
A Simple Path Non-Existence Algorithm using
C-obstacle Query
http://gamma.cs.unc.edu/NOPATH

Liangjun Zhang1, Young J. Kim2, and Dinesh Manocha1

1 Dept. of Computer Science, University of North Carolina at Chapel Hill, U.S.A.
{zlj,dm}@cs.unc.edu

2 Dept. of Computer Science and Engineering, Ewha Womans University, Korea,
kimy@ewha.ac.kr

Abstract: We present a simple algorithm to check for path non-existence for a
robot among static obstacles. Our algorithm is based on adaptive cell decomposition
of configuration space or C-space. We use two basic queries: free cell query, which
checks whether a cell in C-space lies entirely inside the free space, and C-obstacle
cell query, which checks whether a cell lies entirely inside the C-obstacle region.
Our approach reduces the path non-existence problem to checking whether there
exists a path through cells that do not belong to the C-obstacle region. We describe
simple and efficient algorithms to perform free cell and C-obstacle cell queries using
separation distance and generalized penetration depth computations. Our algorithm
is simple to implement and we demonstrate its performance on 3 DOF robots.

1 Introduction

Motion planning is a fundamental problem in robotics. The goal is to com-
pute a collision-free path between two configurations of a given robot. This
problem has been extensively studied in the field for more than three decades.
At a broad level, prior algorithms for motion planning can be classified into
roadmap methods, exact cell decomposition, approximate cell decomposition,
potential field methods and randomized sampling-based methods [7, 14, 15].
In particular, planning algorithms such as the roadmap methods and exact cell
decomposition are referred as complete motion planning algorithms. These ap-
proaches can compute a collision-free path if one exists; otherwise they report
path non-existence between the two configurations. However, these methods
are known to have a high theoretical complexity and are very difficult to im-
plement. Their practical implementations are usually limited to planar robots,
convex polytopes or special shapes such as spheres or ladders.

Practical algorithms for motion planning are based on approximate cell de-
composition, potential field computation or sampling-based algorithms. The
approximate cell decomposition based algorithms subdivide the configuration
space into cells and can be made resolution complete based on a suitable choice

2 Liangjun Zhang, Young J. Kim, and Dinesh Manocha

of parameters. However, the number of subdivision in prior approaches grows
quickly with the dimension of the configuration space. In practice, prior cell-
decomposition algorithms also suffer from the combinatorial complexity and
robustness issues with respect to contact surface enumeration and computa-
tion. For a robot with high geometric complexity, generating and enumerating
contact surfaces can be complicated and time consuming [8, 16].

On the contrary, randomized sampling methods such as probabilistic
roadmap planners (PRMs) are relatively simple to implement and work quite
well in practice [11]. The strength of PRMs lies in their simplicity and they can
be easily applied to general robots with high DOF. However, PRMs have two
major issues: path non-existence (i.e. no passage) and narrow passages. If there
is no collision-free path, PRM algorithms may not terminate. Moreover, it is
hard to distinguish whether such situations arise due to path non-existence
or due to narrow passages and poor sampling.

Main Results

In this paper, we present a simple and efficient cell decomposition algorithm
for path non-existence from the initial to the goal configuration. Our resulting
motion planning algorithm is a complete algorithm for a rigid robot with
translational and rotational DOF. Furthermore, our approach can also be
extended to articulated robots.

We subdivide the configuration space into empty, full and mixed cells.
Unlike prior cell decomposition algorithms, we use efficient algorithms to label
a given cell as full or empty to check whether it lies entirely in the C-obstacle
region or in the free space. Our algorithm uses two kind of queries: free cell
query for identifying empty cells and C-obstacle cell query for identifying full
cells. We efficiently perform these queries in the workspace by computing the
separation distance and generalized penetration depth. As a result, our cell
query algorithms can be easily implemented for 2D or 3D rigid robots, or
articulated robots.

In order to check for path non-existence, the algorithm searches for a
sequence of adjacent empty or mixed cells to connect the cell containing the
initial configuration to the cell containing the goal configuration. The non-
existence of such a sequence is a sufficient condition for path non-existence
between the initial and the goal configuration. We have implemented our
algorithm and highlight its performance on 3 DOF robots.

Organization

The rest of the paper is organized as follows. In Section 2, we briefly survey
related work on motion planning. We give an overview of our method in
Section 3 and present our cell labelling algorithms in Section 4. We describe
our implementation and discuss a few limitations of our approach in Section
5.

Path Non-Existence Algorithm using C-obstacle Query 3

2 Previous Work

Motion planning has been extensively studied for more than three decades.
Excellent surveys of this topic are available in [7, 14, 15]. In this section, we
briefly review prior algorithms for exact and approximate motion planning.

2.1 Exact Motion Planning

The complete motion planning algorithms compute a collision-free path if one
exists; otherwise they report path non-existence. These include criticality-
based algorithms such as exact free-space computation for a class of robots
[2, 9, 17, 12], roadmap methods [6], and exact cell decomposition methods
[20]. The exact cell decomposition methods require an exact description of the
configuration space consisting of the free space and the C-obstacle region. The
boundary between the free space and C-obstacle region is described by a set
of contact surfaces, each surface being the locus of configurations of a robot at
which a specific boundary feature of the robot is in contact with a boundary
feature of the obstacles. The exact cell decomposition approaches partition
the free space into a collection of simpler geometric regions and compute a
connectivity graph representing the adjacency between the regions.

In theory, these methods are quite general. However, in practice, it is quite
challenging to implement them and no good implementations are known for
general and high DOF robots. As a result, many variants have been proposed
to deal with special cases of motion planning problems [14].

2.2 Approximate Cell Decomposition and Sampling-based
Approaches

A number of algorithms based on approximate cell decomposition have been
proposed [4, 8, 27]. These methods partition the C-space into a collection
of cells. They classify the cells into three types: empty cells that lie entirely
in the free space, full cells that are entirely within the C-obstacle region,
and mixed cells that correspond to the rest. Unlike exact cell decomposition,
the cell used in approximate cell decomposition algorithms have a simpler,
rectangloid shape, and the empty cells provide a conservative approximation
of the free space. The planner searches through the empty cells to find a path.
Moreover, approximate cell decomposition methods are resolution complete;
i.e., they can find a path if one exists provided the resolution parameters
are selected small enough [14]. In practice, approximate cell decomposition
methods have been used for low DOF robots.

One of the main computational issues in approximate cell decomposition
methods is cell labelling. In order to label a cell, most prior approaches rely on
contact surface computations [27], which could be complicated and prone to
degeneracies. Paden et al. [18] describe a method based on workspace distance
computation. However, their method could be overly conservative in practice.

The probabilistic roadmap method (PRM) [11] is perhaps the most widely
used path planning algorithm for different applications. It is relatively simple
to implement and has been successfully applied to high DOF robots. Since

4 Liangjun Zhang, Young J. Kim, and Dinesh Manocha

PRM-based algorithms sample the free space randomly, they may fail to find
paths, especially those passing through narrow passages. A number of exten-
sions have been proposed to improve the sampling in terms of handling narrow
passages [1, 10, 19] or use visibility-based techniques [22]. All these methods
are probabilistically complete.

Recently, a deterministic sampling approach called star-shaped roadmaps
has been proposed [24]. The free space is partitioned into star-shaped regions
and connectors between star-shaped regions are computed for inter-region
connectivity. This algorithm is complete as long as there are no tangential
contacts in the boundary of the free space. Since star-shaped roadmaps com-
pute the global connectivity of the free space, the number of regions can in-
crease exponentially as a function of DOF. Moreover, this approach is based
on contact surface enumeration.

2.3 Path Non-Existence

Exact planning approaches such as exact cell decomposition and roadmap
computation can check for path non-existence. However, these methods are
not practical due to their theoretical complexity and implementation diffi-
culty. Approximate cell decomposition approaches can also check for path
non-existence, but they are also complicated because of contact surface com-
putation. In general, a popular planning method such as PRM cannot deter-
ministically guarantee the path non-existence as it is only probabilistically
complete. An effort has been made to address the issue of path non-existence
in PRM [3]. The authors have proposed a disconnection prover, probabilis-
tically showing that the motion planning problem has no solution. However,
this approach is restricted to the special problem of finding a path through
a planar section. The deterministic sampling approach such as star-shaped
roadmaps [24] is a complete approach but it may be overly conservative and
can generate a large number of samples.

3 Overview

In this section, we give an overview of our algorithm. Following the basic
framework of approximate cell decomposition, we use reliable algorithms to
perform the cell labelling. Then we build the connectivity graph for the empty
and mixed cells from the cell decomposition, and check for path non-existence
between the initial and the goal configuration by performing a search in the
connectivity graph.

3.1 Notation

We use a symbol A to denote a robot and B to represent a collection of all
fixed obstacles. Let C denote the configuration space or C-space of the robot.
F and O = C\F represent the free space and the configuration space obstacle
or C-obstacle region, respectively. A cell C in n-dimensional C-space is defined
as a Cartesian product of real intervals:

Path Non-Existence Algorithm using C-obstacle Query 5

Fig. 1. Path non-existence between qinit and qgoal. (b): A connectivity graph G is
built. The path L, which connects the cells including qinit and qgoal, is computed
from G. Any mixed cell along L is further subdivided. (c): In the new connectivity
graph, the cell containing qinit and the cell containing qgoal are not connected. This
concludes that there is no collision-free path between qinit and qgoal.

C = [x′
1, x

′′
1]× [x′

2, x
′′
2] · · · × [x′

n, x′′
n].

We denote A(q) as a placement of the robot A at configuration q. Let qinit

and qgoal represent the initial and the goal configuration of the robot. A line
segment in C-space connecting configurations qa and qb is represented as
πqa,qb

. Let l(t), t ∈ [0, 1] be an arbitrary motion curve defined in the C-space.
We denote µ(p, l) as the trajectory length of a point p on A when A moves
along the motion curve l.

3.2 Cell Decomposition and Labelling

Our approach to check for path non-existence is based on cell decomposition.
The configuration space C is spatially subdivided into cells at successive levels
of the subdivision. The cells are classified as empty or full depending on
whether they lie entirely inside the free space F , or entirely inside the C-
obstacle O. If they are neither empty nor full, they are labelled as mixed. Fig.
1 illustrates different type of cells. In Section 4, we present more details about
our cell labelling algorithm.

3.3 Connectivity Graphs

For each level of subdivision, the connectivity graph G is built to represent
the adjacency relationship between empty and mixed cells. Formally, the con-
nectivity graph [14, 27, 28] associated with a decomposition D of C is an
undirected graph, where:

• The vertices in G are the empty and mixed cells in D.
• Two vertices in G are connected by an edge if and only if the corresponding

cells are adjacent.

Intuitively, G captures the connectivity of both the identified free space, which
is covered by the empty cells, and the ‘uncertain’ region, which is represented
by the mixed cells.

In order to check for path non-existence, our algorithm first locates the
cells Cinit and Cgoal, which contain qinit and qgoal, respectively. Next, the

6 Liangjun Zhang, Young J. Kim, and Dinesh Manocha

algorithm searches G to find a path L, a sequence of adjacent empty and
mixed cells connecting Cinit and Cgoal (Fig. 1). If no such path is found, it is
sufficient to claim that there is no collision-free path that connects qinit and
qgoal, or qinit and qgoal are not connected.

There are various known techniques to prioritize the search on the con-
nectivity graph G. We use the shortest path algorithm to search for a path
connecting Cinit and Cgoal in G. We also assign each edge a different weight,
where the edge associated with two empty cells has the smallest weight (0 in
our implementation) and the one with two mixed cells has the largest weight.

Our algorithm terminates if we can prove path non-existence, or we can
find a collision-free path. For this purpose, a subgraph Ge of G is also con-
structed. Ge represents the adjacency relationship among all the empty cells.
Intuitively, Ge represents the connectivity of a part of the free space that has
been identified till the current level of subdivision. If there is a path in Ge

connecting Cinit and Cgoal, a collision-free path can be easily extracted and
optimized [27].

3.4 Guided Subdivision

When a path L is reported after searching the connectivity graph G, it is
not clear whether qinit and qgoal are not connected. If so, we need to further
explore the ‘uncertain’ regions - the union of mixed cells, to acquire more
information about their connectivity. Considering the fact that not all ‘uncer-
tain’ regions contribute to separating qinit from qgoal, we employ the first-cut
algorithm [14, 27] to first subdivide some of the ‘uncertain’ regions. More
specifically, all the mixed cells on the path L are assigned higher priorities
for the next level of the subdivision than other mixed cells. Our algorithm is
recursively applied until it finds a collision-free path or concludes path non-
existence.

4 Cell Labelling

Compared to prior cell decomposition approaches, one of our distinct features
is that during cell decomposition, we use reliable algorithms for cell labelling.
As a result, our algorithm does not need to compute the contact surfaces.
In this section, we present our free cell query and C-obstacle cell query al-
gorithms for labelling the cells in C. Formally speaking, the free cell query
checks whether a given cell C is empty or the following predicate Pf is true:

Pf (A,B, C) : ∀q ∈ C, interior(A(q)) ∩ interior(B) = ∅,

where A is a robot, B represents the obstacles and the operator interior is
the interior of a set. Similarly, the C-obstacle cell query or C-obstacle query
checks whether a given cell C is full or the following predicate Po is true:

Po(A,B, C) : ∀q ∈ C, interior(A(q)) ∩ interior(B) 6= ∅.

Path Non-Existence Algorithm using C-obstacle Query 7

The collision detection algorithms can check whether a single configuration
lies in F or O. However, these predicates need to check whether a spatial
cell lies in F or O, which corresponds to the collision detection for a set of
continuous configurations. Therefore, it is relatively harder to perform these
queries as compared to checking a single configuration.

In our algorithms, we place the robot at qc - the center of the cell and
compute the ‘extent’ of the motion that the robot can undergo as it moves
away from qc while still being confined within the cell C. To answer the
predicate Pf , we compute the separation distance between the robot A(qc)
and the obstacle B. This distance describes the ‘clearance’ between the robot
and the obstacle. If this ‘clearance’ is greater than the amount of the maximal
motion that the robot can make, the robot will not collide with the obstacle,
and the cell C will be declared as a free cell.

Similarly, in order to perform the C-obstacle cell query, we measure the
amount of inter-penetration between the robot and the obstacle, and com-
pare it with the extent of the robot’s bounding motion. In subsection 4.2, we
shall present our method for formulating and computing the inter-penetration
between the robot and the obstacle.

4.1 Motion Bound Calculation

Bounding motion for a line segment

In order to formulate the bounding motion for a C-space cell, we first introduce
a case when a robot moves along a line segment in C-space. Schwarzer et al.
[21] define the bounding motion λ when a robot moves along a line segment
πqa,qb

as the maximal trajectory length over all points on the moving robot:

λ(A, πqa,qb
) = Upper Bound(µ(p, πqa,qb

) | p ∈ A).

For 2D planar robots with translational and rotational DOF, the bounding
motion λ can be computed as a weighted sum of the difference between qa

and qb for translational components x, y and the rotational component φ:

λ(A, πqa,qb
) = |qb.x − qa.x|+ |qb.y − qa.y|+ Rφ × |qb.φ − qa.φ|,

where the weight Rφ is defined as the maximum Euclidean distance between
every point on A and its rotation center. In this case, we can achieve a tighter
bound:

λ(A, πqa,qb) =
p
|qb.x − qa.x|2 + |qb.y − qa.y|2 + Rφ × |qb.φ − qa.φ|. (1)

We can also extend this bound to 3D rigid objects.

Bounding Motion for a Cell

Now, we define the bounding motion λ of a robot when it is restricted within
a cell C, instead of a line segment, as:

λ(A, C) = max{λ(A, πqa,qb
) | qb ∈ ∂C}, (2)

8 Liangjun Zhang, Young J. Kim, and Dinesh Manocha

where qa is the center of C, and qb is any point on ∂C or the boundary of C.
Among all line segments πqa,qb

, the diagonal line segments have the max-
imum difference on each component between these two configurations. Ac-
cording to Eq. (1), we can infer that the maximum of the bounding motion
λ(A, πqa,qb

) is achieved by any diagonal line segment of the cell. Therefore,
the bounding motion for the cell C is equivalent to the bounding motion over
any diagonal line segment πqa,qc

:

λ(A, C) = λ(A, πqa,qc
), (3)

where qa is the center of the cell and qc is any corner vertex of the cell.

4.2 C-obstacle Cell Query

In order to perform the C-obstacle cell query, we can measure the extent of
inter-penetration between the robot and the obstacle, and compare it with
a bound on the robot’s motion. If the robot only has translational DOF, we
can use translational PD, PDt, which is defined as the minimum translational
distance to separate the robot from the obstacle:

PDt(A,B) = min({‖ d ‖ |interior(A+ d) ∩ B = ∅}).

However, PDt is only useful to perform C-obstacle cell query, when the robot
has only translational DOF. This is because PDt only considers the trans-
lational motion to separate the robot from the obstacle. When the robot is
allowed to both translate and rotate, Fig. 2 shows that the robot can be
separated from the obstacle with ‘less’ amount of motion by making use of
rotational motion.

Fig. 2. An example shows that, to separate A from B, the amount of the ‘mo-
tion’ when both translational and rotational transformation are allowed (b) is much
smaller than the amount of the ‘motion’ when only translation is allowed (a).

Generalized Penetration Depth

In order to deal with a robot with translational and rotational DOF, we
adopt the notion of generalized penetration depth, PDg, proposed by [25].
PDg takes both translational and rotational motion into account and can be

Path Non-Existence Algorithm using C-obstacle Query 9

defined using the notion of the separating path. A separating path l is such
a motion curve in C-space when a robot moves along l, the robot can be
completely separated from the obstacle.

Given a set L of all possible candidates of separating paths, PDg between
a robot A and an obstacle B is defined as:

PDg(A,B) = min{max{µ(p, l)|p ∈ A}|l ∈ L}. (4)

A useful property related to PDg is as follows:

Lemma 1. For two convex polytopes A and B, we have

PDg(A,B) = PDt(A,B).
The proof of this lemma can be found in [26].

The exact computation of PDg between non-convex objects is a difficult
problem [26]. In our C-obstacle cell query algorithm, we compute a lower
bound on PDg, which guarantees the correctness of the query. Using Lemma 1,
we efficiently compute a lower bound on PDg by (1) decomposing non-convex
models into convex pieces and (2) for each convex pair, compute the PDt as its
PDg, (3) take the maximum value of PDg’s between all pairwise combinations
of convex pieces. Many efficient algorithms are known to compute the PDt

between two convex polytopes [5, 23, 13]. The resulting PDg computation
algorithm is described in Algorithm 1.

Algorithm 1 Lower bound on PDg computation
Input: The robot A, the obstacle B and the configuration q
Output: The lower bound on PDg between A(q) and B.
1: {During preprocessing}
2: Decompose A and B into m and n convex pieces; i.e., A = ∪Ai and B = ∪Bj .
3: {During run-time query}
4: for each pair of (Ai(q),Bj) do
5: k = (i− 1)n + j
6: if Ai(q) collides with Bj then
7: PDg

k = PDt((Ai(q),Bj)
8: else
9: PDg

k = 0
10: end if
11: end for
12: return max(PDg

k) for all k.

4.3 C-obstacle Cell Query Criterion
We now state a sufficient condition for C-obstacle cell query; i.e., checking
whether A and B overlap at every configuration q within a cell C.

Theorem 1: For a cell C with a center at qa, the predicate Po(A,B, C)
is true if: PDg(A(qa),B) > λ(A, C). (5)

10 Liangjun Zhang, Young J. Kim, and Dinesh Manocha

Proof. Our goal is to show that Eq. (5) implies that there is no free config-
uration along any line segment πqa,qb

, where qb is any configuration on the
boundary of the cell C. According to the definition of PDg, the maximum
trajectory length for every point on a robot A moving along a possible sep-
arating path should be greater than or equal to PDg(A(qa),B). Moreover,
according to Eq. (2), the trajectory length of the robot when it moves along
πqa,qb

is less than or equal to λ(A, C). Since PDg(A(qa),B) > λ(A, C), the
minimum motion required to separate the robot A from obstacle B is larger
than the maximum motion the robot A can undergo. Therefore, there are no
free configurations along any line segment πqa,qb

.
Since there is no free configuration along every line segment between qa to

qb, we conclude that every configuration in the cell C lies inside the C-obstacle
region, and therefore, the predicate Po(A,B, C) holds. ut

We use Theorem 1 to conservatively decide whether a given cell C lies
inside the C-obstacle region. The C-obstacle cell query algorithm consists of
two parts:

1. Compute a lower bound on PDg for the robot A(qa) and the obstacle B
by the Algorithm 1.

2. Compute an upper bound on motion, λ(A, C) by Eq.’s (3) and (1).

Our C-obstacle cell query algorithm is general for both 2D and 3D rigid ob-
jects. We have implemented the query for both types of objects. The main
computational component is to compute PDt between convex objects.

4.4 Free Cell Query Criterion

Similar to C-obstacle cell query, we compare the separation distance between
the robot A(qc) and the obstacle B with the bounding motion of the cell
λ(A, C). If the distance is greater than the bounding motion, then the cell is
classified as a free cell.
4.5 Extension to Articulated Robots
Our free cell and C-obstacle cell queries based method for checking path non-
existence can be extended to articulated robots. The main modifications for
articulated robots are in the components: generalized penetration depth, sep-
aration distance, and bounding motion computations.

The definition of generalized penetration depth PDg in Eq. (4) is also
applicable to articulated robots. In this case, the separating path in C-space
is defined as a curve such that when the articulated robot A moves along it,
A will be completely separated from the obstacle. In order to compute a lower
bound on PDg betweenA and the obstacles, we regard each link ofA as a rigid
robot with translational and rotational DOF. The maximum of lower bounds
PDg between each link of A and the obstacles yields a lower bound on PDg

between A and the obstacles. In order to compute the separation distance and
bounding motion for the articulated robots, we use the algorithms introduced
by Schwarzer et al. [21].

Path Non-Existence Algorithm using C-obstacle Query 11

Fig. 3. Application of our algorithm to the gear benchmark: (a) The goal of this
example is to move a gear-shaped robot from A to A′ through the two gear-shaped
obstacles B1 and B2. It is uncertain whether there is a path for these configurations,
even though the robot at Am is collision-free. (b, c) shows the graph Ge built from
empty cells, and the region of full cells (shaded volumes). Since no path is found
when searching the Ge, we search the graph G for a guiding path L, which indicates
the next level of subdivision. (d) After the subdivision is recursively applied, the
algorithm finally concludes that no path exists. This is because the initial and the
goal configuration are separated by full cells (shaded volumes in (d)).

two-gear five-gear five-gear,narrow puzzle narrow puzzle

Total timing(s) 3.356 6.317 85.163 7.898 15.751

Free cell query(s) 0.858 1.376 6.532 2.174 2.993

C-obstacle cell query(s) 0.827 1.162 4.675 2.021 2.612

G searching(s) 0.389 1.409 30.687 1.991 5.685

Ge searching(s) 0.077 0.332 7.169 0.309 1.035

Subdivision,Overhead(s) 1.205 2.038 36.100 1.403 3.426

Table 1. Performance: This table highlights the performance of our algorithm on
different benchmarks.

5 Experimental results

In this section, we describe the implementation of our algorithm and high-
light its performance on several motion planning scenarios. All timings are
measured on a 2.8 GHz Pentium IV PC with 2G RAM. Our current imple-
mentation is not optimized.

We illustrate the running process of our algorithm for the ‘two-gear’ exam-
ple in Fig. 3. In order to find whether the gear-shaped robot can pass through
the passage among star-shaped obstacles, the algorithm performs cell decom-
position, and builds the connectivity graph G for empty and mixed cells as
well as its subgraph Ge for empty cells. The cell decomposition, which is per-
formed in the region indicated by the guiding path from the search on the
connectivity graph G, is iterated by 40 times until the initial and the goal
configuration are found to be separated by full cells. The entire computation
takes 3.356s.

12 Liangjun Zhang, Young J. Kim, and Dinesh Manocha

two-gear five-gear narrow five-gear puzzle narrow puzzle

of iterations 41 67 237 66 107

of free cell queries 32329 44649 192009 59121 77297

of C-obstacle cell queries 30069 41177 176685 55683 70438

of cells 28288 39068 168008 51731 67635

of empty cells 2260 3472 15324 3438 6859

of full cells 12255 16172 74713 26295 30351

of mixed cells 13773 19424 77971 21998 30425

Table 2. Application of our algorithm to different benchmarks

Fig. 4. ‘Five-gear’ example. (Left) The goal of this example is to move a gear-
shaped robot from A to A′ through the five gears B1, ... and B5. (Right) There does
not exist a collision-free path for this example. This is because the initial and the
goal configuration are separated by full cells, which correspond to shaded volumes.
The right figure also highlights that to find path non-existence for this example, it is
unnecessary to classify the entire configuration space.

We have applied our algorithm to more complex examples of: ‘five-gear’,
‘five-gear with narrow passage’, ‘2D puzzle’ and ‘2D puzzle with narrow pas-
sage’. Table 1 highlights the performance of our algorithm on these examples.
According to Table 1, our approach can report path non-existence for these
examples within 10s. In particular, for the ‘five-gear’ example, the total tim-
ing is 6.317s with 1.162s and 1.376s for the C-obstacle cell query and free cell
query, respectively.

Table 2 gives details about application of our algorithm to different bench-
marks. For the ‘five-gear’ example, the cell decomposition, which is restricted
in the region indicated by the guiding path, is iterated 67 times. The final
cell-decomposition includes 39068 cells, with 3473 empty cells, 16172 full cells
and 19424 mixed cells.

Since our algorithm uses cell decomposition, the algorithm is applicable
to finding a collision-free paths even when a narrow passage exists. Finding a
collision-free path through a narrow passage has been considered as a difficult
task for probabilistic methods, such as PRM. Fig. 6 shows such an example.
According to the Table 1, for this example, our un-optimized method achieves
about 1.3 times speedup over a deterministic sampling approach, the star-
shaped roadmap [26].

Path Non-Existence Algorithm using C-obstacle Query 13

Fig. 5. ‘2D puzzle’ example. (a) Our algorithm can report the path non-existence for
the problem to move A to A′ in 7.898s. (b) is a modified version of (a) without the
obstacle B3. Our algorithm can find a collision-free path through a narrow passage
among the obstacles. (c) shows intermediate configurations Am of the robot along
the collision free path.

5.1 Comparison

We compare our algorithm for path non-existence with star-shaped roadmap
algorithm, especially because our approach shares similarities with the star-
shaped roadmap algorithm. Star-shaped roadmap method partitions the free
space into star-shaped regions and for each star-shaped region computes a
single point called a guard which can see every point in the region. In our
approach, the empty cells are a special case of star-shaped regions where any
configuration in the cell can be always considered as a guard. Moreover, our
method can label empty cells in a simpler way than the star-shaped roadmap,
as the star-shaped roadmap is based on expensive contact surfaces enumera-
tion.

Finally, star-shaped roadmap method needs to explicitly capture the intra-
connectivity between two adjacent regions, which can be computed using
a similar way to the guard computation, but in one dimension less. In our
method, the intra-connectivity between two adjacent empty cells is implicit
and an edge connecting the guards of two adjacent cells can represent such a
connectivity.

5.2 Analysis

The computational complexity of our C-obstacle cell query is bounded by
generalized penetration depth PDg computation. We only compute a lower
bound to PDg and its complexity is governed by the number of convex pieces
that are obtained from the convex decomposition, and the geometric com-
plexity of these convex pieces. Let m, n denote the number of convex pieces
of the robot A and the obstacle B, respectively. Let the geometric complexity
of all convex pieces of A and B be a and b, respectively. Then, the average
numbers of features in each piece of A and B are a

m and b
n , respectively. Using

computational complexity of translational PD, we can derive that the com-

14 Liangjun Zhang, Young J. Kim, and Dinesh Manocha

Fig. 6. Finding a passage through narrow passages for the modified ‘five-gear’ ex-
ample. (Left) this planning problem is almost the same as Fig. 4 except that the
obstacle B5 is slightly modified as well as translated. (Right) our method can find a
path under the existence of narrow passages, which are challenging for probabilistic
methods, such as PRM. The collision-free path, passing through the narrow passage
in the free space, is derived from empty cells.

putational complexity of PDg for 2D rigid objects A and B is O(an + bm),
and for 3D rigid objects is O(ab).

Our algorithm for checking path non-existence is based on adaptive decom-
position of the configuration space. At each step, the number of decomposition
depends on the number of the mixed cells indicated by the guiding path L.

5.3 Limitations

Our approach has a few limitations. Our free cell and C-obstacle cell queries
are conservative, which stems from the conservativeness of PDg and bounding
motion computations. Secondly, our algorithm assumes that are no tangential
contacts in the boundary of the free space, otherwise, our path non-existence
algorithm may not terminate. As a result, our algorithm can not deal with
compliant motion planning, where a robot cannot pass through obstacles when
the robot is not allowed to touch them. The complexity of our adaptive sub-
division algorithm varies as a function of the dimension of the configuration
space. Our current implementation is limited to 3 DOF robots.

6 Conclusion and Future work

In this paper, we present a simple approach to check for path non-existence
for low DOF robots. Our approach uses two basic queries to efficiently check
whether a cell in C-space lies entirely inside free space (free cell query) or inside
the C-obstacle region (C-obstacle cell query). We describe simple and efficient
algorithms to perform these queries using separation distance and generalized
penetration depth computations. Our query algorithms are general for 2D or
3D rigid robots, or articulated robots. Using these queries, our approach for
path non-existence computation is simpler and more efficient than prior cell
decomposition methods.

There are several directions to pursue for future work. We are interested
in extending our approach for higher DOF motion planning problems, such as

Path Non-Existence Algorithm using C-obstacle Query 15

6 DOF rigid robots. Our algorithms to compute various queries are directly
applicable and the main challenge is to perform spatial cell decomposition in
higher dimensions. Moreover, we are interested in combining our algorithm
with probabilistic sampling algorithms to design a hybrid planner, which is
not only able to find a collision-free path, but can also check for path non-
existence and handle narrow passages.

Acknowledgment

This project was supported in part by ARO Contracts DAAD19-02-1-0390
and W911NF-04-1-0088, NSF awards 0400134 and 0118743, ONR Contract
N00014-01-1-0496, DARPA/RDECOM Contract N61339-04-C-0043 and Intel.
Young J. Kim was supported in part by the grant 2004-205-D00168 of KRF,
the STAR program of MOST and the ITRC program.

References

1. N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo. Obprm: An obstacle-
based prm for 3d workspaces. Proceedings of WAFR98, pages 197–204, 1998.

2. F. Avnaim and J.-D. Boissonnat. Practical exact motion planning of a class
of robots with three degrees of freedom. In Proc. of Canadian Conference on
Computational Geometry, page 19, 1989.

3. J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen. Disconnection proofs for
motion planning. In Proc. IEEE International Conference on Robotics and
Automation, 2001.

4. R. A. Brooks and T. Lozano-Pérez. A subdivision algorithm in configuration
space for findpath with rotation. IEEE Trans. Syst, SMC-15:224–233, 1985.

5. S. Cameron. Enhancing GJK: Computing minimum and penetration distance
between convex polyhedra. IEEE International Conference on Robotics and
Automation, pages 3112–3117, 1997.

6. J. Canny. The Complexity of Robot Motion Planning. ACM Doctoral Disserta-
tion Award. MIT Press, 1988.

7. H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and
S. Thrun. Principles of Robot Motion : Theory, Algorithms, and Implementa-
tions. The MIT Press.

8. B. R. Donald. Motion planning with six degrees of freedom. Master’s thesis,
MIT Artificial Intelligence Lab., 1984. AI-TR-791.

9. D. Halperin. Robust geometric computing in motion. International Journal of
Robotics Research, 21(3):219–232, 2002.

10. D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin. On finding nar-
row passages with probabilistic roadmap planners. Proc. of 3rd Workshop on
Algorithmic Foundations of Robotics, pages 25–32, 1998.

11. L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. Robot. Automat., pages 12(4):566–580, 1996.

16 Liangjun Zhang, Young J. Kim, and Dinesh Manocha

12. K. Kedem and M. Sharir. An automatic motion planning system for a con-
vex polygonal mobile robot in 2-d polygonal space. In ACM Symposium on
Computational Geometry, pages 329–340, 1988.

13. Y. Kim, M. Lin, and D. Manocha. Deep: Dual-space expansion for estimat-
ing penetration depth between convex polytopes. In Proc. IEEE International
Conference on Robotics and Automation, May 2002.

14. J. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.
15. S. M. LaValle. Planning Algorithms. Cambridge University Press (also available

at http://msl.cs.uiuc.edu/planning/), 2006.
16. T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE

Trans. Comput., C-32:108–120, 1983.
17. T. Lozano-Pérez and M. Wesley. An algorithm for planning collision-free paths

among polyhedral obstacles. Comm. ACM, 22(10):560–570, 1979.
18. B. Paden, A. Mess, and M. Fisher. Path planning using a jacobian-based

freespace generation algorithm. In Proceedings of International Conference on
Robotics and Automation, 1989.

19. C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path planning for
a rigid body based on hardware accelerated voronoi sampling. In Proc. of 4th
International Workshop on Algorithmic Foundations of Robotics, 2000.

20. J. T. Schwartz and M. Sharir. On the piano movers probelem ii, general tech-
niques for computing topological properties of real algebraic manifolds. Ad-
vances of Applied Maths, 4:298–351, 1983.

21. F. Schwarzer, M. Saha, and J. Latombe. Adaptive dynamic collision checking
for single and multiple articulated robots in complex environments. IEEE Tr.
on Robotics, 21(3):338–353, June 2005.

22. T. Simeon, J. P. Laumond, and C. Nissoux. Visibility based probabilistic
roadmaps for motion planning. Advanced Robotics Journal, 14(6), 2000.

23. G. van den Bergen. Proximity queries and penetration depth computation on
3d game objects. Game Developers Conference, 2001.

24. G. Varadhan and D. Manocha. Star-shaped roadmaps - a deterministic sampling
approach for complete motion planning. In Proceedings of Robotics: Science and
Systems, Cambridge, USA, June 2005.

25. L. Zhang, Y. Kim, G. Varadhan, and D.Manocha. Generalized penetration depth
computation. In ACM Solid and Physical Modeling Symposium (SPM06), pages
173–184.

26. L. Zhang, Y. Kim, G. Varadhan, and D.Manocha. Fast c-obstacle query com-
putation for motion planning. In IEEE International Conference on Robotics
and Automation (ICRA 2006), pages 3035–3040, 2006.

27. D. Zhu and J. Latombe. Constraint reformulation in a hierarchical path plan-
ner. Proceedings of International Conference on Robotics and Automation, pages
1918–1923, 1990.

28. D. Zhu and J. Latombe. New heuristic algorithms for efficient hierarchical path
planning. IEEE Trans. on Robotics and Automation, 7(1):9–20, 1991.

