
Finite Volume Flow Simulations on Arbitrary
Domains

Jeremy D. Wendt
University of North Carolina at Chapel Hill

jwendt@cs.unc.edu

William V. Baxter
OLM Digital, Japan
bill@billbaxter.com

Ipek Oguz
University of North Carolina at Chapel Hill

ipek@cs.unc.edu

Ming C. Lin
University of North Carolina at Chapel Hill

lin@cs.unc.edu

August 23, 2005

Manuscript correspondence is best sent via email to the addresses listed above. How-
ever, if postal mail or telephone communication is required, Jeremy can be reached
at:

Jeremy D. Wendt
Department of Computer Science
Campus Box 3175, Sitterson Hall
UNC-Chapel Hill
Chapel Hill, NC 27599-3175 USA
Phone: (919) 962-1926

1



Abstract

We present a novel method for solving the incompressible Navier-Stokes equa-
tions that more accurately handles arbitrary boundary conditions and sharp geo-
metric features in the fluid domain. It uses a space filling tetrahedral mesh, which
can be created using many well known methods, to represent the fluid domain. Ex-
amples of the method’s strengths are illustrated by free surface fluid simulations
and smoke simulations of flows around objects with complex geometry.

Keywords: Fluid simulation, physically-based modeling, Navier-Stokes equations, Eu-

ler equations, finite volume method, stable fluids, vorticity confinement, smoke, water.
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1 Introduction

Recent advances in fluid simulation have made it possible to animate smoke and water

with striking visual realism. These techniques have served as key components of some

3D animated and live action movies (e.g. Shrek II and The Day After Tomorrow). The

techniques most widely presented and used in this context have been based on finite

difference methods (FDMs) for solving the equations of fluid motion. However, a

competing class of methods known as finite volume methods (FVMs) have also been

studied extensively in computational sciences and engineering domains, and present

an attractive alternative to FDMs because of their inherent ability to handle irregularly-

shaped boundaries more accurately. However, previous FVM approaches have not

offered the efficiency and unconditional stability demanded by visual simulation and

special effects production.

FDMs work by approximating partial derivatives with differences derived from Taylor

expansions on a discrete number of points in space. Grid-based FDMs have several

strengths. First, implementing them is relatively straightforward, and when imple-

mented using structured rectilinear grids, the positions and connectivity of grid cells

need not be stored explicitly. This implicit connectivity and uniform grid spacing re-

duces memory use and simplifies computations.

However, FDMs also suffer from several problems. First, for uniform rectilinear grids,

the fixed arrangement of grid cells in space implies that to resolve high complexity in

one area, high resolution must be used in all areas, resulting in both increased com-

putation and memory. Automatic mesh refinement (AMR) schemes, which have been

used in engineering applications for years (see e.g. [1, 2]) do help, but at the cost of

implementation complexity. Recently Losasso et al. [3] presented a refinement scheme

based on an octree grid. These approaches allow adaptive refinement around areas

where detail is most needed, but they incur an additional cost in memory usage over
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Figure 1: These images shows the boundary error introduced by sampling the actual
boundary of immersed objects onto a fluid domain discretized as an axis aligned grid.
The gray cells would typically serve as ghost cells; however, the darker cells are illegal
and either need to be eliminated or have a neighbor added to them. In 3D, the special
cases required to detect and eliminate invalid ghost cells become more numerous. This
also shows the error in boundary normals introduced by a typical grid method (left) vs.
ours (right).

basic FDMs given fixed number of grid cells. Furthermore, these schemes do not ade-

quately address the next issue, non-physical grid effects.

Having all cells lie on a regular grid can lead to non-physical grid effects in the output

data. A simple example is the anisotropy of space with the typical face-centered MAC

grid [4, 5]. While it is possible to exactly represent a uniform flow that is aligned with

the grid axes, a diagonal flow can only be roughly approximated. This can result in

spurious non-physical effects in the simulation output that depend on the orientation of

the grid. This problem is reduced with the unstructured grid method we propose, since

there are, in general, no directions preferred over others. Adaptive grid refinement

schemes may also reduce this problem, but do not eliminate it, in part because of the

next issue, accurate enforcement of boundary conditions.

Enforcing the proper no-slip or Neumann boundary condition on irregular boundaries

with complex geometry is difficult with finite difference methods. In the fluid simu-

lation methods of [5–10] the fluid domain is coarsely rasterized onto an axis aligned

grid, and each cell is treated either as completely fluid or completely rigid (e.g. see

Fig. 1). This O(∆x) error in the actual boundary location can lead to noticeable arti-

facts, such as the fluid either penetrating the surface or “skirting around” the surface
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without touching it.

Although high resolution or axis-aligned refinement schemes [3] can reduce positional

error to visual tolerance, the normals at the rasterized boundary still have O(1) error.

That is, they are only correct for axis-aligned boundaries and changing ∆x (refining

the grid) does not reduce the error. Using the incorrect normal on the boundary can

lead to artifacts in pressure calculations, especially when object boundaries are moving

through the grid. These can lead to visual artifacts (e.g. see [11] Fig. 4)

Perhaps one of the most important motivations for this work is a step toward simulating

complex interaction between fluids and other objects, either rigid or deformable, with

complex geometry, irregular boundaries, and thin features. Some of the best known

techniques for modeling deformable bodies and fractual mechanics include finite ele-

ment methods (FEMs) based on tetrahedral meshes. The impetus of this research is to

investigate alternative techniques that can perhaps better facilitate and more naturally

handle the interface between fluids and FEM-based representations, commonly used in

modeling deformable bodies, fractures, and other heterogeneous materials. Although

we have not yet achieved our ultimate goal, the work presented here describes our first

step toward this direction.

Main Results: In this paper, we propose using a novel finite volume based technique

for fluid simulation. Our technique alleviates the problems just discussed that arise

when using grid-based methods. And, it also differs from existing work on FVM in

applied mathematics and computational physics, since our focus is on fast and plausible

visual simulation, not higher-order convergence regardless of the computational costs.

Our approach offers the following advantages over existing grid-based methods:

• Efficiently handles boundary conditions on complex irregular domains without

resorting to numerous special cases;

• Enables the use of polygonal models directly as flow boundaries without rasteri-
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Figure 2: In this simulation, 2D smoke is controlled completely and easily using our
thin boundary conditions. A semi-permeable membrane is simulated by passing a small
percentage of the smoke difference across the boundary at each time step causing the
smoke to ”bleed”. This simulation sequence will appear in the SIGGRAPH 2005 Ani-
mation Festival.

zation onto a fluid grid;

• Provides a natural way to control fluid flows.

This paper presents a first step toward simulating fluid flows on arbitrarily shaped

domains with regions of heterogeneous size and widely varying topology. We also

present a method to control the fluid simulation using the inherent capabilities of our

approach (see Figure 2). We demonstrate our implementation on challenging scenes

of smoke and free-surface fluid flows around geometry with holes and fine geometric

detail, which are difficult to simulate correctly with traditional grid-based methods.

Organization: The rest of the paper is organized as follows. In section 2, we briefly

review the related work. We give a brief overview of finite volume methods in section

3 and our solution procedure in section 4. In section 5, we describe our implementation

and demonstrate the results we achieve. Finally we conclude and suggest directions for

future research in section 6.
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2 Previous Work

Numerical methods for computational fluid dynamics have been actively investigated

for decades. Recently there has been a growing interest in adapting some of these

techniques for simulated fluid flows in computer graphics. We briefly survey some of

the related work in this section and refer the readers for more detail to surveys in recent

journal articles [12, 13].

Finite Difference Methods (FDMs): In computer graphics, Foster and Metaxas [6]

were among the first to present the use of the full 3D Navier-Stokes differential equa-

tions for generating fluid animations. Their FDM tracks the free surface using the

marker-and-cell approach [4]. The “stable fluids” method of Stam [7] introduced sta-

ble semi-Lagrangian advection combined with an implicit viscosity solver to arrive at a

completely stable method, more amenable to use in animation. This method supported

simple periodic, or axis-aligned external boundary conditions. Fedkiw et. al. [14]

presented a method for simulating smoke with Euler equations, and also introduced

vorticity confinement to reduce the spurious numerical damping of vorticity. Foster

and Fedkiw [5] combined the surface-tracking particles [6] with level sets to more ac-

curately track the surface of the fluid. Enright et al. [9] enhanced free surface tracking

by developing a method they referred to as “the particle level set method”. Their mod-

ification is to place particles on both sides of the interface instead of just the interior to

further reduce erosion of small surface features caused by advection techniques.

Losasso et al. [3] introduced octree refinement to the previously cited methods to allow

simulations with effectively high resolutions at lower computational cost. Carlson et

al. [10] presented techniques based on distributed Lagrange multipliers to ensure two-

way coupling to animate the interplay between rigid bodies and fluid. Mihalef et.

al. [15] also demonstrated a coupling of 3D fluid simulation with 2D fluid ”slices” in

order to simulate thin features of breaking waves.
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Each of these methods have used finite difference methods on axis-aligned grids to

solve the Navier-Stokes equations. Consequently, none of these was able to accurately

capture the effect of a boundary that cuts through the grid at an angle.

Higher-Order Convergence with FDMs: Several methods have been developed

to achieve higher order handling of boundaries with FDMs. A good example is the

GENSMAC method [16]. The grid-based technique is based on the original MAC

method [4], but using modified finite difference stencils on cut boundary cells to bet-

ter approximate the actual derivatives on the boundary. Determining which stencil to

apply for each possible cut configuration leads to numerous special cases, especially

in 3D, making the code tedious to write and difficult to debug. The method is only

demonstrated in 2D.

Mesh-free Methods: Although most recent applications of fluid simulation for ani-

mation have relied on FDMs, mesh-free methods have also been explored. Stam and

Fiume [17] presented simulations based on a smoothed particle formulation of gas dy-

namics, and Desbrun and Gascuel [18] followed with a modified version of “Smoothed

Particle Hydrodynamics” (SPH), developed originally for cosmological simulations.

Stora et. al. [19] added temperature transport to their SPH in order to simulate and ren-

der realistic lava flows. Müller et al. [20] demonstrated 3D SPH simulations. Though

these methods have several advantages, boundary conditions are even more difficult to

enforce properly using these techniques than with FDMs. Good overviews of SPH and

other mesh-free methods can be found in [21, 22].

Flows on 2D Meshes: Stam [23], and Shi and Yu [24] simulated Navier-Stokes flows

on 2D meshes. Stam’s method requires the surface to be a regular quadrilateral mesh,

while Shi and Yu’s technique works on any triangulated mesh. Both focused on the goal

of generating plausible 2D flows on surfaces embedded in 3D space. Both methods are

modified finite difference techniques, and both are limited to 2D flows. In contrast,

we present techniques for simulating planar 2D flows and volumetric 3D flows, but on
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irregular, non-uniform triangular or tetrahedral tessellations of the 2D or 3D space.

Finite Volume Formulations: In the computational physics literature many methods

have also been proposed based on finite volume formulations. Finite volume techniques

naturally lead to conservative methods that can preserve mass and other properties of

fluids exactly to within numerical precision, which has proven very valuable in the

study of compressible fluids. LeVeque [25, 26] discusses many such techniques for

solution of hyperbolic PDEs on axis-aligned grids. Other researchers in fluid dynam-

ics have presented finite volume methods for simulation of incompressible flows on

unstructured grids composed of triangles or quadrilaterals in 2D [27–29], or tetrahe-

dra and hexahedra in 3D [1]. These methods have focused on high order convergence

regardless of the computational cost, rather than visually plausible results at costs ac-

ceptable for animation production, which is the goal of this paper.

Concurrent Work: Other researchers have explored finite volume methods for graph-

ics applications concurrently with the research presented in this paper. Feldman et.

al. [11,30] present a method for creating and simulating on “hybrid” meshes, to be later

presented at ACM SIGGRAPH Annual Conference 2005 and Symposium on Com-

puter Animation 2005. These meshes use Finite Difference axis-aligned grids in open

areas, and tetrahedra near boundaries. However, by using only face-normal velocities

on tetrahedral elements, they limit the applicability of the method to non-viscous, Eu-

lerian flows. Elcott et al. is also investigating a slightly different technique, which is

not yet available but cited by Feldman et al. in the preprint of their work [31].

3 Overview

In this section, we describe the basic formulation of finite volume methods (FVMs).
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3.1 Introduction to Finite Volume Methods

A finite volume method relies on the integral form of a PDE, instead of the differential

form. Thus, instead of using finite difference stencils on a set of points, integrals are ap-

proximated over a space-filling set of volume primitives. Using finite differences, one

solves the Navier-Stokes equations by directly discretizing the differential operators.

In contrast, in a finite volume method one solves:

d
dt

∫

Ω
u dΩ =

∫

Ω

(

−(u ·∇)u+ν∇2u−∇p+F
)

dΩ (1)

∫

Ω
∇ ·u dΩ = 0, (2)

by discretizing and approximating the integrals numerically. In the above, Ω is a space

filling element (area in 2D, volume in 3D). The principle mathematical tool used to

make this formulation practical is Stokes’ theorem, which allows one to convert vol-

ume integrals into surface integrals. In particular, the divergence theorem and the curl

theorem (special cases of Stokes’ theorem) are useful.

The divergence theorem is used in both our 2D and 3D solvers:

∫

Ω
∇ · f dΩ ≡

∮

Γ
f ·n dΓ (3)

∫

Ω
∇2 f dΩ ≡

∮

Γ
∇ f ·n dΓ (4)

where f is an arbitrary vector field, f is a scalar field, Ω is defined as above, Γ is

a closed boundary around Ω (a closed curve in 2D, a closed surface in 3D),
∮

is a

boundary integral, n is a vector normal to the boundary curve or surface, and dΓ is a

surface element on the boundary.

For integrals of curls (required to implement vorticity confinement [14] in a finite vol-

ume context), we use the curl theorem in 2D and a variation of the divergence theorem
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Figure 3: Our grid primitives: triangles in 2D, tetrahedra in 3D. Note that full velocity
vectors are stored at each edge/face center. Also note that pressure values (denoted by
dots) must be stored at both cell centers and vertices.

in 3D:

∫

Ω
(∇× f) ·dΩ ≡

∮

Γ
f ·dΓ (5)

∫

Ω
(∇× f) dΩ ≡

∮

Γ
dΓ× f, (6)

where Eq. 5 is used in 2D and Eq. 6 is used in 3D. Eq. 6 can be derived from the basic

divergence theorem by substituting c× f in for f in Eq. 3, where c is a constant vector.

3.2 Grid Primitives

We define our unstructured finite volume grids using the simplest space-filling primi-

tives: triangles in 2D and tetrahedra in 3D. Both of these primitives are well supported

by current graphics tools and applications, and are simple to work with. Unstructured

grids can also be defined by other types of volume elements, or by combinations of

several types of elements as in [29], but this adds to the complexity of the code and

leads to more special cases.

We store pressure values at cell centers and vertices, while full velocity vectors are

stored at edge centers in 2D, and face centers in 3D. Storing an unrestrained velocity

vector (i.e. not restricted face normal direction), we are able to add diffusion to our

simulator and remove some of the advection difficulties discussed by [11]. Our stan-
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dard grid cells are shown in Fig. 3. Scalar values such as density and temperature are

stored at vertices in both 2D and 3D. When needed, a C0 continuous scalar field can be

derived from these vertex values by linear interpolation.

Finite volume methods allow the freedom of placing grid geometry where desired,

enabling non-axis-aligned boundaries that are better approximations of the underlying

geometry. Furthermore, if the desired boundaries are polygonal models, as is often

the case in visual applications, then the boundaries enforced can match those specified

exactly. This is in contrast to existing FDM-based methods where the boundary is

discretized using axis-aligned grids, leading to spurious interactions at the boundary.

In order to make use of the surface integral formulations obtained by application of

Eqs. 3–6, the domain is partitioned into a set of control volumes. How these are de-

fined depends upon which form of Stokes’ theorem is being used and where the data

values are stored (e.g. cell-centers vs. face-centers). Once the control volumes are de-

fined, then the surface integrals can be discretized over the boundaries of those control

volumes. For example, on a 2D triangle mesh with values fi stored on triangle edges,

the left hand side of Eq. 3 can be discretized as a summation over the triangle edges:

3

∑
i=1

(fi ·ni) ∆Γi, (7)

where ∆Γi is the length of the ith edge. In this case, the result is an approximation

of the integral of the divergence of f over the triangle. If divided by the area of the

triangle, this gives the triangle’s average divergence per-unit area. This is in contrast to

an FDM approach, which would give the divergence at a single point in space. Further

descriptions of the control volumes used in our algorithm are given in Fig. 4.
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(a)

(d)(c)

(b)

Figure 4: The control volumes associated with different data locations. Control vol-
umes define the boundary over which the finite volume integrals will be evaluated.
In different steps of the algorithm, control volumes are needed for cell-centered data,
face-centered data, and vertex-centered data. The control volume for cell-centered
data is simply the primitive itself. In defining other control volumes, dual graphs are
used. (a) and (b) show the control volume for the boundary-centered velocities used
in the diffusion step (Sec. 4.3, Eq. 8) in 2D and 3D respectively. These volumes are
formed by connecting edge/face vertices to the barycenters of the neighboring trian-
gles/tetrahedra. (c) and (d) show the control volumes for the per-vertex pressure solu-
tion (Sec. 4.4). The 2D version is formed by connecting the barycenters of all triangles
around a vertex. In 3D, an enclosed mesh is formed around each vertex by combining
all tetrahedral barycenters, face barycenters and edge centers. The 3D image above
shows the 4 triangles created from one vertex face pair. Each triangle is made up of
one tetrahedron barycenter, the face barycenter and one edge midpoint.
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4 Solution Procedure

In order to solve the Navier-Stokes equations we follow the general solution procedure

of “Stable Fluids” [7]. This procedure breaks Eqs. 1–2 down into several simpler steps

which are solved sequentially. These steps are (in order) velocity self-advection, ap-

plication of external forces, velocity diffusion, and divergence correction via pressure.

Each of these four steps is detailed in order in the following subsections. The output

values of each step are used as the input to the next.

4.1 Advection

This step solves the (u ·∇)u portion of the momentum equation (Eq. 1). For this step

only, we depart from the finite volume approach, and use an unconditionally stable

semi-Lagrangian technique [7], similar to the method used in [24] for triangle meshes,

but we have extended it to tetrahedral meshes for 3D simulations, as well. Semi-

Lagrangian advection involves solving ordinary differential equations to trace char-

acteristics backwards through the velocity field. Simply stated, in order to solve for

the advected velocity at some point in space (xi), one traces the current velocity ui

backwards −∆t to a new point in space. The backtracing can also be performed us-

ing a higher-order scheme like Runge-Kutta 2 or Runge-Kutta 4. The velocity at the

new point is interpolated from neighboring values, and this velocity is then used as the

advected velocity at xi.

When back-tracing the velocity vectors at each edge/face center, performing compu-

tations using barycentric coordinates simplifies determination of whether a point is

within a particular volume element, and, if not, gives an indication of which boundary

the trajectory crossed over, leading to a natural algorithm for walking through the mesh

data structure to find the current triangle/tetrahedron. Care must be taken to check that

the vector does not pass through a boundary for which the velocity is fixed. If the vec-
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Figure 5: Velocity interpolation in 2D. Vertex velocities are first interpolated from
neighboring edge velocities. Using only these values to then interpolate a velocity
field over the entire triangle results in unacceptable dissipation. This can be avoided
by dividing the triangles into four regions. The velocity at a point in the center region
(diagonal lines) is interpolated purely from edge velocities. Velocities at points in three
outer regions are interpolated from a combination of 2 edge velocities and 1 vertex
(averaged) velocity.

tor hits such a boundary, the velocity of the boundary is returned as the result of the

trace.

In order to perform the interpolation, we obtain the velocity at vertices. This data

is obtained by computing an average of all of the velocities on boundaries in the 1-

neighborhood of that vertex, i.e. all the edges cut by dotted lines in Fig. 4(c). Then we

interpolate the velocity value from the nearest samples, which can be a combination of

both edge values and vertex values, as described in Figs. 5 and 6.

Although finite volume methods may also be used to solve for the advection of the

velocity field, by using semi-Lagrangian tracing, advection can be performed stably

with a large time step. Finite volume methods for advection are subject to the CFL

condition, which imposes that u∆t everywhere must be less than the local size of the

grid cells. Avoiding the CFL restriction is especially important on an unstructured

mesh where having a few cells much smaller than the others would force the time step

for the entire grid to be reduced.
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(a) (c)(b)

(e)(d) (f)

46 1

Figure 6: Velocity interpolation in 3D. Similar to the 2D interpolation (Fig. 5), a tetra-
hedron is divided into different interpolation regions, 11 in all. (a) shows the initial
tetrahedron and the cuts created by cutting along each face to the barycenter. In (b),
one of those pieces is removed. (c) shows the resulting structure after all 6 of these
pieces are removed. In (d) a piece defined by one vertex and 3 face centers is removed.
(e) shows the center tetrahedron created by the barycenters of the four faces of the orig-
inal tetrahedron. In (f) we see that there are 6 tetrahedra corresponding to two original
tetrahedron vertices and 2 face centers, 4 tetrahedra corresponding to 1 original tetra-
hedron vertex and 3 face centers and 1 tetrahedron formed by the face centers. When
performing semi-Lagrangian advection, we determine in which of these 11 volumes the
final point lies and interpolate the velocity from the corresponding 4 velocity values.

4.2 Adding Forces

Adding body forces, such as gravity (indicated by F in Eq. 1), is very straightforward.

For each location in the grid where velocity is stored, the velocity is updated by u :=

u+∆tF.

4.3 Diffusion

Next we solve for the diffusion of the velocity, using an implicit finite volume formu-

lation:
∫

Ω
(u−u∗) dΩ = ∆t

∫

Ω
ν∇2u dΩ

where u∗ is the velocity before diffusion occurs, and u is the post diffusion velocity.

After application of Eq. 4 we obtain

∫

Ω
u dΩ−∆t

∮

Γ
ν∇u ·ndΓ =

∫

Ω
u∗ dΩ, (8)
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where it should be understood that this one vector equation represents three separate

scalar equations, one for each component of the velocity. Each equation is solved

independently by discretizing the integrals and the spatial derivatives.

The surface integral in Eq. 8 requires a control volume centered on the existing edge/face

velocity values, and it requires the gradient of velocity(for each component) to be eval-

uated on the boundary of that control volume. The volumes satisfying these properties

are shown in Fig. 4, (a) and (b). The computation of the gradient of u on the control

volume edge/face is discussed in Appendix A.

This matrix, as well as all others discussed in this paper is sparse and symmetric posi-

tive definite. We use the Conjugate Gradient Method [32] in order to solve the system

of equations. Algorithmically, the operation of this matrix is as follows. (In the pseu-

docode below, boundary refers to the edge or face containing a velocity value, and

dualboundary refers to an edge or face of the control volume around that velocity

value. Output is the result of the matrix application):

for each boundary i do

output[i] = 0

for each dualboundary j around boundary[i] do

neighbor = edgeacross[dualboundary[j]]

output[i] += dot(∇u(neighbor, boundary[i]),

normal[j]) * ∆Γ[dualboundary[j]]

end

output[i] *= ∆t * ν / ∆Ω

output[i] = u[boundary[i]] - output[i]

end

Where the normal used here is the outward facing normal for each dualboundary.
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4.4 Pressure Correction

The first three steps solve for the advection, external body forces, and diffusion. The

resulting velocity field will not, in general, be divergence free, as required by the con-

tinuity equation (Eq. 2). The final step, then, is to enforce the continuity equation by

solving a Poisson problem for pressure, p:

∫

Ω
∇2 p dΩ =

∫

Ω
∇ ·u dΩ. (9)

This step is a combination of the ∇p portion of the momentum equation (Eq. 1) and

the continuity equation (Eq. 2). By applying Eqs. 3 and 4, Eq. 9 becomes

∮

Γ
∇p ·n dΓ =

∮

Γ
u ·n dΓ. (10)

Since we use full velocity vectors on our boundaries, there are two components to the

divergence in our system: that which is perpendicular to the boundary (cell divergence),

and that which is tangential to the boundary (vertex divergence). We must solve Eq. 10

for both portions.

We first solve for p at cell centers to eliminate the divergence perpendicular to the

boundary. Creating a numerical solver for this equation is relatively straightforward.

The vector for the right hand side of the equation can be approximated just as in Eq. 7,

with f ≡ u.

The operation of the matrix on the left side of the above equation can be created in the

following way:

for each volume i do

output[i] = 0

center[i] = barycenter of volume[i]

for each boundary j of volume[i] do
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neighbor = vol barycenter across boundary[j]

output[i] += dot(∇p(neighbor, center[i]),

normal[j]) * ∆Γ[boundary[j]]

end

end

The normal used here is the outward facing normal for each edge or face.

In order to solve for the tangential component of divergence (the vertex divergence),

we locate another set of pressure values at the vertices. The control volumes for the

vertices are defined by the dual graph of the mesh, as shown in Fig. 4, (c) and (d).

Let u‖ denote the velocity component tangential to the cell boundary. Then the result-

ing system of equations can be solved much the same as with the cell centered pressure,

using Eq. 7, but this time with f≡ u‖, and with ni and ∆Γi indicating normals and edges

of the appropriate control volume. Code to apply the stencil matrix is also very similar:

for each vertex i do

output[i] = 0

for each boundary j of dual graph vertex[i] do

output[i] += dot prod(∇p, normal[j])

* ∆Γ[dualboundary[j]]

end

end

Again, the normal used here is the outward facing normal for each dualboundary. In

2D, ∇p is the directional derivative across along an edge emanating from the vertex,

and, in 3D, it is the in-face derivative on the face emanating from the vertex, coinci-

dent with the dual boundary (see fig. 4). Refer to Appendix A for more detail on the

computation of gradients on edges and faces.

19



4.5 Other Steps

Vorticity confinement was presented by Fedkiw et. al. [14] as a way of reintroducing

the swirling motion of fluid simulations lost due to semi-Lagrangian advection and

coarse grid calculations. Using the finite volume method, the vorticity at cell centers

can be easily calculated by using Eq. 5–6, with f ≡ u. Then the gradient of the vorticity

can be calculated on cell edges. The vorticity confinement force applied to edges is a

simple function of this gradient.

Fedkiw et. al. [14] also employed temperature and density values for the smoke in

order to create forces. We place temperature and density at vertices and average them

to create forces at boundary centers.

5 Results and Discussions

5.1 Implementation

To implement our proposed method it is necessary to efficiencly store and manage the

simulation grid mesh data. In 2D, we use a simplified doubly-connected edge list as

described in [33] and a relatively straightforward extension of the same technique in

3D. This data structure allows us to efficiently retrieve cell adjacency information and

other cell data.

Several methods exist for creating good tetrahedral meshes for numerical simulation.

Mesh generators are available both publicly and for charge (see [34] for a survey). In

all of our 3D demos, we used either Müeller’s mesh generation technique [35] or files

created by Cutler [36].
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5.2 Demonstrations

Next, we demonstrate the results of our method with several challenging scenarios. All

simulations were run on a Pentium-4 PC with a 3.2 GHz processor. See the color plate

for images rendered using the output of our simulator.

As mentioned earlier, intricate boundaries on the fluid are a challenge for previous

methods. Particularly, a typical implementaion using ghost cells requires all boundaries

to be at least two cells thick and forces the elimination of all sharp corners. However,

Fig. 2 shows that we are able to control the path of smoke as desired simply by setting

appropriate boundary conditions. Our boundaries can be infinitessimally thin (an edge

in 2D, face in 3D), and this allows us to easily simulate the effect of a semi-permeable

membrane by transferring smoke density in proportion to the density gradient across

the boundary times a permeability constant, 0 ≤ π ≤ 1. This step occurs every time

step of simulation.

We also show that smoke is able to interface directly with complex surfaces (see Fig. 7).

Note that, despite the relatively low resolution of the simulation mesh used, when we

remove the obstacle from the rendering, its outline can be clearly seen, demonstrating

that our method is accurately enforcing the boundary conditions imposed by the object.

The smoke neither penetrates nor gives the obstacle a wide girth as would be the case

with some of the previous methods. The smoke also properly flows through the holes

in the middle of the obstacle.

We also demonstrate several free surface fluid interactions. First, we demonstrate two

altered forms of a well-known test scenario: the “broken dam problem” (Fig. 8). The

first shows a free surface interacting with the intricated details of the MIT Gargoyle

Model. Note that the thin features (i.e. mouth and wall mounting) are able to properly

fill and drain with a very low resolution. The second follows a similar simulation with

the Stanford Bunny. Note how smoothly the fluid is able to follow the curve of the
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bunny’s tail and hind legs.

This system can also easily impose moving boundary conditions (Fig. 9). We simu-

lated the effect of sliding a cone shaped glass across a flat surface, followed by a hard

stop. This simulation shows that our work easily handles smooth, non-axis-aligned

boundaries fluid frequently encountered in daily experience.

All of our simulations are run on rather small meshes. They range from 50,000 tetra-

hedra to 135,000 tetrahedra. These are approximately equivalent to FDM meshes with

approximately 35x35x35 to 50x50x50 resolution. These sizes are considerably smaller

than mesh sizes preferred when using previous techniques. However, our improved

boundary conditions are able to still provide visually pleasing results. Please see the

supplementary video clips.

5.3 Comparisons

We have shown that the Finite Volume Method can reproduce the effect of the existing

state-of-the-art Finite Difference fluid simulators, as well as solving several problems

caused by irregular internal boundaries. Since triangles and tetrahedra may be dis-

tributed as desired throughout the 3D space, resolution may be refined in key areas and

reduced in others. Also, since any cell edge may be considered a fixed boundary, this

approach allows accurate representation of the irregular boundaries. Such a capability

is particularly useful since many 3D graphics data sets are non-manifold triangle sets

(such as cloth, etc).

Also, gridding effects in the fluid flow are reduced by our use of full velocity vectors

on all face centers. In comparison, the typical staggered grid finite difference method

stores only one component of velocity on each face, which coincides with the face nor-

mal. These methods can not represent vorticity (the swirling motion of fluids) around

a single cell, for instance. This is because the vorticity around one cell runs completely
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tangential to the faces of the cell. By storing the complete vector, we can represent

such flows.

Due to non-regular location and connectivity information extra memory must be used to

store these values. The additional memory accesses during simulation reduce runtime

performance as compared to the Finite Difference Methods. However, since bound-

aries can be handled with more accuracy by Finite Volume Methods, lower resolution

meshes can give comparable results. The simulations in this paper ran between .3 to 4

frames per minute, although our code has not been optimized.

5.4 Resolution

The quest for higher resolution fluid simulations is driven by a number of factors.

Among these is eliminating aliasing artifacts in the free surface of fluid, better approx-

imating boundary conditions and better handling of thin fluid features. Our proposed

technique is able to resolve boundaries at lower resolutions than previous Finite Dif-

ference based techniques. While some aliasing artifacts still exist in our free surfaces,

we believe the lack of regularity in the mesh makes the artifacts less noticeable (i.e.

irregular surface imperfections vs. regular stair steps). However, our technique would

still require high resolution to resolve thin fluid features (as seen in splashes).

6 Conclusion and Future Work

We have presented a novel method for 2D and 3D flows on domains of arbitrary topol-

ogy using a finite volume formulation. We showed that this approach can generate sim-

ilar results to the existing state-of-the-art techniques based on finite difference methods,

while alleviating regular grid effects and better capturing fine features arising from ir-

regular internal boundary conditions.
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This method leads to several areas of future research. There remain some numerical

issues, for instance. Domains of unusual topology (such as the bunny and gargoyle)

can result in ill-conditioned systems depending upon how they are discretized. Specif-

ically, the several narrow passages (i.e. bunny ears, gargoyle mouth, etc.), can lead to a

stiffer system of equations for the diffusion and the projection steps, requiring a greater

number of iterations for our conjugate gradient solver to converge. Also, widely vary-

ing element volume sizes can potentially lead to numerical problems. Our simulator

is able to handle volumes with up to three orders of magnitude discrepancy. However,

the stiffness of the system scales as the ratio of largest to smallest volume. Future work

can focus on further improving numerical stability under these circumstances. Mesh

refinement could also be added so that the simulator can automatically detect key areas

of interest and refine the underlying mesh.

Furthermore, we plan to investigate issues arising from coupling multiple dynamical

systems, e.g. fluid interacting with both deformable and rigid bodies that can tear

or fracture. Adaptive remeshing will likely to be required for computational efficiency

and desired visual simulation. Fortunately, fast techniques for tetrahedral meshing have

been investigated by many researchers [37–39]. These methods could be used to create

an adaptive remeshing system.

A Computing Gradients

Since the nodes on our grids can be located anywhere, we must be able to approximate

∇ f between any two points in space. This can be accomplished using a directional

derivative. Given two points in space (xi and x j) with some scalar f defined at each

point,

∇ f (xi,x j) ≈
f (xi)− f (x j)

‖xi −x j‖
∗

xi −x j

‖xi −x j‖
. (11)
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Figure 7: Here we see 3D smoke interacting with novel boundary conditions [40, 41].
The second image has the obstacle removed from the rendering. This shows how
cleanly our simulation is able to approximate curved boundaries, as well as holes, even
with relatively coarse resolutions.

In 3D, our solution technique requires the evaluation of ∇ f on the faces of tetrahedra.

If a triangle T is defined by the three points xi, x j and xk, let e1 be (x j −xi) and e2 be

(xk −xi). Then we can write the equation for f on that face as a function of two of the

coordinates, e.g. f (x,z) = Ax+Bz+C, with coefficients A, B and C to be determined.

By plugging the three known values for f and the known vertex locations we have 3

equations allowing us to solve for the 3 unknowns, A, B, and C. Then we have simply

that ∂ f/∂x = A and ∂ f/∂ z = B. It just remains to find the remaining component of

the gradient by projecting the known components of the gradient onto the plane of the

triangle.
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Figure 8: This sequence of images taken from our simulation shows how our system
can easily handle complex domains for fluid simulations. It also shows how we are
able to achieve convincing results with low resolution: 50,000 tetrahedra, roughly
equivalent to a 37x37x37 resolution cube!

Figure 9: In this demonstration, we show a “real world case” requiring good boundary
conditions for smooth, non-axis-aligned boundaries as well as a sharp feature. The
simulation begins with the cup pushed to the left, followed by an abrupt stop. The
simulation continues as the water splashes back and forth in the cup.
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