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Abstract

The identification of lymph node drainage levels in the
neck from CT scans is necessary for the proper treatment of
cancer of the head and neck with radiation therapy. How-
ever, to comply with the guidelines one must segment at
least 20 fiducial anatomic objects on each side, and then
apply complex rules to determine six boundaries for each
of nine different levels. To reduce physician time and stan-
dardize results it is necessary to automate the entire pro-
cess. In this paper, we propose solving this problem by
deforming the nodal levels from an atlas patient to tar-
get patient in a way combining two novel ideas: a) The
large deformation diffeomorphic transformations of curved
landmark paths; b) a scheme provided by m-reps and their
geodesic paths for producing curved paths between corre-
sponding points associated with the fiducial objects. This
method is applicable to a wide variety of problems of map-
ping between an atlas and a target image with automatically
segmentable structures.

1. Introduction
The medical problem that we face requires us to extract

a treatment region from a 3D image, where the region is not
directly segmentable via the image intensities but rather has
to be inferred from other structures that can be segmented.
In this paper, the treatment region is a lymph node level in
the head & neck, and the anatomic structures from which
it is to be inferred are many and are densely packed. The
methods described in this paper then consist of the follow-
ing two, applied in order.

1. A means of extracting deformation paths between an
atlas and a target image for boundary points on the seg-
mentable structures;

2. A means of diffeomorphically interpolating these de-

formation paths from the specified points to the part of
the space in the atlas forming the unsegmentable treat-
ment region.

2. The Medical Problem
There are approximately 40,000 cases of cancers of

the head and neck diagnosed each year in the United
States. These tumors are usually sensitive to radiation and
chemotherapy and are often treated with both modalities.
For these patients the major morbidity (treatment complica-
tion) is xerostomia, or dry mouth, which can be permanent.
Xerostomia can lead to dental problems and poor nutrition,
and thus a substantial decrease in the quality of the patient’s
life. A major breakthrough in the treatment with radiation
therapy occurred about 10 years ago when it was learned
how to redirect radiation dose within a patient by physically
modulating the radiation beams. This technique, now called
intensity modulated radiation therapy, or IMRT, can reduce
the radiation dose given to the salivary glands during radia-
tion therapy for head and neck cancer. The development of
an IMRT treatment plan for a patient puts a great burden on
the radiation oncologist, the physician overseeing the treat-
ment. First, dozens of normal structures within the head
and neck need to be identified and carefully outlined on
each CT slice. This needs be done because the use of IMRT
to push dose out of the salivary glands will necessarily in-
crease the dose elsewhere and the dose tolerance of other
organs such as the eyes, spinal cord, larynx and mandible
(jawbone) must be respected. In addition, of course, the
salivary glands themselves must be identified. Next, the
gross tumor volume (GTV) as seen on the CT scan, or felt
during the patient examination, is outlined on each CT slice.
However, the GTV is not the entire target of the treatment.
Head and neck cancer is notorious for spreading invisibly
into neighboring structures and down lymphatic pathways
in complicated ways. This spread cannot be seen because it
is microscopic, but if left untreated it will often serve as a
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Figure 1. Lymphatics of the head and neck

Figure 2. Three different nodal levels on a CT scan

nidus of relapse. Determining this larger clinical target vol-
ume, or CTV, which includes the GTV plus the microscopic
spread is a major task for the radiation oncologist.

Fig. 1, which has been obtained from Gray’s anatomy
1918, shows a schematic of the lymphatic pathways in the
head and neck, but as it is only a two-dimensional draw-
ing, the full complexity of the lymphatic pathways (and thus
the potential CTV) is not appreciated. To simplify the sit-
uation, lymph node chains are collected into treatment re-
gions called levels depending on their surgical accessibil-
ity and susceptibility to tumor spread from different tumor
sites. Fig. 2 illustrates the distribution of some of the levels
on a given CT slice. Drawing these nodal levels on each
slice according to the official rules [5] is very difficult. The
rules indicate how the regions are related to at least twenty
anatomic structures on each side and, in our experience,

(a) Anterior view (b) Posterior view

Figure 3. Some of the segmented head and neck organs with the
Level-III nodal region

many more than that. We call these the fiducial structures.
Thus drawing the nodal levels specifically requires the seg-
mentation of all these structures.

In this paper, we focus on the nodal treatment region
called Level-III, which is shown in the form of a block of
charcoal-colored voxels in fig. 3, for our tests. These Level-
III nodal levels have been segmented along with ten neigh-
boring fiducial organs, which are needed to help in identify-
ing them, from two different patients. These organs include
the hyoid bone, carotid arteries, scalene muscles, thyroid,
thyroid cartilage, and others.

3. The Image Analysis Approach
We presume that we can define an anatomic atlas in

which the fiducial structures and the treatment region are
defined. The chief idea is to interpolate the transforma-
tion describing the deformation of the objects in the atlas
to the target patient, into deformation on the treatment re-
gion. We propose to use m-reps, one from the atlas and
the other from the target patient, as the basis for deriving a
correspondence on the m-rep implied boundaries of the ob-
jects. The geodesic paths that give the shortest distance be-
tween m-reps yield a curved path for each boundary point.
These curved paths can then be leveraged to produce a dif-
feomorphic deformation on the nodal levels following the
theory of large deformation diffeomorphic transformation
of landmark data developed in [11]. The use of inter-m-rep
geodesic paths in this way, and producing a diffeomorphism
given landmark paths are novel.

The m-rep models and their conformation in the atlas and
their segmentation from the target image are not the subject
of this paper. The models have been developed for the fidu-
cial structures with the help of previously described meth-
ods of multi-object fitting of m-rep models to manual seg-



mentations from training images [13]. These training mod-
els yield a probability density on geometric models as well
as a probability density on intensity histograms in model-
relative regions [2]. The segmentation in a target image
operates by posterior optimization using these probability
densities [15].

4. Previous Work
Bookstein [1], Dryden [9], Rueckert [18], Joshi [14],

Lorenzen [12], Grenander [6], among many others, have
developed an approach of deforming a treatment region by
keeping an atlas, which contains a mean segmentation of
the structures over a sizable population and computing de-
formations from that atlas. However, the methods cannot si-
multaneously a) automatically produce the correspondences
between the atlas and a target image, b) automatically com-
pute extensive deformation to a target image, and c) produce
deformations that can be guaranteed to be diffeomorphic.

The method of segmentation via posterior optimization
of m-reps has been shown to have hope for automatic ex-
traction of multi-object complexes [2]. In this paper, we
take this debatable point as a premise. The work on m-reps
has included much on developing m-rep models for various
structures of the body [17]. These include many of the head
& neck structures that are the target of this paper.

Moreover, Fletcher et. al [3] have shown how to produce
shortest distance diffeomorphic transformations on the in-
terior of regions represented by m-reps. The method lever-
ages the fact that m-reps carry with them unique object-
relative coordinates for the interior of each m-rep [16].

However, m-reps fail to model the interstitial regions fa-
vorably. The Level-III nodal region is an interstitial region.
This fact, coupled with its peculiar geometry makes it un-
suitable for direct segmentation by deformable m-reps, and
thus makes it unsuitable as a means of directly providing its
deformation via m-reps techniques.

We propose instead to transfer the deformation of the
anatomic objects that can be represented by m-reps to the
treatment region. We leverage the ideas developed for large
deformation, landmark diffeomorphic transformations via
flows to transfer the treatment region into the image of the
target patient.

Thin plate splines have been used previously to deform
segmented structures from the image of one patient or an
atlas to another. However, typically a person has to manu-
ally define the landmarks in the atlas and carry them over
to the target case. When the variability is small, thin plate
splines work just fine. However, as the variability increases,
one can get folding, i.e., a non-diffeomorphic warp.

Image-based and landmark-based diffeomorphisms have
been achieved by the fluid registration framework described
in Miller, Joshi, et. al [14]. This method has been shown
to be successful while dealing with the structures in the

brain and same-patient inter-day male prostate [4]. How-
ever, when dealing with the inter subject brain structures,
the use of manually placed landmarks has been found nec-
essary [10]. The main contribution of this method brought
forth the idea that diffeomorphic paths are curved space-
time trajectories and that these paths can be generated via
integration of a sequence of velocity vector fields.

One of the contributions of this paper is that if there
are a collection of non-intersecting curved space-time paths
available between the atlas and target, then a diffeomorphic
transformation between the atlas and the target can be com-
puted by integrating a spline interpolation of the velocities
defined along the path. However, this still leaves the ques-
tion of how to obtain such a suitable path. In previous work
on diffeomorphic landmark matching [7] the paths were es-
timated by minimizing an energy on the velocity fields with
the constraints that the paths begin and end at the given
landmark points. In this paper, we use the paths gener-
ated by the continuous Geodesic interpolation of two m-rep
models.

The next section describes the m-rep-relative figural co-
ordinates that provide correspondence between points on
m-reps in the atlas and m-reps for the same fiducial struc-
tures segmented from the target image. Then there follows
a section on the production of curved paths via geodesics
between the corresponding m-reps. The succeeding section
briefly describes the generation of diffeomorphic transfor-
mations given space-time landmark trajectories.

4.1. M-reps

An m-rep is a specialization of the Blum medial axis rep-
resentation. Any anatomic object can be approximated by a
small collection of figures, each with a non-branching me-
dial manifolds (axes). Each medial manifold can be con-

Figure 4. A medial atom. Figure 5. An m-rep model
of the Medial Scalene mus-
cle showing the grid of medial
atoms.



sidered as a continuum of hubs symmetrically placed with
respect to the object boundary. From each hub there extend
two equal length vectors called spokes, which end at and are
orthogonal to two implied boundary points. The hub and its
two associated spokes are known as a medial atom. The me-
dial atom, as shown in fig. 4, is represented by the 4-tuple(
x, r,U−1,U+1

)
, where x ∈ R3 is the position of the hub,

r ∈ R+ is the common spoke length, and U−1,U+1 ∈ S2

are the two spoke directions. These two spoke directions
give us two opposing points on the surface b−1 and b+1,
known as the implied boundary points. The normals to the
surface at these points are given by U−1 and U+1 respec-
tively.

A discrete m-rep is formed by sampling the medial man-
ifold over a spatially regular grid. In the implementation
we used, for ordinary three dimensional objects, the grid
(fig. 5) is of the form of a rectangular mesh of medial atoms
mij , where i ∈ [1,m] and j ∈ [1, n]. The curious reader
is referred to Pizer et. al [16] for a much more detailed dis-
cussion on m-reps.

4.2. Figural coordinates and inter-object correspon-
dence

The m-rep mesh is considered to represent a continuous
sheet of atoms with non-crossing spokes, which imply a
closed figural boundary surface. This continuous sheet is
obtained by interpolating the grid and is parameterized by
(u, v) ∈ [(j, j + 1) × (k, k + 1)] for the part of the mesh
with the mth

jk atom at its lower left corner.
Methods for atom interpolation are described in Thall

[19]. The result of this interpolation is that every sur-
face point can be assigned a figural coordinate [u, v, φ].
The parameter φ indicates the side (−π/2 or +π/2), and
φ ∈ (−π/2,+π/2) around the crest. The parameters (u, v)
are taken from the interpolated atom which corresponds to
this surface point. The subdivision is done finely enough, so
that each the surface can be represented by a set of voxel-
size tiles.

These coordinates can be extended to give unique,
object-relative coordinates for the whole region interior to
the implied boundary. Every point (x, y, z) in this region
can be assigned a figural coordinate (u, v, φ) and τ , where
τ is a measure of distance from the hub along the spoke in
terms proportional to r. τ is 0 at the hub and 1 at the implied
boundary.

Not only do figural coordinates provide a very natural
way to parameterize the object surface, but also these co-
ordinates yield a natural correspondence between different
variants of the same figure. As the model deforms, i.e.,
the parameters making up the 4-tuple mij change, the sur-
face points change their physical position in (x, y, z) space.
However, they carry over the same figural coordinates. Let
us compare the thyroids between two patients. If we fit an

m-rep to one thyroid and then deform the model and fit it to
the second thyroid, then we can easily identify correspond-
ing positions on the two thyroids using this figural coordi-
nate system. Fig 6 shows the correspondence for points on
the surface of a kidney. Thus, we have a natural set of land-
marks provided by the m-reps and their figural coordinates.

Figure 6. Correspondence between points on the surface of two
different objects.

4.3. Geodesics between m-reps

M-reps lie in a Riemannian symmetric space space. Ev-
ery point in this space is an m-rep. Thus, stepping along any
smooth curve in this space yields a continuously varying m-
rep model. Each point in this space is also associated with a
tangent space Tx(M) and a Riemannian metric, a smoothly
varying inner product on this tangent space. It suffices to
say here that a geodesic curve is a special curve, which min-
imizes the distance between the two m-reps, which forms
its end-points. This distance is also known as the geodesic
distance or the Riemannian distance. The interested reader
is referred to [8] for an in-depth study of Riemannian sym-
metric spaces.

For any tangent vector v ∈ TxM , there exists a unique
geodesic, γv(t), v being its initial velocity. The Rieman-
nian exponential map, maps v to the point at t = 1 along
the geodesic γv . Note, that the geodesic has a varying ve-
locity but a constant speed given by ||

[
dγv

dt

]
t
|| = ||v||.

Thus the exponential map, Expx(v), preserves distances
from the initial point, i.e., d(x,Expx(v)) = ||v||. In the
neighborhood of zero, the exponential map is a diffeomor-
phism. The inverse in this neighborhood is known as the
Riemannian log map, which is denoted as logx. Thus for
a point y in the neighborhood of x, the geodesic distance
between them is given by d(x, y) = || logx(y)||.

We can march along the geodesic between two m-reps by
marching along the geodesics between the corresponding
pairs of medial atoms m1 = (x1, r1,U−1

1 ,U+1
1 ) and m2 =

(x2, r2,U−1
2 ,U+1

2 ). A medial atom m(t) that is fractional
distance t along the geodesic between m1 and m2 is given
by

m(t) = Expm1

(
t logm1

(m2)
)
.



The Exponential and Log maps for the manifold of me-
dial atoms M(1) are nothing but the direct product of the
maps of the individual components. Thus, we have

m(t) = (x1 + t(x2 − x1),
elog(r1)+t(log(r2)−log(r1)),

ExpU−1
1

(t logU−1
1

(U−1
2 )),

ExpU+1
1

(t logU+1
1

(U+1
2 ))

)
. (1)

The exponential and log maps for the spoke directions
apply to the sphere S2. The geodesics at any point on the
sphere are the great circles through that point. Thus, the
geodesics through the point p = (0, 0, 1) are the great cir-
cles through it, or in this case, the meridians. This exponen-
tial map is given by

Expp(v) =
(

v1
sin||v||
||v||

, v2
sin||v||
||v||

, cos||v||
)

, (2)

where ||v|| =
√

v2
1 + v2

2 .

The inverse mapping, i.e., the log map for a point
(x1, x2, x3) ∈ S2 is given by

logp(x) =
(

x1
θ

sinθ
, x2

θ

sinθ

)
, (3)

where θ = cos−1(x3).

4.4. Large Deformation Diffeomorphisms

Given a set of landmark points xi, each with a dis-
placement di, traditional spline methods such as Thin Plate
Splines (TPS) interpolate the displacement field to the en-
tire volume by minimizing a differential energy defined by
a linear differential operator. Although such methods have
been extensively studied and used in the literature[1] a ma-
jor short coming of these methods is that they do not gener-
ate diffeomorphic transformations. When the deformations
between the atlas and the image under analysis are large
and curved, the transformations introduce folding and do
not preserve the topology of the atlas. In the head and neck
application, this is precisely the case. Shown in fig. 8 is the
application of the now well-known thin plate spline inter-
polation. Notice the folding of the nodal segmentation pro-
duced by the TPS solution. To overcome this, we use the
diffeomorphic landmark mapping framework developed by
Joshi and Miller [11]. In this frame work a time indexed
transformation h(x, t) mapping the atlas to the target is de-
fined via an integration of a velocity vector field, given by

h(x, t) = x +
∫ t

0

v(h(x, t), t)dt . (4)

In this frame work, given a set of landmark points xi,
each with a path h(xi, t) describing the motion of the land-
mark point from the atlas to the target, the diffeomorphic
transformation is estimated by first estimating a velocity
vector field following the minimization

v̂(x, t) = arg min
v

∫ 1

0

||Lv(x, t)||2dt

subject to : v(h(xi, t)) =
dh(xi, t)

dt
,

where L is a linear differential operator. Many linear dif-
ferential operators have been used in the literature. In this
paper, we primarily use the biharmonic thin plate spline op-
erator. Given the complete space-time paths of the land-
mark points, the above minimization has a closed form so-
lution with the velocity fields given as a superposition of
Greens functions of the differential operator LL† that is

v(x, t) =
N∑

i=1

βi(t)K(h(xi, t), x) + Ax + T , (5)

where the weights βi(t) and the affine motion Ax + T
are chosen so that the velocity field satisfies the constraints
v(h(xi, t)) = dh(xi,t)

dt and boundary conditions. In three
dimensions, using the TPS operator and zero boundary con-
dition at infinite, results in a Greens function K(x, y) given
by 1

||x−y|| and the conditions

N∑
i=1

βi(t) = 0 and

N∑
i=1

βi(t)h(xi) = 0 .

For each time t, the weights βi(t) can be estimated by
a solution of a linear system of equations. For details see
[11].

4.4.1 Discrete integration of velocity fields.

For a practical computer implementation, the continuous in-
tegral of the velocity vector fields is discretized in time as
follows: Let tj , j = 0, · · · ,M be a discretization of the in-
terval [0, 1], then given a velocity field v(x, t), the integral
in equation 4 can be written recursively as

h(x, tj+1) = h(x, tj) +
∫ tj+1

tj

v(h(x, t), t)dt

with tj =
j

M
, j = 0, · · · ,M.



The above integral is approximated, resulting in

h(x, tj+1) = h(x, tj) +
1
M

v(h(x, tj), tj) , (6)

with the initial condition h(x, 0) = x. Using this discretiza-
tion, the generation of a large deformation diffeomorphic
transformation can be seen as a repeated application of a
TPS interpolation. Substituting equation 5 into equation 6
yields in a solution of a sequence of thin plate spline prob-
lems

h(x, tj+1) − h(x, tj)
1/M

=
N∑

i=1

(βi(tt)K(h(xi, tj),x)

+ Ajx + Tj) , (7)

This can be interpreted as a repeated application of a spline
interpolation for incremental small motion of the landmark
along the given paths.

5. New Method: M-rep Based Diffeomor-
phisms

We have reasoned that the treatment region is not a suit-
able candidate for an m-rep model chiefly because of its pe-
culiar geometry and interstitial nature. We have m-rep mod-
els for the structures, which define the treatment region. We
have also discussed the drawbacks of the existing methods.

The basic approach, we follow here, is to obtain land-
marks and their deformation paths with the help of m-rep
models and then interpolate this deformation to warp the
treatment region. The algorithm can be broken into the fol-
lowing steps, which are detailed later:

1. Obtaining the landmarks: The vertices of the treatment
region are projected onto the surface of the closest m-
rep. This lets us associate a figural parameter with each
vertex of the tileset representing the treatment region.
These back-projected points serve as the landmarks.

2. Obtaining the deformation paths: Each m-rep is moved
smoothly along a geodesic from the atlas to the target
patient. This gives us a smooth path for the deforma-
tion associated with each landmark.

3. Interpolate the paths to the entire volume using the
large deformation diffeomorphisim frame work.

5.1. Obtaining the Landmarks

The treatment region is represented as a tileset which is
made up of a number of vertices, vk0 . For each vertex, the
closest point on the surface of the nearest m-rep is located.
This step is referred to as the back-projection. The sub-
division of the surface of the m-rep is done finely enough,

Figure 7. Deformation paths for a chosen set of landmarks in two
different views. These landmarks are shown in cyan for the atlas
and in black for the target patient. The deformation paths of seven
landmarks have been plotted, each in a different color.

so that each tile on the surface of the m-rep is of the size of
a voxel or smaller.

This back-projection is not guaranteed to be unique.
However, for the case where the treatment region is pretty
close to the m-rep boundary, the choice does not matter
much. We must also note that the mapping may be many-to-
one, i.e., multiple vertices of the treatment region may map
to the same m-rep surface point. This is due to the discrete
nature of the surface representation. These duplicates must
be eliminated before we can use them in thin plate spline
interpolation methods.

Thus for every vertex vk0 in the tileset, we have a figural
coordinate (u, v, τ) along with the m-rep number m. These
4-tuples Pi0 = (m,u, v, τ) form the set of landmarks at
time 0.

5.2. Obtaining the Deformation Paths and Gener-
ating diffeomorphic transformations.

The natural deformation path between two m-reps is
along the shortest distance path, i.e., the geodesic between
the m-reps. We can form discrete paths by the m-reps at
M equal length segments of the geodesic from the atlas to
the target patient. For each segment tj , j = 0, · · · ,M the
surface is recomputed by applying the atom interpolation al-
gorithm, and the Euclidean coordinates for each landmark
(m,u, v, τ) are obtained. This gives us a smooth time-
varying path of positions in real space for each landmark.
The deformation paths for a particular set of chosen land-
marks can be seen in fig 7. Call these n ∗ M positions
Pi(tj), j = 0, · · · ,M , where M is the number of steps in
the interpolation, n is the number of landmark points, and
i ∈ [1, n] identifies the landmark. At time step tj , the veloc-
ities of the landmarks along the path can be approximated
by Pi(tj+1)−Pi(tj)

1/M .
Given the velocity vectors along the paths, the entire ve-



(a) 3D view (b) A single axial slice

Figure 8. The treatment region warped with TPS. In (a), the folding
of the treatment region is shown by the yellow tiles.

(a) 3D view (b) A single axial slice

Figure 9. The treatment region warped with the new method. In
(b), the treatment region warped with the new method is shown in
green, while the manually drawn one is shown in blue.

locity field for the whole image volume v(x, tj) is estimated
by solving the sequence of interpolating thin plate spline
problems defined by equation 7. Thus, we have

Pk(tj+1) −Pk(tj)
1/M

=
N∑

i=1

(βi(tt)K(Pk(tj),Pi(tj))

+ AjPk(tj) + Tj) . (8)

The final transformation is computed via the recursive
composition

h(x, tj+1) = h(x, tj) + v(h(x, tj))

In this paper as we are using the TPS operator, the above
algorithm is implemented as a recursive composition of thin
plate spline interpolations.

6. Results
We used the set of m-rep models and nodal levels shown

in fig. 3 as the atlas. We also segmented these set of organs
and the nodal level for the target patient.

We first deformed the treatment region from the atlas into
the target patient with the help of TPS. To make an equi-
table comparison, we used m-reps for providing us with the

landmarks in both the cases. For this, we computed all the
landmarks as described in section 5.1. Also we computed
their location on the target patient by marching along the
geodesic paths. The result is shown in fig. 8. The char-
acteristic folding problem associated with TPS over large
deformations, can be seen in the form of yellow tiles in the
3D view. This folding can be seen even more clearly when
we see the deformed treatment region in the form of axial
slices.

Next, we deformed the treatment region from the atlas
into the target patient with our new method described in
the previous section. Fig. 9 shows one slice of the com-
parison between a manually segmented nodal level and the
deformed one. The manual segmentation is shown in blue,
while the deformed nodal level is shown in green. Note that
while the match is not perfect, it is much better than the one
obtained with TPS. Also, there is no folding. The less than
perfect match is chiefly because not all the organs which
define the treatment region were used for the deformation.
Also, the atlas in this case comes from just one patient in-
stead of being a mean over a large population.

7. Conclusions and Future Work

The problem of identifying the nodal levels poses many
problems, some of which are quite challenging. In this pa-
per, we have tackled the issue of deforming the nodal levels
from one patient to another, given segemented m-rep mod-
els for the organs which define it.

When the deformation is small, thin plate splines can do
a reasonably good job at deforming structures from one im-
age to another. However, they need landmarks and their
deformation paths as inputs. This was usually done manu-
ally. M-reps provide correspondence between several dif-
ferent deformations through the notion of figural coordi-
nates. They also provide a path between these two corre-
sponding points via geodesics. These natural landmarks and
means of providing a deformation path between them can be
successfully used as an input for the repetitive application
of thin plate splines.

We plan to test this method further on a different set of
treatment region, i.e. lymph nodal levels and also on sev-
eral new patients. Also, at present, the grayscale informa-
tion stored in the source and target images is never used
directly. We plan to incorporate ideas from the fluid regis-
tration method, which uses grayscale information, into our
method to make it more robust.
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