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Abstract

We consider the problem of task reweighting in fair-scheduled multiprocessor systems wherein each task’s processor share

is specied as a weight. When a task is reweighted, a new weight is computed for it, which is then used in future scheduling.

Task reweighting can be used as a means for consuming (or making available) spare processing capacity. The responsiveness of

a reweighting scheme can be assessed by comparing its allocations to those of an ideal scheduler that can reweight tasks instan-

taneously. A reweighting scheme is fine-grained if any additional per-task “error” (in comparison to an ideal allocation) caused

by a reweighting event is constant. In prior work on uniprocessor notions of fairness, a number of ne-grained reweighting

schemes were proposed. However, in the multiprocessor case, prior work has failed to produce such a scheme. In this paper, we

remedy this shortcoming by presenting a multiprocessor reweighting scheme that is ne-grained. We also present an experimen-

tal evaluation of this scheme that shows that it is often much more responsive than prior (non-ne-grained) schemes in enacting

weight-change requests.
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1 Introduction

Two trends are evident in recent work on real-time systems. First, multiprocessor designs are becoming common. This is due

both to the advent of reasonably-priced multiprocessor platforms and to the prevalence of computationally-intensive applications

with real-time requirements that have pushed beyond the capabilities of single-processor systems. Second, many applications

now exist that require fine-grained adaptivity, i.e., the ability to react to external events within short time scales by adjusting

task parameters, particularly processor shares. Examples of such applications include human-tracking systems, computer-vision

systems, and signal-processing applications such as synthetic aperture imaging.

To better motivate the need for ne-grained adaptivity, we consider in this paper one particular example application in some

detail—namely, the Whisper tracking system designed at the University of North Carolina to perform full-body tracking in virtual

environments [13]. Like many tracking systems, Whisper uses predictive techniques to track objects. The computational cost

of making the “next” prediction in tracking an object depends on the accuracy of the previous one, as an inaccurate prediction

requires a larger space to be searched. Thus, the processor shares of the tasks that are deployed to implement these tracking

functions vary with time. In fact, the variance can be as much as two orders of magnitude. Moreover, share changes must be

enacted within time scales as short as 10 ms.

In this paper, we consider the specic issue of how to support adaptive behavior such as this on (tightly-coupled) multipro-

cessors when using fair global scheduling algorithms, specically Pfair algorithms [3], as introduced later. In fair scheduling

schemes, correctness is dened by comparing to an ideal scheduler that can guarantee each task precisely its required share

over any time interval. Such an ideal scheduler can instantaneously enact share changes, but is impractical to implement, as it

requires the ability to preempt and swap tasks at arbitrarily small time scales. In practical schemes, share allocations track the

ideal scheduler with only bounded “error.” We consider an allocation policy to be fine-grained if any additional per-task “error”

(in comparison to an ideal allocation) caused by a task share-change request is constant. We use the term drift to refer to this

source of error, and refer to the process of changing a task’s share as reweighting.

Srinivasan and Anderson [11] have given sufcient conditions (described in Sec. 2) under which tasks may dynamically join

and leave a running Pfair-scheduled system without causing any missed deadlines. These rules can be applied to reweight tasks:

such a task simply leaves with its old weight and rejoins with its new weight. However, as discussed later, these rules require that

tasks sometimes be delayed when leaving the system. Because of these “leaving delays,” any reweighting scheme constructed

from these rules is coarse-grained, i.e., susceptible to non-constant drift.

After the presentation of the results herein in preliminary form [6], we subsequently considered the use of partitioned [4] and

global EDF [7] scheduling algorithms to schedule highly-adaptive multiprocessor workloads. While partitioning and global EDF

provide excellent average-case performance and can reduce migration and preemption costs associated with Pfair scheduling,

both algorithms have substantial drawbacks. Specically, under partitioning, ne-grained reweighting is (provably) impossible;

under global EDF, ne-grained reweighting is possible only if deadline misses are permissible.

In this paper, we show that ne-grained reweighting (without deadline misses) is possible under Pfair scheduling by pre-

senting reweighting rules that ensure constant drift. These rules are introduced in the following way. After rst presenting a
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more careful review of prior work in Sec. 2, we present in Sec. 3 a new task model that allows task weights to vary with time

and associated reweighting rules. In Sec. 4, we prove that, under our reweighting rules, no task misses a deadline and drift is

constant. (The proof that deadline misses are avoided is rather lengthy; much of this proof is deferred to an appendix.) We also

show that zero drift is not possible; hence, our rules cannot be substantially improved. In Sec. 5, we assess the efcacy of these

rules via an experimental evaluation involving the Whisper system.

2 Preliminaries
Under Pfair scheduling, processor time is allocated in discrete time units, called quanta; the time interval [t, t + 1), where t is a

nonnegative integer, is called slot t. (Hence, time t refers to the beginning of slot t.) In this paper, all time values are assumed

to indicate an integral number of quanta, unless specied otherwise. Throughout the paper, we use M to denote the number

processors in the system.

As mentioned in the introduction, under Pfair scheduling, correctness is dened by comparing to an “ideal” scheduling

algorithm that can guarantee each task precisely its required share over any time interval. Thus, as we introduce increasingly

exible task models, we also introduce increasingly more general (and complex) notions of ideal scheduling. The behavior

of each scheduling algorithm (ideal or otherwise) presented in this paper is dened by the sequence of its allocation decisions

over time. The total time allocated to a task T in an arbitrary schedule S over the range [t1, t2) is denoted as A(S , T , t1, t2).

Similarly, we use A(S , Tj , t1, t2) and A(S , τ , t1, t2) to denote, respectively, the total allocations to the “subtask” Tj (as dened

below) and to all tasks in the set τ over the range [t1, t2). As a shorthand, we use A(S , T , t) to denote A(S , T , t, t + 1). In

order to compare the difference between the allocations to a task T up to time t in two schedules S and I, where S is an “actual”

schedule and I is an “ideal” one, we use the function lag(S , I, T , t) = A(I, T , 0, t) − A(S , T , 0, t). Additionally, we use

the function LAG(S , I, τ , t) =
∑

T∈τ lag(S , I, T , t) to compare the differences in allocations for all tasks in the task set τ in

schedules S and I. We assume lag(S , I, T , 0) = 0. Thus, LAG(S , I, τ , t) can be rewritten as

LAG(S , I, τ , t) = LAG(S , I, τ , t − 1) + (A(I, τ , t − 1) − A(S , τ , t − 1)). (1)

For brevity, we denote lag(S , I, T , t) as lag(T , t) and LAG(S , I, τ , t) as LAG(τ , t), when S and I are well-dened and

obvious. (Examples illustrating the concepts in this paragraph are given shortly.)

Periodic Pfair scheduling. In dening notions relevant to Pfair scheduling, we limit attention (for now) to periodic tasks, all

of which begin execution at time 0. A periodic task T with an integer period T.p and an integer execution cost T.e has a weight

(or utilization) wt(T ) = T.e/T.p, where 0 < wt(T ) ≤ 1. Due to page limitations, we focus exclusively in this paper on tasks

with weight at most 1/2. Tasks of weight greater than 1/2, called heavy tasks, require additional reasoning, which can be found

in the rst author’s upcoming Ph.D. dissertation. (It is worth noting that the Whisper system used as a test case herein requires

task weights of at most 1/3.)

The ideal schedule for a periodic task system allocates wt(T ) processing time to each task in each time slot. Thus, for

a periodic system τ , lag(T , t) is dened as wt(T ) · t − A(S , T , 0, t), where S is some “real” schedule of τ . The schedule
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Figure 1: A(I, Tj , t) for a (a) periodic and
(b) IS task of weight 5/16. The windows
of successive subtasks are as indicated (e.g.,
T1’s window in both insets is [0, 4)).

S is Pfair iff (∀T ∈ τ , t :: −1 < lag(T , t) < 1). Informally, each task’s alloca-

tion error must always be less than one quantum. These error bounds are ensured

by treating each quantum of a task’s execution, henceforth called a subtask, as a

schedulable entity. Scheduling decisions are made only at quantum boundaries.

The ith subtask of task T , denoted Ti, where i ≥ 1, has an associated pseudo-

release r(Ti) = '(i − 1)/wt(T )( and pseudo-deadline d(Ti) = )i/wt(T )*. (For

brevity, we often drop the prex “pseudo-.”) It can be shown that if each subtask

Ti is scheduled in the interval w(Ti) = [r(Ti),d(Ti)), termed its window, then

(∀T ∈ τ , t :: −1 < lag(T , t) < 1) is maintained [2]. As an example, in Fig. 1(a),

r(T2) = 3, d(T2) = 7, and w(T2) = [3, 7). (This gure also depicts per-slot ideal

allocations for each subtask, which are considered below.) Thus, T2 must be sched-

uled in slots 3–6. (Tasks execute sequentially, so if T1 is scheduled in slot 3, then

T2 must be scheduled in slots 4–6.)

IS model. The intra-sporadic (IS) task model [10] generalizes the well-known

sporadic task model [9] by allowing subtasks to be released late. This extra exibil-

ity is useful in many applications where processing steps may be delayed. Fig. 1(b) illustrates the Pfair windows of an IS task

of weight 5/16 in which the release of T2 is delayed by two quanta and the release of T3 is delayed by an additional quantum.

Each subtask Ti of an IS task has an offset θ(Ti) that gives the amount by which its release has been delayed. For example, in

Fig. 1(b), θ(T1) = 0, θ(T2) = 2, and for i ≥ 3, θ(Ti) = 3. The release and deadline of a subtask Ti of an IS task T are dened as

r(Ti) = θ(Ti)+'(i−1)/wt(T )( and d(Ti) = θ(Ti)+)i/wt(T )*, where the offsets satisfy the property k ≥ i ⇒ θ(Tk) ≥ θ(Ti).

A subtask Ti is active at the time t iff r(Ti) ≤ t < d(Ti), and a task T is active at t iff it has an active subtask at t. For example,

in Fig. 1(b), T is active in every slot except slot 4. If θ(Ti) < θ(Ti+1), then we say that there is an IS separation between Ti and

Ti+1. (Note that an extension of the IS model exists in which a subtask Ti can become eligible before r(Ti) [10]. All the results

of this paper can be easily extended to such a model, but for clarity, we do not consider this extension to the IS model.)

The PD2algorithm. The PD2 Pfair scheduling algorithm [10] is optimal for scheduling IS tasks on an arbitrary number of

processors. It prioritizes subtasks on an earliest-pseudo-deadline-rst (EPDF) basis, and uses two tie-breaking rules. For the

case wherein all task weights are at most 1/2 (our focus here), PD2 uses one tie-break, b(Ti), which is dened as )i/wt(T )* −

'i/wt(T )(. In a periodic task system, b(Ti) is 1 if Ti’s window overlaps Ti+1’s, and is 0 otherwise. For example, in all the insets

in Fig. 1, b(Ti) = 1 for 1 ≤ i ≤ 4 and b(T5) = 0. If two subtasks have equal deadlines, then a subtask with a b-bit of 1 is

favored over one with a b-bit of 0. Further ties are broken arbitrarily. (See [2] for an explanation of this tie-breaking rule.) Notice

that, in the absence of IS separations, r(Ti+1) = d(Ti)− b(Ti). For example, in Fig. 1(a), r(T2) = d(T1)− b(T1) = 4− 1 = 3,

and r(T6) = d(T5) − b(T5) = 16 − 0 = 16.

IS ideal schedule. Ideal allocations within the IS task model can be dened in much the same way as for periodic tasks [10];

however, we must modify this denition to allow for IS separations. Before continuing, notice that since the total allocation to a
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A(IIS, Ti, t)
1: if t < r(Ti) ∨ t ≥ d(Ti)) then
2: A(IIS, Ti, t) := 0
3: else if t = r(Ti) then
4: if i = 1 ∨ b(Ti−1) = 0 then
5: A(IIS, Ti, t) := wt(T )
6: else
7: A(IIS, Ti, t) :=

wt(T ) − A(IIS, Ti−1, d(Ti−1) − 1)
8: 
9: else
10: A(IIS, Ti, t) :=

min(wt(T ), 1 − A(IIS, Ti, 0, t))
11: 

Figure 2: Pseudo-code dening A(IIS, Ti, t).

task in a given time slot equals the total allocation to all of its subtasks in that

slot, A(S , T , t) =
∑

Tj∈T A(S , Tj , t). For example, in Fig. 1(a), A(I, T , 6) =

A(I, T1, 6)+A(I, T2, 6)+A(I, T3, 6)+... = 0+2/16+3/16+0+... = 5/16.

Thus, per-task and per-task-set allocations in a schedule S over an arbitrary

interval can be dened by simply dening A(S , Tj , t) for an arbitrary subtask

Tj and time slot t.

For an arbitrary IS task system τ , we let IIS denote the ideal schedule of τ .

A(IIS, Tj , u) can be dened using an arithmetic expression, but we have opted

instead for a more intuitive pseudo-code-based denition in Fig. 2. The ideal IS

schedule allocates each subtask Tj some amount of processing time in each slot of its window. For slots other than r(Ti) and

d(Ti)−1, this allocation iswt(T ). Ti’s allocation in slots r(Ti) and d(Ti)−1 are adjusted so that (i) Ti’s entire allocation (across

all slots in its window) is one, and (ii) Ti’s allocation in slot r(Ti) (resp., d(Ti)− 1) plus Ti−1’s (resp., Ti+1’s) allocation in slot

d(Ti−1) − 1 (resp., r(Ti+1)) equals wt(T ) (assuming those subtasks exist). Examples of such allocations are given in Fig. 1.

Dynamic task systems. The leave/join conditions of Srinivasan and Anderson [11] mentioned earlier, and a theorem concern-

ing them, are stated below.

J: (join condition) A task T can join at time t iff the sum of the weights of all tasks after joining is at most M .

L: (leave condition) Let Ti denote the last-scheduled subtask of T . T can leave at time t iff t ≥ d(Ti) + b(Ti) .

Theorem 1 ([11]). PD2 correctly schedules any dynamic IS task system satisfying J and L.

As noted earlier, a task may be reweighted by leaving with its old weight and rejoining with its new weight.

3 Adaptable Task Model and Fine-Grained Reweighting
In this section, we introduce the adaptable IS (AIS) task model, and dene corresponding ne-grained reweighting rules, which

allow the PD2 algorithm to schedule each subtask without missing a deadline and to ensure constant drift per weight change.

The AIS task model is an extension of IS task model, where the weight of each task T , wt(T , t), is a function of time t.

3.1 Adaptable Task Model

A task T changes weight or reweights at time t + 1 if wt(T , t) ,= wt(T , t + 1). If a task T changes weight at a time tc between

the release and the deadline of some subtask Tj , then the following three actions may occur: (i) if Tj has not been scheduled by

tc, then Tj may be “halted” at tc; (ii) r(Tj+1) may be redened to be less than d(Tj) − b(Tj); and (iii) if (ii) holds, then the

windows of Tj and Tj+1 may overlap by more than b(Tj) time slots. (In the IS model dened earlier, every subtask’s deadline

is at most b(Tj) time slots after its successor’s release.)

The reweighting rules we present at the end of this section state the conditions under which the above actions may occur and

the number of slots before d(Tj)−b(Tj) that subtask Tj+1 can be released. If Tj is halted before it is scheduled, then it is never
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Figure 3: Per-task allocations for a task in an AIS
system for (a) a task T with an initial weight of
3/19 that enacts a weight change to 2/5 and halts
at time 8; (b) a task X with an initial weight of
3/19 that enacts a weight change to 2/5 at time 8
but does not halt; (c) a periodic task U with weight
2/5. The dotted window lines indicate that the win-
dow that would have existed if the subtask task did
not reweight.

scheduled. (Note that a subtask can only be halted if it has not yet been sched-

uled in the PD2 schedule.) We use the function H(Tj) to denote the time

at which Tj is halted; if Tj is never halted, then H(Tj) = ∞. For exam-

ple, consider Fig. 3(a), which depicts a task T that increases its weight from

3/19 to 2/5 at time 8. (The per-slot allocations and the terms “enacted” and

“complete” mentioned in the gure are discussed shortly.) In this inset, for

j ∈ {1, 3, 4, 5}, H(Tj) = ∞, because none of these subtasks halts; however,

because T2 is halted at time 8, H(T2) = 8. Since a subtask is only halted as

a result of a reweighting event, if we do not have a priori knowledge of such

events, then we cannot determine whether a released subtask will be halted

in the future. For example, in Fig. 3(a), we have no knowledge when T2 is

released at time 6 that it will be halted at time 8.

Denition 1 (Initiated and Enacted). When a task reweights, there can be

a difference between when it “initiates” the change and when the change is

“enacted.” The time at which the change is initiated is a user-dened time;

the time at which the change is enacted is dictated by a set of conditions dis-

cussed shortly. We use the scheduling weight of a task T at time t, denoted

swt(T , t), to represent the “last enacted weight of T .” Formally, swt(T , t)

equals wt(T , u), where u is the last time at or before t that a weight change

was enacted for T . (We assume an initial weight change occurred for T where

it initially joined the system.) It is important to note that, henceforth, we com-

pute subtask deadlines and releases using scheduling weights. We use En(T , t) to denote the last time at or before time t that T

enacted a weight change, and Id(Tj) to denote the smallest index k such that En(T , r(Tj)) ≤ r(Tk). For example, in Fig. 3(b),

En(X , t) = 0, for 0 ≤ t < 8; for j ∈ {1, 2}, Id(Xj) = 1; for t ≥ 8, En(X , t) = 8; and for j ∈ {3, 4, 5}, Id(Xj) = 3. Note

that if Id(Tj) = j, then Tj is the rst subtask of T released after a weight change for T has been enacted.

Denition 2 (Complete). If S is a schedule for the task system τ , then a subtask Tj of T ∈ τ is said to have completed by time

t in S iff t ≥ r(Tj) and one of the following holds: (i) Tj has been allocated one quantum by t in S; or (ii) Tj is halted by time

t. As an example, consider the schedule depicted in Fig. 4, which depicts the one-processor PD2 schedule of two tasks, T , with

weight 2/5, and U , with an initial weight of 2/5 that increases to 1/2 at time 3 by halting U2. In this example, T1 completes

at time 1 because it is scheduled in slot 0, whereas U1 does not complete until time 2 because it is not scheduled until slot 1.

Notice that, since U2 is halted at time 3, it is complete at time 3 even though it is never scheduled. We use the function D(S , Tj)

to denote the (integral) time at which Tj is complete in S.

For an adaptable task, the deadline, b-bit, and release of a subtask Tj , respectively, are dened by Eqns. (2)–(4), where
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z = Id(Tj) − 1, θ(Tj+1) ≥ θ(Tj), and r(T1) equals the time that T joins the system.

d(Tj) = r(Tj) +
⌈

j − z

swt(T , r(Tj))

⌉
−

⌊
j − z − 1

swt(T , r(Tj))

⌋
(2)

b(Tj) =
⌈

j − z

swt(T , r(Tj))

⌉
−

⌊
j − z

swt(T , r(Tj))

⌋
(3)

r(Tj+1) = d(Tj) − b(Tj) + (θ(Tj+1) − θ(Tj)) (4)

It is important to note that since reweighting events may change a subtask’s release time,

Eqn. (4) holds for the subtask Tj+1 only if a weight change is not enacted for T over the

range (r(Tj),d(Tj)]. The above equations differ from the earlier denitions of releases,

deadlines, and b-bits (given in Sec. 2) in two ways. First, (2) and (3) dene the deadline and

b-bit of a subtask based on the scheduling weight of the task at the time the subtask is released. Second, after a task enacts a

weight change, its release, deadline, and b-bit are dened as though a new task with the new weight joined the system. (Recall

that a subtask Tj is the rst released subtask after a weight change is enacted iff Id(Tj) = j.) For example, in Fig. 3(a), after T

changes its weight to 2/5, the subtasks T3–T5 have similar releases, deadlines, and b-bits as the rst three subtasks of the task

U with weight 2/5 in inset (c).

Ideal schedules. In order to state and prove that the reweighting algorithm that we present at the end of this section does not

schedule a subtask after its deadline and that it has constant drift, we introduce three notions of an ideal schedule for an AIS task

system. The rst ideal schedule, ISW (used for stating the reweighting rules), allocates each task a share based on its scheduling

weight in each time slot. The second ideal schedule ICSW (used for proving the reweighting rules and drift bounds), is the same

as ISW except that ICSW is “clairvoyant” so that it does not allocate capacity to tasks that will halt. The third ideal schedule,

IPS (used for proving drift bounds), allocates each task a share based on its actual weight in each time slot. We now formally

dene the allocations to a subtask in ISW and ICSW; IPS is considered in the next section.

As with IS tasks, A(ISW, Ti, t) can be dened mathematically, but we opt instead for a pseudo-code-based denition, shown

A(ISW , Ti, t)
1: if t < r(Ti) ∨ t ≥ D(ISW , Ti) then
2: A(ISW , Ti, t) := 0
3: else if t = r(Ti) then
4: if i = Id(Ti) ∨ b(Ti−1) = 0 then
5: A(ISW, Ti, t) := swt(T , t)
6: else
7: A(ISW, Ti, t) := swt(T , t)−

A(ISW , Ti−1, D(ISW , Ti−1) − 1)
8: 
9: else
10: A(ISW , Ti, t) :=

min(swt(T , t), 1 − A(ISW , Ti, 0, t))
11: 

Figure 5: Pseudo-code dening the A(ISW, Ti, t).

in Fig. 5. There are three differences between the denitions of A(IIS, Ti, t)

and A(ISW, Ti, t): in lines 5, 7, and 10, swt(T , t) is used instead of wt(T );

and in lines 1 and 7, D(ISW, Ti) is used instead of d(Ti). These two changes

account for T ’s time-varying weight. The nal change is that, in line 4,

i = Id(Ti) is used instead of i = 1. This change causes the per-slot allo-

cations to Tz , where z = Id(Ti), to equal that of a task that joins the sys-

tem at r(Tz). For example, in Fig. 3(a), since 3 = Id(T3), by lines 4 and 5,

A(ISW, T3, r(T3)) = swt(T , r(T3)) = 2/5, which is the same per-slot allo-

cation that U1 in Fig. 3(c) receives at time r(U1). Before continuing, there

are two important issues to note. First, in the absence of reweighting events,

D(ISW, Tj) = d(Tj). Second, when a task is halted via the reweighting rules given below, it is halted in both the PD2 sched-
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ule and ISW. Since ISW is not clairvoyant, it will allocate “normally” to a subtask until that subtask halts, after which the

subtask’s per-slot allocations are zero, as with T2 in Fig. 3(a). Also note that in Fig. 3(b), X2 is complete at time 10, since

A(ISW, X2, 0, 10) = 1. Several examples of ISW allocations are given in Fig. 3. Using the denition of ISW, we can simply

dene ICSW as follows: A(ICSW, Ti, t) = A(ISW, Ti, t), if H(Ti) = ∞, and A(ICSW, Ti, t) = 0, otherwise. For example, in

Fig. 3(a) A(ISW, Ti, t) = A(ICSW, Ti, t) except for T2, where A(ICSW, T2, t) = 0 for all t.

3.2 Reweighting Rules

We now introduce two new ne-grained reweighting rules that improve upon coarse-grained reweighting by changing future

subtask releases. It is important to note that in the following rules, for a given subtask Tj , the value d(Tj) is used to determine

the scheduling priority of Tj in the PD2 algorithm and does not change once Tj has been released. Furthermore, D(ISW, Tj)

is used to determine the release time of Tj’s successor, Tj+1. As mentioned earlier, the completion time of a subtask cannot

be accurately predicted without a priori knowledge of weight changes; however, in the reweighting rules below, the completion

time of a subtask in ISW is only used after the subtask has completed, and therefore it is well-dened.

Let τ be a task system in which some task T initiates a weight change from weight w to weight v at time tc. If there does

not exist a subtask Tj of T such that r(Tj) ≤ tc, then the weight change is enacted immediately; otherwise, let Tj denote the

last-released subtask of T . If d(Tj) ≤ tc, then the weight change is enacted at time max(tc,d(Tj) + b(Tj)). In the following

rules, we consider the remaining possibility, i.e., that Tj exists and r(Tj) ≤ tc < d(Tj). For simplicity, we assume that the rst

subtask after a weight change by the corresponding task is released as early as possible. This assumption can be removed at the

cost of more complex notation.

The choice of which rule to apply depends on whether Tj has been scheduled by tc. We say that T is ideal-changeable at

time tc from weight w to v if Tj is scheduled before tc, and otherwise is omission-changeable at time tc from w to v. Because

T initiates its weight change at tc, wt(T , tc) = v holds; however, T ’s scheduling weight does not change until the weight

change has been enacted, as specied in the rules below. Note that, if tc occurs between the initiation and enaction of a previous

reweighting event of T , then the previous event is skipped, i.e., treated as if it had not occurred. As discussed later, any “error”

associated with skipping a reweighting event like this is accounted for when determining drift.

Rule O: If T is omission-changeable at time tc from weight w to v and j > 1, then at time tc, subtask Tj is halted and at time

max(tc, D(ISW, Tj−1) + b(Tj−1)), T ’s weight change is enacted, and a new subtask is released. If j = 1, then at time

tc, Tj is halted, T ’s weight change is enacted, and a new subtask is released.

Rule I: If T is ideal-changeable at time tc from weight w to v, then one of two actions is taken: (i) if v > w, then the weight

change is immediately enacted, and at time D(ISW, Tj)+b(Tj), a new subtask is released for T ; (ii) otherwise, the weight

change is enacted at time D(ISW, Tj) + b(Tj), at which time a new subtask is released.

Both rules are extensions of the leave/join rules L and J given earlier in Sec. 2. However, the rules above exploit the specic

circumstances that occur when a task changes its weight to “short circuit” rules L and J, so that reweighting is accomplished

faster. By rule L, T can leave at time d(Tk)+b(Tk), where Tk is its last-scheduled subtask. We can easily extend rule L to show
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Figure 6: A four-processor system consisting of a set C of 19 tasks of weight 3/20 each, and a task T of weight 3/20, and in (a), a task U of
weight 1/2. In (a) and (b), all ties are broken in favor of tasks from C, and in (c), all ties are broken in favor of task T . The notation T :[u, v]
denotes that T ’s weight ranges over [u, v]. The windows of the various task groups are shown together. The numbers in each slot in a window
denote the number of tasks from each set scheduled in that slot. (Similar notation is used in later gures.) In insets (b)–(d), T ’s allocation up
to time t in ISW, ICSW, and IPS as well as T ’s drift are labeled at the top. (a) T leaves at time 8 and U joins at time 10. (b) T reweights
to 1/2 via rule O at slot 10. (Notice that T2 is halted at tc and is never scheduled.) (c) T reweights to 1/2 via rule I at slot 10. (d) T has an
initial weight of 2/5 that decreases to 3/20 via rule I at time 1. Rule O or I is applied depending on whether T2 (in (b) and (c)) or T1 (in (d))
is scheduled prior to slot 10 (in (b) and (c)) or 1 (in (d)).

that T can leave at time D(ISW, Tk) + b(Tk). If task T (as dened above) is omission-changeable, then its subtask Tj has not

been scheduled by time tc. Such a task can be viewed as having “left” the system at time max(tc, D(ISW, Tj−1) + b(Tj−1)),

in which case, it can rejoin the system immediately. For example, in Fig. 6(a), task T of weight 3/20 leaves at time 8 and task

U of weight 1/2 joins at time 10. In Fig. 6(b), task T increases its weight from 3/20 to 1/2 via rule O. Note that, in Fig. 6(b), T

behaves as if it leaves at time 8 and rejoins at time 10 with its new weight.

If T is ideal-changeable, then by rule L, it may “leave and rejoin” with a new weight at time d(Tj) + b(Tj) (i.e., its weight

change can be enacted at d(Tj) + b(Tj)). However, if D(ISW, Tj) < d(Tj), then T may “leave and rejoin” with a new weight

at D(ISW, Tj) + b(Tj). (“Ideal-changeable” refers to the fact that the time at which the subtask can leave and rejoin is based

on that subtask’s allocations in an ideal schedule.) For example, in Fig. 6(c), task T increases its weight from 3/20 to 1/2 at

time 10 via rule I. Since at time 11 the total allocation to T2 in ISW is one, D(ISW, T2) = 11. Hence, by rule I, T can
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“leave” at time D(ISW, T2) + b(T2) = 12, which is two time units earlier than its deadline. In Fig. 6(d), task T decreases

its weight from 2/5 to 3/20 at time one. Since T decreases its weight, by rule I, this weight change is not enacted until time

D(ISW, T1) + b(T1). Since no weight change is enacted before d(T1), d(T1) = D(ISW, T1) = 3. Thus, by rule I, T “leaves”

at time D(ISW, T1) + b(T1) = 4. Notice that the difference in rule I between cases (i) and (ii) is that, when a task increases its

weight, the weight change is immediately enacted, whereas when a task decreases its weight, its weight change is not enacted

until time D(ISW, Tj) + b(Tj). Thus, T ’s scheduling weight is redened at different times.

Throughout this paper we use PD2-OI (respectively, PD2-LJ) to refer to reweighting via rules O and I (resp., the leave/join

rules L and J) under PD2. Since these rules change the ordering of a task in the priority queues that determine scheduling, the

time complexity for reweighting one task is O(logN), where N is the number of tasks in the system.

4 Scheduling Correctness and Drift Bounds

In the prior section, we used ISW to determine the release times of future subtasks. Notice that ISW and the PD2-OI schedule

treat halted subtasks differently. Specically, ISW will “partially” allocate a halted subtask, whereas PD2-OIwill never schedule

a halted subtask. Because of this difference, it is convenient, when proving correctness and drift bounds, to slightly alter ISW by

eliminating halted subtasks. Therefore, we use ICSW instead, since ICSW does not allocate any capacity to any halted subtask.

In this section, we discuss the scheduling correctness of PD2-OI (the full proof can be found in an appendix), formally dene

drift, and discuss the drift bounds of PD2-LJ, PD2-OI, and any EPDF reweighting algorithm.

We rst show that initiating multiple reweighting events without enacting them does not increase the time of the next weight-

change enactment. We show this by proving the following.

(C) If T initiates two weight-change events at tc and t′c, where tc < t′c and t′c < te, and te and t′e denote the time the changes

initiated at tc and t′c, respectively, would have been enacted in the absence of other reweighting events, then t′e ≤ te.

Proof of (C). Assume that tc, te, t′c, and t′e are as dened in (C). Notice that all types of reweighting events initiated at tc

except for ideal-changeable decreasing-weight events and (some) omission-changeable events are enacted within one quantum.

Thus, we assume that T is either omission-changeable (and not immediately enacted) or decreasing-weight ideal-changeable

at tc. Before continuing, notice that if d(Tj) ≤ t′c, where Tj is as dened in rules O and I, then the change initiated at t′c is

enacted by t′c + 1. Since t′c < te, this implies that t′e ≤ te. Thus, we assume in the rest of the proof that t′c < d(Tj). We

rst consider the case wherein T is omission-changeable at tc and this change is not immediately enacted. In this case, the

change initiated at tc is enacted at time te = D(ISW, Tj−1) + b(Tj−1). Since T is omission-changeable at tc, it is halted at

tc and no successor subtask can be released until the change initiated at tc (or a future change) has been enacted. Hence, since

t′c < te, Tj+1 is not released until after t′c. Since r(Tj) < tc < t′c < d(Tj), Tj is the last-released subtask of T at or before

t′c. Because Tj was halted at tc, T is therefore omission-changeable at t′c. Thus, by rule O, the change initiated at t′c is enacted

at time t′e = min(t′c,D(ISW, Tj−1) + b(Tj−1)). Thus, t′e = te. We next consider the case wherein T is decreasing-weight

ideal-changeable at tc. By rule I, such a change initiated at tc will be enacted at time te = D(ISW, Tj) + b(Tj). Since T
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is ideal-changeable at tc, no subtask can be released until the change which was initiated at tc (or a future change) has been

enacted. Hence, since t′c < te, Tj+1 is not released until after the change at t′c is initiated. Since r(Tj) < tc < t′c < d(Tj), Tj

is the last-released subtask of T at or before t′c. Because Tj is scheduled before t′c, T is ideal-changeable at t′c. If the event at t′c

is a decreasing-weight event, then by rule I, it is enacted at time t′e = D(ISW, Tj) + b(Tj) = te; if it is an increasing-weight

event, then t′e = t′c < te.

When Srinivasan and Anderson [11] proved the scheduling correctness for PD2-LJ for an IS task system, they were able to

utilize the fact that the windows for any subtask Tj and its successor Tj+1 do not “overlap” by more than b(Tj) quanta, i.e.,

d(Tj)− b(Tj) ≤ r(Tj+1). However, this property can be weakened without affecting most of their proof, so that their proof can

be applied to an AIS task system. Specically, their proof can be used to establish the scheduling correctness of PD2-OI for any

AIS task system τ , if the following properties hold. (In these properties, we denote the PD2-OI schedule of τ as S .)

(W) For any time t,
∑

T∈τ swt(T , t) ≤ M , where M is the number of processors.

(V) For the subtasks Ti and Ti+1, if d(Ti) − b(Ti) > r(Ti+1), then D(ICSW, Ti) ≤ r(Ti+1) and D(S, Ti) ≤ r(Ti+1).

Since (W) can be satised by policing weight-change requests, we focus our attention on showing that S and ICSW satisfy (V).

Proof of (V). Before we begin, notice that by the rules O and I, when T initiates a weight change at time tc, it is enacted no

later than time r(Tk), where Tk is the next-released subtask of T . (By (C), no sequence of reweighting events can delay the next

weight-change enactment after a weight change has been initiated, and by the rules I and O, a subtask is released within one

quantum of a weight change enactment. Thus, Tk is eventually released.) Hence, if a weight change is enacted over the range

(r(T"),d(T")], then that change must have been initiated over the range [r(T"),d(T")].

Let Ti be some subtask such that d(Ti)−b(Ti) > r(Ti+1). By the denition of a subtask release, if d(Ti)−b(Ti) > r(Ti+1),

then T enacted a weight change at te ∈ (r(Ti), r(Ti+1)]; otherwise, we would have d(Ti)− b(Ti) ≤ r(Ti+1), by Eqn. (4). Since

a weight change is enacted in the range (r(Ti),d(Ti)], (as established above) a change must have been initiated in the range

[r(Ti),d(Ti)]. Thus, since a weight change is initiated before it is enacted (and by assumption te ≤ r(Ti+1) < d(Ti) − b(Ti) ≤

d(Ti)) a change must have been initiated in [r(Ti), r(Ti+1)]. Without loss of generality, let tc be the earliest time in this range

that T initiates a weight change.

Since r(Ti) ≤ tc ≤ r(Ti+1) < d(Ti), T is either omission- or ideal-changeable at tc. We now consider these two cases. If

at tc, T is omission-changeable, then by rule O, Ti is halted at tc. In this case, Ti is complete by tc ≤ te ≤ r(Ti+1) in both the

S and ICSW. If T is ideal-changeable at tc, then Ti has been scheduled in S before tc, and hence, Ti is complete by tc in S.

Furthermore, in this case Ti+1 is not released until time D(ICSW, Ti) + b(Ti).

By (V), it is possible to use Srinivasan and Anderson’s correctness proof for PD2-LJ [11] to prove the following theorem.

Theorem 2. Under PD2-OI, no subtask is scheduled after its scheduling deadline, provided that (W) holds.

4.1 Drift

We now turn our attention to the issue of measuring drift under PD2-OI. In order to measure the drift of a task system
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Figure 7: Allocations for a task X with an initial
weight of 3/19 that changes to 2/5. (a) The value
of A(ICSW, Xj , u) for each slot and subtask. (b)
The allocations to X in IPS at each instant. (c)
The total allocations to X in ICSW and IPS.

τ , we compare ICSW to an ideal schedule in which weight changes are en-

acted instantaneously. Under the ideal processor sharing (IPS) schedule, at

each instant t, each task T in τ is allocated a share equal to its weight wt(T , t).

Hence, over the interval [t1, t2), the task T is allocated A(IPS, T , t1, t2) =
∫ t2

t1
wt(T , u)du time. (For the remainder of this section, we assume that every

subtask in T is released as early as possible. This assumption can be removed

at the cost of more complex notation. If we did not make this assumption, then

the allocation function for IPS would equal zero between active subtasks.) IPS

is similar to ISW and ICSW, with three major exceptions: (i) tasks in IPS con-

tinually receive allocations, whereas tasks in ISW and ICSW receive allocations

only at quantum boundaries; (ii) under IPS, each task receives an allocation

equal to its weight, whereas under ISW and ICSW, each task receives alloca-

tions according to its scheduling weight; and (iii) the total allocation each task

receives in ISW and ICSW is calculated based on the releases and completion

times of its active subtasks, whereas allocations in IPS are independent of sub-

task releases and completion times. Hence, even if all active subtasks of a given

task are halted, IPS still allocates capacity to that task. For example, consider Fig. 7, which depicts the allocations in the sched-

ules ICSW and IPS (insets (a) and (b), resp.) to a task X that has an initial weight of 3/19 that increases to 2/5 (via rule I)

at time 8. Notice that in IPS over the range [9, 11), X receives an allocation equal to its weight at every instant (for a total

allocation of 4/5 over [9, 11)). Compare this to ICSW, in which X receives only an allocation of 32/95 over the same range.

For most real-time scheduling algorithms, the difference between the ideal and actual allocations a task receives lies within

some bounded range centered at zero (that is, lag bounds are maintained). For example, under PD2 (i.e., PD2-OI without weight

changes), the difference between the ideal and actual allocations for a task lies within (−1, 1). When a weight change occurs,

the same range is maintained except that it may be centered at a different value. This lost allocation is called drift. In general,

a task’s drift per reweighting event will be non-negative (non-positive) if it increases (decreases) its weight. Let S denote a

PD2-OI schedule of some task system τ . Since Thm. 2 established that no subtask misses its deadline, and neither S nor ICSW

schedules any halted subtasks, A(S , T , 0, t) differs from A(ICSW, T , 0, t) by ±1. Hence, we can bound the drift that a task T

incurs under PD2-OI up to time t by comparing the total allocations to T in IPS to that in ICSW up to time t. Formally, under

PD2-OI, the drift of a task T is defined1 as

drift(T , t) = A(IPS, T , 0, u) − A(ICSW, T , 0, u), (5)

where u is dened as follows: if t < r(T1), then u = t; otherwise, u = r(Ti), where Ti is the last-released subtask of T

at or before t such that Id(Ti) = i. For example, in Fig. 6(b), the drift of task T at time t = 9 is A(IPS, T , 0, r(T1)) −
1The denition of drift presented in (5) is designed specically for EPDF systems. This concept can be more generally dened to pertain to other systems

like global EDF and partitioning schemes.
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A(ICSW, T , 0, r(T1)) = 0 − 0 = 0, whereas at time t = 10, the drift of T is A(IPS, T , 0, r(T3)) − A(ICSW, T , 0, r(T3)) =

3/2 − 1 = 1/2. Notice that since T2 is halted at time 10, A(ICSW, T2, 0, 10) = 0. We say that a reweighting algorithm is

fine-grained iff there exists some constant value c such that the drift per weight change is less than c. We say that a reweighting

algorithm is coarse-grained otherwise.

1
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. . .
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Figure 8: The PD2-LJ schedule of a four-
processor system with a set A of 35 tasks with
weight 1/10 and a task T with weight 1/10 that
increases to 1/2 at time 4. The allocations of T in
ICSW and IPS and its drift are labeled.

We now prove that PD2-LJ is not ne-grained. Consider the four-processor

system depicted in Fig. 8. This system consists of a set A of 35 tasks with weight

1/10 and a task T with weight 1/10 that increases to 1/2 at time 4. By rule L,

T cannot “leave” until time 10. Hence, the change is not enacted until time 10.

Thus, over the range [4, 10), T receives a 1/10 per-slot allocation in ICSW and

1/2 in IPS. Hence, T ’s drift reaches a value of 24/10 at time 10. This example

can be generalized to generate any value of drift for T , by decreasing its initial

weight. Under PD2-LJ, such a task cannot change its weight until the end of the

rst window generated by its initial weight. Hence, by decreasing the weight of

T to 1/(2(c + 1)), we have drift(T , d(T1)) ≥ c. The theorem below follows.

Theorem 3. PD2-LJ is not fine-grained.

2
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Figure 9: A two-processor system consisting of a set A of 10 tasks
with weight 1/7 that leave at time 7, a set B of two tasks with weight
1/6 that leave at time 6, a set C of two tasks with weight 1/14 that join
at time 6, and a set D of ve tasks with a weight of 1/21 that increases
to 1/3 at time 7. The projected deadlines of tasks in D based on their
true ideal allocations are labeled above. Notice that a task in D misses
its deadline at time 9 since its “true” deadline is unknown until time 7.

Next, we show that any EPDF scheduling algorithm in-

curs some drift. This follows from the two-processor coun-

terexample depicted in Fig. 9. This system consists of a set

A of 10 tasks with weight 1/7 that leave at time 7, a set B

of two tasks with weight 1/6 that leave at time 6, a set C of

two tasks with weight 1/14 that join at time 6, and a set D

of ve tasks with a weight of 1/21 that increases to 1/3 at

time 7. With subtask deadlines dened by IPS, the deadline

for each task in set D changes at time 7 from 21 to 9. The

tasks in D have an original deadline of 21 because that is the

projected time at which their IPS allocations will equal one if their weights do not change. These tasks change their deadlines

to 9 at time 7 because the new weight, 1/3, changes the projected time by which their IPS allocations will equal one to time 9.

Hence, any EPDF algorithm will not schedule the tasks in D until time 7. As a result, a deadline is missed. Notice that any

EPDF algorithm would need to use projections for determining subtask deadlines if we assume no prior knowledge of weight

changes. To prevent a deadline miss, the lag-bound range must be shifted, thus incurring drift. The theorem below follows.

Theorem 4. All EPDF algorithms can incur non-zero drift per reweighting event.

Finally, we show that PD2-OI is ne grained. By the denition of drift, in order to prove that PD2-OI is ne-grained, we

merely need to consider the window placement of a task after it is reweighted. Suppose that a task T initiates a weight change

at tc. Let te be the next time at which T enacts a change at or after tc, and let Tj be the last-released subtask of T at or before
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tc, if Tj exists. (If Tj does not exist, then T ’s drift does not change.) We now show that if the change initiated at tc is enacted

at te, then the added drift is bounded by showing that the maximal absolute difference between ICSW and IPS in allocations to

T over the interval [tc, r(Tj+1)) is at most two. Notice that such a result implies that if T were to initiate a change at time t′c

such that tc < t′c ≤ te, then the absolute difference in allocation between ICSW and IPS to T over the interval [tc, t′c) is at most

two. This implies that the absolute value of the added drift per reweighting event is at most two, even for those events that are

“cancelled” by future reweighting events that occur before any change is enacted.

If d(Tj) ≤ tc, then the weight change is enacted within one quantum. Since the maximal weight of a task is 1/2, the maximal

increase in the absolute value of drift in such a case is 1/2. If Tj exists and r(Tj) ≤ tc < d(Tj), then T is either omission- or

ow-changeable. If T changes its weight via rule O, then the resulting allocation error is at most two quanta. One quantum of the

error can be incurred because Tj is halted at tc, resulting in an allocation of up to one subtask is “lost.” For example, in Fig. 6(b),

A(ICSW, T2, 0, 10) = 1/2 quanta is “lost” when T initiates and enacts a weight change at time 10. The second quantum of error

can be incurred because the change T initiated at tc may not be enacted until time max(tc, D(ICSW, Tj−1) + b(Tj−1)). By

(V), if a change is enacted in the range [r(Tj−1),d(Tj−1)], then D(ICSW, Tj−1)− r(Tj) ≤ b(Tj−1). Further, by Eqn. (4), if no

change is enacted in the range [r(Tj−1),d(Tj−1)], then D(ICSW, Tj−1) − r(Tj) ≤ b(Tj−1). Thus, since r(Tj) ≤ tc, the range

[tc,max(tc, D(ICSW, Tj−1) + b(Tj−1))) has a length of at most two. Hence, the change initiated at tc may not be enacted for

two quanta, and since the maximal weight for any task is 1/2 the IPS allocations may “get ahead” (if T increases its weight at

tc) or “fall behind” (if T decreases its weight at tc) by 2 · 1/2 = 1 quantum.

If T increases its weight at tc via rule I, then the weight change is immediately enacted and Tj+1 is released at time

D(ICSW, Tj) + b(Tj). Since the weight change is immediately enacted, the only period of time during which T receives

less allocation in ICSW than in IPS is between D(ICSW, Tj) − 1 and r(Tj+1). Since r(Tj+1) = D(ICSW, Tj) + b(Tj), the

length of this interval is at most two. Since the maximal weight of a task is 1/2, the maximal increase in drift is 2 · 1/2. For

example, in Fig. 6(c), A(ICSW, T , 10, 12) = A(ICSW, T , 0, 12) − A(ICSW, T , 0, 10) = 4/2 − 3/2 = 1/2 < 1 = 2 − 1 =

A(IPS, T , 0, 12)−A(IPS, T , 0, 10) = A(IPS, T , 10, 12). If T decreases its weight at tc via rule I, then Tj+1 is released at time

D(ICSW, Tj)+b(Tj). Since T decreases its weight, over the range [tc,D(ICSW, Tj)), T is allocated at most one quantum more

in ICSW than in IPS. Furthermore, over the range [D(ICSW, Tj),D(ICSW, Tj) + b(Tj)), T is allocated at most 1/2 quanta

more in IPS than in ICSW, since the length of this range is one and the maximal weight of a task is 1/2. Thus, the maximal

possible decrease in drift is one and the maximal possible increase in drift is 1/2. For example, in Fig. 6(d), the drift incurred

by changing the weight of T from 2/5 to 3/20 is −3/20, i.e., drift(T , t) = −3/20, where t ≥ 4.

Theorem 5. The absolute value of the per-event drift under PD2-OI for each task is at most two.

5 Experimental Results
The results of this paper are part of a longer-term project on adaptive real-time allocation in which Whisper, described earlier,

will be used as a test application. In this section, we provide an extensive simulation of Whisper. Unfortunately, at this point

in time, it is not feasible to produce experiments involving a real implementation of Whisper for several reasons. First, the
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existing Whisper system is single threaded (and non-adaptive) and consists of several thousand lines of code. All of this code

has to be re-implemented as a multi-threaded system, which is a nontrivial task. Indeed, because of this, it is essential that we

rst understand the algorithmic tradeoffs involved in adapting tasks on multiprocessor real-time systems. The purpose of this

paper, as well as the two related ones we have written on adaption under partitioning [4] and global EDF [7], is to explore these

tradeoffs. Additionally, this paper is only concerned with scheduling methods that facilitate adaption—we have not addressed

the issue of devising mechanisms for determining how and when the system should adapt. Such mechanisms will be based on

issues involving virtual-reality systems that are well beyond the scope of this paper. For these reasons, we have chose to evaluate

PD2-OI via simulation.

Specically, we present a simulated implementation of Whisper on a four-processor system, with 2.7 GHz processors and a 1-

ms quantum. The system was simulated for 10 s, with a sampling frequency of 1,000 Hz for each tracked object. Whisper tracks

users through a system of speakers attached to users and microphones attached to the ceiling. Each speaker emits a unique “white

noise” signal that is received by the microphones. As depicted in Fig. 10, we simulated three speakers (one per object) revolving

around a 5-cm pole in a 1m × 1m room with a microphone in each corner. The pole creates potential occlusions. Whisper is able

1 m

Speaker
Occluding Object
Microphone

1 m

Figure 10: The simulated Whisper system.

to compute the time-shift between the transmitted and received versions of the

sound by performing a correlation calculation on the most recent set of samples.

As the distance between the speaker and microphone changes, so do the number

of correlation computations necessary to correctly track the speaker. This dis-

tance is (obviously) impacted by a speaker’s movement, but is also lengthened

when an occlusion is caused by the pole. The range of weights of each task was

determined (as a function of a tracked object’s position) by implementing and

timing the basic computation of the correlation algorithm (an accumulate-and-multiply operation) on a testbed system that is the

same as that assumed in the simulations.

Each simulation was run 61 times with the speakers placed randomly around the pole, at an equal distance from the pole,

and each rotating around the pole at the same speed. As mentioned above, as the distance between a speaker and microphone

changes, so does the amount of computation necessary to correctly track the speaker. This distance is (obviously) impacted by

a speaker’s movement, but is also lengthened by an occlusion.

In our simulations, we made several simplifying assumptions. First, all objects are moving in only two dimensions. Second,

there is no ambient noise in the room. Third, no speaker can interfere with any other speaker. Fourth, all objects move at

a constant rate. Fifth, for each speaker/microphone pair, there is only one task. Sixth, the weight of each task changes only

once for every 5 cm of distance between its associated speaker and microphone. Finally, all speakers and microphones are

omnidirectional. Because there are three speakers in this simulation, there is not sufcient capacity on the assumed system to

statically allocate each task the capacity it needs to perform all calculations in the worst case. Even with theses assumptions,

frequent share adaptations are required, since the share required by each task changes with the distance between its associated

speaker/microphone pair. (In the absence of these assumptions, we expect PD2-LJ to be completely inadequate, since required

adaptations would be even more pronounced and frequent than those occurring here.)
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Figure 11: Selection of experiments. For clarity, the legend in each inset orders the curves in the (top-to-bottom) order they appear in that
graph. (a) Maximum drift as a function of object speed. (b) Percent of ideal allocation (as dened by IPS) as a function of object speed. (c)
Maximum drift as a function of radius of rotation. (d) Percent of ideal allocation as a function of radius of rotation.

We conducted experiments in which we varied the distance of each object from the center of the room from 10 cm to 50 cm,

the speed of each object from 0.1 m/s to 3.5 m/s (such speeds typify human motion), and the presence of an occluding object

(the pole). However, due to page limitations, the graphs below present only a representative sampling of the data we collected.

All simulations are run for 1,000 time steps (10 s assuming a 1 ms quantum). While the ultimate metric for determining

the efcacy of a tracking system would be user perception, this metric is not currently available for reasons discussed earlier.

Thus, we compared PD2-OI and PD2-LJ by measuring the deviance of each from IPS. This metric should provide us with

a reasonable impression of how well these systems will fare when Whisper is fully re-implemented. We implemented and

timed both reweighting algorithms considered in our simulations on an actual testbed that is the same as that assumed in our

simulations, and found that all per-slot scheduling decisions could be made in approximately 5 µs for all task systems in our

experiments. We considered this value to be negligible in comparison to a 1-ms quantum and thus did not consider scheduling

overheads in our simulations. In each graph presented below, 98% condence intervals are given.

In the rst two graphs, in Fig. 11(a) and (b), the distance from the center of the room to each speaker is 25 cm, and the speed

at which the speakers move varies from 0.5 m/s to 3.5 m/s. Inset (a) depicts the maximal drift of any task in the system at time

1,000 as a function of the speed of the speakers. Inset (b) gives the per-task average total amount of computation completed by

time 1,000, as a percentage of the task’s allocations in IPS, as a function of the speed of the speakers. Notice that PD2-LJ’s

performance decreases (i.e., maximal drift increases and the percentage of the IPS allocation decreases) with an increase in
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speed. PD2-OI’s performance, on the other hand, improves with speed. The most probable explanation for this is that not all

weight changes incur the same amount of drift. In particular, ideal-changeable tasks (i.e., tasks that are reweighted after being

scheduled) incur little drift under PD2-OI. However, when a ideal-changeable task’s weight change is “enacted” by PD2-LJ, the

amount of drift can be substantial. Hence, it is likely that, as the speed of the speakers increases, the number of ideal-changeable

tasks also increases. (Note that the system is not fully loaded, so a task can receive more than 100% of its ideal allocation.)

In the second two graphs, in Fig. 11(c) and (d), the speed of the speakers is 2.9 m/s, and the distance from the center of the

room to each speaker varies from 10 cm to 50 cm. Inset (c) depicts the maximal drift of any task in the system at time 1,000 as

a function of the distance of the speakers. Inset (d) gives the per-task average total amount of computation completed by time

1,000, as a percentage of the task’s allocations in IPS, as a function of the distance of the speakers. One interesting behavior in

inset (c) is that the performance of PD2-LJ, in the presence of occlusions, improves as the distance increases. Such behavior is

likely a consequence of the fact that, as the radius of the speakers increases and the speed remains constant, the distance between

each speaker and microphone is affected by the occluding object for longer periods of time. Hence, share changes that occur as

a speaker becomes (or ceases being) occluded are less frequent, thus improving performance.

Note that the Whisper experiments presented here are fairly generous to PD2-LJ. While weight changes occur frequently,

all weight changes are of one order of magnitude; in fact, most weight changes are fairly incremental. However, even in this

scenario, PD2-LJ completes at most 85% of the allocations in IPS, while PD2-OI is always is within 95% of IPS.

6 Concluding Remarks
We have shown (for the rst time) that ne-grained reweighting is possible on fair-scheduled multiprocessor platforms. The

experiments reported herein show that our reweighting rules enable greater precision in adapting than PD2-LJ. However, this

added precision comes at the price of higher scheduling costs. Ω(max (N,M log N)) time is required to reweight N tasks

simultaneously. In contrast, PD2-LJ entails only O(M log N) time. However, as noted earlier, experiments conducted on our

testbed system indicate that scheduling overheads will likely be small in practice under either scheme. Moreover, we have

shown in a related paper that this precision-versus-overhead tradeoff can be balanced by using schemes that are hybrids of

“pure” PD2-OI and PD2-LJ [5].

As mentioned earlier in this paper, we have ignored the issue of reweighting heavy tasks. The inclusion of heavy tasks

complicates the reweighting rules, since such a task can release a new subtask with a window length of two in (nearly) every

time slot. As a result, one “wrong” scheduling decision can force a cascade of “wrong” scheduling decisions. For non-adaptive

systems, it is possible to calculate the length of such a cascade, and make scheduling decisions based on that information.

However, for adaptive systems, the lengths of these cascades will change with time. Thus, when scheduling adaptive heavy

tasks, particular care must be taken to “correct” such “cascades.” Because of the complexity involved in constructing and proving

reweighting rules for heavy tasks, we refer the reader to the rst author’s upcoming Ph.D. dissertation, which addresses this issue.

One major drawback to PD2-OI scheduling is that it (like all Pfair algorithms) suffers from potentially high migration and

preemption costs. These costs can be mitigated by using adaption schemes based upon partitioning [4] and global EDF [7].

However, as noted earlier, under partitioning, ne-grained reweighting is (provably) impossible; and under global EDF, it is
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possible only if deadline misses are permissible. Because of these various tradeoffs, all three approaches are of value.

As mentioned earlier, while our focus in this paper has been scheduling techniques that facilitate ne-grained adaptations,

techniques for determining how and when to adapt are equally important. Such techniques can either be application-specic (e.g.,

adaptation policies unique to a tracking system like Whisper) or more generic (e.g., feedback-control mechanisms incorporated

within scheduling algorithms [8]). Both techniques warrant further study, especially in the domain of multiprocessor platforms.
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A Appendix

In this section, we prove that PD2-OI correctly schedules any AIS task system that satises (W). Note that this proof is only a

slight modication of the correctness proof for PD2-LJ originally presented by Srinivasan and Anderson in [11].

A.1 Preliminaries

Before proving that PD2-OI correctly schedules any AIS task system, we introduce some basic concepts and properties that are

useful in the proof. We begin by introducing the “adaptive generalized intra-sporadic” task model. After this, we introduce the

notion of a “displacement.” Lastly, we introduce some properties and denitions pertaining to PD2-OI.
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The AGIS task model. To prove the scheduling correctness of PD2-OI in

an AIS system, we consider an extension of the AIS task model called the

adaptive generalized intra-sporadic (AGIS) task model. The AGIS model gen-

eralizes the AIS model by allowing some subtasks to be “absent.” An absent

subtask is never scheduled; however, such subtasks are considered to be part

of a given task system, and as such, they have both releases and deadlines. If

a subtask is not absent then we say that it is present. The function AB(Tj) de-

notes whether the subtask Tj is absent or present, where AB(Tj) = 0, if Tj is

absent, and AB(Tj) = 1, if Tj is present. For example, in Fig. 12, V3 is absent

from the system. Hence, AB(V3) = 0, and for j ∈ {1, 2, 4, 5}, AB(Vj) = 1.

In an AGIS task system, Tj is Tk’s predecessor (and Tk is Tj’s successor) iff Tj and Tk are both present and there are no present

subtasks that have an index between j and k. For example, in Fig. 12, V2 is V4’s predecessor, and V4 is V2’s successor. The per-

slot allocations to a subtask Tj in the AGIS variants of the ISW and ICSW schedules are the same as in the AIS variants, except

that if a subtask is absent, then its per-slot allocation is zero in all time slots. For example, in Fig. 12, the per-slot allocations to

all subtasks except V3 are the same as in an AIS system, and V3’s per-slot allocation is zero for each time slot. Throughout this

appendix, we use LAG(τ , t) to denote LAG(S , ICSW, τ , t) and lag(T , t) to denote lag(S , ICSW, T , t), where S is the PD2-OI

schedule of a task system τ .

Since under the AGIS task model absent tasks never receive any allocations, by Def. 2, such a subtask would never be

complete unless it was halted. Therefore, we amend the denition of complete so that an absent subtask Uj is considered to

be complete in all schedules as soon as it is released, i.e., D(S, Uj) = D(ISW, Uj) = D(ICSW, Uj) = r(Uj), where S is the

PD2-OI schedule of a task system τ . For example, in Fig. 12, D(ISW, V3) = D(ICSW, V3) = r(V3) = 7. Furthermore, in order

to make the denition of ICSW consistent, we say that a subtask Uj is complete in the ICSW schedule at time r(Uj) if Uj is a
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Figure 13: Per-task ICSW allocations for a task T in an AGIS system that has an initial weight of 3/19 and initiates a weight change increase
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halted subtask, i.e., if H(Uj) < ∞, then D(ICSW, Uj) = r(Uj). For example, in Fig. 13(a), the subtask T2 is halted at time 8,

so D(ICSW, T2) = r(T2) = 6. In contrast, in Fig. 13(b), the subtask T2 is never halted, and therefore D(ICSW, T2) = 10.

We now address the issue of how rules O and I are applied in an AGIS system. Notice that if a task U initiates a weight change

at tc, and the last-released subtask of U , Uj is absent, then that subtask has not yet been scheduled. Therefore, if tc < d(Uj),

then U is omission-changeable at tc. For example, in Fig. 13(c), the subtask T2 is absent, therefore it is not scheduled by time

8, when T initiates a weight change. Thus, T is omission-changeable at time 8. Furthermore, note that an absent subtask can

be considered to be “halted,” even though it was never eligible to be scheduled. For example, in Fig. 13(c), when T changes its

weight via rule O at time 8, T2 is halted, even though it is absent.
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Displacements. We now introduce the notions of an “instance” of a task

system and a task “displacement.” An instance of a task system is obtained by

specifying a unique assignment of release times for each subtask and weight

changes for each task. Before continuing, it is worth pointing out that since

halted subtasks are never scheduled, and rules O and I behave the same whether

the last-released subtask is absent or not, PD2-OI produces the same scheduled

regardless of whether a halted subtask is absent or present. Thus, we assume

that in every task instance presented in this paper, if a subtask is halted, then it

is absent. By denition, the removal of a subtask (i.e., changing a subtask from

present to absent) from one instance of an AGIS task system results in another

instance. (Note that only present subtasks can be removed.) Let X(i) denote

a subtask of any task in an AGIS task system τ . Let S denote the PD2-OI

schedule of τ . Assume that removing X(1) scheduled at slot t1 in S causes

X(2) to shift from slot t2 to t1, where t1 ,= t2, which in turn may cause other shifts. We call this shift a displacement and

represent it by the four-tuple 〈X(1), t1, X(2), t2〉. A displacement 〈X(1), t1, X(2), t2〉 is valid iff r(X(2)) ≤ t1. Because there

can be a cascade of shifts, we may have a chain of displacements, as illustrated in Fig. 14. Removing a subtask may also lead

to slots in which some processors are idle. In a schedule S, if k processors are idle in slot t, then we say that there are k holes
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in S in slot t. Note that holes may exist because of late subtask releases or absent subtasks, even if total utilization is M . We

now present three lemmas that describe the relationship among subtasks in a chain of a displacement. These three lemmas were

originally proven by Srinivasan and Anderson for the “generalized IS task model,” i.e., an IS task system, where subtasks can

be absent [10]. Since the logic of their proof holds for AGIS task systems, we state these lemmas without proof.

Lemma 1. Let X(1) be a subtask that is removed from τ , where all halted subtasks are absent, and let the resulting chain of

displacements in S be C = ∆1,∆2, ...,∆k, where ∆i = 〈X(i), ti, X(i+1), ti+1〉. Then ti+1 > ti, for all i ∈ {1, ..., k}

Lemma 2. Let ∆ = 〈X(1), t1, X(2), t2〉 be a valid displacement in S , in which all halted subtasks are absent. If t1 < t2 and

there is a hole in slot t1 in that schedule, then X(2) is X(1)’s successor in τ .

Lemma 3. Let ∆ = 〈X(1), t1, X(2), t2〉 be a valid displacement in S , in which all halted subtasks are absent. If t1 < t2 and

there is a hole in slot t′ such that t1 ≤ t′ < t2 in that schedule, then t′ = t1 and X(2) is the successor of X(1) in τ .

Reweighting properties. The following simple property follows directly from the denition of PD2-OI.

(RW) Suppose T initiates a weight change at time tc ≥ r(T1) and Tj is the last-released subtask of T at tc. If r(Tj) ≤ tc <

d(Tj), then T is either omission- or ideal-changeable at tc.

In Sec. 4, we presented property (V), which relates the release times, completion times, and deadlines of two subtasks Ti

and Ti+1. In the following proof, it is useful to extend this property to relate the release times, completion times, and deadlines

of two subtasks Ti and Tk, where i < k.

(GV) For the subtasks Ti and Tk, where i < k, if d(Ti) − b(Ti) > r(Tk), then D(ICSW, Ti) ≤ r(Tk) and D(S, Ti) ≤ r(Tk).

The proof of (GV) follows directly from (V). Notice that the above property holds even if Ti or Tj is absent.

We now state two properties about the relationship between the initiation and enactment of reweighting events.

(X1) If a task T initiates a weight change at time tc, then it is enacted no later than time r(Tk), where Tk is the next-released

subtask of T .

(X2) If a weight change is enacted over the range (r(T"),d(T")], then that change must have been initiated over the range

[r(T"),d(T")].

Given that property (C) guarantees that no sequence of reweighting events can delay the next weight-change enactment after

a weight change has been initiated, and that the rules I and O guarantee a subtask is released within one quantum of a weight

change enactment, the subtask Tk (as dened in (X1)) will eventually be released. Thus, from the denitions of rules O and I,

(X1) should be fairly intuitive. As for (X2), it follows from the contrapositive of (X1).

We now introduce four properties about the per-slot allocations of a task and the completion time of a subtask in an AGIS

system that are useful in the correctness proof.

AF1: For all t ≥ 0, A(ICSW, T , t) ≤ swt(T , t).
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AF2: Let τ be an AGIS system in which all halted subtasks are absent. For any present subtask Ti of the task T ∈ τ and

its successor Tk, if b(Ti) = 1 and r(Tk) ≥ D(ICSW, Ti), then A(ICSW, T , D(ICSW, Ti) − 1, D(ICSW, Ti) + 1) ≤

swt(T , D(ICSW, Ti)).

AF3: For any subtask Ti, D(ICSW, Ti) ≤ d(Ti).

AF4: For any subtask Ti and any time t, if t < r(Ti) ∨ t ≥ D(ICSW, Ti), then A(ICSW, Ti, t) = 0.

Given the examples in Fig. 12 and Fig. 13, both (AF1) and (AF4) should be fairly intuitive. As for (AF2), no-

tice that in Fig. 12, A(ICSW, V , D(ICSW, V1) − 1, D(ICSW, V1) + 1) = 1/16 + 4/16 ≤ swt(V , 4) = 5/16 and

A(ICSW, V , D(ICSW, V4) − 1, D(ICSW, V4) + 1) = 4/16 ≤ swt(V , 14) = 5/16. Also notice that in Fig. 13(b), which de-

picts a task T that changes its weight from 3/19 to 2/5 via rule I at time 8, A(ICSW, T , D(ICSW, T2) − 1, D(ICSW, T2) + 1) =

32/95 + 0 ≤ swt(T , 10) = 2/5. Also note that in Fig. 13(c), which depicts a task T that changes its weight from 3/19 to 2/5

via rule O at time 8, A(ICSW, T , D(ICSW, T1) − 1, D(ICSW, T1) + 1) = 1/19 + 0 ≤ swt(T , 7) = 3/19. Finally, notice that

(AF2) does not apply to the system depicted in Fig. 13(a), since T2 is halted, but it is not absent. As for (AF3), recall that in

the absence of reweighting events, d(Ti) = D(ICSW, Ti). To increase the completion time of Ti (and hence D(ICSW, Ti)) in

ICSW, T would have to enact a weight change in the range (r(Ti),d(Ti)) that decreases the weight of T , without halting Ti.

However, by (X2), a change enacted in the range (r(Ti),d(Ti)) must have been initiated in the range [r(Ti),d(Ti)). Thus, by

(RW) when such a change is initiated, T is either omission- or ideal-changeable. Since only rule I can change the weight of a

task without halting the last-released subtask, when such a change is initiated, T must be ideal-changeable. However, by rule I

no weight decrease that is initiated in the range [r(Ti),d(Ti)) can be enacted before D(ICSW, Ti). Thus, the completion time

for a subtask is upper-bounded by the deadline of the subtask.

As a consequence of (AF1) and property (W), LAG can only increase over a time slot if there is a hole in that slot. Hence,

the lemma below follows.

Lemma 4. If LAG(τ , t) < LAG(τ , t + 1), then there is a hole in slot t.

A.2 Correctness Proof

Having dened the AGIS task model, displacements, and some basic properties, we can now prove Thm. 2. Suppose that Thm. 2

does not hold. Then, there exist a time td and a task system τ as given in Defs. 3 and 4 below.

Denition 3 (td). td is the earliest time at which any AGIS task system instance misses a deadline under PD2-OI.

Denition 4 (τ and S). τ is an instance of an AGIS task system with the following properties.

(T1) τ misses a deadline under PD2-OI at td.

(T2) No task system satisfying (T1) has fewer present subtasks in [0, td) than τ .

In the remainder of this proof, we let S denote PD2-OI schedule of τ .
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By (T1), (T2), and Def. 3, exactly one subtask in τ misses its deadline at td: if several subtasks miss their deadlines, all but

one can be removed and the remaining subtask will still miss its deadline, contradicting (T2). We now prove several properties

about S .

Lemma 5. The following properties hold for τ and S, where Ti is any subtask in S.

(a) For any present subtask Ti, d(Ti) ≤ td.

(b) There are no holes in slot td − 1.

(c) LAG(τ , td) = 1.

(d) LAG(τ , td − 1) ≥ 1.

(e) For any present subtask Ti, H(Ti) = ∞.

Proof of (a). Suppose that τ contains a subtask Uj with a deadline greater than td. Uj can be removed without affecting the

scheduling of higher-priority subtasks with earlier deadlines. Thus, if Uj is removed, then a deadline still missed at td. This

contradicts (T2).

Proof of (b). If there were a hole in slot td − 1, then the subtask that misses its deadline at td would have been scheduled there,

which is a contradiction. (Note that, by the minimality of td, its predecessor meets its deadline at or before td − 1 and hence is

not schedule in slot td − 1.)

Proof (c). By (1), we have

LAG(τ , td) = A(ICSW, τ , 0, td) − A(S , τ , 0, td).

In the above equation, the term A(ICSW, τ , 0, td) equals the total number of present subtasks in τ . The second term corresponds

to the number of subtasks scheduled by PD2-OI in [0, td). Since exactly one subtask misses its deadline, the difference between

these two terms is 1, i.e., LAG(τ , td) = 1.

Proof of (d). By (b), there are no holes in slot td − 1. Hence, by Lemma 4, LAG(τ , td − 1) ≥ LAG(τ , td). Therefore by (c),

LAG(τ , td − 1) ≥ 1.

Proof of (e). If Ti is a halted subtask, then it is never scheduled. Hence, it can be removed and a deadline will still be missed at

td. Contradicting (T2).

Denition 4 (At, Bt, and It). Before continuing, we dene the sets At, Bt, and It, which are all dened with respect to

schedule S and some time t. At denotes the set of tasks that have a subtask scheduled at t. Bt denotes the set of tasks that are

not scheduled at t, and receive some allocation in ICSW at slot t, i.e., A(ICSW, T , t) > 0 for T ∈ Bt. It denotes the set of all

tasks that are in the system at t but are not in At or Bt. These three sets are illustrated in Fig. 15.
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Figure 15: The task sets A, B, and I . There are two types of tasks in set I: tasks that have a deadline at or before t (denoted I1) and tasks
that have a deadline after t but complete in ICSW at or before t (denoted I2).
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Figure 16: An illustration of the chain of displacements that occurs by removing X(1) = Uj in Lemma 6. X(h) must be the successor of
X(h−1) because there is a hole in slot t.

Lemma 6. Let t < td − 1 be a time at which there is a hole in S. Let U be any task in Bt or At. Let Uj be the subtask with the

largest index such that r(Uj) ≤ t < d(Uj) and Uj is scheduled at or before t. Then d(Uj) = t + 1 ∧ b(Uj) = 1.

Proof. Let t and U be as dened in the statement of the lemma. If U ∈ At, then since t < td − 1 and Uj is scheduled at or

before t, d(Uj) ≥ t + 1. If U ∈ Bt, then since A(ICSW, U , t) > 0, by the denition of D and AF3, d(Uj) ≥ t + 1. Suppose

that the following holds to derive a contradiction.

d(Uj) > t + 1 or d(Uj) = t + 1 ∧ b(Uj) = 0 (6)

We now show that Uj can be removed and a deadline will still be missed at td, contradicting (T2). (Before we continue, notice

that since Uj is scheduled it is present, and as a result Uj can be removed.) Let the chain of displacements caused by removing

Uj be ∆1,∆2, ...,∆k, where ∆i = 〈X(i), ti, X(i+1), ti+1〉, X(1) = Uj . By Lemma 1, ti+1 > ti, for 1 ≤ i ≤ k. The chain of

displacements under consideration is illustrated in Fig. 16.

Note that at slot ti, the priority of X(i) is at least that of X(i+1), because X(i) was chosen over X(i+1) in S . Thus, because

X(1) = Uj , by (6), for each subtask 1 ≤ i ≤ k + 1, either d(X(i)) > t + 1 or d(X(i)) = t + 1 ∧ b(X(i)) = 0. We now show

that the displacements do not extend beyond slot t. Assume to the contrary that tk+1 > t. Consider h ∈ {2, ..., k + 1} such
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that th > t and th−1 ≤ t. Such an h exists because t1 ≤ t < tk+1. Because there is a hole in slot t and th−1 ≤ t < th, by

Lemma 3, th−1 = t and X(h) is X(h−1)’s successor. Since a subtask cannot be scheduled before it is released, r(X(h)) < t + 1.

Since h − 1 ≤ k, either d(X(h−1)) > t + 1 or d(X(h−1)) = t + 1 ∧ b(X(h−1)) = 0 holds. Therefore, since r(X(h)) < t + 1,

d(X(h−1)) − b(X(h−1)) > r(X(h)) holds. Thus, by (GV), X(h−1) is scheduled before r(X(h)) ≤ t in S, contradicting our

assumption that X(h−1) is scheduled in slot t.

Thus, the displacements do not extend beyond slot t. Thus, no subtask scheduled after t is “left-shifted.” Hence, a deadline

is still missed at time tc, contradicting (T2). Hence, d(Uj) = t + 1 ∧ b(Uj) = 1.

Since, by part (d) of Lemma 5, LAG(τ , td − 1) ≥ 1 and, by denition of LAG, LAG(τ , 0) = 0, there exists a time tH such

that

0 ≤ tH < td − 1 ∧ LAG(τ , tH) < 1 ∧ LAG(τ , tH + 1) ≥ 1. (7)

Without loss of generality, let tH, be the latest such time, i.e., for all u such that tH < u ≤ td − 1, LAG(τ , u) ≥ 1. We now

show that such a tH cannot exist, thus contradicting our starting assumption that td and τ exist. For brevity, we use A to denote

AtH , B to denote BtH , and I to denote ItH .

Lemma 7. B is non-empty

Proof. Let the number of holes is slot tH be h. Then, A(S , τ , tH) = M − h. By (13), LAG(τ , tH + 1) = LAG(τ , tH) +

A(ICSW, τ , tH)−A(S , τ , tH). Thus, because LAG(τ , tH + 1) > LAG(τ , tH), we haveA(ICSW, τ , tH) > M−h. Since, for ev-

ery V ,∈ A∪B, A(ICSW, V , tH) = 0, it follows thatA(ICSW, A ∪ B, tH) > M−h. Therefore, by (AF1),
∑

T∈A (swt(T , tH))+
∑

T∈B (A(ICSW, T , tH)) > M − h. Because the number of tasks scheduled in slot tH is M − h, |A| = M − h. Because

swt(T , t) ≤ 1, for any task T at any time t,
∑

T∈A swt(T , tH) ≤ M − h. Thus,
∑

T∈B A(ICSW, T , tH) > 0. Hence, B is not

empty.

(TK) Let U be any task in B and let Uj be the subtask of U with the largest index such that r(Uj) ≤ tH < d(Uj) and Uj is

scheduled before tH. Then, no present subtask with an index greater than j (including Uj’s successor), is released before

d(Uj).

Property (TK) easily follows from the fact that there is a hole in slot tH and no subtask of B is scheduled in slot tH.

Lemma 8. Let U be any task in B. Let Uj be the subtask of U with the largest index such that r(Uj) ≤ tH < d(Uj) and Uj is

scheduled before tH. Then, D(ICSW, Uj) = tH + 1.

Proof. Let U and Uj be dened as in the statement of the lemma. Since Uj is the subtask of U with the largest index such that

r(Uj) ≤ tH < d(Uj) and Uj is scheduled before tH (by the denition of B, no subtask of U ∈ B is scheduled in slot tH), by

Lemma 6, d(Uj) = tH + 1. Thus, by (AF3), D(ICSW, Uj) ≤ tH + 1.

We now show that for # ,= j, A(ICSW, U", tH) = 0. First, we consider # > j. From the denition of Uj , at least one of the

following three conditions must hold: (i) r(U") > tH; (ii) d(U") ≤ tH; or (iii) U" is not scheduled by tH. If conditions (i) or

(ii) hold, then by (AF3) and (AF4), A(ICSW, U", tH) = 0. If condition (iii) holds, then by (TK) either r(U") > d(Uj) (in which
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case condition (i) holds) or U" is not present (in which case A(ICSW, U", tH) = 0). Thus, for # > j, A(ICSW, U", tH) = 0.

Now, consider # < j. By Lem. 6, d(Uj) = tH + 1 ∧ b(Uj) = 1. Since every task has a weight of at most 1/2, every subtask

with a b-bit of one has a window length of at least three. Hence, r(Uj) ≤ tH − 2. By (GV), d(U") − b(U") > r(Uj) holds

only if D(ICSW, U") ≤ r(Uj). Thus, either D(ICSW, U") ≤ r(Uj) or d(U") − b(U") ≤ r(Uj) holds. Since, r(Uj) ≤ tH − 2,

either D(ICSW, U") ≤ r(Uj) ≤ tH − 2 or d(U") ≤ r(Uj) + b(U") ≤ tH − 1 holds. Since, by (AF3), D(ICSW, U") ≤ d(U"),

D(ICSW, U") ≤ tH − 1 holds in either case. Thus, by (AF4), A(ICSW, U", tH) = 0.

Thus, the allocation to each subtask of U , except Uj , in ICSW in slot tH is zero. By the denition of B, A(ICSW, U , tH) > 0.

Thus, since A(ICSW, U , tH) =
∑

Ui∈U A(ICSW, Ui, tH), there must exist at least one present subtask with a positive allocation

in ICSW in the slot tH. Thus, A(ICSW, Uj , tH) > 0. By (AF4), this implies that D(ICSW, Uj) ≥ tH+1. Since we have already

established that D(ICSW, Uj) ≤ tH + 1, we have D(ICSW, Uj) = tH + 1.

Lemma 9. There is no hole in slot tH + 1.

Proof. First, we show that at least one subtask is scheduled at tH +1, after which we show that there are no holes in slot tH +1.

Notice that if no subtask were scheduled in slot tH + 1, then every subtask that was released at or before tH + 1 would have

been scheduled before tH + 1. Thus, if no subtask were scheduled in slot tH + 1, then the lag of every task would be would

non-positive at tH + 1, which implies that LAG(τ , tH + 1) ≤ 0. However, by (7), LAG(τ , tH + 1) ≥ 1. Thus, there must be at

least one subtask scheduled in slot tH + 1.

Now we show that there cannot be any holes in slot tH + 1. Suppose, to derive a contradiction, that there is a hole in slot

tH +1. Let Uj be a subtask scheduled in slot tH +1. (Uj must exist, as shown above.) Since Uj is scheduled at tH +1 < td, Uj

does not miss its deadline. Hence, d(Uj) ≥ tH + 2. Since a subtask is not scheduled before it is released and Uj is scheduled in

slot tH + 1, r(Uj) ≤ tH + 1. Since subtasks are scheduled in order of their index, Uj has the largest index of any subtask of U

scheduled at or before tH + 1. Thus, since r(Uj) ≤ tH + 1 < d(Uj), by Lemma 6, d(Uj) = tH + 2 ∧ b(Uj) = 1. Since the

maximum weight of a task is 1/2, every subtask that has a b-bit of one has a window length of at least three quanta. Thus,

r(Uj) ≤ d(Uj) − 3 = tH − 1. (8)

Since there is a hole in slot tH, Uj is not scheduled in slot tH and r(Uj) < tH, a predecessor to Uj , Uk, must have been

scheduled in slot tH. As with Uj , since Uk is scheduled in slot tH < td − 1, Uk is the subtask of U with the largest index

such that r(Uk) ≤ tH < d(Uk). Thus, by Lemma 6, d(Uk) = tH + 1 ∧ b(Uk). Uj and Uk are illustrated in Fig. 17. Since

r(Uj) ≤ tH − 1 < d(Uk) − b(Uk), by (GV), Uk is complete in S by tH (i.e., scheduled before tH), which contradicts the fact

that Uk is scheduled at tH.

The following lemma contradicts our choice of tH as the last slot such that LAG(τ , tH) < 1.

Lemma 10. LAG(τ , tH + 2) < 1.

Proof. Let the number of holes in slot tH be h. We now derive some properties about the per-slot allocations to tasks in the

ICSW schedule in slots tH and tH + 1.
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Figure 17: An illustration of the proof of Lemma 9, where there is a hole in time slots tH and tH + 1.

By the denition of I , if task T is in I , then A(ICSW, T , tH) = 0. Since τ = A ∪ B ∪ I ,
∑

T∈τ A(ICSW, T , tH) =
∑

T∈A∪B A(ICSW, T , tH). Since swt(T , t) ≤ 1, for any task T and any time t, we have
∑

T∈A swt(T , tH) ≤ |A|. Thus, by

(AF1),
∑

T∈A A(ICSW, T , tH) ≤ |A|. Because there are h holes in slot tH, M −h tasks are scheduled at tH, i.e., |A| = M −h.

Thus,
∑

T∈A A(ICSW, T , tH) ≤ M − h, and hence

∑

T∈τ

A(ICSW, T , tH) ≤ M − h +
∑

T∈B

A(ICSW, T , tH). (9)

Let C denote the set of tasks that receive a positive allocation in ICSW in slot tH +1 and are not in B. Then, the set of tasks

that receive a positive allocation in ICSW is a subset of C ∪ B. Thus, by property (W) in Sec. 4,

∑

T∈C∪B

swt(T , tH) ≤ M. (10)

Also,
∑

T∈τ A(ICSW, T , tH + 1) =
∑

T∈C∪B A(ICSW, T , tH + 1). By (AF1), this implies that
∑

T∈τ A(ICSW, T , tH + 1) ≤
∑

T∈C swt(T , tH + 1) +
∑

T∈B A(ICSW, T , tH + 1). Thus, by (9),

∑

T∈τ

A(ICSW, T , tH, tH + 2) ≤ M − h +
∑

T∈C

swt(T , tH + 1) +
∑

T∈B

A(ICSW, T , tH, tH + 2) (11)

Consider U ∈ B. Let Uj be the subtask of U with the largest index such that r(Uj) ≤ tH < d(Uj) that is scheduled before

tH. Let D denote the set of such subtasks for all tasks in B. Then, by Lemmas 6 and 8,

for all Uj ∈ D,D(ICSW, Uj) = d(Uj) = tH + 1 ∧ b(Uj) = 1. (12)

By (TK), Uj’s successor Uk is not released until tH + 1 ≥ D(ICSW, Uj). Since r(Uk) ≥ D(ICSW, Uj) and b(Uj) = 1, by

(AF2), A(ICSW, U , tH, tH + 2) ≤ swt(U , tH + 1). Thus,
∑

T∈B A(ICSW, T , tH, tH + 2) ≤
∑

T∈B swt(T , tH + 1).

By (11), this implies that
∑

T∈τ A(ICSW, T , tH, tH + 2) ≤ M −h+
∑

T∈C∪B swt(T , tH + 1). Thus, from (10) it follows

that
∑

T∈τ

A(ICSW, T , tH, tH + 2) ≤ M − h + M. (13)

By Lemma 9, there is no hole in slot tH+1. Since there are h holes in slot tH, we haveA(S , τ , tH, tH + 2) = M−h+M . Hence,

by (13),
∑

T∈τ A(ICSW, T , tH, tH + 2) ≤
∑

T∈τ A(S , τ , tH, tH + 2). Using this relation in (1) we obtain, LAG(τ , tH + 2) =
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LAG(τ , tH) + A(ICSW, T , tH, tH + 2) − A(S , τ , tH, tH + 2). Since, LAG(τ , tH) < 1, we obtain LAG(τ , tH + 2) < 1.

It follows, by Lemma 10, that td does not exist. Thus, Thm. 2 holds.
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