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Abstract 
 

We present a new and efficient next-best-view algorithm 
for 3D reconstruction of indoor scenes using active range 
sensing. To evaluate each view, we have formulated a 
general optimization metric function that can include 
many real-world acquisition constraints and quality 
requirements on the resulting 3D model. We overcome the 
computational difficulty of evaluating this function by 
using an adaptive hierarchical approach to exploit the 
various spatial coherences inherent in the acquisition 
constraints and quality requirements. Experimental 
results show large speedups over the straightforward 
method used by many previous algorithms. The approach 
allows us to compute with a highly-detailed partial scene 
model and to exhaustively sample the entire 3D view 
space at high resolution. Our hierarchical view evaluation 
algorithm can also take into account each view’s 
sensitivity to the potential scanner positioning errors. We 
have also developed a metric to estimate whether the scan 
to be acquired from each candidate view can be 
accurately registered to the previous scans. 
 

1. Introduction 
Active range sensing is very commonly used to make 

range scans of real-world objects and environments to 
create digital 3D models. Due to occlusions and the 
imaging constraints of the range scanner, multiple range 
scans from different scanning locations are often 
necessary to reconstruct a fairly complete model of an 
object or environment. The set of scanning locations must 
be chosen carefully so that each location satisfies a set of 
acquisition constraints and the reconstructed 3D digital 
model can meet a set of quality requirements. This task is 
known as view planning. Generally, a view also includes 
the scanner’s orientation and its associated imaging 
parameters. 

The goal of this work is to automate view planning for 
the range acquisition of real-world indoor environments to 
reconstruct models without a priori knowledge of the 
scene geometry. Most common indoor environments, such 

as offices and residential dwellings, are challenging for 
automated view planning. They occupy a large volume of 
space, and can be cluttered with many objects, which 
results in high visibility and geometric complexities. 

1.1. The Next-Best-View Problem 
For 3D reconstruction, a priori knowledge of the scene 

geometry is not available to the automatic view planner. 
The first scan is made from a view selected by a human 
operator, and for each subsequent scan, the planner must 
determine its best view based on the information collected 
from the previous scans. This is often called the next-best-
view (NBV) problem. 

The NBV problem is inherently a local optimization 
problem since global geometric information is unknown. 
It is NP-hard, and is often solved approximately using a 
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Figure 1: (a)–(d) The first three and the last 3D views in a 
computed view plan. The views may be at different height. (e)–
(f) The final partial model created from the ten scans. 
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greedy approximation algorithm. A greedy NBV 
algorithm selects the view that maximizes a view 
optimization metric as the best view for the next scan.  

The major challenge to a practical NBV solution is an 
efficient method to evaluate the view optimization metric 
for a large set of views, using information provided by a 
partial model of the scene. Each evaluation can be 
computationally very expensive, since a large amount of 
information of the partial model may be involved, and 
visibility computations and other constraint evaluations 
are expensive. This apparent computational difficulty has 
limited many previous NBV algorithms to simple and 
small objects, incomplete search space, incomplete set of 
acquisition constraints and reconstruction quality 
requirements, and low-quality acquisition. Some early 
algorithms even ignore self-occlusion of the objects. 

However, an efficient algorithm to evaluate the view 
optimization metric is actually possible. This is achieved 
by using a hierarchical approach to adaptively exploit the 
various spatial coherences inherent in the acquisition 
constraints and quality requirements. 

1.2. Reconstruction Quality Requirements 
The goal of 3D reconstruction is to produce a 3D model 

of the real-world object or environment that satisfies some 
reconstruction quality requirements. Generally, we would 
like the range acquisition to achieve the following two 
quality requirements on the 3D model. 

(1) Completeness. The more surface area of the object 
that is acquired, the more complete the reconstructed 
model can be. When planning views for a limited number 
of scans, it is natural to want to maximize the amount of 
surface area that can be measured. 

(2) Surface sampling quality. The surfaces of the 
object must be measured to meet a sampling quality 
requirement, which ensures that small surface features can 
be successfully reproduced in the reconstructed model up 
to the required resolution. View planning must take this 
into account to maximize the surface area that reaches the 
required sampling quality. We have chosen to use surface 
sampling density as a measure of the surface quality. 

These two requirements are in contention with each 
other. For example, trying to maximize the amount of 
surface area that reaches the required sampling quality 
may reduce the amount of new surface area that can be 
acquired. Trade-offs must be made between them. 

1.3. Acquisition Constraints 
There are several acquisition constraints that must be 

observed when planning a view of the scanner. Each 
constraint can be classified as one of the following types. 

(1) Positioning constraints. The scanner’s physical 
position is constrained by the physical construction of the 
scanner and the positioning device. A rotating scanner 
usually needs some space around it to operate and thus the 

viewpoint must be kept at least a minimum clearance 
distance away from any object in the environment. Other 
examples are that the scanner may be placed only between 
a minimum and a maximum height above the floor, but 
must never be placed above any object. A view that 
satisfies the positioning constraints is a feasible view. 

(2) Sensing constraints. These constraints determine 
whether a surface point in the scene can be measured from 
a view. For example, a surface point cannot be measured 
by the scanner if it is not visible from the range sensor, it 
is outside the field of view (FOV) or the depth of field of 
the scanner, or it is at a grazing angle with the light beam 
from the range sensor. 

(3) Registration constraint. When the scanner is 
moved to a planned pose, it is assumed that there will be 
positioning error. Therefore, the new scan has to be 
aligned or registered to the previous scans so that its 
information can be merged properly with the old one, and 
the scanner can be re-localized. However, this registration 
is not guaranteed to be successful. Factors that affect the 
registration accuracy between two surfaces are (1) the 
amount of overlap between them, (2) the shape constraint 
on the 3D rigid-body transformation between the two 
surfaces, and (3) the range measurement errors. The view 
planning algorithm must ensure that the new scan to be 
acquired from the planned view can be successfully 
registered with the previous ones.  

1.4. Contributions 
We have formulated a general view optimization metric 

that is able to include many real-world acquisition 
constraints and reconstruction quality requirements. Our 
implementation has included both quality requirements 
listed in Section 1.2 and all the example acquisition 
constraints listed in Section 1.3. 

The major contribution of this work is the recognition 
of the various spatial coherences in the acquisition 
constraints and reconstruction quality requirements in the 
optimization metric, and the novel application of a 
hierarchical approach to exploit them. This greatly 
accelerates the evaluation of the optimization metric for a 
large set of views. We also propose a novel extension to 
the hierarchical view evaluation algorithm to take into 
account each view’s sensitivity to the potential scanner 
positioning errors. 

We have also derived a metric to predetermine whether 
a new view can satisfy the registration constraint. This 
metric considers all the three factors listed in Section 1.3. 

To the best of our knowledge, this work is the first to be 
able to exhaustively evaluate a large set of 3D views with 
respect to a large set of surfaces, and to include many 
practical acquisition constraints and quality requirements, 
especially the sampling quality requirement, and the 
registration constraint that considers surface shape 
complexity and range measurement errors. 
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1.5. Paper Organization 
The paper is organized as follows. Section 2 reviews 

some of the previous work on view planning. Section 3 
presents an overview of our solution, and explains some 
of the components of the solution. One of the components, 
the hierarchical view evaluation method, is explained in 
Section 4, and another component, the metric to 
predetermine registration accuracy, is briefly presented in 
Section 5. Section 6 presents some of our experiment 
results. Section 7 concludes the paper and discusses some 
potential extensions of this work. 

2. Previous Work 
Most of previous work on view planning have been for 

small objects. The sensor position is often assumed to lie 
on a sphere surrounding the object, and always pointed at 
the center of the sphere, which may correspond to the 
center of the object or the feature of interest. The sphere is 
discretized to produce a fixed set of 2D viewpoints, and 
each viewpoint is independently evaluated with the partial 
model of the object [2, 5, 12]. 

Pito [7] proposed a 4D positional space to record 
discrete light rays that can reach points on the partial 
model. When a viewpoint is evaluated, each ray from the 
viewpoint is used to address the 4D positional space. 

Reed et al. [8] uses a different approach in which an 
occlusion surface on the partial model is selected by the 
user, and a single view volume is “projected” from the 
surface. The next sensor view is in the intersection of the 
projected view volume and the configuration space of the 
sensor. A similar approach is used by Sequeira et al. [11] 
to reconstruct indoor environments, in which multiple 3D 
view volumes are created for multiple occlusion surfaces. 
The next sensor view is selected from the intersections of 
these 3D view volumes. This method quickly becomes 
very complex and inefficient when the occlusion surfaces 
and the occluders are not simple.  

For reconstruction of indoor environments, it is usually 
impractical to exhaustively evaluate all views. González-
Baños et al. [3] and Nüchter et al. [6] have chosen to use 
randomized methods to generate 2D views on a plane. 
Sanchiz and Fisher [9] use a combination of hill-climbing 
and exhaustive search optimization methods to search for 
a local optimal viewpoint. The viewpoint space 
considered is 5D—3D position, pan and tilt. Each test 
viewpoint is evaluated by a specially designed objective 
function, and low-resolution ray-casting is used to 

estimate visibility from the test viewpoint. 
Only a few existing view planning algorithms consider 

the registration constraint when computing the next view 
[9, 10]. However, the only criterion they consider is the 
amount of overlap between surfaces. All the methods 
reviewed above work only for monostatic range sensors. 

3. Solution 
In the following descriptions of our solution, it is 

assumed that the range sensor is monostatic, and all the 
samples in a range image are measured from a single 
center of projection or viewpoint. These two assumptions 
are true for many commercial mid-range and long-range 
laser scanners that use time-of-flight range sensing. In the 
last section, we discuss how our method can be extended 
to bistatic range sensors. 

 
Figure 2 shows the model acquisition cycle with 

automated NBV planning. During a typical acquisition 
session, the model acquisition cycle is repeated multiple 
times. Besides evaluating views, a complete NBV 
planning system must be able to register and merge a new 
scan to the partial model. Only then can the partial model 
be used for view evaluation, in which the view that 
maximizes the view optimization metric is chosen for the 
next scan. 

3.1. Partial Model 
In this section, we first describe how to create a partial 

model from a single scan, and then describe how partial 
models can be merged. 

After a scan is made, the view planning system can be 
sure that the volume of space between the scanner’s 
viewpoint and the acquired surfaces (called true surfaces) 
is empty. However, volumes behind occluders, volumes in 
front of missing range samples (drop-outs), and volumes 
outside the FOV of the scanner are of unknown status. In 
the partial model of the single scan, these unknown 
volumes are separated from the known empty space by 
adding three types of false surfaces: (1) occlusion 
surfaces, (2) hole-boundary surfaces, and (3) image-
boundary surfaces. They are shown in Figure 3. Occlusion 
surfaces are added to connect surfaces across depth 
boundaries caused by occlusions. A way to detect these 
depth boundaries is by thresholding the distances between 
adjacent samples in the range image. Missing range 
samples result in holes in the true surfaces. The 
boundaries of these holes are connected to the scanner’s 

Figure 2: The model acquisition cycle with automated NBV 
planning. 
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Figure 3: Different types of surfaces in a partial model. (a) True 
surfaces. (b) Occlusion surfaces (red). (c) Hole-boundary 
surfaces (blue). (d) Image-boundary surfaces (green).  
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viewpoint using hole-boundary surfaces. Image-boundary 
surfaces are added to connect the range image boundaries 
to the scanner’s viewpoint. With the true surfaces and the 
added false surfaces, the known empty space is bounded. 

The false surfaces provide clues to how the unknown 
volumes can be resolved by subsequent scans. One 
strategy is to place the next view in the empty space where 
it can see as much area of the false surfaces as possible. 
This allows the next scan to “penetrate” as many of the 
false surfaces as possible, in the hope of resolving the 
unknown volumes behind them. This strategy is used in 
our view optimization metric. 

One partial model can be merged to another of the same 
environment by performing the union of their known 
empty volumes and the union of their true surfaces. 

In our implementation, the partial model is represented 
using an octree. All surface types and empty space are 
represented. Every surface voxel contains a surface 
normal vector, and each true surface voxel also contains 
the minimum sampling density over the surface region 
that intersects it. Figure 4(a) shows an octree partial model 
constructed from a single scan of a synthetic room model. 
The scanner has 360° horizontal FOV but limited vertical 
FOV. The gray voxels are true surfaces, red are occlusion 
surfaces, blue are hole-boundary surfaces and green are 
image-boundary surfaces. The white arrow points at the 
scanner’s viewpoint. 

When a new range image is acquired, it is made into a 
triangle mesh. A variant of the iterative-closest-point 
(ICP) algorithm [1] is then used to align the mesh to the 
true surface voxels’ centers in the cumulative octree 
partial model of the scene. Next, the mesh is scan-
converted to an octree partial model before it is merged 
into the cumulative partial model. Attributes in the 
resulting surface voxels are updated accordingly.  

To cope with registration errors and range measurement 
errors, if a true surface voxel in the cumulative partial 

model does not coincide with a true surface voxel in the 
other partial model, a search is performed over a very 
small neighborhood to find the nearest compatible true 
surface voxel in the other partial model. Compatibility is 
determined by the similarity of their surface orientations. 

3.2. View Optimization Metric 
Our view optimization metric is shown in Eq. (1), 

where ( )vh  is the score of view v. 

 ( ) ( ) ( ) ( ) ( ) ( )dAA,vtAwA,vcvrvpvh
A

 ∫ ⋅⋅⋅⋅=  (1) 

where  
• A is the finite surface area in the current scene model; 

it includes all true and false surfaces; 
• ( )vp  is 1 if view v is a feasible view, i.e. all the 

positioning constraints are satisfied at view v, 
otherwise ( )vp  is 0; 

• ( )vr  is 1 if the registration constraint is satisfied at 
view v, otherwise ( )vr  is 0; 

• ( )A,vc  is 1 if all the sensing constraints between 
view v and differential surface area dA are satisfied, 
otherwise ( )A,vc  is 0; 

• ( )Aw  is the weight or importance value assigned to 
the surface type of dA; the four different surface types 
are the true surfaces, the occlusion surfaces, the hole-
boundary surfaces, and the image-boundary surfaces;  

• ( )A,vt  is the improvement to the recorded sampling 
density at dA if a scan is made from view v.  

We use the following definition for ( )A,vt . 

 ( ) ( )( ) ( )( )AqD,A,vs,A,vt −=   min  0max  (2) 

where 
• ( )A,vs  is the sampling density at dA if it is scanned 

from view v; this is referred to as the new scan 
sampling density; 

• D is the sampling density requirement for all surfaces; 
• ( )Aq  is the maximum sampling density at which dA 

has been scanned previously; this is referred to as the 
recorded sampling density; if dA is on a false surface, 
then ( )Aq  is 0;  
( )A,vt  is 0 if ( ) ( )AqA,vs ≤  or if ( ) DAq ≥ . In Eq. (1), 

the improvement in sampling density is summed up over 
all surface area in the partial scene model, including 
surface area of false surfaces. The view score ( )vh  is the 
total gain in the number of surface samples at view v, 
given that the acquisition constraints are satisfied. 

In the metric, the false surfaces are treated just like the 
true surfaces, except that their recorded sampling density 
is 0. The weight ( )Aw  is used to trade-off between the 
completeness and the surface sampling quality 
requirements. To favor completeness, one can assign a 

Figure 4: (a) An octree partial model. (b) The feasible view 
volumes (in light-blue). (c) A true surface patch. (d) A set of 
occlusion surface patches. 
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large weight value to the occlusion surfaces and a small 
value to the true surfaces, and vice versa. We use 
( ) 1=Aw  for all our experiments. 

3.3. Algorithm Overview 
Our strategy to evaluate ( )vh  for all the views is to 

evaluate Eq. (1) in pieces, from least to most expensive to 
compute. Figure 5 shows the major steps in the evaluation 
of ( )vh .  

 
We first evaluate ( )vp  for all views to eliminate the 

infeasible views. Next, we use our hierarchical view 
evaluation method to evaluate the integral part of Eq. (1) 
for all the feasible views. If all views have scores below a 
specified threshold, the view planner will suggest 
termination of the acquisition process. The feasible views 
are then ranked by their current scores. Starting from the 
highest-score view, the registration constraint function, 
( )vr , is evaluated. A view is evaluated for ( )vr  only if it 

is at least a specified distance away from all the 
previously-checked views. This is because views with 
similar scores tend to cluster near each other and they 
usually have similar registration accuracies. The first view 
found to satisfy the constraint is output as the next best 
view. The registration constraint is evaluated last because 
it is the most expensive to compute. 

To support the hierarchical view evaluation, surface 
voxels in the partial scene model are grouped into planar 
patches. Only false surface voxels and true surface voxels 
whose recorded sampling densities are less than the 
sampling density requirement D are grouped into patches. 
If all the surfaces have already reached the sampling 
density requirement, or all the patches are less than a 
specified size, the scene is considered satisfactorily 
acquired and the acquisition process can be terminated. 
The planar patches are then ranked in descending order of 
importance. The reason for ranking the patches is that 
sometimes only a limited amount of time is allotted for the 
view planning computation, and when there is insufficient 
time, only the most important patches will be used to 
evaluate the views. 

Computing feasible views. The positioning constraints 

determine the feasible 3D locations of the views. In the 
implementation, an octree is used to represent the feasible 
view volumes. Initially, this feasible view octree is a cube 
that encloses all the empty space in the cumulative partial 
model. The cube is then “carved” until it becomes the 
feasible view volumes. For example, to keep the scanner’s 
viewpoint a minimum clearance distance from all objects 
in the scene, all the non-empty-space cells in the partial 
scene model are enlarged by the minimum clearance 
distance on all sides. The feasible view octree cells are 
then recursively subdivided until each cell has reached a 
minimum viewcell size or it does not intersect any of the 
modified non-empty-space cells. Other positioning 
constraints listed in Section 1.3 are also implemented. 
Figure 4(b) shows the feasible view volumes computed 
for the partial model in Figure 4(a). 

Extracting planar patches. Surface voxels that have 
not reached the required sampling density are grouped 
into planar patches. Voxels of different surface types will 
not be grouped in the same patch. Each patch has the 
following attributes: (1) a bounding rectangle, (2) an 
approximate surface area, (3) the average recorded 
sampling density, and (4) the sampling deficit. The 
sampling deficit is defined as the number of samples 
needed to make the average recorded sampling density 
equal to the sampling density requirement D, i.e. sampling 
deficit = (D − average recorded sampling density) × 
approximate surface area. Figure 4(c) and (d) show some 
example patches. 

Ranking patches. The most important patch should 
have the greatest potential impact on the value of the 
optimization metric in Eq. (1). This leads to the following: 
the patch importance value of P = ( )Pw  × sampling 
deficit of P, where P is the patch, and ( )Pw  is the weight 
assigned to the surface type of P, which is the same as the 
weight ( )Aw  in Eq. (1). The patches are then sorted in 
descending order on their patch importance values. 

4. Hierarchical View Evaluation 
Let ( )vg  be the integral part in Eq. (1), i.e. 

 ( ) ( ) ( ) ( )dAA,vtAwA,vcvg
A

 ∫ ⋅⋅=  (3) 

The next step of the NBV algorithm is to evaluate ( )vg  
for all the feasible views. Due to the potentially large area 
of surfaces in the partial scene model, a brute-force 
approach would be impractical. However, the amount of 
computation can actually be reduced by exploiting the 
spatial coherences in the sensing constraints and the 
sampling quality function in Eq. (3).  

The basic idea is that if a constraint is satisfied between 
a view v and a surface point p on the partial model, very 
likely the same constraint is also satisfied between another 
view v′ and p, provided v′ is near to v. The same constraint 
is also very likely to be satisfied between v and another 

Figure 5: The major steps in the NBV algorithm. 
terminate 
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surface point p′ that is near p. We exploit these spatial 
coherences using a hierarchical approach. Neighboring 
views are first grouped into view volumes, and 
neighboring surface points are grouped into surface 
patches. The constraint is evaluated between each view 
volume V and a patch P. If it is entirely satisfied or 
entirely not satisfied between V and P, then the constraint 
evaluation is considered completed between every view in 
V and every surface point in P. If the constraint is partially 
satisfied between V and P, then we subdivide either V or 
P, and continue the evaluation on the children. 

4.1. Formulation 
Suppose all the false surface and under-sampled true 

surface areas in the partial model have been partitioned 
into N patches { }N,,i|Pi K1= , then Eq. (3) can be 
rewritten as 

 ( ) ( )∑
=

=
N

i
iP,vgvg

1

 (4) 

where 
 ( ) ( ) ( ) ( )dAA,vtAwA,vcP,vg

PA

 ∫
∈

⋅⋅=  (5) 

Now, we will focus on evaluating views with respect to 
a patch, instead of with all the surface area in the partial 
model. Suppose the values of ( )A,vc  and ( )A,vt  remain 
constant between a view volume V and a patch P, where 

Vv∈  and PA∈ , then ( )P,vg  can be computed as 

 ( ) ( ) ( ) ( ) ( ) ( )PaP,VtPwP,VcP,VgP,vg ⋅⋅⋅==  (6) 

where  
 ( ) ( )( ) ( )( )PqD,P,Vs,P,Vt −=   min  0max  (7) 

and ( )P,Vc , ( )Pw  and ( )P,Vs  are similarly defined as 
( )A,vc , ( )Aw  and ( )A,vs ; ( )Pa  is the patch area of P, 

and ( )Pq  is the average recorded sampling density of P. 
In actual fact, the value of ( )A,vs  does not stay 

constant between V and P. However, if every ( )A,vs  
between V and P is bounded within a small interval, then 
we consider it approximately constant. In this case, we can 
let ( )P,Vs  be any ( )A,vs  between V and P. The value of 
( )A,vs  between V and P is considered approximately 

constant when 

 ( ) ( )
( ) sP,Vs

P,VsP,Vs
ε≤

−

max

minmax  (8) 

where ( )P,Vsmin  and ( )P,Vsmax  are the minimum and 
maximum ( )A,vs  between V and P, respectively. We have 
chosen to let ( ) =P,Vs ( )P,Vsmin , and compute ( )P,Vg  
using Eq. (6). If any sensing constraint is found entirely 
not satisfied between V and P, then ( )P,Vs  need not be 

computed and ( ) 0=P,Vg . 
If ( )A,vc  is not constant or ( )A,vs  is not 

approximately constant between V and P, then we cannot 
compute ( )P,Vg  using Eq. (6). We can subdivide either V 
or P, and apply Eq. (6) on the sub-volumes or the sub-
patches. If patch P is subdivided, then 

 ( ) ( ) ( )kP,VgP,VgP,Vg ++= L1  (9) 

where kP,,P K1  are the sub-patches of patch P. If view 
volume V is subdivided, then ( )P,Vg  is replaced with 

( ) ( )P,Vg,,P,Vg mK1 , where mV,,V K1  are the sub-

volumes of V. Then, ( ) =P,vg ( )P,Vg i  if iVv∈ . The 
subdivision stops when ( )A,vc  is constant and ( )A,vs  is 
approximately constant between the view volume and the 
patch. The subdivision is thus adaptive to the rates of 
change of ( )A,vc  and ( )A,vs . 

4.2. Implementation 
In our experiment, the scanner has 360° horizontal FOV 

but limited vertical FOV. Since we assume that the 
scanner is always in the upright orientation, each view of 
the scanner is effectively only a 3D position. We use the 
feasible view octree to represent the view volumes. 

From the highest-ranked patch to the lowest, each patch 
is first evaluated with the top viewcell in the feasible view 
octree. A viewcell is subdivided into eight equal sub-
viewcells, whereas a patch is subdivided into four sub-
patches by splitting its bounding rectangle into four equal 
parts. A viewcell is not subdivided if it has reached the 
minimum viewcell size. Similarly, a patch is not 
subdivided if it has reached the minimum patch size. 
When either a viewcell or a patch is to be subdivided, we 
subdivide the patch if its longer side is larger than the 
viewcell’s width, otherwise the viewcell is chosen. 

We have implemented all the four sensing constraints 
listed as examples in Section 1.3. Each constraint is tested 
between a viewcell and a patch, and the result can be 
“entirely satisfied”, “entirely not satisfied”, or “partially 
satisfied”. We have also implemented an efficient way to 
compute the minimum and maximum new scan sampling 
density between a viewcell and a patch. 

After all patches have been evaluated (or the allotted 
view evaluation time is up), a viewcell’s score is not yet 
propagated down to its children. Since each child viewcell 
contains part of the view volume of its parent viewcell, the 
scores in the children should include the parent’s score. 
Therefore, the score of each viewcell should be updated 
by adding to it the scores of its ancestors. The center point 
of each leaf node of the feasible view octree is a candidate 
view, to be ranked and tested for the registration 
constraint. The first candidate view that satisfies the 
registration constraint is chosen as the best view for the 
next scan. 
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Many optimizations can be added to the basic 
hierarchical algorithm. If a sensing constraint ci is already 
entirely satisfied between V and P, but V or P is to be 
subdivided because some other sensing constraint is only 
partially satisfied, then ci need not be re-evaluated for the 
children of V or P. Another optimization is to order the 
evaluations of the constraints and the sampling density so 
that the most efficient one is first and the least efficient 
last. This is to exploit the many early exits in the 
algorithm, so that the more inefficient evaluations are less 
likely to be executed. Generally, the visibility constraint 
should be placed at the end. 

Figure 6(a) shows the feasible view volumes computed 
for a partial model of a large living room. These feasible 
view volumes are then evaluated with a patch shown in 
magenta color in Figure 6(b). The resulting best 500 
viewcells are shown. The minimum viewcell size used is 
4×4×4 inch3, and the minimum patch size is 2×2 inch2. A 
brute-force method took 259.6 seconds to evaluate the 
feasible views with the patch, while our hierarchical 
algorithm took just 11.9 seconds—a difference of more 
than 20 times. Typical speedups are between 10 to 100 
times. Generally, larger and simpler scenes, and smaller 
minimum viewcell and minimum patch sizes result in 
larger speedups. 

4.3. View Sensitivity to Pose Errors 
When the scanner is being positioned at a planned view, 

there may be pose error. Some views are very sensitive to 
pose errors, in that the view scores in the neighborhood of 
such a view varies greatly. The problem with using a 
sensitive view as the planned view is that many surfaces 
expected to be acquired at the planned pose may not be 
acquired at the actual pose. 

Pose error sensitivity can be easily incorporated into the 
hierarchical view evaluation algorithm. When evaluating a 
constraint or the new scan sampling density between a 
viewcell and a patch, the viewcell is first enlarged by the 
expected or maximum pose error in each of its 
dimensions. The effect of this is a lower viewcell score 
that accounts for only the surface areas that can be 
acquired by every view within the pose error bound of the 
views in the original viewcell. A surface area that can be 
acquired by some but not all views in the enlarged 

viewcell will not be included in the score. To our 
knowledge, this is the first NBV algorithm that directly 
incorporates pose error sensitivity in the computation of 
new views.  

5. Registration Constraint 
The NBV algorithm must ensure that the new scan to be 

acquired from the planned view can be accurately 
registered with the previous ones. We have derived a 
metric, which considers all the three factors listed in 
Section 1.3, to estimate whether a view satisfies the 
registration constraint. The metric and the details of the 
derivation can be found in [4]. 

Figure 7 shows an example to demonstrate the 
effectiveness of our registration constraint metric. The 
indoor scene has two rooms linked by a doorway. A scan 
is first made from the first room. To compute the view for 
the next scan, the candidate views produced by the 
hierarchical view evaluation are tested for the registration 
constraint. The highest-score view fails the constraint, and 
21 other views are tested until one near the doorway is 
found to satisfy the constraint. A view is evaluated for the 
registration constraint only if it is at least a specified 
distance away from all the previously-checked views. We 
use a distance of two feet in the example. In fact, the scan 
acquired from the highest-score view does not have 
enough shape constraint in the overlapping region with the 
first scan, and registering them using our ICP algorithm 
actually fails. The final planned view does not have this 
problem. 

6. Results 
We have tested our NBV planning system in 

simulations and on real scenes. The scanners used in both 
cases have only 3D translational poses, and have full 
horizontal FOVs but limited vertical FOVs. We typically 
use a width of 2 inches for the surface voxels in the partial 
models. The minimum viewcell size used is 4×4×4 inch3, 
and the minimum patch size is 2×2 inch2. We also limit 

Figure 7: (a) A synthetic scene. (b) The scan made from the first 
room. (c) The highest-score view and the final planned view. 

(b)

room 1 

room 2 

(c) 

(a)

highest-
score view 

final planned 
view 

Figure 6: (a) The feasible view volumes to be evaluated. (b) The 
results of evaluating the patch (magenta) with the feasible view 
volumes. The best 500 viewcells are shown. 

(b)(a)
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the amount of time that the system can spend on view 
evaluation in each cycle to 2 minutes. All the timings and 
results were obtained on a laptop computer with an Intel 
Pentium 4-M 1.6GHz CPU, and 768 MB of DDR RAM. 

Figure 1 shows the simulation results of acquiring scans 
of a synthetic kitchen model. The main kitchen area has 
three smaller pantry-sized rooms connected to it. The 
acquisition was manually terminated after the tenth scans. 
Figure 1(a)–(d) show the evolution of the partial model 
after each new scan is merged. The final view plan is 
shown in Figure 1(d). Every cycle, the hierarchical view 
evaluation was able to evaluate all the patches with all the 
feasible views within the allotted two minutes. Other steps 
of the system, for example, range image processing, 
registration of scan, octree partial model creation and 
merging, extraction of patches, evaluation of the 
positioning and registration constraints, took an average of 
35 seconds altogether. 

Figure 8 shows the acquisition of a real building 
interior using a DeltaSphere-3000 laser scanner. The 
acquisition process was manually terminated after the fifth 
scan. Figure 8(a) shows the view plan. The elongated 
occlusion surfaces in the final partial model are the results 
of the scanner “seeing” into other rooms through the small 
glass windows on the doors. Every cycle, more than 75% 
of the patch areas can be evaluated with all the feasible 
views. This experiment demonstrates that our NBV 
planning system is robust for real-world applications. 

7. Conclusion and Future Work 
We have demonstrated that, using our hierarchical view 

evaluation method, exhaustive 3D view evaluation for 
greedy NBV planning is actually practical. Moreover, our 
optimization metric includes many real-world acquisition 
constraints and quality requirements (all listed in Section 
1.3). We believe the optimization metric and the 
hierarchical evaluation method are general enough to 
allow many other useful constraints and requirements to 
be added. Another advantage of the hierarchical method is 
that view sensitivity to pose errors can be easily 
incorporated. Our registration constraint metric is able to 
take into account the amount of overlap region, the shape 
complexity and the range measurement errors. 

The hierarchical view evaluation method can be 
extended to scanners with higher-dimensional pose. The 
most general pose in practice is 5D—3D position, pan and 

tilt. The major challenge is the potentially large amount of 
memory required to represent the 5D views. The key to a 
feasible solution may be a clever method to better exploit 
the coherences in the views so that they may be more 
compactly represented.  

The hierarchical method may also be applied to 
scanners with bistatic sensors. The basic idea is that for 
each view volume of the scanner, each of the two sensor 
viewpoints forms a 3D swept volume. A subdivision of 
the scanner’s view volume will also subdivide the 3D 
swept volumes. However, since the swept volumes may be 
of more complex shapes, it is not known whether the 
spatial coherences can still be efficiently exploited. 
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Figure 8: (a) The view plan computed for a real scene. (b) The 
final partial model and the feasible view volume. 
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