacles using the following collision detection algorithm:

e AABB hierarchies update: For each mobile rigid link, we determine a
bounding AABB using the root OBB of the OBBTrees [GLM96]. We then
compute an AABB for each node of the assembly tree (i.e. for each sub-
assembly of the articulated body) using a bottom-up pass. We thus obtain
one AABB hierarchy per articulated body, whose structure is identical to
the assembly tree of the articulated body.
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e AABB culling: Using the AABB hierarchies, we detect potentially col-
liding rigid links and objects.

e OBB culling: When two rigid objects are found to potentially intersect
after the AABB culling step, we recursively and simultaneously traverse
their OBB hierarchies to help localize potential collisions between pairs of
triangles [GLM96].

e Triangle/triangle intersection tests: Whenever two leaf-OBBs are
found to overlap, a triangle/triangle intersection test is performed to de-
termine whether the triangles contained in the leaf-OBBs intersect. When
they do, we report the the corresponding intersection segment.

All pairs of intersecting triangles and the corresponding intersection seg-
ments are reported. Note that this algorithm handles both robot/robot col-
lision detection and robot self-collision detection, since all steps can operate
on pairs of links that belong to distinct or identical robots.

5.2 Collision, Contact, and Joint-Impact Resolution

This section describes the methodology used in responding to collisions, con-
tacts, and impacts events. In general, we formulate the problem as determining
what virtual force or virtual impulse must be applied to the body in order to
achieve a desired response and how to apply the force or impulse to ensure
the robot is in a valid state. Additionally, these methods must be efficient;
otherwise we would not be able to achieve the sub-linear runtime complexity
as the original adaptive forward dynamics.

We first describe a unified impulse-based approach suitable for handling
both collision and contact. This formulation inherently handles dynamics con-
straints such as static and sliding friction. Then, we describe a method for
resolving joint impacts.

Impulse-Based Dynamics

Impulse-based dynamics provides a unified framework for handling both con-
tacts and collisions. In particular, it integrates physical concepts for both
collision and friction into a single method. It is derived from the following
assumptions: all colliding objects are perfectly rigid, Stronge’s hypothesis,
and the Coulomb friction law. In practice, impulse-based dynamics are a lo-
cal solution as opposed to constraint-based dynamics, which provide a global
solution.

For both rigid and articulated bodies, impulse-based dynamics consists
primarily of three steps.

1. Collision Matrix Determination: The collision matrix captures the
dynamics properties of either a rigid or an articulated body for a given
contact or collision.

2. Collision Integration: Given a collision matrix and some other dynam-
ics information, this step outputs an appropriate impulse that satisfies
collision and contact constraints.

3. Impulse Application: This step applies the impulse to the physical
model. While this is simple for rigid bodies, the process of applying im-
pulses to articulated bodies is more involved.
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From the current impulse-based dynamics for articulated bodies, the first
step has a worst case O(m) run-time complexity for m joints, and the third
step has a linear, O(m) runtime complexity, since it must propagate the ve-
locity resulting from the impulse to the remaining joints on the body. The
second step is performed independently from the body, and is bounded by the
time to perform numerical integration over a pair of intervals representing the
compression and restitution phases.

Since efficiency is a goal of our planner, we use a modified impulse-based
dynamics scheme which fits within the adaptive dynamics framework. Thus,
impulses are determined and applied to the hybrid state of the articulated
body. Next we briefly describe the necessary changes to the impulse-based
dynamics algorithm. For more details, we refer the reader to [XXXO06].

Collision Matrix Determination

For articulated bodies (and similarly for rigid bodies) the collision matrix, K,
is a 3 x 3 matrix and is constant for each contact or collision. It can be shown
that for a single contact, there is a linear relationship between the applied
contact impulse and the resulting change in velocity, with K being the linear
coefficient. Thus, K can be determined by applying unit test impulses in each
of the basis directions and observing the result.

In terms of a serial linkage, this amounts to one update from the link in
contact to the base link to propagate the impulse, and another update from
the base to the link in contact to determine the change in its velocity. By
taking advantage of the error metrics established for adaptive articulated body
dynamics, we can limit this traversal to only the joints that must be simulated
given an user-defined error tolerance. Since the robot body is organized into
an assembly tree, this amounts to performing in-order traversals in either
direction, and not proceeding past sub-trees that are marked as inactive.

This change ensures that each collision matrix determination asymptot-
ically does as much work as the adaptive forward dynamics computation,
since each one operates only over active joints. It should also be noted that a
collision matrix must be determined for each contact point.

Impulse Response

By this stage, we have determined what impulse needs to be applied in order
to properly simulate and satisfy the contact or collision dynamics. This task
involves appropriately applying the impulse to the body and propagating the
resulting change in velocity.

This requires one pass from the contact link to the base link, and then a
complete pass from the base to all the links. Like collision matrix determina-
tion, this too ordinarily requires a linear run-time complexity in the number
of DoFs. However, as in the finding the collision matrix, the pass up the tree
can be easily reduced to only the active joints through the modified in-order
traversal. And, the top-down pass similarly terminates at the inactive nodes.

5.3 Joint-Impact Resolution

Here we describe an efficient method for satisfying the joint limit constraint.
While a simple option is through the application of stiff spring-like penalty
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forces, such an approach can lead to instabilities in simulation. Instead, we
modify the acceleration-based constraint [Kok04] in order to utilize our adap-
tive framework.

This work relies on the fact that at any particular instant in time, there
exists a linear relationship between the magnitude of the generalized forces
acting upon the body and the magnitude of the acceleration of either the
body’s joints or links. Here, a generalized force refers to the aggregation of all
forces and torques being applied. This can be expressed as either

a' =kf+a or ¢ =kf+q°

where a refers to spatial acceleration at a point, f is the generalized force (a
collection of external forces and torques) or a joint force, § is the joint acceler-
ation, k describes a scalar inverse inertia, and the super-scripts 1 and 0 refer
to the acceleration after application of the force, and before it, respectively.
It follows that for linear constraint functions on joint accelerations, h(§),

h(G") = h(i®) = kf

for some constant k. Thus, we can determine k£ by evaluating the constraint
function before and after application of a unit test joint force.

Given k, we can solve for f (as a joint force) in order to satisfy the con-
straint. This can be easily generalized to solve for multiple, simultaneous con-
straints as described in [Kok04]. Computationally, this step requires inverting
a matrix whose dimensions are equal to the number of constraint functions.
In practice, this number has been fairly low.

Application of the resulting joint force will take advantage of our adaptive
framework. Therefore, little extra work is done by the forward dynamics al-
gorithm. It remains to show how we apply this formulation to joint-impacts.
[Kok04] gives a treatment of this type of constraint, requiring one accelera-
tion and one impact constraint for each event. The acceleration constraint can
easily be derived from the above discussion. When a joint reaches a limit, we
want to ensure that it will no longer move in a direction that will violate the
joint limit. For acceleration, setting the joint’s acceleration to zero will ensure
that the joint no longer moves against its limitations. We can use the simple
constraint function,

ha) = i

which is satisfied when h(§) = 0, or ¢ = 0. So, for each impact, we add one of
these constraints to the constraint set.

The impact constraint is formed in a similar manner. However, instead
of affecting the acceleration, it requires a direct change in joint velocities,
much like the prior impulse-based method. The key concept is that over a
discrete time interval §t, an acceleration is seen as a change in velocities, with

magnitude
g _ (@ —4q%)

=5

where ¢! is the acceleration due to an impact. Without loss of generality, Jt
can be set to 1, and this can be placed in an acceleration constraint,

hd) =i — i
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At this time, when the constraint function evaluates to zero, or our constraint
is satisfied, the joint acceleration will be § = ¢/. Once we determine the
force necessary to satisfy the constraint and determine accelerations after its
application, the joint velocities can be computed and directly applied to the
body. Since this is all based on acceleration updates, it fits nicely within the
adaptive forward dynamics framework. Thus, the run-time complexity is no
worse than the original adaptive forward dynamics algorithm.

6 Path Planning

In this section, we describe the planning algorithm that combines kinematic,
non-penetration, joint-limit, and dynamics constraints in order to plan the
motion for a highly articulated, snake-like robot. It should be noted that while
the emphasis is on serial linkages, these ideas are applicable to tree linkages
such as legged robots as well as more complex linkages with loops.

The complete planning algorithm proceeds in two phases; (1) an initial
trajectory or guiding path computation phase followed by (2) the simulation
phase.

6.1 Initial Trajectory Computation

The planner first computes an initial trajectory p,,p1,p2,...,ps for the robot
R to take, where each p; is a milestone along the path, and p, and ps represent
the initial and final configuration. This trajectory does not need to be collision
free along the entire path. By satisfying all geometric and physical constraints,
the simulation phase will locally correct the motion and subsequent path to
stay in a valid, collision free state.

Rather than simply generating random samples in the workspace, sev-
eral other options are available. A simple, and effective, approach takes the
cross-sectional diameter, d, of the robot into account. Following well-known
roadmap generation methods, we compute random samples in the work space
such that no sample is within a distance d from any obstacle in O. Then,
nearby samples, or milestones, are connected to construct a roadmap. By
connecting the initial and goal position of the root to the roadmap, an initial
guiding path can be generated.

It should be noted that for this robot, the initial paths do not likely guar-
antee collision-free paths. These guiding paths only serve as an initial guess at
how the robot should move through the environment. As mentioned earlier,
the constrained dynamic simulation will locally adapt the robot to ensure a
valid path is generated.

6.2 Simulation

The simulation phase is responsible for maintaining the state while allowing
the robot to progress through the environment to the goal. The result of the
simulation is a sequence of robot configurations that constitute the complete
path of the robot. This phase proceeds either until the goal is reached, or
some maximum time has lapsed for which to assume the robot cannot make
it to the goal.

At the core of the simulation is the current state C(t;) of the robot along
with a list of constraints and constraint solvers. At each time step of the
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simulation, the constraints must be satisfied. These constraints include non-
penetration constraint, collision avoidance with the obstacles, staying within
the environment, and maintaining joint limits. The previous section described
how to solve these constraints. Then, through numerical integration, the sys-
tem is updated to give the next state, C(t;11).

But, up to this point, all the constraints mentioned serve to ensure the
robot properly interacts with the environment. We also provide another con-
straint, in the form of a penalty force, which works to move the robot along
the guiding path toward the goal. We use a local planner similar to that of
Gayle et. al [GSLMO05], but additionally include extra repulsive and attractive
forces whose goal is to help the robot’s body stay closer to the path while also
moving along it.

Since the guiding path is essentially in the workspace, there is still the
possibility the robot is placed into a configuration which will break a con-
straint. For instance, this could occur when the robot must turn around a
sharp corner, that forces some joint to go beyond its joint limits.

To remedy this situation, once the robot reaches a milestone, we store
its configuration. Then, if the robot reaches such a state, we remove the edge
currently being traversed from the roadmap and recompute a trajectory. Once
a new trajectory is found, we set the robot’s state to the milestone farthest
along the new trajectory and resume the simulation. This effectively enables
the robot to backup while ensuring it can reach a valid state along the new
path. This approach is essentially a depth-first search for valid paths.

6.3 Planning Step

Here we show a summary of steps in the simulation. The simulation phase
proceeds as follows:

1. Perform collision detection and check joint limits
2. Update the constraint set to include collisions, solve, and apply the con-
straint forces f¢.
3. Propagate the forces, f¢ in the body (i.e. update the bias and joint accel-
erations for each active region)
4. Integrate to find new joint positions (¢(t)) and new velocities (¢(t)) for
this step
5. a) Check to see if this is a valid state
b) If not a valid state, recompute the path and set the positions and
velocities to their value at the milestone that was most recently visited
and on the new path.
6. Update current joint positions and velocities with the new joint positions
and velocities.

7 Implementation and Results

We have implemented this algorithm on a Dell M60 Mobile Workstation,
with a 2.1 GHz Pentium-M processor and 1 GB of main memory. To test the
effectiveness and feasibility of the approach, we applied the planner to several
different scenarios.
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Fig. 1. Benchmark scenarios: (a) Serial Wall; (b) Tunnel; (c¢) Liver Catheterization;

(d) Pipes; (e) Debris.
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Fig. 2. Simulation time vs. number of active joints. This graph shows the time spent
in dynamics computations for a set number of active joints. The dashed horizontal
lines show represents the time if DCA was used for forward dynamics. The numbers

above this line represent the speedup observed for that number of active joints.

e Serial Walls - This scenario is based upon a Texas A&M Parasol Motion
Planning benchmark. The robot must travel through each of the holes in

order to reach the goal. (See Fig. 1(a))

e Tunnel - Our Tunnel scenario is also based upon a Texas A&M Parasol
motion planning benchmark. It is composed of a simple tunnel through a
block with two right angle bends about half way through the block. This
scene requires the planner to quickly solve many simultaneous contact

constraints. (See Fig.1(b))
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Scene Total Joints | Active Joints | Env. (tri) [ Robot (tri) | Sim. Time (s) | Avg. Step Time (s)
Walls 300 50 216 6000 17.5 0.0008

Tunnel | 600 150 72 12000 66.92 0.003

Catheter | 2500 200 80086 50000 1821 0.0071

Pipes 2000 200 38146 40000 193.6 0.0064

Debris 2000 175 1296 40000 157.3 0.0059

Fig. 3. This table shows the complexity of the robot, scene, and the time spent in
the dynamics stages of planning.

e Catheterization - Based on a simulated medical procedure, a thin tube-
like catheter must navigate through a sequence of arteries. After entering
through the femoral arteries, the goal is to find a tumor in the liver for
treatment. (See Fig. 1(c))

e Pipes - This situation represents an application of snake robots for pipe
inspection. A snake-like robot coils around piping while searching for a
leak in the pipes. (See Fig. 1(d))

e Debris - Modeling a search-and-rescue scenario, the snake-like robot
searches for an opening in a pile of debris where a survivor or impor-
tant artifact may be found. Then, the snake must find a way out of the
debris. (See Fig. 1(e))

In all of these scenarios, the robot is modeled as a sequence of connecting
cylinders. The geometric representation of each cylinder contains 20 triangles.
As previously described, each joint is a 1-DoF revolute joint.

The results of each planning algorithm can be seen in their associated
figure. The performance of our planner is highlighted in Figure 3. This table
shows the complexity of the robot in terms of joint and geometric complexity.
The active joint column refers to the number of joints simulated during the
scenario. This number was chosen such that the robot could complete the task
with bounded motion error and to be fairly efficient. Finally, the total time
spent in simulation, as well as the average time step, is shown for each task.

The table highlights the performance of our planning algorithm. Compared
to previous approaches for catheterization, our total planning time was about
7 to 8 times faster than reported results [GSLMO5]. For the other scenarios,
the reported time is usually fairly small, with dynamics computation taking
less than 4 minutes in many of the scenarios. It should be noted that the
overall dynamics time is highly dependent upon the length of the guiding
path. This explains why the catheterization benchmark takes much longer
while having a time step comparable to the other complex benchmarks.

The effectiveness of the adaptive framework is explored in Fig. 2. In the
graph, the horizontal bars represent timings using the standard Featherstone
DCA. Since DCA is not adaptive, it runs linearly with the number of joints.
As can be seen, the adaptive framework enables much faster computation. In
practice, we have observed up to one order of magnitude speedup with about
10% to 15% of the joints being active.

7.1 Analysis

We discuss some of the comparisons with other planners here, with regard to
the more complex debris, catheterization, and pipes benchmarks. Note that
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while many of the DoFs are fairly constrained, the configuration space (C-
space) still has over 2000 DoFs.

A standard Probabilistic Roadmap (PRM) planner is not feasible at this
point since it would require an extraordinarily large number of samples and
does not easily model the dynamics of the scene. Similarly, the sequen-
tial framework [GG95] does not consider dynamics. While some variants of
Rapidly-exploring Random Tree (RRT) planners [LK00] have handled con-
tacts, their performance also would suffer from the size of the C-space.

Another recent related work plans for curves of constant length [MKO05],
but again this does not handle dynamics with the environment. Gayle et. al
[GSLMO5] plan for a similar catheter scenario, but the reported time is about
8 times slower than that of our planner for snake-like robots. The planner by
Rodriguez et. al [RLA06] would have difficulty with these scenarios due to the
high aspect ratio of the robot, as the robot plans around its center of mass.

Our approach also has some limitations. Namely, it currently cannot han-
dle tree-linkages or loops. Its performance is dependent upon the error toler-
ance and the number of active joints. There is no guarantee that the motion
is accurate in all cases.

8 Conclusion and Future Work

In this work we have introduced a novel planning framework for snake-like
robots. It uses an adaptive approach to simulating multi-body dynamics by
using error-bounded motion metrics. It incorporates collision and contact con-
straints to model dynamics with the environment. The preliminary results are
promising, generating paths with bounded errors in motion metrics very effi-
ciently.

There are many potential directions for future research based on this plan-
ning algorithm. As mentioned in the limitations, we would like to generalize
the method to handle more complex articulated topologies. Since the focus
is on snake-like robots, it would be useful to update the model to include
snake-like motion. We would also like to validate our results where possible,
such as on clinical trials for the catheterization procedure.
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