
RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes
using BVHs

Christian Lauterbach, Sung-Eui Yoon, David Tuft, Dinesh Manocha

University of North Carolina at Chapel Hill

Abstract
We present an efficient approach for interactive ray tracing of deformable or animated models. Unlike many of the
recent approaches for ray tracing static scenes, we use bounding volume hierarchies (BVHs) instead of kd-trees as the
underlying acceleration structure. Our algorithm makes no assumptions about the simulation or the motion of objects
in the scene and dynamically updates or recomputes the BVHs. We also describe a method to detect BVH quality
degradation during the simulation in order to determine when the hierarchy needs to be rebuilt. Furthermore, we
show that the ray coherence techniques introduced for kd-trees can be naturally extended to BVHs and yield similar
improvements. Our algorithm has been applied to different scenarios composed of tens of thousands to a million
triangles arising in animation and simulation. In practice, our algorithm can ray trace these models at 4-20 frames a
second on a dual-core Xeon PC.

1. Introduction

Ray tracing is a classic problem in computer graphics and
has been studied in the literature for more than three decades.
Most of the earlier ray tracing algorithms were used to gener-
ate high quality images for offline rendering. Over the last few
years, there has been renewed interest in real-time ray trac-
ing. At a broad level, most of the work in real-time ray tracing
algorithms can be classified into three main categories: im-
proved techniques to compute acceleration structures, exploit-
ing ray coherence, and parallel algorithms on shared memory
or distributed memory systems.

Most current interactive ray tracing algorithms use kd-trees
as an acceleration data structure [RSH05, Wal04]. In practice,
kd-trees are simple to implement, can be stored in a compact
manner, and are used for efficient tree traversal during ray in-
tersections. However, one of the the main disadvantages of kd-
trees is the high construction time; current algorithms can take
many seconds even on models composed of tens of thousands
of triangles [Hav00, WH06]. Furthermore, no simple and fast
algorithms are known for incrementally updating the kd-tree
hierarchy, even when the primitives undergo a simple defor-
mation. As a result, current algorithms for interactive ray trac-
ing are mainly limited to static scenes.

Main results: In this paper, we present a simple and efficient
algorithm for interactive ray tracing of dynamic scenes. We
analyze many issues with respect to computation and incre-
mental updates of hierarchies. Our algorithm uses bounding
volume hierarchies (BVHs) of axis-aligned bounding boxes
(AABBs), for which we describe efficient techniques to re-
compute or update these hierarchies during each frame. In
practice, rebuilding of BVHs can be expensive, so we min-
imize these computations by measuring BVH quality degra-
dation between successive frames. We also apply the ray co-
herence techniques developed for kd-trees to BVHs and ob-
tain similar speedups. Finally, we describe techniques to paral-
lelize these computations on multi-core architectures and im-

prove the cache efficiency of the resulting algorithms. We have
implemented our algorithm and highlight its performance on
several dynamic scenes. Our system can render these datasets
with secondary and shadow rays at 4− 20 frames per second
on a dual-core 2.8GHz Xeon PC with 2GB of memory.

Overall, our approach offers the following advantages:

1. Simplicity: Our algorithm is very simple and easy to im-
plement.

2. Interactivity: We are able to handle dynamic scenes with
up to a million triangles at interactive rates on current desk-
top PCs.

3. Generality: Our algorithms make no assumptions about
the motion of the objects or the underlying simulation or
animation.

The rest of the paper is organized in the following manner:
We give a brief overview of previous methods in Section 2. We
present our BVH hierarchy computation algorithm and evalu-
ate its features with other approaches in Section 3. Section 4
describes our ray tracing algorithm for dynamic scenes based
on BVHs and addresses the issue of utilizing multi-core archi-
tectures. Finally, we show the results obtained by our approach
on several benchmarks in section 5.

2. Previous Work

In this section, we give a brief overview of prior work in inter-
active ray tracing and dynamic scenes.

Interactive ray tracing: Since its early introduction in
[App68, Whi80], the ray tracing algorithm has been very well
studied in computer graphics due to its generality and high
rendering quality. Recently, several systems have been pre-
sented that are capable of generating ray traced images at in-
teractive speeds. A recent survey is given in [SSM∗05]. Parker
et al. [PMS∗99] present a real-time ray tracing algorithm on
a shared-memory supercomputer. Several approaches use ray
coherence to improve performance and achieve interactive

1

Figure 1: Princess Model: Four different images of a 220 step sequence from a dynamic cloth simulation consisting of 40K
triangles. By computing and updating the AABB hierarchy of the deforming model, we are able to achieve 16 frames per second
on dual Xeon processors.

performance on commodity desktop systems for large static
datasets, such as coherent rat tracing [WBWS01, Wal04].
More recently, MLRT [RSH05] integrates kd-tree traversal
with beam tracing to further improve performance.

Dynamic Scenes: There is relatively less work on ray trac-
ing dynamic scenes. Reinhard et al. [RSH00] use a grid struc-
ture that can be updated efficiently for any type of anima-
tion. Lext et al. [LAAM01] present a general purpose frame-
work and benchmarks for ray tracing animated scenes. They
also propose an algorithm that uses oriented bounding boxes
along with regular grids [LAM01b]. Wald et al. [WBS03] de-
scribe a distributed system for dynamic scenes that differen-
tiates between transformations and unstructured movement in
the scene. Recently, Ingo et al. [WIK∗06] proposed coherent
grid traversal algorithm to handle dynamic models.

Bounding volume hierarchies: BVHs have been widely
used to accelerate the performance of ray tracing algorithms
[RW80, Smi98]. In the case of static scenes, algorithms based
on kd-trees and nested grids seem to outperform BVH-based
algorithms [Hav00]. Larsson and Akenine-Möller [LAM01a]
present a lazy evaluation and hybrid update method to effi-
ciently update BVHs in collision detection. They also use the
algorithm to ray trace models composed of tens of thousands
of polygons [LAM03]. BVHs have also been used to acceler-
ate the performance of collision detection algorithms for de-
formable models [vdB97, TKH∗05].

3. BVHs for dynamic scenes

In this section, we analyze the problem of ray tracing using
BVHs. We show that BVHs can offer better performance than
kd-trees on dynamic environments and present optimizations
to speed up rendering.

3.1. Choice of Hierarchies

A BVH is a tree of bounding volumes. Each inner node of
the tree corresponds to a bounding volume (BV) containing
its children and each leaf node consists of one or more primi-
tives. Common choices for BVs include spheres, AABBs, ori-
ented bounding boxes (OBBs) or k-DOPs (discretely oriented
polytopes). Many efficient algorithms have been proposed to

compute sphere-trees [Hub93], OBB-trees [GLM96], and k-
DOP-trees [KHM∗98]. However, we use AABBs as the BV as
they provide a good balance between the tightness of fit and
computation cost. We also use efficient algorithms for ray-box
intersection [SM03, WBMS05].

3.2. AABB hierarchies vs. kd-trees

In this section, we evaluate some features of BVHs based on
AABBs and compare them with kd-trees for ray tracing. Re-
cently, many efficient and optimized ray tracing systems have
been proposed based on kd-trees [Wal04]. As far as static
scenes are concerned, analysis has shown that optimized al-
gorithms based on kd-trees will outperform BVH-based al-
gorithms [Hav00]. There are multiple reasons to explain this
behavior: First, even the most optimized ray-AABB intersec-
tion test (e.g. from [WBMS05]) is more expensive than split
plane intersection for kd-trees. This is due to the fact that in the
worst case (i.e. no early rejection) up to 6 ray-plane intersec-
tions need to be computed for AABB trees, as opposed to just
one for a kd-tree node. Another important aspect is that a BVH
does not provide real front-to-back ordering during traversal.
As a result, when if a primitive intersects the ray, the algo-
rithm cannot terminate (as is the case for a kd-tree), but needs
to continue the traversal to find all other intersections. Further-
more, kd-tree nodes can be stored more efficiently (8 bytes per
node [WDS04]) than an AABB possibly could. On the other
hand, we found that BVHs often need fewer nodes overall to
represent the scene as compared to a kd-tree (please see Table
1). This is mainly due to the fact that primitives are referenced
only once in the hierarchy, whereas kd-trees usually have mul-
tiple references because no better split plane could be found.
In addition, AABBs have the advantage of providing a tighter
fit to the geometric primitives with fewer levels in the tree, e.g.
kd-trees need multiple subdivisions in order to discard empty
space. Most importantly, the major benefit of BVHs is that the
trees can be easily updated in linear time using incremental
techniques. No similar algorithms are known for updating kd-
trees.

3.3. BVH Construction

We construct an AABB hierarchy in a top-down manner by
recursively dividing an input set of primitive into two subsets

2

Figure 2: Cloth on Bunny Simulation: Two shots of a 315
step dynamic simulation of cloth dropping on the Stanford
bunny. We achieve 19 frames per second on average during
ray tracing of this deforming model.

until each subset has the predetermined number of primitives.
We have found that subdividing until each leaf just contains
one primitive yields the best results at the cost of a deeper hi-
erarchy, as – similar to kd-trees – node intersection is compa-
rably cheaper to primitive intersection. During hierarchy con-
struction, the most important operation is to find a divider for
the two subsets that will optimize the performance of runtime
ray hierarchy traversal. One of the best known heuristics for
tree construction for ray tracing is the surface-area heuris-
tic (SAH) [GS87], which has been shown to yield higher ray
tracing performance. However, it also has a much higher con-
struction cost, which can take a significant fraction of a frame
time for dynamic environments. Because of this, we use the
midpoint of one of the dimensions and sort the primitives into
the child nodes depending on their location with respect to
the midpoint. We observe that the midpoint heuristic provides
good rendering performance and is very fast to compute. Note
that even though we just split along one dimension, the bound-
ing box will still be tight along all the three dimensions. As
this method will often distribute a similar number of primi-
tives to both children, the resulting tree will likely be nearly
balanced. As we are storing just one primitive per leaf, it is
also easy to see that the total number of nodes in the tree for n
primitives will always be 2n− 1, which allows us to allocate
the space needed for any subtree during construction.

Regardless of the heuristic for finding a split, the time com-
plexity, T (n), of the recursive AABB hierarchy construction
algorithm, given an input model consisting of n primitives, sat-
isfies T (n) = kT (n

k) + O(n) due to its recursive formulation,
where k is the number of children of each node. Therefore, the
time complexity is O(n logk(n)).

3.4. Updating the hierarchy

The main advantage of using BVHs for ray tracing is that an-
imated or deforming primitives can be handled by updating
the BVs associated with each node in the tree. Our algorithm
makes no assumptions about the underlying motion or simu-
lation. In order to efficiently update the hierarchy, we recur-
sively update the BVHs by using a postorder traversal. We
initially traverse down to leaves from the root nodes. As we

encounter a leaf node, we efficiently compute a new BV that
has the tightest fit to the underlying deformed geometry. As
we traverse from the leaf node in a bottom-up manner, we ini-
tialize the BV of an intermediate node with a BV of the left-
most node and expand it with the BVs of the rest of the sibling
nodes.

The time complexity of this approach is O(n), which is
lower than the construction method. This is reflected by fast
update times (see Table 1), which can be one order of mag-
nitude lower than rebuilding the tree for models with hun-
dreds of thousands of polygons. Therefore, we rely on hier-
archy update operations to maintain interactive performance
for dynamic environments.

3.5. BVHs for deformable scenes

We initially build an AABB tree of a given scene. As the
model deforms or some objects in the scene undergo motion,
the BVH needs to be updated or rebuilt. Updating the BVH
is to recompute the bounds of each BV node, and rebuilding
the BVH is to recompute the entire BVH from scratch and re-
clustering the primitives. At runtime, we traverse the BVH to
compute the intersections between the rays and the primitives.

If the algorithm only updates the BVH between successive
frames, the runtime performance of BVHs can degrade over
the animation sequence because the grouping of the primitives
and structure of the hierarchy does not change. As a result,
the BVs may not provide a tight fit to the underlying geomet-
ric primitives. This is often characterized by growing and in-
creasingly overlapping BVs, which subsequently deteriorate
the quality of the BVH for fast runtime BVH traversal and
by adding more intersections between the ray and AABBs. In
such cases, rebuilding the AABB tree or parts of it is desirable.

We found that updating the BVH works well with relatively
small changes to the scene or structured movement to groups
of primitives. When primitives move independently, however,
for example in different directions, changes to the actual tree
structure may be necessary to reflect the new positions of the
deforming geometry. Still, rebuilding the BVH can be consid-
erably more expensive than updating the BVH. As a result,
we want to minimize the number of times rebuilding is per-
formed. Therefore, we need to efficiently decide when updat-
ing the BVH is sufficient or rebuilding the BVH is required.
This is non-trivial because the actual degradation of a BVH
depends on many factors, such as the speed with which prim-
itives move and the general characteristics of the motion of
objects in the scene. Simple approaches such as rebuilding the
tree every t frames have the disadvantage of not being adapt-
able to different characteristics over the animation and need to
be chosen a priori. Conservatively choosing t means adding a
lot of rebuilding overhead, which is especially unwanted in an
interactive context. In order to efficiently detect when updat-
ing tree or rebuilding tree is required, we use a simple heuristic
that is described in the next section.

3.6. Rebuilding criterion

We assume that BVH quality degradation is marked by bound-
ing box growth that is not caused by actual primitive size, but
by distribution of primitives or subtrees in the box. For ex-
ample, consider two primitives moving in opposite directions.

3

The parent node containing them will have to grow to accom-
modate for the movement, resulting in a bounding box that is
relatively large, but mostly empty. Since the probability that
a box will be intersected by a ray rises with its surface area,
we want to rebuild a subtree to find a more advantageous tree
topology. To find these cases and prevent them from impact-
ing performance, we need to measure BVH degradation dur-
ing each frame by using a simple and inexpensive heuristic.

Our heuristic is based on the idea that we can find nodes
that are large relative to their children by comparing their sur-
face area. In order to have a relative metric independent of
scale, we measure the ratio of each parent node’s surface area
to the sum of the area of its two children. The larger the ratio
becomes, the more imbalance exists in the sizes. We first com-
pute the ratio during tree construction and store it in a field of
the optimized AABB data structure (see next section). When-
ever the tree is updated, the changed surface areas are automat-
ically computed as and each inner node can easily calculate its
new ratio. Since we assume that the ratio stored from the con-
struction is as good as we can do, we find the difference be-
tween the new and old ratio and add them to a global accumu-
lation value. Once the bottom-up update reaches the root, we
have computed the sum of all the differences. To assure that
this value can be tested independently of the tree size, we nor-
malize it by dividing by the number of nodes that contribute
to the sum, i.e. the sum of inner nodes, which is always n−1.
This yields a relative value describing the overhead incurred
by updating the BVH instead of rebuilding it. This value is
then simply compared to a predefined threshold value and the
tree is rebuilt if the threshold is exceeded.

This approach has several advantages: it will detect a good
time to rebuild regardless of the actual frame rate and with-
out any scene-specific settings. Furthermore, in scenes where
there is little to no degradation, the heuristic will never need
to initiate a rebuild. It is also possible to use the method to just
rebuild subtrees, but we found that this cannot fully replace
a complete rebuild since degradations in the upper levels of
the hierarchy typically have the highest impact on the perfor-
mance of ray tracing.

4. Ray Tracing with BVHs
In this section we describe our runtime BVH traversal algo-
rithm. Also, we present techniques to extend the algorithm to
multi-core architectures.

4.1. Traversal and Intersection with BVHs

We use a simple algorithm to compute the intersection of a ray
and the scene primitives using the BVH. The ray is checked
for intersections with the children of the current node starting
at the root of the tree. If it intersects the child BV, the algo-
rithm is applied recursively to that child, otherwise that child
is discarded. Whenever a leaf node is reached, the ray is in-
tersected with the primitives contained in that node. For most
rays, the goal is to find the first hit point on the ray, so even if a
ray-primitive intersection is found, the algorithm has to search
the other sub-trees for potential intersections. An exception to
this are shadow rays, where (at least for directional or point
lights) any single hit is considered sufficient and traversal can
stop.

BVH traversal optimizations: Experience with kd-trees has

Figure 3: Bunny blowing up : Two images show frames
from a 113 step animation of a deforming Stanford bunny. We
achieve 8 frames per second on average during ray tracing
this deforming model with shadow and reflection rays.

shown that front-to-back ordering is a major advantage for ray
tracing. Although BVHs do not provide a strict ordering, we
found that storing the axis of maximum distance between chil-
dren for each AABB and using that information during traver-
sal together with the ray direction to determine a ’near’ and
’far’ child improves the traversal speed, especially for scenes
with a high depth complexity. Another issue is cache coher-
ence during traversal: similar to the compact kd-tree represen-
tations [WDS04], we can optimize the AABB representation
to fit within 32 bytes of data, which also includes the infor-
mation that is needed to rebuild the tree. Our profiling shows
that BVH traversal using our AABBs has the same cache effi-
ciency as the kd-tree traversal.

Use of ray coherence techniques: One of the main tech-
niques used in current real-time ray tracers is to exploit ray
coherence to reduce the number of traversal steps and prim-
itive intersections per ray. Those algorithms were originally
designed for the kd-tree acceleration structure. It is relatively
straightforward to extend them to work with BVHs as well. In
order to use coherent ray tracing [WBWS01] the BVH traver-
sal has to be changed so that a node is traversed if any of the
rays in the packet hits it and skipped if all of the rays miss
it. A hit mask is maintained throughout the traversal to keep
track of which rays have already hit an object and their dis-
tance. However, the traversal does no longer require that the
rays have the same direction signs because unlike kd-trees the
traversal order does not determine the correctness for a BVH.
We have implemented ray packet traversal for 2x2 ray bun-
dles and found that it yields a speedup of about 2 to 3, which
is even above the improvement obtained for kd-trees. Adapt-
ing the MLRT algorithm [RSH05] to BVHs is also straight-
forward.

4.2. Multi-Core Architectures

One of major features of current computing trends is that there
are multi-cores and hyper-threading functionality available on
commodity architectures. Therefore, it is desirable to design

4

our hierarchy construction, update, and runtime traversal such
that they take advantage of available parallelism.

Hierarchy construction: There are no good and optimal algo-
rithms that can easily parallelize hierarchy construction. Since
ray tracing scales well with multiple processors, it is desirable
to speed up construction by distributing the work over sev-
eral threads and cores. To achieve this, we first divide a set
of triangles and vertices up to four sets by using one thread.
Then, we assign each thread to construct a sub-BVH for each
divided set. In general, this may not achieve high load balanc-
ing. However, we found that this simple method works well
with our benchmarks since BVHs of our benchmarks are well
balanced.

Update: Our update method takes advantage of multi-core
processors by using a bottom-up update method. Given the
number of available threads, n, we decompose an input BVH
into n sub-BVHs. For this, we simply compute n different chil-
dren by traversing the tree from the root in the breadth-first
manner. Then, each thread performs a bottom-up update from
one of the computed nodes in parallel. After all the threads are
done, we then sequentially update the upper portion of the n
nodes. We particularly choose the bottom-up approach since
it is well suited to parallel processing. For example, we do not
require any expensive synchronization for each thread since
data that are accessed by threads are mutually exclusive to
each other. Table 1 shows the timings for our results. Since our
current BVHs are relatively well balanced, this simple scheme
provides reasonably good load balancing in practice.

Runtime traversal: We employ image-space partitioning to
allocate coherent regions to each thread. Also, in order to
achieve reasonably good load balancing, we first decompose
image-space into small tiles (e.g., 16×16) and, then, allocate
each tile to each thread. After a thread finishes its computa-
tion, it continues to process another tile. We found that this
approach works well with our benchmarks.

5. Implementation and Results

In this section, we describe our implementation and highlight
the results of our ray tracer on different benchmarks.

5.1. Implementation

We have implemented our interactive ray tracer for de-
formable models using BVHs in a dual Intel Xeon machine
at 2.8 GHz. To compare the performance of BVHs with previ-
ous interactive ray tracing work for rendering static scenes, we
also implemented kd-tree rendering(without animation capa-
bility). Both acceleration structures support ray packet traver-
sal using the SSE SIMD instruction set on Intel processors.
For efficiency reasons, we only support triangles as primitives.
To speed up rendering, we employ multi-threaded rendering
and hierarchy updates using OpenMP.

5.2. Results

We have tested our system on four animated scenes of varying
complexity as well as one more complex static model to mea-
sure performance of our approach (see Table 1). In general,
building a BVH tree using the naive midpoint method is much
faster than the optimized surface-area heuristic kd-tree con-

struction. In most cases, both structures have a similar mem-
ory footprint, but kd-trees need more nodes because primitives
can be located in multiple nodes.

Benchmarks: We show five different test cases (Refer Table
1): Scene 1 (shown in Fig. 2) and Scene 3 (shown in Fig. 1)
in the respective rows of the table demonstrate performance
on a typical animation including simulated cloth at differ-
ent complexity, both rendered including shadow rays. Even
though most of the mesh is moving, BVH updates turn out to
be sufficient to maintain the quality of the structure. Scene 4
(shown in Fig. 3) applies a non-rigid deformation to the Stan-
ford bunny model with reflection and shadow rays. To main-
tain BVH quality, some parts of the tree have to be rebuilt.
Scene 2 (shown in Fig. 4) is a part of the BART animated ray
tracing benchmark [LAAM01] and shows a set of triangles
with mostly unstructured, random movement. Since it has high
depth complexity and overlapping primitives, this scene is one
of the worst cases for BVH rendering as well as hierarchy up-
date. For the former, we have found that the ordering approach
for BVHs ameliorates the effects of depth complexity. Ad-
ditionally, the independent movement of each triangle leads
to extreme degradation in BVH quality, so that our heuris-
tic rebuilds parts of the tree quite often. Finally, we demon-
strate a more complex static scene of 1M Buddha (Scene 5) to
show that BVH ray tracing can compete with kd-trees even for
larger models. Unfortunately, the update time grows linearly
with model size, so a more efficient update scheme would be
needed to be able to render this or any larger model at high
frame rates.

We tested our heuristic for tree rebuilding on the test models
and found that in all cases except the BART model, just hier-
archy updates can be efficient enough for rendering. The un-
structured, random movement of triangles in the BART scene
makes several tree rebuilds necessary, however. Without doing
that, we found that frame rates will decrease by over an order
of magnitude in just a few frames. To test how well the re-
build times are chosen, we benchmarked the animation while
rebuilding only via heuristic (with the threshold set to 0.4) as
well as rebuilding the hierarchy every frame. We found that
even when looking just at pure rendering time without count-
ing rebuilding and updating, the animation rendered with new
hierarchy in each frame was only 20% faster than rendering
using our heuristic. The latter needed only a few rebuilds, so
the total overhead incurred by updates and rebuilds was only
2s over the whole sequence, as compared to 15s for rebuilding.

6. Future Work and Conclusion

We have proposed an algorithm for interactive ray tracing of
deformable, animated models. We used BVH hierarchies as
an acceleration data structure of the deformable models and
showed optimizations that will result in performance compet-
itive or even exceeding rendering using kd-trees. We were also
able to integrate efficient ray coherence techniques for kd-
trees to our BVHs. We do not make any assumptions about
the possible deformation or motion of objects and dynami-
cally update or rebuild the hierarchy depending on our simple
heuristic.

There are many interesting directions for future work. Our
current algorithm is mainly designed for small to interme-
diate model complexity. We would like to extend our algo-

5

Scene Triangles BVH:nodes memory build time update time fps
1) Cloth on bunny 16K 31923 997 KB 98 ms 4ms 19
2) BART model 16K 32767 1024 KB 96 ms 5ms 12
3) Cloth model 40K 80059 2501 KB 224 ms 8ms 16
4) Bunny 69K 138901 4340 KB 395 ms 11ms 8
5) Buddha 1M 2175431 67982 KB 7593 ms 167ms 4

Scene Triangles kd-tree:nodes memory build time
1) Cloth on bunny 16K 64137 859 KB 1487ms
2) BART model 16K 11075 1426 KB 1902ms
3) Cloth model 40K 218845 2778 KB 5s
4) Bunny 69K 442347 5072 KB 10s
5) Buddha 1M 2989439 33225 KB 80s

Table 1: Benchmarks and Timings: Results for BVH ray tracing of several scenes. The benchmark configuration for each of the
scenes is described in section 5. The top table shows the performance for a BVH. The bottom table shows the tree computation
time and memory overhead for a kd-tree of the same model (for comparison). All benchmarks were performed at 5122 resolution
on a dual Xeon machine at 2.8 GHz using 2x2 ray packet traversal. Both hierarchies were built using a single thread only.

Figure 4: BART Randomly Moving Triangles: Two image
shots from 170 steps of a randomly deforming model from the
BART deforming data benchmark. We are able to achieve 12
frames per second on average during ray tracing this model
with shadow rays.

rithm to handle larger deforming models, which would require
more efficient or localized update methods. Another interest-
ing problem is the better use of multiprocessor architectures
in the context of hierarchy construction and updates. We plan
to extend our current methods to be more general and flexible
for these applications. We found that there is concurrent work
on ray tracing of dynamic models based BVHs [WBS06] with
ours. We would like to perform a detailed comparison of our
algorithm with theirs.

References
[App68] APPEL A.: Some techniques for shading machine renderings of solids. In AFIPS

1968 Spring Joint Computer Conf. (1968), vol. 32, pp. 37–45.
[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.: OBB-Tree: A hierarchical structure

for rapid interference detection. Proc. of ACM Siggraph’96 (1996), 171–180.
[GS87] GOLDSMITH J., SALMON J.: Automatic creation of object hierarchies for ray

tracing. IEEE Comput. Graph. Appl. 7, 5 (1987), 14–20.
[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD thesis, Department of

Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical
University in Prague, November 2000.

[Hub93] HUBBARD P. M.: Interactive collision detection. In Proceedings of IEEE Sym-
posium on Research Frontiers in Virtual Reality (October 1993).

[KHM∗98] KLOSOWSKI J., HELD M., MITCHELL J., SOWIZRAL H., ZIKAN K.: Effi-
cient collision detection using bounding volume hierarchies of k-dops. IEEE Trans. on
Visualization and Computer Graphics 4, 1 (1998), 21–37.

[LAAM01] LEXT J., ASSARSSON U., AKENINE-MÖLLER T.: A benchmark for animated
ray tracing. In IEEE Computer Graphics and Applications (2001).

[LAM01a] LARSSON T., AKENINE-MÖLLER T.: Collision detection for continuously
deforming bodies. In Eurographics (2001), pp. 325–333.

[LAM01b] LEXT J., AKENINE-MÖLLER T.: Towards rapid reconstruction for animated
ray tracing. In Eurographics 2001, short presentation (2001).

[LAM03] LARSSON T., AKENINE-MÖLLER T.: Strategies for Bounding Volume Hierar-
chy Updates for Ray Tracing of Deformable Models. Tech. rep., 2003.

[PMS∗99] PARKER S. G., MARTIN W., SLOAN P.-P. J., SHIRLEY P., SMITS B. E.,
HANSEN C. D.: Interactive ray tracing. In SI3D (1999), pp. 119–126.

[RSH00] REINHARD E., SMITS B., HANSEN C.: Dynamic acceleration structures for in-
teractive ray tracing. In Proceedings Eurographics Workshop on Rendering (June 2000),
pp. 299–306.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-level ray tracing algorithm.
ACM Trans. Graph. 24, 3 (2005), 1176–1185.

[RW80] RUBIN S. M., WHITTED T.: A 3-dimensional representation for fast rendering
of complex scenes. Computer Graphics 14, 3 (July 1980), 110–116.

[SM03] SHIRELY P., MORLEY R. K.: Realistic Ray Tracing, second ed. AK Peters Lim-
ited, 2003.

[Smi98] SMITS B.: Efficiency issues for ray tracing. Journal of Graphics Tools: JGT 3, 2
(1998), 1–14.

[SSM∗05] SHIRLEY P., SLUSALLEK P., MARK B., STOLL G., WALD I.: Introduction
to real-time ray tracing. SIGGRAPH Course Notes (2005).

[TKH∗05] TESCHNER M., KIMMERLE S., HEIDELBERGER B., ZACHMANN G.,
RAGHUPATHI L., FUHRMANN A., CANI M.-P., FAURE F., MAGNENAT-THALMANN
N., STRASSER W., VOLINO P.: Collision detection for deformable objects. Computer
Graphics Forum 19, 1 (2005), 61–81.

[vdB97] VAN DEN BERGEN G.: Efficient collision detection of complex deformable mod-
els using aabb trees. Journal of Graphics Tools 2, 4 (1997), 1–14.

[Wal04] WALD I.: Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,
Computer Graphics Group, Saarland University, 2004.

[WBMS05] WILLIAMS A., BARRUS S., MORLEY R. K., SHIRLEY P.: An efficient and
robust ray-box intersection algorithm. Journal of Graphics Tools: JGT 10, 1 (2005),
49–54.

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Distributed Interactive Ray Tracing of
Dynamic Scenes. In Proceedings of the IEEE Symposium on Parallel and Large-Data
Visualization and Graphics (PVG) (2003).

[WBS06] WALD I., BOULOS S., SHIRLEY P.: Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies. Technical Report, SCI Institute, University of
Utah, No UUSCI-2005-014 (conditionally accepted at ACM Transactions on Graphics)
(2006).

[WBWS01] WALD I., BENTHIN C., WAGNER M., SLUSALLEK P.: Interactive rendering
with coherent ray tracing. In Computer Graphics Forum (Proceedings of EUROGRAPH-
ICS 2001) (2001), Chalmers A., Rhyne T.-M., (Eds.), vol. 20, Blackwell Publishers, Ox-
ford, pp. 153–164.

[WDS04] WALD I., DIETRICH A., SLUSALLEK P.: An Interactive Out-of-Core Ren-
dering Framework for Visualizing Massively Complex Models. In Proceedings of the
Eurographics Symposium on Rendering (2004). (to appear).

[WH06] WALD I., HAVRAN V.: On building fast kd-Trees for Ray Tracing, and on doing
that in O(N log N). SCI Institute Technical Report UUSCI-2006-009, University of Utah,
2006.

[Whi80] WHITTED T.: An improved illumination model for shaded display. Commun.
ACM 23, 6 (1980), 343–349.

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A., PARKER S. G.: Ray Tracing An-
imated Scenes using Coherent Grid Traversal. Technical Report, SCI Institute, University
of Utah, No UUSCI-2005-014 (conditionally accepted at ACM SIGGRAPH 2006) (2006).

6

