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Abstract— Campus wireless LANs (WLANSs) are com-
plex systems with hundreds of access points (APs) and
thousands of users. To analyze the performance of wire-
less networking protocols, researchers need to construct
simulations and testbed experiments that reproduce the
characteristics of these networks. However, the generation
of realistic models and benchmarks is challenging and
there is only a limited set of models of roaming and access
based on real measurement data. The main contribution of
this paper is the modeling of the roaming activity. Specifi-
cally, we employed graph theory, modelled the roaming
activity as a graph and measured its properties (e.g.,
diameter, degree of connectivity, connected components).
For example, the negative binomial distribution models
well the degree of connectivity. Furthermore, we analyzed
the evolution of the roaming activity in the spatial and
temporal domain and its impact on the properties of the
graph.

I. INTRODUCTION

Wireless networks are increasingly being deployed
and the demand for wireless access grows rapidly. It
becomes particularly intriguing to study the temporal and
spatial evolution of wireless networks. Unlike the wired
networks that are relatively fixed, the wireless networks
are highly dynamic due to the radio propagation effects
and user mobility. Clients change access points (APS)
due to their signal quality or mobility. Wireless LANs
have more vulnerabilities and stricter bandwidth, and
latency constraints than their wired counterparts. While
in several cases overprovisioning in wired networks is
acceptable, it can become problematic in the wireless
domain due to interference, environmental, regulatory
and cost reasons. Current wireless networks cannot ef-
ficiently support real-time multimedia applications and
thus, mechanisms, such as capacity planning, resource
reservation, device adaptation, and load balancing, need
to be employed to improve their quality of service
provisioning. For the design and evaluation of these
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mechanisms, the characterization of the roaming activity
and inter-AP connectivity is critical.

Currently, there is lack of publicly available models
for the topology of large-scale wireless infrastructures
and their access patterns. Such models are essential
for performing meaningful simulation and performance
analysis studies. Contrary to traditional wired-network
topologies that reflect the physical hardwired connection
of routers or AS, wireless topologies are more dynamic
and have a strong stochastic element due to radio prop-
agation, user mobility and the AP association mecha-
nisms. Graph theory has been used extensively in mod-
eling the topology of wired networks and performance
analysis of routing and flow control algorithms. We aim
to characterize the roaming in a wireless infrastructure,
identify the regions with high roaming activity, and
derive topological models of the infrastructure. Unlike
our earlier research efforts that focused on roaming per
client basis [1], [2], [3], this paper investigates it in an
aggregate level. We employ graph theory to model the
roaming of wireless clients during a time interval as a
graph. The main contribution of this paper is method-
ological; It models the roaming activity as a graph and
analyses its properties, such as the degree of connectivity,
diameter, and number of connected components. The
negative binomial distribution models well the degree of
connectivity. We discuss the impact of the spatial and
temporal growth of the wireless infrastructure on the
graph and its properties. Also, we discuss the non-linear
correlation between the number of roamings between
two APs and their geographic distance.

The paper is structured as follows. In Section I,
we briefly describe the wireless network infrastructure,
data acquisition, and testbed. Section IIl models the
wireless network connectivity as a graph and studies its
properties in the spatial and temporal dimension. Section
IV presents the related work and Section V summarizes
the main results and future work plans.

Il. LARGE-SCALE WIRELESS NETWORK TESTBED
AND DATA ACQUISITION

The IEEE 802.11 infrastructure at the University of
North Carolina at Chapel Hill provides coverage for



Week Tracing Period Clients Total APs
1 17-24, October 2004 8880 459
2 2-9, March 2005 9049 532
3 13-20, April 2005 9881 574

TABLE |
NUMBER OF CLIENTSAND APS DURING THE TRACING PERIODS.

the 729-acre campus and a number of off-campus ad-
ministrative offices. The university has 26,000 students,
3,000 faculty members, and 9,000 staff members. Under-
graduate students (16,000) are required to own laptops,
which are generally capable of using the campus wireless
network via clients identified by their MAC addresses.
The network APs belong to three different series of the
Cisco Aironet platform: the state-of-the-art 1200 Series
(269 APs), the widely deployed 350 Series (188 APs)
and the older 340 Series (31 APs). The 1200s and 350s
come with Cisco 10S, while the 340s run VxWorks.

The campus APs were configured to send syslog
messages to a syslog server in our department. An
AP generates syslog messages for IEEE 802.11 MAC
events, indicating when a user associates or disassociates,
authenticates or deauthenticates with an AP, or roams
from and to another AP [4]. In our earlier work [3], we
describe in detail how clients communicate with APs,
the events that allow us to log the clients’ activities,
and the measures taken to ensure users’ privacy while
acquiring and processing the traces. The results reported
in this paper rely heavily on the syslog messages, as it is
discussed in Section I11. In addition to each AP’s unique
IP address, we maintain information about the buildings
the APs are located in and their coordinates.

We acquire and analyze wireless data from three
different monitoring periods covering the interval from
October 2004 to April 2005. Table | describes the evo-
lution of the wireless infrastructure across each period.
The increase of APs and WLAN clients is significant
not only between the first and second tracing period, but
also within the month separating the second from the
third tracing period. Such analysis allows tracking the
temporal evolution of the wireless network and drawing
hints for time-persistent features.

I11. MODELING WIRELESS ROAMING ACROSS AN
INFRASTRUCTURE

We model the roaming of clients within the campus
wireless network during a tracing period 7' as a graph
Gt = (Vr, Er). Each AP deployed in the infrastructure
corresponds to a node of the graph. We create an edge
from node i to node j, if at least one client transition
from AP i to AP j was recorded during the tracing period
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Fig. 1. Q-Q plots of AP outdegree against four discrete distributions
(week 1)

T. There is a transition from AP i to AP j, if there
is a roaming syslog message from AP i and a reasso-
ciation message from AP j, without any disassociation
message from AP j at the same time. All these syslog
messages for building a transition should come from the
same client. These transitions are based on the syslog
messages generated by APs upon IEEE 802.11 MAC-
level events as described in Section Il. The weight of an
edge indicates the total number of transitions between
the corresponding APs and its distance the geographic
distance of the buildings where the corresponding APs
are located. To construct the graph, we consider all
clients’ transitions. We call these graphs roaming graphs.

A transition occurs due to either actual user mobility
or changes in signal strength that affect the association.
Typically, a client selects to associate with the AP
from which it receives stronger signal. When the signal
strength drops below a threshold, the client may scan the
channels and select the AP from which it receives the
strongest signal. Wireless networks are highly dynamic
environments and clients may experience several rapid
“oscillations” between APs. Such oscillations due to
radio propagation are very transient and do not reflect
typical roaming activity. To distinguish them, we define
the wiggling, as the case in which a client that was
associated with an AP, gets associated briefly (i.e., for
less than one second) with another AP, and then moves
back to the first one.

A. Degree of connectivity

Figure 1 illustrates the qqg-plots of the measured
outdegrees for week 1 against large samples drawn
from four different discrete distributions, parameterized
so that their mean is equal to the measured outdegree
mean. The quantile-quantile (g-q) plot is a graphical
technique for determining if two data sets come from



Fig. 2. Histogram of data and Negative Binomial theoretical mass
function
Edges Week 1 Week 2 Week 3
Incoming 1.516, 0.217 | 1.782, 0.26 1.83, 0.25
Outgoing 1.582, 0.225 | 1.797, 0.261 | 1.737, 0.239
TABLE I

ML ESTIMATES FOR THE NEGATIVE BINOMIAL PARAMETERS.

populations with a common distribution. A g-q plot is
a plot of the quantiles of the first data set against the
guantiles of the second data set. The graphical tests
suggest that both the Geometric and the Negative Bi-
nomial distributions are possible matches for the degree
of connectivity distribution, with the linear regression
yielding correlation coeffiecient values in the order
of 0.95-0.98 for all tracing periods and indegree and
outdegree of connectivity. Nevertheless, the hypothesis
that the degree of connectivity follows the Geometric
distribution is rejected by the chi-square test, even at the
10% level of significance. On the contrary, the Negative
Binomial distribution passes the test at 1% significance
level for all traces, revealing a time-persistent feature
in the infrastructure connectivity. Notably, the specific
hypothesis passes also the Kolmogorov-Smirnov statistic
[5] for discrete data, which normally yields more extreme
values from the Pearson chi-square statistic [6]. The
histogram of the degree of connectivity is plotted against
the theoretical distribution with Maximum Likelihood
(ML) estimates for its parameters r and p, in Figure
2, whereas Table Il reports the ML estimates for the
Negative Binomial distribution parameters for the three
different tracing periods.

Power laws appear in many natural networks from the
human respiratory system to social networks of human
driving cars, or human crowds with bluetooth devices.
Furthermore, the degree of connectivity of citation and
hypertext networks follows a power law. Faloutsos et al.
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Fig. 4. Degree of connectivity.

[7] argue in favor of a power-law relationship between
the degree of connectivity and its frequency for the Inter-
net topology at the network domain connectivity level.
Determining the existence of similar relationships in our
campus WLAN topology at the AP connectivity level,
yielded clearly less strong indications for the existence of
such a relationship. Compared to the Internet topology,
campus WLAN exhibits a flatter connectivity structure.
In the log-log scale diagrams of Figure 3, the correlation
coefficient resulting from the linear regression ranges
from 0.88 to 0.91. A rule of thumb for reliable power-law
relationship inference is that the linearity in the log-log
diagrams should span at least 3 orders of magnitude,
which is not our case [8].

Figure 4 shows the CCDF of the degree of connec-
tivity for the three tracing periods (namely, weeks 1,
2, and 3). The stochastic order for nodes with small
or medium degree of connectivity is different from the
one for nodes with high degree of connectivity over the
three weeks. Specifically, while the last week has larger
percentages of nodes with small or medium degrees,
the first week has the largest percentage of nodes with
high degree. Let us define as crosspoints the nodes
with a degree of connectivity greater than 18 and focus
more on the distribution of these nodes. A crosspoint
corresponds to an AP that received (or sent) a number
of roaming clients from (to) a relative large number of
neighboring APs. We will refer to that AP as crosspoint
AP. Essentially, crosspoint APs identify regions with
high roaming activity. In week 1, the percentage of
crosspoints (14%) is greater than that of weeks 2 and
3 (13% and 10%, respectively). There is a 40% increase
in the percentage of crosspoints from week 2 to week 3.

How does the infrastructure evolve and what is its
impact on the properties of the graph? Where are the
new APs being placed? New APs were added, aiming
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to extend or enhance the wireless coverage by offering
better signal strength to more clients. There was a 16%
and 8% increase in the number of APs during the second
and third week, respectively. A newly added AP could
be placed in either an isolated area or close to other
APs. Isolated APs contribute with nodes with a small
degree of connectivity. Table 11l summarizes the growth
of the infrastructure in terms of number of APs with
high roaming activity. The "Common to prior week”
indicates the number of APs that were crosspoints in
both current and previous tracing period, Common in
all weeks” the number of APs which were crosspoints
in all three weeks, and "Common in any week” the
number of crosspoints of the current week which were
also crosspoint in any of the other two weeks. The total
number of crosspoints falls slightly (9%) from week 1 to
week 2, before it rises in week 3. This fall can be caused
either due to reduced user mobility or to the placement
of the new APs. Since the 20% of the crosspoints of
the week 2 and 30% of week 3 were newly added APs
with respect to prior weeks, we speculate that they were
placed in popular areas with extensive roaming activity.

The placement of new APs in proximity to other
APs can only partially alleviate the wigglings, since
they may introduce new ones. This was apparent in
our infrastructure. Specifically, the 56% of the APs that
are common in all three tracing periods experience an
increase in the number of wigglings (median rise of 2)
whereas the remaining APs had a decrease (median fall
of 4.5 including those with fall equal to 0, from week 1
to week 2). From week 2 to week 3, a 21% of APs had
an increase in their number of wigglings by a median
rise of 5 and the remaining had a median fall of 3.

A related issue is the existence of preferential at-
tachment phenomena in the topology. To analyze this
phenomena, we focus on the newly added nodes in the
graph from one tracing period to the next. A topology
is characterized by preferential attachment when newly
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Log-log plots of the outdegree frequency vs the outdegree: (a) week 1; (b) week 2; (c) week 3.
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Fig. 5. Preferential attachment CCDF

added nodes are more likely to be “attached” to higher
connected nodes than a lower one. There has been a
debate regarding the use of the preferential attachment
in the generation of the Internet topology [9], [10].
It is unclear whether or not wireless infrastructures
evolve according to such processes, since depending on
the placement, coverage, and channel assignment, the
placement of new APs in proximity of APs with high
roaming activity may either enhance the coverage or
create interference. To determine whether new APs are
placed close to crosspoints, we define the preferential
attachment probability P(d) as the probability the max-
imum degree of all old nodes which are connected to
the new one to be d. As Figure 5 shows there is a
preferential attachment phenomena in the infrastructure.
Considering the transition from week 1 to 2, 55% of
the newly added nodes are connected to at least one
old crosspoint and this percentage becomes 45% for the
next transition period (from week 2 to week3). Figure 6
illustrates the graph evolution through the three tracing
periods and its spatial characteristics. Each point in the
plot represents all APs located in the building (with
the same coordinates as the point). Consequently, edges



Week | Total nodes Crosspoints Common to prior week | Common in all weeks | Common in any week
1 459 71 0 51 55
2 532 65 52 51 62
3 574 91 61 51 64

TABLE Il

EVOLUTION OF CROSSPOINTS IN THE GRAPH DURING THE TRACING PERIODS.
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between APs in the same building or edges between APs
in different buildings are overlapping with each other and
are not distinguishable in that plot.

B. Degree of connectivity vs. APs distance

We expected to find a relation between the number of
transitions between two APs and their distance. Figure
7 depicts the scatterplot of the number of transitions
between AP pairs (i.e., weight of an edge) versus the
Euclidean distance between the respective APs (i.e.,
distance of an edge). In this analysis, we only consider
the pairs of APs with at least one transition. The negative
slope that is prevalent in the scatterplot suggests a
negative association between the two variable, i.e., as
the distance between two APs increases, the number
of transitions decreases. The Pearson product-moment
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(b) ()
Week Num. of con- | Edge diameter
nected compo-
nents
1 13 11
2 24 14
3 22 12
TABLE IV

GRAPH DIAMETER AND NUMBER OF CONNECTED COMPONENTS.

correlation coefficient R ranges from -0.04 to -0.09 for
the data sets corresponding to the three different tracing
periods. The low values of R, although they are still high
enough to reject the null hypothesis of no dependence
between the two data sets at 1% significance level, imply
in the same time that the correlation under discussion
has non-linear characteristics. We computed the Spear-
man rank correlation coefficient [11], a non-parametric
statistic that does not make any assumption about the
underlying distribution of the analyzed data. The values
ranged from -0.29 (week 3) to -0.45 (week 1) and in
all cases the null hypothesis that the two variables are
independent is rejected at significance levels far beyond
1%. Further supporting evidence for the existence of
negative correlation between the distance of two APs and
the transitions measured from the one to the other, came
from a third test, the test of independence in contingency
tables [12]. The computed values of the statistics are
four (week 2) to seven (week 1) times the critical values
at the 1% significance level, rejecting strongly the null
hypothesis for independence of the two data sets.



C. Diameter and connected components

The diameter of a graph is the maximal of the shortest
paths between any pair of its nodes. In general, the num-
ber of connected components expresses the connectivity
of a graph. Two nodes belong to different connected
components if there is no path between them. While
in the Internet topology, the existence of connected
components might have little or no meaning, in roaming
graphs, they reflect the spatial density and coverage of
APs. The number of connected components and diameter
are crude indications of the robustness of roaming (e.g.,
the likelihood of roaming without disconnection). Table
I11-B indicates that the size of the diameter does not
change over time. This, with the increase in the number
of connected components, implies that, apart from en-
hancing a building’s coverage, new APs were placed to
serve buildings that were not covered by any AP in the
past. Furthermore, we can distinguish a giant component
in all three weeks. A giant component is a subgraph
containing more than 50% of the total nodes of the graph.
In our graph 61%, 54% and 60% of all nodes belong to
the giant component in the week 1, 2 and 3, respectively.
In all three weeks, the number of buildings in this giant
component was the same, which also explains why the
diameter remained constant.

IV. RELATED WORK

There is rich bibliography concerning natural net-
work and wired network topologies. In [9], Albert and
Barabasi review the advances in the field of complex net-
works, focusing on the statistical mechanics of network
topology and dynamics. After reviewing the empirical
data that motivated the recent interest in networks, they
discuss the main models and analytical tools, covering
random graphs, small-world and scale-free networks, the
emerging theory of evolving networks, and the interplay
between topology and the networks robustness against
failures and attacks. In [7], Faloutsos et al. prove that the
AS and router level internet topology can be described
with power laws. In [10], Lun Li et al. propose a
complementary approach of modeling internet’s router-
level topology. They characterise current degree-based
approaches as incomplete since graphs with the same
node degree distribution can result from different graphs
in terms of network engineering. From this viewpoint,
they use the notion of the first-principles approach” to
identify some minimal functional requirements and phys-
ical constraints required for developing simple models
of the Internet’s router-level topology. They focus on a
few critical technological and economic considerations,
together with abstract models of user demand, that they

claim provide insight into the types of network topolo-
gies that are possible. They introduce the network perfor-
mance and network likelihood to contrast generated and
real network topologies. Borrel et al. [13] form a mo-
bility model based on the scale-free spatial distribution
observed in real-life networks. Unlike current strictly
individual or group mobility models, they introduce a
new mobility model that incorporates individual behavior
and group interaction based on the preferential attach-
ment principle. Their simulations yielded topologies with
scale-free spatial distribution of nodes.

This research extends our earlier studies [3], [2], [1],
the studies by Kotz and Essien [14], Balachandran et al.
[15] and Balazinska and Castro [16] by focusing more
closely on the roaming activity in an aggregate level
and the AP-topological properties. In [1], we modeled
the arrival of wireless clients at the access points (APS)
in a production 802.11 infrastructure as a time-varying
Poisson processes. These results were validated using
guantile plots with simulation envelope for goodness-of-
fit tests and by modeling the visit arrivals at different
time intervals and APs. Our earlier work [3] models
the associations of each wireless client as a Markov-
chain in which a state corresponds to an AP that the
client has visited. Based on the history of the transitions
between such APs, we build a Markov-chain model for
each client. Even for the very mobile clients, this model
can predict well the next AP that a client will visit as
it is roaming the wireless infrastructure. Furthermore, a
class of bipareto distributions can be employed to model
the duration of the visits at APs and also the duration of
a continuous wireless access [2].

Kotz et al. [15] studied the evolution of the wireless
network at Dartmouth College using syslog, SNMP, and
tcpdump traces. They reported the average number of
active cards per active AP per day (2-3 in 2001, and
6-7 in 2003/2004) and average daily traffic per AP by
category (2-3 times higher in 2003/2004; twice or thrice
more inbound than outbound traffic).

V. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is the modeling
of the roaming activity in a large-scale wireless infras-
tructure using real-life measurements. Specifically, we
modeled the roaming activity as a graph and measured
its properties and evolution in the spatial and temporal
domain. The placement of new APs results in a decrease
of the percentage of crosspoint APs. Furthermore, a large
percentage of APs are placed in the vicinity of APs with
high roaming patterns. The degree of connectivity can be
modeled using a negative binomial distribution. There is



a rapid growth of the wireless infrastructure. We evalu-
ated the impact of the newly added APs on the degree of
connectivity, diameter, number of connected components
and continuity of roaming. The diameter size appears
to be unaffected by the network infrastructure growth
and increase of the client population. Furthermore, a
giant component in the graph persists in all three tracing
periods.

A natural follow-up of this paper is the detection and
description of the weak or dead spots of the topology,
through complementary graphs where an edge represents
the unsuccessful roaming transitions (e.g., transitions
which resulted in undesirable client disassociations and
flow terminations). Such graphs could employed as di-
agnostic tools by revealing problems, such as misconfig-
ured or misplaced APs. It would be interesting to validate
their results and contrast them with tools based on signal
strength information. The acquisition of signal strength
measurements in large-scale, uncontrolled environments
is challenging so the use of higher level information in
larger time is attractive. Furthermore, we plan to model
the spatial distribution of APs and clients. We are in the
process of validating our models using the wireless traces
from Dartmouth and FORTH and contrast the impact of
the scale in the number of APs and clients on graph.
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