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Data adaptation is an essential system component in a wide variety of application areas. Adap-
tation is performed to manage data in response to limited resources and changing system con-
ditions. Recent research has led to the development of general models for adaptive systems,
including our own general framework for multidimensional adaptation. In this article, we review
our framework, which distills the common elements essential to a broad class of adaptive applica-
tions. We then present our design for GAL, a middleware library which implements our generic
framework. We include a thorough evaluation of GAL’s adaptive performance in our experimental
prototype.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; H.1.1 [Information Storage and Retrieval]: Systems and Infor-
mation Theory— Value of Information; 1.3.2 [Computer Graphics]: Graphics Systems—Dis-
tributed/Network Graphics

General Terms: Algorithms, Performance, Measurement
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1. INTRODUCTION

Advances in data capture, storage, and processing technologies now allow scientists
to collect, simulate, or create immense collections of data. Unfortunately, advances
in networking technologies, while impressive, have not kept pace. This has led to
a growing gap between the amount of data we can capture, store, and process,
and the resources we have to transmit that data over the network. Because of this
performance gap, adaptation has become increasingly central to the performance
of high-bandwidth applications such as remote data visualization, tele-immersion,
and media streaming.

To date, adaptation techniques, algorithms, and frameworks have largely been
developed within the context of a specific application or data type. For example,
Geographic Information Systems (GIS) make extensive use of multiresolutional data
for visualization of terrain information [FMO02]. In graphics, multiresolutional ge-
ometry information is used to create hierarchical levels of detail (HLODs) [Lue01].
These are used to dynamically adjust model complexity in order to achieve a target
rendering rate. In multimedia, layered media encodings are used to dynamically
scale media bitrates to match current network conditions [RHE99].

The challenge we face when tackling the adaptation problem in whatever con-
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text it appears is twofold. First, how can we compactly and intuitively specify
adaptation policy to support specific user-level goals? Second, given a particular
adaptation policy and set of user-level goals, how can we efficiently evaluate that
policy relative to available resources and the way the data are represented and
organized?

While ad hoc application-specific methods may be effective when the number of
dimensions for adaptation is limited, the problem can become overwhelming as the
number of dimensions increases. The same is true when an adaptation decision
must negotiate between data sources of fundamentally divergent natures. The
complexity of these mechanisms may become very difficult to correctly manage.
Expressing adaptation policy in a rule-based manner, for example, becomes painful
as the number of possible tradeoffs grows.

In our earlier work [GMPO04], we proposed a conceptual framework for general
multidimensional adaptation. The framework expresses adaptation as a maximiza-
tion problem using a spatial utility metric. We defined a generic graph-based data
representation that can express both syntactic and semantic data relationships. We
then formalized a set of adaptation operations which act upon the representation
graph.

In this paper, we discuss the design and evaluation of a middleware library based
on our framework. We call our library GAL: A Generic Adaptation Library. we
review the underlying conceptual framework, discuss our library design, and eval-
uate the library as part of a image-based model streaming application prototype.
Our evaluation shows GAL to be effective at adapting the client prototype’s data
stream in the face of a number of dynamic application conditions.

1.1 Organization

The remainder of this article is organized in the following manner. In Section 2,
we present background information and review our own related work. We discuss
the design of our library in Section 3. We describe our metric for evaluating the
effectiveness of our adaptation library in Section 4. We present our performance
evaluation in Section 5. Finally, we discuss future work and conclude our paper in
Section 6.

2. BACKGROUND

There has been a vast amount of research exploring adaptation mechanisms for
networked applications. As we stated in the introduction, the solutions are typically
developed in an ad hoc manner to support only a specific application. However, a
handful of research groups have explored the adaptation problem more widely and
developed more general models for adaptive systems. In this section, we present a
brief overview of these other models, followed by a more detailed description of our
own model which forms the basis of the work in this article.

2.1 Generalized Adaptation

Several research groups have proposed generic models for adaptive systems. Jonathan
Walpole et al. proposed Quality-of-Service Semantics [WKL199] for the use in a
range of multimedia systems. In this work, a multidimensioal presentation state
space is defined where each dimension corresponds to a vector of adaptive control.
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They define a single point within that space as the ideal state, and measure quality-
lost as a distance between that ideal point and the current presentation state. The
quality-loss value is used to drive adaptive changes to the presentation state.

In other work, Bowers et al. proposed the use of Adaptation Spaces [BDM™00] to
model adaptive behavior. In this technique, individual implementation alternatives
are modeled as nodes within a graph. Edges within the graph correspond to valid
state transitions. Transitions are guided by an application-specific quality value
assigned to each node.

Chatterjee et al. propose a multidimensional Benefit Function [CSSLI7]. The
function is evaluated over a space defined by dimensions that correspond to degrees
of freedom within the adaptive application. The static benefit function is predefined
and is used to guide tradeoffs between adaptive dimensions.

2.2 Our Model for Multidimensional Adaptation

This subsection outlines our general framework for adaptation [GMP04]. We de-
velop a graph-based data representation abstraction, which is embedded within a
multidimensional utility space. We then pose the task of adaptation as a maxi-
mization problem.

2.2.1 llustrative Example. Throughout this section, we illustrate our frame-
work via a simplified sample application. For each new concept, we present a
formal definition followed by a concrete example. The sample application is a sim-
plified computer graphics system where a user navigates through a one dimensional
scene composed of a collection of geometric objects, each of which is stored at mul-
tiple resolutions. We assume that the geometric models are layered in the sense
that lower resolution models are required to decode higher resolution information.
At runtime, the example application should adapt the flow of incoming data to
reflect both limited rendering resources and a moving viewpoint within the one
dimensional scene.

2.2.2  Representation Abstraction. Our graph-based representation abstraction
is embedded within a multidimensional utility space. Each dimension of the utility
space corresponds to a degree of freedom in the adaptive application. For example,
a video streaming system that allows adaptation over both frame rate and image
resolution might have a two-dimensional utility space. For multimedia applications,
each media object is embedded within an independent media subspace.

For example, our sample application has a two-dimensional utility space . One
dimension defines the spatial position of geometric objects within the scene, while
the second second dimension is used to reflect the resolution level of each represen-
tation of an object. Because our sample application consists of only a single media
type, there is just one media subspace defined as equal to the overall utility space.
We illustrate the utility space in Figure 1(a).

In our abstraction, nodes map to individual elements and represent an atomic
unit of information. Each node n; is associated with a single media object and is
located at a specific point Pos{n;} within the utility space. The relative positions
between nodes are used to express the semantic relationship between individual
elements of information.

In our running example, we use nodes to represent the model of an individual
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Fig. 1. (a) The sample application’s utility space is defined by the spatial position within the
scene, X, and the resolution level, L. (b) Nodes are used to represent individual geometric models
and are embedded within the utility space according to their resolution and position. (c¢) Edges are
used to illustrate the data dependence between models that represent the same object at different
resolution. (d) A point of interest, 7, is maintained within the utility space. The utility of a given
node can be measured as a function of the distance between the node and p as illustrated by the
shaded region in this figure.

geometric object at a specific resolution. The position of each node within the
utility space is determined by both the object’s spatial position within the scene
and its resolution. In Figure 1(b), we illustrate three geometric objects at different
positions in the scene.

Each node is assigned one of four states. This state, State{n;}, can change
over time through state transitions. In addition, specific applications may define
auxiliary meta-data values for each node. These values can be used to represent
more specialized application information.

Data dependencies between nodes are represented by directed edges. An edge
e; has both a source node Src{e;} and a destination node Dest{e;}. An edge in
our abstraction both expresses data dependence and corresponds to the specific
bytes of information needed to resolve Src{e;} given that we have already resolved
Dest{e;}. An edge therefore expresses the syntactic relationship between a pair of
nodes. The data required to resolve a node without any prior knowledge is expressed
via a self-edge. A self-edge is defined as an edge e; where Src{e;} = Dest{e;}.

In our example application, edges represent dependencies between different res-
olution models of the same geometric object, as shown in Figure 1(c). The model
with the greatest error is fully encoded without any data dependencies. This leads
to the inclusion of a self-edge for nodes representing an object at the coarsest level.
The predictive relationships between nodes are expressed through directed edges
pointing from higher resolution nodes to lower resolution nodes.
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Furthermore, we define a cluster as a group of one or more edges. Each cluster
¢; contains a list of all edges assigned to it. In addition, a cluster maintains a
cost estimate which measures the cost of loading all edges assigned to the cluster.
When performing load operations, the data associated with all edges in a cluster is
treated as an atomic unit. Adaptation of the datastream is therefore performed at
cluster-level granularity.

In our sample application, we need to load each resolution of each object inde-
pendently. We therefore assign every edge to its own unique cluster.

2.2.3  Point of Interest and Prediction Vector. An adaptive application must
maintain a point of interest which moves within the utility space. This point is
part of a larger prediction vector which contains both the current point of interest
and zero or more predictions of future interest points. Each vector entry pairs a
point in the utility space with a confidence value. The prediction vector is used to
represent both current system preferences and predicted future needs.

Our simplified example would use a prediction vector of length one, containing
only the point of interest. The position of the point of interest within the utility
space is determined by the user’s current position within the scene. The prediction
vector is illustrated in Figure 1(d) as a diamond marker.

2.2.4  State Transitions. Each node in our representation is assigned to one of
four possible states. A node’s state may change over time, but it has just a single
state at any particular moment in time. A node’s state reflects the current status
of the information represented by that node. The possible states are as follows:

—Idle: The information for this node is not resolved. Nor is it possible to resolve
without resolving some other node first.

—Available: The information for this node is not resolved. However, it is possible
to resolve without resolving some other node first.

—Active: The information for this node is in the process of being resolved.
—Resolved: The information for this node is resolved.

The state of each node can change over time by either promotion to a higher
state or demotion to a lower state. In addition, after each transition, a number
of state invariants must be reinforced. These invariants are discussed in detail in
[GMPO04].

2.2.5 Supporting Utility and Cost FEvaluations. The notions of utility and cost
are fundamental concepts essential to adaptation. Individual elements of informa-
tion are either more or less useful to an application than others. We define this
notion as the utility of information. At the same time, access to a unit of data
comes at some cost, often measured in time or required resources.

Given a set of available elements, the process of adaptation attempts to maximize
the utility of the received information and minimize the associated cost. When
noted as a ratio of utility with respect to cost, adaptation becomes an attempt to
maximize the utility-cost ratio, or UCR.

Using the UCR, we frame the task of adaptation as a maximization problem
where the application computes a utility measure and a cost measure for a set of
possible adaptive options and chooses the option with the highest UCR value.
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l Variable [ Description
U Utility Space
M, cU Media Subspaces
NcU Navigable Subspace
S Set of all nodes
n; A node from the set S
Pos{n;} | The position of n;
State{n;} | The state of n;
Arr{n;} The list of arriving edges at n;
Dep{n;} | The list of departing edges at n;

B The set of base nodes (nodes with a self-edge)
A The availability front (all nodes in state Available)
E Set of a edges
e; An edge from the set E
Src{e;} The source node for e;

Dest{e;} | The destination node for e;
Clust{e;} | The cluster to which e; belongs

C The set of all clusters

ci A cluster from the set C'
Edges{c;} | The list of edges in ¢;
Cost{c;} The cost estimate for c¢;

D The prediction vector

pli] The ith element of 7
Pos{pli]} | The position of pfi]
Con{pli]} | The confidence value for pli|

« The set of scale dimensional factors

a; €« An individual scale factor

Table I. The parameters of our representation graph model.

Both the utility of information and the cost of acquiring it are application specific
properties. Our framework provides general tools to make these evaluations but
leaves the formulation of specific metrics to the application designer. To evaluate
the UCR, an application must first define two metrics. The first metric measures
the utility of an individual node. The second metric determines the cost of resolving
that node.

First, we define an abstract utility metric, UtilMetric, used to evaluate the
usefulness of each node n; € A. UtilMetric evaluates the utility of a single node
as a function of the node itself, the overall utility space, the set of all nodes, and
the prediction vector. The implementation of this metric must be defined by the
application to meet system-specific needs.

For example, in our sample application we need a metric that reflects our need for
both low-error and nearby models. This can be achieved by computing the inverse
of the distance between the prediction vector and a node. Using this metric, nodes
closer to the point of interest are assigned a higher utility.

Second, we define an abstract cost metric, CostMetric, used to evaluate the
minimum cost of resolving a node n;. The cost metric in our running example is
simply the number of bytes required to resolved the node in question.
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Finally, we define the utility-cost ratio as shown in Equation 1.

UtilMetric(n;, U, S, p)

i» U, S, = -
UCR(n 5:7) CostMetric(n;)

(1)

2.2.6 Managing Dimensional Tradeoffs. Our representation abstraction main-
tains a set of nodes located within a multidimensional utility space. We then
express the utility of an individual node as a geometric function within that space.
We can therefore manage the tradeoffs between dimensions in our utility space by
performing scaling operations on individual dimensions. We define the set of scale
factors as @ = {a1, s, -+, a,}, where n is the number of dimensionality of the
utility space. We call this the alpha vector.

Geometrically scaling the utility space in a specific dimension will result in biasing
the UtilMetric evaluation and alter the importance of a specific dimension. An
application can adjust the relative importance between dimensions by changing
values in the alpha vector.

A full table of the variables in our adaptation model is shown in Figure I.

3. LAYERED SYSTEM DESIGN

We have developed a layered system design for the implementation of our mul-
tidimensional adaptation framework. This design considers a general client-server
application model where adaptation is performed on the client, which in turn drives
requests for additional data to be delivered by the server.

Given this system architecture, we introduce an extra system layer between the
application and communication layers. This middle layer performs adaptation with
input from neighboring layers in order to incorporate application and network mea-
surements into the adaptive algorithm. In this section, we discuss our layered design
and briefly outline the interface between each layer.

3.1 Three Primary Layers

Our design consists of three primary layers: (1) the application layer, (2) the
adaptation layer, and (3) the communication layer. A single client application
is composed of the union of these three layers. Our middleware library, GAL, is
the middle adaptation layer. The middleware library sits between the core net-
working functionality of the network protocol-specific communication layer and the
application-specific application layer. The layered design is illustrated in Figure 2.

During normal operation, application specific requirements, such as the point of
interest, alpha vectors, and other user preferences are maintained by the applica-
tion. The adaptation layer can request these values from the application layer as
needed. Similarly, network measurements including loss and latency estimates can
be requested from the adaptation layer. These values are typically used in cost and
utility evaluation within the adaptation layer. Once the adaptation layer chooses a
node for resolution, the request is passed down to the communication layer which
then relays the request to the server via the Internet. The specific mechanism for
these requests depends upon the specific network protocols being used. However,
we define an interface for such requests as described in Section 3.2.

Once data has been received by the communication layer as a series of packets,
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Application Layer
(A)] PushNode() PredVector() AIphaVecto%

(B)] open() Close() Run() Stop() FlushNode() Plug-In Defined API

Adaptation Layer Metric Plug-In [(g]
(C)] PushPacket() Plug-In Defined AP!  [(¢)]

(D) Describe() Subscribe() Unsubscribe() LossEst() LatencyEst()
Communication Layer

Server

Fig. 2. Our system model consists of three layers: the application layer, adaptation layer, and
communication layer. The Generic Adaptation Library, or GAL, is an implementation of the
adaptation layer. It also defines a number of application programming interfaces labeling with
letters A-G in the figure. Custom cost and utility metrics are supported as plug-ins.

it is passed up to the adaptation layer where the state of the representation graph
is updated to reflect the new state of the system and packets are reassembled into
application data units (ADUs). Once ADUs have been reassembled and recorded
within the representation graph, they are made available to the application.

3.2 Layer-to-Layer Interfaces

The GAL library provides two primary application programming interfaces (APIs).
One API defines the application-to-adaptor interface. The second API defines the
communicator-to-adaptor interface. In addition, GAL provides templates for both
the Application and Communication layers that define a set of minimal functionality
that must be supported by each layer.

3.2.1 Application-Adaptor API. The application-to-adaptor interface defines a
set of functions used by the application to interact with the adaptor library. A
simplified API is illustrated in Figure 2B. The API includes functions Open() and
Close () which initiate and terminate a new session,respectively. During an ongoing
session, the iterative adaptation algorithm can be controlled via the Start() and
Stop() functions. These four function allow an application to perform session
control and to manage the adaptation thread.

The final function in this portion of the API is FlushNode (). While the adapta-
tion thread is executing, incoming data is passed to the application. However, the
data does not persist on the client indefinitely. When data is no longer needed or
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can no longer be stored (i.e. a limited cache size), the application must notify the
adaptation logic that the information is about to be evicted. This is done via the
FlushNode () function.

3.2.2  Communicator-Adaptor API. The communicator-to-adaptor interface de-
fines a set of functions used by the communicator to interact with the adaptor
library. A simplified API is illustrated in Figure 2C. This portion of the API is
very simple and supports only one key operation: the arrival of data packets. The
PushPacket () function is used as a callback function by the communicator every
time a new packet arrives from the network. To allow for the use of several transport
protocols, the arriving stream of packets can be missing lost packets and packets
can be out of order. Reordering is performed within the adaptation layer.

3.2.3  Application Layer Template. The application layer is an abstraction for
the application-specific code required by any actual system. As such, this layer will
vary greatly for each application. However, an application must define a minimal
set of functionality to work correctly with GAL. This interface, illustrated in Figure
2A, is used by GAL to exchange data and monitor changing application conditions.

The first function handles data exchange between the adaptation and application
layers. As a node enters the resolved state within the adaptation layer, the data
corresponding to the node is pushed to the application layer via the PushNode ()
function. An application’s implementation of this function determines what hap-
pens to data once it becomes available to the application.

The remaining functions are used to provide the adaptation layer with access
to the current application conditions. The PredVector () function returns a refer-
ence to the current prediction vector, while the AlphaVector () returns a reference
to the current alpha vector. For more information on these constructs, see the
brief overview in Section 2.2 or refer to our paper detailing the overall adaptation
framework [GMPO04].

3.2.4  Communication Layer Template. The communication layer is an abstrac-
tion for the portion of the system that handles the low level network functionality.
This layer is specified to allow GAL to work equally well with a large set of trans-
port level network protocols. GAL depends on at least best-effort packet delivery
and uses a subscription metaphor for data access. Based on the template set of
functions, a new communicator must be defined for whatever network protocol is
used by the application.

The first function defined in this template is the Describe () function. This func-
tion must be defined to utilize the available network resources to obtain a descrip-
tion of the utility space and representation graph from the specified server. When
GAL’s Open() function is called by an application with the appropriate dataset
information, a call is made by the adaptation layer to Describe() to retrieve the
specified dataset description.

The Subscribe() and Unsubscribe() functions are used to support the sub-
scription oriented communication model used by GAL. When the adaptor chooses
to activate a specific cluster, it uses the Subscribe () function to initiate the data
request. A corresponding call to Unsubscribe () terminates the request. In a typ-
ical TCP-based communicator, these functions would correspond to the setup and
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tear down of a network socket connection.

Finally, two measurement functions are required so that the adaptor can effec-
tively monitor network performance and adapt accordingly. The LossEst () func-
tion provides a loss estimate which can allow the adaptor to respond to congestion
events. This is critical when the communicator utilizes non-responsive transport
protocols such as UDP for transmission. The LatencyEst () must provide an es-
timate of the subscription latency, defined as the time between the initiation of a
subscription request and the arrival of the first packet of data.

3.3 The Metric Plug-ins

Our adaptation framework allows for custom cost and utility metrics to be imple-
mented as needed. We define the notion of a metric plug-in to support this feature.
New metric plug-ins can be defined to implement any desired utility or cost metric.
The plug-in is given access to the internals of the adaptation layer, including the
representation graph. The plug-in architecture is illustrated in Figure 2F.

Standard inputs to the cost and utility metrics, such as the prediction and alpha
vectors or network measurements, can be accessed through the previously presented
APIs. However, some metrics may need additional information from either the
application or communication layers. We therefore allow each metric plug-in to
define its own API to be exposed to these two layers. This is shown in Figures 2E
and 2F.

4. SYSTEM PERFORMANCE METRIC

In this section, we propose an application-independent performance metric for eval-
uating the performance of our adaptation layer algorithms and the GAL middleware
library. Our goal is to define a performance metric at the adaptation layer this is
independent of any application layer performance issues. We achieve this goal with
the Summed Utility Metric (SUM), a metric that measures system performance as
a function of the current state of the representation graph.

Our performance metric, SUM, is designed to provide a numerical measure of
system performance at a given point in time, independent of any application level
knowledge. We therefore formulate the SUM using only information that is available
to the adaptation layer. This includes the representation graph and the utility
metric.

The SUM is derived from the notion that the adaptation layer’s performance can
be measured by the utility of the data it has obtained at any given point in time.
This can be measured by applying the current utility metric to every resolved node
in the representation graph. We then sum all of the resolved node utility values to
find the SUM. We formally define the SUM metric in Equation 2.

SUM = Z UtilMetric(n;) : n; € S A State{n;} = Resolved (2)

ni

It is important to note that the SUM is a measure of performance at a single
point in time. To capture a reliable measure of system behavior, the SUM metric
must be evaluated repeatedly over a period of time.
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5. EXPERIMENTAL PROTOTYPE AND RESULTS

We have performed a series of experiments to examine the performance of GAL
under a number of operating conditions. Using the SUM as our performance metric,
our results show that GAL is an effective design for supporting adaptive applications
that face dynamic operating conditions.

In this section of our article, we will first describe the target application for
our experimental prototype. We will then describe our testing environment and
methodology. Finally, we will present the results of several experiments.

5.1 Target Application

In our experiments, we implemented an image-based rendering (IBR) streaming
application for our evaluations. This target application is a good match for our
framework because it is a high-bandwidth application with several dimensions of
adaptability and a dynamic point of interest.

Our prototype system is based on the Sea of Images (SOI) algorithm [AFYCO02]
by Aliaga et al. In this algorithm, the system takes as input a large set of high
resolution cylindrical images captured at various points along a eye-level plane. This
can be done, for example, with a camera attached to a motorized cart. A Delaunay
Triangulation of the image positions is computed to build a triangle mesh. At run
time, a user can navigate a virtual viewpoint along the eye-level plane. A virtual
rendering of the scene is synthesized by interpolating between the three nearest
pictures found within the input dataset, as determined by the triangle containing
the viewpoint. This process is illustrated in Figure 3.

The input dataset is often too large to be loaded entirely into memory. As
a result, the three closest images may not always be available. Therefore, the
triangular mesh is determined only by the set of loaded images, and is dynamically
maintained as images are loaded into or removed from memory.

Our experimental prototype is a SOI-based IBR streaming application, where
individual clients can access a centrally stored image database and independently
navigate through a recreated scene. As a motivating example, imagine a digital mu-
seum sharing a large IBR model of a famous location for virtual visitors connected
to the Internet.

Our prototype is designed as a client-server system with a single image server
that can transmit a stream of images to a set of interested clients. Each client is
able to navigate through the space independently along their own unique paths.
For this reason, each client must be able to adapt their own data flow based on
their particular needs. We satisfy this design requirement by using GAL as the
adaptive engine of our prototype.

The first step in developing a GAL-based design for our target application is to
identify the dimensions of adaptability. These dimensions define our utility space.
We designed a hierarchical and multiresolutional data structure for the images that
provided five such dimensions. Our representation allows for clients to access the
image data by choosing a location along the 2D plane, a view direction, image
resolution, and a spatial density value. More information on our representation can
be found in our earlier work on the scalable delivery of IBR datasets [GMPO05].

Once the utility space has been defined, we map the data representation to a set
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Fig. 3. The Sea of Images rendering algorithm proposed by Aliaga et al. takes as input a
large set of panoramic images. Using the database of images, novel views of the scene can be
constructed by interpolating between triplets of stored images. (A) Each panoramic image in the
input dataset contains a full 360° view of the scene. (B) The input images are captured by a
camera positioned along a plane at eye-level. (C) At runtime, a Delaunay Triangulation of the
stored image positions is maintained. (D) As the user moves through the scene, illustrated by
the red diamond, the triangle containing the user’s position determines the appropriate triplet for
interpolation.

of nodes, edges and clusters that make up our final representation graph. In this
application, each node corresponds to a portion of an image from the input dataset.
The position of each node is determined by the specific location of the image on the
eye-level plane, the view direction, and the resolution and spatial density levels. The
graph’s edges represent encoding dependencies. For example, our multiresolution
image representation introduces dependences between the different resolutions of
each image. These dependencies are expressed by including edges between nodes
corresponding to images at the same location and view direction but of different
resolution. Finally, we introduce clusters to our representation graph which specify
the granularity with which we are able to access the image data. In our experiments,
we vary the degree of clustering to explore its impact on performance. This is
discussed in more detail when we present the results in Section 5.3.

The original input dataset consists of about 2,000 cylindrical color images, each
with a resolution of 2,048x512. Our experiments are all performed using a repre-
sentation graph with 15,568 edges connecting 15,568 nodes. The number of clusters
varied widely, ranging from 16 to 15,568.

The clustering parameter is used to control the granularity of data access. At
one extreme, a data set would contain just one cluster. This would correspond to
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a single large file containing all of the data. A user would have no control over
the order in which data was received. At the other extreme, every edge would be
assigned to a unique cluster. This would make every edge individually addressable
and would providing the greatest control over the order in which data was received.
In this scenario, a client application could choose to receive any of the available
clusters in an arbitrary order. In our experiments, we evaluate system performance
over a range of clustering parameter values.

As dictated by our design of GAL, the application layer contains the rendering
code and manages the prediction and alpha vectors. The point of interest cor-
responds to the clients position along the eye-level plane and alpha vector values
can be changed to manage the tradeoffs between image resolution, spatial density,
position, and view direction. For example, a fast moving user may require low
resolution images from farther away while a slow moving user would require high
resolution images from very close to the point of interest.

The communication layer contains all of the lower level network code. In our
experiments, this layer uses TCP/IP to obtain reliable, in-order data delivery be-
tween the client and server. TCP also includes congestion control which becomes
important as the number of concurrent users grows past the amount of available
bandwidth.

5.2 Testing Environment and Methodology

We performed a series of experiments using the IBR Streaming Application layer,
our GAL library adaptation layer, and the TCP/IP based communication layer.
All of our experiments were executed using the Emulab network emulation testbed
[WLS102]. In all of our network topologies, we provisioned a single server with a
100Mbps network connection. Our network model assumed that all bandwidth bot-
tlenecks occur within the “last mile” for each client. We therefore modeled all core
links within our topology with the same 100Mbps bandwidth as the server. Links
connecting clients to the core network were given a fixed bandwidth of between
0.1Mbps and 10Mbps depending on the experiment.

For each experiment, clients navigated a ten minute path through the IBR
dataset. The path included a variety of movement types including both fast and
slow movements and changes of direction. During the ten minute execution time,
we computed a value for the SUM metric once per second. When presenting av-
erage SUM values, we felt it was important to ensure that our results included
only steady-state behavior. We therefore considered only the second five minutes
of SUM data whenever average values are presented.

5.3 Results

We performed several experiments to evaluate the adaptation performance of GAL
and to explore a number of engineering decisions that must be made during system
implementation. We present the most interesting of these results in this subsection.

5.3.1 Session Adaptation over Time. For our first experiment, we examined
the SUM values over the course of a single ten minute session. To smooth out
the SUM data and to make it easier to visualize, we plot the cumulative total of
SUM as time progresses. We show the results from three such sessions, each using
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Fig. 4. This graph shows three plots of cumulative summed utility values over the course of a
ten minute session. The plots correspond to three different bottleneck link speeds. The steady
growth of the three plots shows that over time, GAL continues to provide data of high utility. The
difference in slope shows that GAL properly utilizes any available bandwidth to improve utility
as much as possible.

a different bottleneck bitrate, in Figure 4. In all of these sessions, we emulated a
single active client and our representation graph was configured to place each edge
in its own cluster, yielding 15,568 unique clusters.

The results indicate that the GAL layer performs well in several important ways.
First, they show that despite dramatically different behavior during various time
periods, the cumulative SUM value continues to grow steadily. This indicates that
under all conditions, the GAL layer is able to reliably deliver useful data to the
application layer, as judged by the utility metric. Second, the similar shape but
disparate slope for each plot shows that GAL appropriately makes use of additional
bandwidth to improve the overall utility of the set of resolved nodes.

5.3.2 Adaptation Impact of Bottleneck Link Speeds. In a separate experiment,
we calculated the average SUM value for experiments using several different bottle-
neck link speeds. In all of these sessions, we emulated a single active client and our
representation graph was configured to place each edge in its own cluster, yielding
15,568 unique clusters. The results are shown in Figure 5.

This experiment confirms what we learned from the first experiment: that GAL
correctly takes advantage of excess bandwidth to improve the utility of the set of
resolved nodes. However, it is important to notice the shape of the curve in the
plot. The steepest gains in utility are found when increasing bandwidth from a
very low value. The gains tend to plateau as the bottleneck link speed grows faster
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Fig. 5. This figure shows the average summed utility metric value for several sessions. Each session
was executed with a different bottleneck link speed. As expected, the plot shows an increase in
utility for higher link speeds. However, the shape of the curve is not linear. This highlights the
diminishing marginal benefits of additional bandwidth.

and faster. While not immediately obvious, the decrease in marginal utility at
higher bitrates is the expected result. Suppose that with a bottleneck bitrate x,
a system using GAL is able to resolve the n nodes with the highest utility values.
Meanwhile, a system with a bottleneck bitrate of 2z would be able to resolve those
same n nodes plus n additional nodes. However, if GAL is operating correctly, the
additional n nodes should never be as useful as the first n. As a result, there is a
lower marginal utility for the added bandwidth.

5.3.3 Adaptation Performance With Large User Groups. The GAL design places
the burden of adaptation on the client side. This is particularly critical when there
are a large number of users simultaneously accessing the server. If the server were
responsible for adaptation, the server’s CPU load would grow linearly with the
number of clients. However, our client-side adaptation architecture means that the
server’s CPU doesn’t perform any adaptation tasks. Instead, the number of users
is limited by the amount of outgoing bandwidth provisioned to the server. To test
this property, we ran several sessions with a variety of user group sizes.

For all sessions in this experiment, clients were provisioned with a 5Mbps bottle-
neck link and navigated independently through the IBR dataset. Our representation
graph was configured to place each edge in its own cluster, yielding 15,568 unique
clusters.

The results from these sessions are shown in Figure 6. As the plot illustrates,
there is essentially no drop-off in performance until the number of clients surpasses
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Fig. 6. This figure shows the average summed utility metric for several sessions. The sessions were
performed with a variety of user group sizes ranging from one to sixty. Given the server bandwidth
allocation of 100Mbps and a per-client bottleneck speed of 5Mbps, the drop off in performance at
20 clients is expected. This is because the system’s overall performance is bandwidth limited.

twenty. The drop-off point is where we would expect given the server’s link speed
of 100Mbps and a per client link speed of 5Mbps.

In our future work, we will be addressing methods for even more scalable data
distribution. One way to achieve this is to utilize multicast protocols which group
users with similar data interests. A key question then becomes which data should be
grouped (i.e. clustered) together into the same multicast channel. This motivates
the experiments of the next subsection in which we look at how clustering affects
adaptation performance.

5.3.4 Impact of Clustering on Performance. An important engineering param-
eter when mapping a specific dataset to our abstract representation graph is to
specify the clustering of edges into units of data that are accessed atomically. For
a given dataset, the range of options is quite wide.

At one extreme, every edge can be place within its own cluster. This allows each
edge to be individually addressed, providing the maximal amount of data access
flexibility. However, there is an increase in the required overhead in managing all
of the cluster subscriptions.

At the other extreme, all edges are grouped into a single cluster. This is equivalent
to simply downloading a single large file with a static data ordering. This does
not provide any data access flexibility, but it dramatically reduces the amount of
management overhead because there are no choices to be made.

In practice, it will be best to choose a middle ground between these two ex-
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Fig. 7. This figure shows the impact of clusters on overall performance. As the number clusters
decreases, so does the flexibility of data access patterns, resulting in a drop of the average SUM
value. We call this the clustering penalty. However, the clustering penalty is not evenly dis-
tributed. The penalty is greatest when there are a very small number of clusters. As the number
of clusters grows, the penalty gets smaller and smaller. This leads to the linear shape of the plot
using a logarithmic scale for the number of clusters.

tremes that provides adequate flexibility without incurring too much overhead. We
designed an experiment to explore this middle ground by varying the number of
clusters present in the representation graph. The results are shown in Figure 7.

The results show that as the number of clusters drops, the average SUM value
decreases. For all sessions, we simulated a single client with a fixed bottleneck
bandwidth of 5Mbps. The only setting that changed between sessions is the number
of clusters, and the drop in utility is a direct result of this clustering parameter.
We refer to the drop in utility as the clustering penalty.

It is important to note that the graph shows the number of clusters using a
logarithmic scale. Therefore, the linear shape of the plot indicates a substantial
clustering penalty only for configurations with relatively few clusters. Additional
clusters will improve quality by increasing the flexibility of data access. However,
there is a decrease in the marginal benefit of increasing the number of clusters as
the cluster count grows. This result implies that a small amount of clustering to
reduce communication overheads can be used without seeing a dramatic impact on
system utility.

6. CONCLUSIONS AND FUTURE WORK

We have presented our layered system design of GAL: A Generic Adaptation Li-
brary. GAL is a middleware library built to realize the conceptual adaptive frame-
work outlined in our previous work [GMPO04]. Our design specifies three primary
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system layers: the application layer, the adaptation layer, and the communication
layer.

The GAL library falls within the adaptation layer, between the low level network
code of the communication layer and the high level code of the application layer.
We defined a series of application programming interfaces at the borders between
layers which delegate responsibility for various functions to the appropriate layers.

We introduced the Summed Utility Metric (SUM) as an application-independent
measure of system performance. The SUM is based only on the status of the repre-
sentation graph and the same utility metric used to drive the adaptation process.

Finally, we performed a series of evaluations that show that GAL can effectively
adapt to changing system conditions. Using the SUM metric, we explored the
impact on performance of several factors including bandwidth availability, group
size, and edge clustering.

Given the success of our experimental prototype, there are several promising
directions for future work. First, we would like to explore methods for enabling
large user groups to access similar datasets from a single server. We feel that
a scalable solution can be developed by clustering data into larger atomic units
and designing an efficient communication layer. This type of solution would take
advantage of the relatively small cluster penalty when the number of clusters is
large.

A second promising area for future exploration is in designing a ”tool box” of
cost and utility metrics to include with our standard GAL library. We believe that
a small set of metrics would be powerful enough to express the adaptation needs for
number of adaptive applications. Providing a standard tool box of these metrics
could speed development times for these complex systems.

Finally, we would like to streamline our GAL implementation and make it avail-
able as an open-source project for the community to use and integrate into their
ongoing work. In our own lab, we are already incorporating GAL into a number
of projects. In the future, we hope to be ready to share our tools with others in
the hopes of developing even better algorithms and methods for multidimensional
adaptation.
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