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Abstract - While it is well-known that TCP performance
degrades significantly on experiencing packet losses, not much
is known about the way in which TCP losses occur in the real-
world. In order to understand this issue, in this paper, we de-
velop a passive analysis methodology for reliably inferring the
loss processes that real-world TCP connections are subject to.
We instantiate our methodology in analysis tools that implement
detailed sender-side state machines for several prominent TCP
stacks (Windows, Linux, BSD, and Solaris) and augment these
with extra logic to correctly track TCP sender state as well as
actual segment losses. Using these state machines we analyze
traces of more than 25 million TCP connections, collected from
5 different locations around the world and report our findings.

1 Introduction

TCP is the dominant transport protocol used by Internet
applications. Perhaps one of the most useful service se-
mantics provided by TCP is that of reliable delivery. TCP
implements reliability by detecting packet losses and re-
transmitting lost segments. It is well-known that the time-
liness performance of a TCP connection degrades signifi-
cantly whenever it experiences packet losses and invokes
this pair of mechanisms. Given the popularity of TCP, it
is, therefore, important to understand how are real-world
TCP connections subject to packet losses and how well
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do its detection-recovery mechanisms deal with them. It
is the goal of our research to do so.

As a first crucial step of this endeavor, in this paper,
we address the issue of: how to reliably derive the loss
process that real-world TCP connections are subject to?
One of the most powerful approaches for studying TCP
connections that represent real-world users and applica-
tions, is to passively analyze packet traces of ongoing
TCP connections in the Internet. In this paper, we ar-
gue that existing approaches for passive inference of TCP
losses do not adequately deal with either the inefficien-
cies of TCP’s loss detection-recovery mechanisms, or the
diversity in TCP implementations. In an effort involving
several person-months, our approach is to recreate TCP
sender state related to loss detection-recovery in a set of
passive analysis tools, and augment these with extra logic
for reliably inferring TCP losses, We validate our tools
against several controlled experiments with diverse TCP
senders. We then run these tools against packet traces of
25 million Internet TCP connections collected from 5 dif-
ferent locations, and report our findings.

In the rest of this paper, we discuss past work and our
passive analysis methodology in Section 2. We present
tool validation in Section 3 and the results of analysis of
Internet connections in Section 4. We outline the implica-
tions of our analysis in Section 5.
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Figure 1: Implicit TCP Retransmission

2 Passive Loss Inference Methodol-
ogy

TCP uses a well-known combination of detection and re-
covery mechanisms to deal with packet losses—we refer
the reader to [5, 10, 8, 14] for details of retransmission
timeouts (RTOs), fast retransmit/recovery (FR/R), triple
duplicate acks (TDA), partial acks (PAs), and selective
acks (SACKs). Each of these mechanisms is used to re-
transmit segments that are perceived to be lost. Below we
consider several approaches for reliably inferring packet
losses from the packet trace of a TCP connection.

2.1 Passive Inference of TCP Losses

Why not consider all retransmissions? Since TCP re-
transmits segments on detecting packet losses, the sim-
plest (and common) approach for inferring segment loss
is to simply look for the reappearance of some segments
in the TCP packet trace and assume that the original trans-
mission was lost. However, this approach can lead to
over-estimation of losses as illustrated in Fig 1, which de-
picts part of a TCP connection selected from the unc trace.
Segment 2 is retransmitted during a post-timeout period,
although the original transmission was successful (as is
confirmed by the subsequent ACK sequence). Note that
while the segment was retransmitted, this was not the re-
sult of any explicit loss detection/recovery attempt by the
TCP protocol. This example, thus, illustrates that in order
to reliably infer packet losses, it is important to track the
explicit triggering of TCP’s loss detection mechanisms—
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Figure 2: Unneeded Retransmission
namely, RTO, TDA, PA, and SACK.
Why not simply replicate TCP sender state? It turns

out that even simply tracking the triggering of loss de-
tection/recovery mechanisms in a TCP connection—as is
done in [9]—is not sufficient for reliably inferring packet
losses. This is because of two reasons related to TCP’s
inability to accurately infer packet losses:

Some losses do not trigger TCP’s loss detection phases.
For implementation efficiency, TCP senders maintain
only a limited history about unsuccessful transmissions.
In particular, if multiple packet losses are followed by a
timeout, the sender explicitly discovers and recovers only
from the first of those losses. As a result, the remaining
packet losses may not get discovered by simply tracking
the invocation of TCP’s four loss detection mechanisms
described above (RTO, TDA, PA, SACK). Fig 1 illustrates
this for segment 1, which was unsuccessfully transmitted
the first time. The segment gets retransmitted in the post-
timeout period, but without explicitly triggering TCP’s
loss detection/recovery mechanisms. It is, thus, impor-
tant to track implicit retransmissions that are needed for
recovering from packet losses.

A TCP sender may incorrectly infer packet losses. TCP
may retransmit a packet too early if its RTO computation
is not conservative. Furthermore, some packet re-ordering
events may result in the receipt of TDAs, triggering a loss
detection/recovery phase in TCP. In fact, Fig 2, which



again depicts part of a TCP connection selected from the
unc trace (and visualized using the fcptrace utility [4]),
plots a connection in which a single packet reordering
event resulted in the triggering of 64 subsequent phases
of fast retransmit/recovery, that lasted for more than 5
seconds! It is, thus, important to track explicit retrans-
missions that are not needed for recovering from packet
losses.

Basic Approach Based on the above discussion, our ba-
sic approach for passive inference of TCP losses is to:
(i) implement partial state-machine for a TCP sender that
uses the ACK stream to track the triggering of loss de-
tection/recovery mechanisms, and (ii) augment the state
machine with extra state and logic about the transmission
order and timing of all previously-transmitted packets, in
order to classify retransmissions as needed or not. Using
this basic approach, we can classify segment retransmis-
sions as triggered by: (i) RTOs, (ii) TDAs, (iii) PAs, (iv)
SACKs, and (v) implicit. Furthermore, each retransmis-
sion is further classified as needed or unneeded. Fig 3
depicts this classification taxonomy.

2.2 Practical Challenges in Loss Inference

Three kinds of practical concerns complicate the imple-
mentation of the above approach. We describe these con-
cerns and how we address them below.

Diverse and Non-documented TCP Stacks

The Challenge: TCP implementations written by dif-
ferent operating system (OS) vendors may differ (some-
times significantly) in either their interpretations or their
conformance to TCP specification/standards. Further-
more, a few aspects of TCP—such as how a sender re-
sponds to SACK blocks—are not standardized. As a re-
sult, the sender-side state machines are specific to the OS
they run on. This results in two main challenges in imple-
menting our basic approach. First, the difference in im-
plementations on different OSes necessitates that we im-
plement different programs to analyze connections orig-
inating from different sender-side OSes. More signifi-
cantly, given the trace of a TCP connection, it is non-
trivial to identify the corresponding sender-side OS and

decide which OS-specific analysis program to use for an-
alyzing the connection. Second, most OSes either have
proprietary code or have insufficient documentation on
their TCP implementations. Without detailed knowledge
of the loss detection/recovery implementations, it is not
possible to replicate these mechanisms in our OS-specific
analysis programs.

Our Approach: We extract sufficient details about
the implementation of loss detection/recovery in several
prominent OS stacks by using an approach similar to
the 7-bit approach described in [11]. Specifically, we in-
stall four different OSes—namely, Windows XP, Linux
2.4.2, FreeBSD 4.10, and Solaris—on experimental lab
machines and run the Apache web-server on each ma-
chine. We expect this range of OSes to cover a ma-
jority of the connections we analyze. We then imple-
ment an application-level TCP receiver (by borrowing
from the t-bit code base) that initiates TCP connections
to each of the server machines and requests HTTP ob-
jects. Once the server machines start sending the objects,
the receiver artificially generates different sequences in
the ACK stream to trigger loss detection/recovery mecha-
nisms on the sender-side stacks (including TDAs, RTOs,
PAs, SACKs). We then use the manner in which the
server responds to the ACK stream for inferring several
characteristics of the sender-side TCP implementation, in-
cluding the computation of RTO, the number of dupli-
cate ACKs that trigger FR/R, and the response to SACK
blocks. Details of the extracted characteristics can be
found in [13]. We use these details in our implementa-
tion of four OS-specific trace analysis programs.

For each TCP connection to be analyzed, we run its
packet trace against all four analysis programs. We then
select the program that is able to explain each retransmis-
sion event. Events that cannot be explained by any pro-
gram are counted as unexplained and connections with a
large fraction of unexplained events are discarded.

Delays and Losses Between Monitor and
Sender

The Challenge: Packet traces used in passive analysis
are typically collected at links that aggregate traffic from
a large and diverse population. As a result, there may be



several network links on the path between a TCP sender
and the trace monitoring point. Thus, the data packets
transmitted by the sender may experience delays,' losses,
or reordering before the monitor observes them; the same
is true for ACK packets that traverse between the monitor
and the sender. Consequently, the data and ACK streams
observed at the monitor may differ from those seen at the
TCP sender. In particular, if some of the TDAs observed
at the monitor fail to reach the sender, the analysis pro-
grams may incorrectly conclude that the sender has en-
tered FR/R. Similarly, if a data packet gets lost before it
reaches the monitor, and subsequently gets retransmitted,
the analysis programs may fail to infer that the packet has
been re-transmitted. Thus, the programs may not be able
to accurately track the sender-side state machine.

Our Approach: In order to deal with this complication,
we use a general approach in which loss indications in
the ACK stream trigger only fentative state changes in
the monitor state machine, which are confirmed only by
subsequent retransmission behavior by the sender. In ad-
dition, we consider all out-of-sequence (OOS) segments
(and not just retransmitted segments) as possible indica-
tors of packet loss. Furthermore, we infer network re-
ordering by (i) detecting reordering in the IP-id field of
packets seen from a given TCP source, and (ii) detecting
if an out-of-sequence segment appears within a fraction
of the connection’s minimum RTT after the segment with
the next higher sequence number.

Non-availability of SACK Options

The Challenge: A large number of traces do not cap-
ture the TCP option field. SACK blocks are transmitted
as TCP options and hence are not available for passive
analysis of these traces. The sender may have used the
SACK block information to retransmit certain packets. In
absence of these blocks, the monitor will fail to accurately

IThe RTT measured at the monitor (monitor-receiver-monitor) is less
than that measured at the sender (sender-receiver-sender). This implies
that the RTO computed at the monitor may be smaller than that used
by the sender. Fortunately, this discrepancy does not negatively impact
our analysis—the RTO is used as a minimum threshold for the gap be-
tween the original transmission and retransmission of a lost segment, in
order to identify retransmissions that occur due to timeouts. Therefore, a
smaller-than-actual value of RTO would simply lower the threshold and
still be able to correctly infer such retransmissions.
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Figure 3: Classification Taxonomy

identify the cause of these retransmissions and hence may
not mark them correctly.

Our Approach: To overcome this problem, we develop
the following heuristic to identify whether a packet could
have been triggered by incoming SACK information. We
classify a segment retransmission as SACK-triggered if:
(i) the connection is in FR/R, (ii) the retransmission is not
explained by either RTO or a PA, and (iii) the sequence
number of the retransmitted segment is less than the high-
est sequence number that was in flight when the connec-
tion entered FR/R. We validate this heuristic using a one
hour segment from the unc trace. We first run our analysis
tools with the SACK blocks available and note the retrans-
missions that were SACK-triggered. Then we remove
the SACK blocks from this trace and run the tools with
the above heuristic. The analysis that relied on availabil-
ity of SACK blocks identified 54160 SACK events. The
heuristic-based analysis identified all of these events, but
also marked 4333 of the unexplained events as SACK trig-
gered. Apart from the low number of unexplained events
incorrectly classified the heuristics works very well.

2.3 Summary of Our Methodology

Our methodology for reliably inferring TCP losses and
the triggering of TCP loss detection/recovery mechanisms
can be summarized as follows.

1. We first extract the implementation details of four
prominent TCP stacks (Windows XP, Linux 2.4.2,
FreeBSD, Solaris) using the approach described in
Section 2.2.

2. We then replicate the loss detection/recovery mecha-



nisms in four OS-specific analysis state machines—
these state machines use the data and ACK streams
as input. Loss indications in the ACK stream are
used to only tentatively trigger state transitions,
which are confirmed only by subsequent segment re-
transmission behavior.

3. We then augment these machines with extra logic
and state about all previously-transmitted packets,
in order to infer packet losses with accuracy greater
than TCP.

4. We then run each connection trace against all four
machines and use the results from the one that can
explain most (> 20%) of the observed OOS seg-
ments. In case more than one machine matches this
criteria, we select one randomly.

Our methodology classifies all OOS segments that appear
within the packet trace of a TCP connection, according to
the taxonomy depicted in Fig 3.

We have implemented the above machines in the C pro-
gramming language. All four implementations can ana-
lyze more than a million connections in a few minutes.
Several details of our methodology and implementation
have not been included in this section due to space con-
straints. These details can be found in [13].

Previously, Allman [6] and Jaiswal[9] have presented
methods for passive estimations of losses. Allman as-
sumes that all explicit retransmissions are necessary; he
counts the number of implicit retransmissions that were
unneeded by counting the number of duplicate ACKs gen-
erated in a post-timeout recovery period. While this ap-
proach works relatively well, it does not identify exactly
which of the implicit retransmissions were unneeded.
Jaiswal et. al. use a state-machine based approach derived
from the specifications in RFC 2581 [5]—this is similar to
our FreeBSD state machine. This approach does not take
into consideration variations in other TCP stacks. Fur-
thermore, since the purpose of [9] is not to study packet
losses in detail, their analysis tool is limited in the granu-
larity with which OOS segments are classified. In the next
two sections, we compare our methodology with both of
the above.

3 Validation

We validate our analysis tools against TCP connections
for which the “ground truth” about the classification of
each OOS segment is known. To do this, we modified the
TCP Behavior Inference Tool (tbit) [11]. tbit emulates a
TCP protocol stack for the receiver side of a unidirectional
data transfer where the sender is a normal application (in
our case a Web server) running over a real TCP implemen-
tation in a specific operating system. We modify #bit to
simulate different packet loss scenarios that would trigger
sender responses by withholding ACKs, sending dupli-
cate ACKs, and providing SACK blocks reflecting various
gaps in received sequence numbers. Because the state ma-
chine analysis also depends on inferring the TCP sender’s
RTO to identify retransmissions triggered by timeouts,
we also use tbit to delay ACKs thus simulating variable
round-trip delays. For some of the validation scenarios
described below we also use dummynet on the thit ma-
chine to create additional latency between the sender and
receiver.

For each validation scenario we used two machines,
one running thit and the other running a web server, con-
nected over a switched 100/1000 Mbps Ethernet that is
shared by users in the Computer Science department. rbit
established a TCP connection to the web server and sent a
valid HTTP request for a large file. thit then implemented
the desired validation scenario with a specific generated
ACK stream. Unless stated otherwise, each validation
scenario was repeated 100 times because not all sources
of variation in timing—ranging from 1ms to 10ms—could
be controlled (e.g. OS scheduling, Ethernet switch delays,
etc.). Separate estimates of these uncontrolled delays con-
cluded that the majority were less than 1 millisecond and
nearly all were less than 10 milliseconds.

The entire suite of validation scenarios was run with
thit connecting to four different TCP implementations on
the sender machine — Windows XP, Solaris, Linux 2.4.2,
and FreeBSD 4.10. Bidirectional tcpdumps of all pack-
ets were taken on these sender machines and the traces
were then used as input to our validation procedures. The
procedures we used have two parts — (1) to verify that
each TCP implementation responds in real operation as
we expected, and (2) to verify that the state machine anal-
ysis programs correctly emulate each implementation’s
responses. For the first part we processed the tcpdump



traces with zcptrace [4] and other tools to verify the im-
plementations’ responses. For the second part, we used
the tcpdumps as input to the state machine analysis pro-
grams and recorded their outputs. By comparing the re-
sults from the state machine analysis with the known im-
plementation responses, we could determine how correct
its inferences about conditions at the sender were. We
also used the tcpdumps as input to the analysis program,
tepflows, presented in [9] but report the results from this
only when they differ substantially from ours.

RTO classification: The first group of validation sce-
narios deal with how well the state machine analysis can
infer the sender’s estimate of RTT and RTO which are
critical in identifying retransmissions triggered by time-
outs. In this group of validation scenarios all retransmis-
sions are known to be triggered by timeouts. The state
machine for each implementation requires correct values
for parameters defining the initial and minimum RTO, the
timer granularity, and the equations used in computing
RTO. These parameters are verified as part of the valida-
tion results. Table 1 gives the values used for these param-
eters in the state machine for each TCP implementation.?

RTT estimation: Dummynet was used to set a con-
stant minimum RTT—of 50, 100, 150, 200, 400, 1000,
and 2000 ms—between the two machines. All RTTs es-
timated segment/ACK pairs by our state machines were
within +10 milliseconds of the value set by dummynet.

Initial RTO setting: The initial RTO parameter helps
classify retransmissions of SYN or SYN+ACK segments
at connection establishment. tbit initiated a connection
(sent SYN) but did not respond to the SYN+ACK sent
by the server. This resulted in a retransmission of the
SYN+ACK after the initial RTO interval. Our state ma-
chines for each implementation correctly identified the
SYN+ACK retransmission as being triggered by RTO;
further, the measured RTO was equal to the value ex-
pected by our state machines +/- the timer granularity
(also shown in Fig 1).

2Details about the RTO computation (srtt and rttvar) are taken from
RFC 2581 [5]. Linux, however, uses a significantly different compu-
tation for the variance in RTT—we extract this from the Linux source
code. The details can be found in [13].

Minimum RTO setting: No delays were added to the
actual RTT (typically 1 millisecond) over the switched
Ethernet. Thus any retransmission triggered by an RTO
should occur after an interval approximately equal to the
minimum RTO. it received and ACKed a significant
number of segments (typically 50 or more) so the sender’s
RTO calculation stabilized before withholding all ACKs
to trigger an RTO retransmission. The tcpdump showed
that the retransmissions occurred after the expected time
intervals +/- the timer granularity. The state machine for
each implementation correctly identified these retransmis-
sions as triggered by RTO using these minimum values
and timer granularities.

RTO estimation - constant RTT: Dummynet was used
to set a constant minimum RTT—ranging from 50ms
to 2s—between the two machines with variations only
caused by switch delays. tbit received and ACKed a sig-
nificant number of segments (typically 80 or more) so the
sender’s RTO calculation stabilized before withholding
ACKs to trigger RTO retransmissions. The actual time
differences found in the tcpdump between initial and sub-
sequent transmissions of the same segment are summa-
rized in Table 2 showing the mean, min, and max time
intervals. The values shown are in good agreement with
the expected values given the fixed dummynet delays, the
minimum RTT, and the timer granularity for each imple-
mentation.

RTO estimation - variable RTT: This is the same sce-
nario as above, except that ACKs were delayed randomly
by tbit by up to 50% of the dummynet imposed minimum
RTT. The results are also summarized in Table 2. The
values shown correspond to the expected values given the
fixed dummynet delays, the added delay variability, the
minimum RTT, and the timer granularity for each imple-
mentation.

Comparison to tcpflows:  Table 2 shows the observed
min, max and mean time interval for the RTO valida-
tion experiments. It shows that the various implementa-
tions differ widely in their RTO computations. Solaris,
for instance, initializes RTO to a high value and hence,
over a short interval, ends up with a higher RTO value
then FreeBSD (even though its min RTO is much lower



Parameter Linux | Windows | FreeBSD Solaris
Timer granularity 10ms 500ms 10ms 10ms
Initial RTO (s) 3 3 3.375 3
Min RTO (ms) 200 1000 1200 400
RTO srtt + srtt + srtt+ 1.25%srtt +
vartt 4*rttvar 4*rttvar 4*rttvar
Dup-ACK threshold 3 2 3 3

Table 1: TCP variants

than that of FreeBSD). Linux converges to the correct
value much faster and has the lowest RTO value. In all
cases, we were able to correctly classify all retransmis-
sions triggered by RTO. The tcpflows tool [9] failed to
correctly handle RTO estimation for many of the constant
and variable RTT scenarios—this is primarily because it
does not incorporate the diversity across different imple-
mentations.

FR/R classification: The second group of validation
scenarios deals with how well the state machine analysis
can infer the sender’s response to duplicate ACKs, partial
ACKs in Fast Recovery, and SACK blocks.

Number of duplicate ACKs to trigger retransmission:
tbit received and ACKed the first 15 segments then sent
duplicate ACKs (without delays) for the 15th in response
to subsequent segments (thus simulating loss of the 16th
segment). The number of duplicate ACKs was varied
from 1 to 4. Each of our state machines classified the
corresponding retransmissions as triggered by duplicate
ACKs. The tcpflows tool failed to recognize retransmis-
sions triggered by 2 duplicate ACKs in Windows (and in-
stead classified them as RTO retransmissions)—this is be-
cause it assumes 3 duplicate ACKs are needed.

Response to Partial ACKs in Fast Recovery: 1bit trig-
gered a retransmission by duplicate ACKs (as described
above) and then sent partial ACKs for other segments
transmitted between the original and re-transmission. Our
results verified the expected retransmission events in the
tcpdumps and the state machine for each implementation
correctly identified the event triggering the retransmis-
sion. Note that Windows TCP does not retransmit on re-

ceiving a partial ACK during FR/R but instead retransmis-
sions are triggered by RTO (does not implement newReno
but does use SACK if present).

Response to SACK blocks 1bit triggered a retransmis-
sion by duplicate ACKs (as described above) for the 15th
segment and generated several different cases of SACK
block contents indicating gaps in the received segments
beyond the 15th. In all cases the correct missing seg-
ments were identified and retransmitted without incur-
ring a timeout—and our state machines correctly classi-
fied such retransmissions. The tcpflows tool, which does
not use SACK blocks, classified the above as simply re-
transmissions in recovery after duplicate acks or as being
triggered by RTO (for Windows connections).

Unneeded and Needed Retransmissions: rbit simu-
lates the implicit retransmission scenario of Fig 1. In
a second scenario, it sends spurious duplicate ACKs to
trigger an unneeded retransmission. Our state machines
correctly classified the corresponding retransmissions as
needed or unneeded. Allman [6] correctly identified the
unneeded retransmission in the first scenario but failed to
identify it in the second case.

4 Analysis of TCP Connections

We next apply our state machines to analyze TCP connec-
tion traces collected from 5 different global locations. Be-
low, we first describe these data sources and then present
our analysis results.



Min Constant RTT Variable RTT
RTT Linux Windows FreeBSD Solaris Linux Windows FreeBSD Solaris
50 256 751 1199 2945 255 580 1199 3216
(244,260) (611,856) (1199,1200) | (2932,2.962) (250,260) (509,787) (1199,1200) | (3023,3.466)
100 315 858 1199 2596 314 597 1199 3150
(300,337) (748,965) (1199,1200) | (2589,2605) (300 ,330) (500,692) (1199,1200) | (2961,3.374)
150 385 953 1199 2246 385 740 1199 3150
(374,390) (855,978) (1199,1200) | (2240,2265) (380,390) (613,827) (1199,1200) | (2905,3349)
200 455 1081 1199 1896 435 877 1199 3072
(441,467) (961,1276) (1199,1200) | (1890,1915) (430,440) (805,1087) | (1199,1200) | (2871,3308)
400 737 1780 1199 915 671 1281 1199 2889
(712,750) (1764,1868) | (1199,1200) | (0910,0920) (661,680) (1205,1488) | (1199,1200) | (2655,3108)
1000 1585 3237 1577 1655 2562 2567 1398 2522
(1570,1600) | (3015,3400) | (1573,1581) | (1650,1661) | (2542,2570) | (2400,2702) | (1367,1434) | (2102,2855)
2000 3014 5741 2934 2895 2627 4948 2613 3948
(3000,3020) | (5633,5888) | (2930,2940) | (2881,2899) | (2561,2722) | (4619,7311) | (2515,2697) | (3611,4286)

Table 2: RTO estimation results for constant and variable RTT (s). This table gives the mean RTO and the min and
max RTO (in parenthesis) from 100 repetitions of the validation scenarios.

Trace Duration | Avg TCP Load | # Connections | # Bytes | # Packets
Abilene-OC48-2002 (abi) 2h 211.41 Mbps 7.1M 190.3G | 160.1 M
Liepzig-1Gbps-2003 (lei) | 2h45m 9.53 Mbps 24M 11.8G 17.3M

Japan-155Mbps-2004 (jap) 4h 1.93 Mbps 0.3M 35G 37M
UNC-1Gbps-2005 (unc) 4h 74 Mbps 14.5M 1333G | 151.0M
Ibiblio-1Gbps-2005 (ibi) 4h 90.64 Mbps 09M 163.2G | 1589M

Table 3: General Characteristics of Packet Traces

Data Sources:

Table 3 describes the traces used in our

analysis. These traces are collected from links with trans-
mission capacity ranging from 155 Mbps to OC-48. The
abi traces [2] are collected from a backbone link of the
Internet-2 network (Abilene); the jap trace [3] is collected
off a trans-Pacific link connecting Japan to the US; the unc
and lei [1] traces are collected at the campus-to-Internet
links of the University of North Carolina and Univer-
sity of Leipzig, respectively; the ibi trace captures traf-
fic served by a cluster of high-traffic web-servers (ibib-
lio.org) hosted at UNC; All traces except the one from the
link to Japan were collected using Endace DAG cards.

For our analysis, we use only those connections that
transmit at least 10 segments. Furthermore, since our ob-
jective is to study TCP retransmissions, we select only
those connections in which at least one OOS segment is

observed (“O0OS” connections). Fig 4 shows the impact
of applying the latter filter. While less than 50% of con-
nections that transmit at least 10 segments also have some
OOS segments, these connections carry most of the bytes
in this class. Furthermore, the traces vary significantly in
the distribution of bytes transmitted per connection—this
adds to the diversity of our results.

Efficiency of TCP Loss Detection Table 5 shows our
classifications for OOS segments in the five traces, ac-
cording to the top-levels of the taxonomy of Fig 3. We
find that:

e Our state machines are able to infer a cause for more
than 90% of all OOS segments in the traces and ex-
plain the triggering mechanism for 88-98% of all re-



All Connections OOS Connections

Trace | #Conn | # Bytes | # Packets | % Conn | % Bytes | % Packets
abi | 3889K | 180.1G | 1485M | 17.60% | 68.11 % | 68.85%
lei 754K | 105G 126 M | 1882% | 74.88 % | 7724 %
jap 185K 33G 31M 48.65% | 96.08 % | 93.44 %
unc | 7748K | 121.3G | 129.6M | 21.82% | 7845% | 77.83 %
ibi 287.5K | 161.8G | 1572M | 2731% | 83.30% | 82.37%

Table 4: Connections That Transmit More Than 10 Segments

Total % Network % No Retransmissions
Trace 00S Reorder Inference | # Total | % RTO | % Dupack | % PA | % SACK | % Implicit | % Unexp

abi | 409.9K 18 9.6 296.2 K 325 11.5 2.0 4.5 18.3 3.5
(45) (15.9) (2.78) (6.21) (25.3) (4.8)

lei 51.1K 0.47 1.7 499K 46.3 59 1.9 4.9 27.7 11.1
(47.4) (6.0) (1.9) (5.0 (28.3) (11.4)

jap 51.6K 29 0.4 499 K 47.5 11.9 2.6 1.7 314 1.6
(49.1) (12.4) 2.7 (1.8) (32.4) (1.6)

unc | 697.7K 29 6.69 445.6 K 342 6.1 2.8 1.5 13.2 6.0
(53.5) (9.6) 4.4) (2.3) (20.6) 9.5)

ibi 504.2K 0.2 0.7 499.3 K 33.1 14.0 4.8 0.0 44.1 3.0
(33.4) (14.0) (4.9) (0.0) (44.5) (3.1)

Table 5: Classification of OOS segments (numbers in parenthesis are normalized w.r. to total retransmissions)

transmissions. We believe this high rate of success
has been achieved due to the world-wide deployment
of Windows XP and Linux OS, which are explicitly
incorporated in our analysis.

For the abi and unc traces,® nearly 20-30% of OOS
events are classified as due to network packet re-
ordering between the sender and the monitor—these
numbers appear unusually high. To investigate these
events further, in Fig 4, we plot the time gap (re-
ferred to as the resequencing delay) between each
such OOS segment and the segment with the next
higher sequence number. We find that most of the
resequencing delays are within 5 ms—this indeed
corresponds to timescales of network reordering and
is much smaller than typical RTTs. The small frac-

tion of OOS segments with large resequencing de-
lays occur in connections with large minimum RTTs
as well.

e In 4 out of the 5 traces, almost 50% of retransmis-
sions were triggered by timeouts (33% in the 5th
trace). Only 10-15% of retransmissions are actually
triggered by duplicate ACKs which causes TCP to
enter the more efficient FR/R recovery phase.

e Approximately 20-45% of TCP retransmissions are
implicit and occur as a result of the TCP approxi-
mation to a Go-Back-N recovery mechanism after a
timeout.

We also used the fcpflows tool to process three of the
traces (the other two could not be processed by tcpflows
because of incompatible trace formats). The results are

3 A known contributor of excessive reordering in the UNC trace is the . . . . .
presence of intrusion detection appliances that divert selected IP packets shown in Fig 6. We find that due to the classification in-

from the fast data-path for deeper inspection. accuracy of fepflows for non-BSD TCP implementations



Network Retransmissions
Trace | Reorder | RTO | Dupack | RTO-recovery | FR/R recovery
lei 0.4% 42.8% | 17.0% 35.3% 4.5%
unc 35.8% 29.3% 9.9% 17.1% 7.9%
ibi 0.28% 23.5% | 23.4% 27.1% 25.8%
Table 6: Results from zcpflows
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Figure 4: Resequencing delays for reordered segments

(as demonstrated in Section 3), the classification results
do not match those of ours.

Accuracy of TCP Loss Detection For any retransmis-
sion, our analysis also attempts to find out if the retrans-
mission was unneeded (i.e., the original transmission had
successfully reached the receiver). Table 7 lists the frac-
tion of retransmissions that are classified as unneeded in
each of our traces. We find that this fraction can range
from 18-38%. The results are quite consistent with those
reported by Allman [6] for three of the traces but are
somewhat higher for two. There are two reasons for this.
First, as demonstrated in Sections 2 and 3, [6] does not
identify explicit retransmissions that are unneeded. Sec-
ond, [6] classifies all implicit retransmissions as needed,
unless proved otherwise. Our analysis, on the other hand,
does not infer that an implicit retransmission is needed,
unless proved so.

We find that a significant number of retransmissions
could not be proved to be needed/unneeded, and suspect
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Figure 5: Distribution of Unneeded Retransmissions

that these are classified as needed by [6].

Fig 5 plots the distribution of the number of needed and
unneeded packets within each connection for the ibi trace.
We find that while a majority of connections (80%) send
less than 2 unneeded retransmissions, a non-negligible
fraction (7%) send more than 5 unneeded retransmissions.
Table 7 indicates that while most unneeded retransmis-
sions are implicit, nearly 3 to 15.6 % can be those corre-
sponding to RTOs or duplicate ACKs—such retransmis-
sions result in an unnecessary and significant reduction in
TCP sending rate, especially in the case of RTOs.

S Implications of Our Analysis

Our analysis of real-world TCP connections suggest im-
portant implications for TCP performance (and especially
for development of analytic models of TCP throughput
as a function of loss rates [12, 7]). Considering the five
traces in aggregate, we find that about 1% of all segments



Total Our Approach Allman [6]
Trace | #Retran | Needed Unneeded No Needed | Unneeded
%Total | Implicit | RTO | TDA | PartialAck | Sack | Unexp | Inference
abi 296.2K | 70.0% 20.1% 4.4% 58% | 1.1% 0.2% 1.0% | 7.6% 9.9% 87.4% 12.6%
lei 499 K 46.1% 26.8% 7.1% 73% | 0.7% 0.3% 04% | 10.9% 27.1% 88.8% 11.2%
jap 499 K 70.7% 18.2% 13.3% 29% | 0.3% 0.2% 0.0% 1.7% 11.1% 84.3% 15.7%
unc 4456 K | 38.5% 38.5% 3.3% 133% | 2.3% 1.5% 0.1% | 17.2% 23.0% 64.3% 35.7%
ibi 4993K | 67.5% 21.9% 15.3% 20% | 1.0% 1.2% 0.0% | 2.5% 10.6% 77.8% 22.2%

Table 7: Needed and Unneeded Retransmissions

in TCP connections that transmit 10 or more segments
are OOS. Interpreting all these as retransmissions of lost
segments would significantly overstate loss rates. Even
considering only those OOS segments that are retransmis-
sions and not network reorderings, the implied loss rate
would be 0.73%. This still overstates the actual loss rate
because the necessary retransmissions are only 0.42% of
segments.

For modeling TCP throughput, the most significant fac-
tors are the RTO and duplicate-ACK triggered retrans-
missions that mark the beginning of loss episodes in re-
sponse to which the congestion window is reduced; the
partial-ACK, SACK block, and implicit retransmissions
all occur during recovery phases following the beginning
of such loss episodes. Our results show that 0.32% of
segments transmitted result in an RTO timeout and 0.09%
result in duplicate ACK retransmissions. From this per-
spective, our results indicate that roughly 80% of all loss
episodes are detected using timeouts (as against FR/R).
This finding has significant implications for TCP perfor-
mance because TCP enters slow-start following a timeout.
Further, TCP practically stalls segment transmission dur-
ing the timeout interval because its window is not advanc-
ing.

Finally, we find that a significant fraction of unneeded
retransmissions occur due to RTOs (2-13.3%) and FR/R
(0.3-2.3%) phases. Each of these phases cause a reduc-
tion in TCP congestion window and stall the connection
throughput during recovery.
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