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Abstract

While it is well-known that TCP performance degrades signifi-
cantly on experiencing packet losses, not much is known about
the way in which TCP losses occur in the real-world. In this pa-
per, we address the questions: to what extent, and in what man-
ner, do real-world TCP connections experience packet losses?
And how effectively do TCP loss detection and recovery mecha-
nisms deal with the packet losses? We answer these questions by
conducting an extensive passive analysis of TCP packet traces.
Our analysis attempts to (i) characterize the TCP loss process,
(ii) evaluate the accuracy and timeliness of loss detection in
TCP, and (iii) evaluate the timeliness and efficacy in avoiding
further losses of the loss recovery mechanisms in TCP. To facil-
itate this analysis, we first implement detailed sender-side state
machines for several prominent TCP stacks (Windows, Linux,
BSD, and Solaris) and augment these with extra logic to cor-
rectly track TCP sender state as well as actual packet losses.
Using these state machines we analyze traces of more than

���
�����	�
���
� TCP connections, collected from � different locations
around the world. Our analysis sheds several insights on TCP
loss detection and recovery. ����� of TCP loss detection is trig-
gered due to timeouts. 90% of detection using duplicate acks
take place within 2 RTTs. TCP experiences no more than

�
consecutive losses

��� � of the time; however, 20-30% of loss-
recovery periods last more than

�
RTTs. Our results, thus, con-

firm the efficiency of some TCP mechanisms and highlight the
deficiency of others.

�
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1 Introduction

TCP is the dominant transport protocol used by Inter-
net applications. It provides several useful service ab-
stractions, including that of a byte-stream transmission,
flow control, congestion control, and reliable delivery. Of
these, the service semantics of reliable delivery is perhaps
one of the prime reasons for TCP’s popularity. TCP im-
plements reliability by using two kinds of mechanisms:
one for detecting packet losses and one for recovering
lost segments. It is well-known that the timeliness perfor-
mance of a TCP connection degrades significantly when-
ever it experiences packet losses and invokes these two
mechanisms. Given the popularity of TCP, it is, therefore,
important to understand how often this set of two mech-
anisms is invoked in practice and how well it works. In
particular, three key questions arise in this context. First,
in what manner are real-world TCP connections subject
to packet losses? Second, with what accuracy does TCP
detect packet losses? And third, how quickly does it detect
and recover from losses? It is our objective to help answer
these questions by studying real-world TCP connections.

Our approach is to passively analyze traces of real-
world TCP connections in order to infer the occurrence of
three kinds of events: (i) real packet losses, (ii) invocation
of a TCP loss-detection mechanism, and (iii) successful
retransmission following each loss-detection phase. Fol-
lowing this, we analyze these events for several proper-
ties, including their occurrence and duration.

In the rest of this paper, we discuss our trace analy-
sis methodology in Section 2. Our mechanism evalua-
tion methodology and results are described in Sections 3
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and 3.4, respectively. We summarize related work in Sec-
tion 4 and conclude in Section 5.

2 Passive Loss Inference Methodol-
ogy

It is well-known that packet losses can significantly im-
pair the ability of a TCP connection to transfer data in a
timely manner. TCP uses a combination of detection and
recovery mechanisms to deal with packet losses. In this
section, we first briefly summarize the specifics of these
TCP mechanisms and then elaborate on our methodology
for inferring loss characteristics from passively collected
TCP traces.

2.1 TCP Loss Detection and Recovery
TCP identifies each application data byte transferred
within a connection using a sequence number. The mech-
anism of cumulative acknowledgments is used to confirm
delivery of bytes at the receiver—on receiving a fresh seg-
ment, the receiver sends back an acknowledgment to the
sender with the largest sequence number, such that it has
received correctly all bytes till that sequence number.

TCP variants differ in how they detect and recover from
packet losses. Most of current operating system stacks
implement a variant of the NewReno [9] version of TCP
(and several stacks support the SACK [11, 8] feature as
well) [12, 13]. Our discussion in this paper is, therefore,
focused primarily on NewReno and SACK.

A NewReno sender detects and recovers lost packets in
the following ways:

Retransmission Timeouts (RTO): The TCP sender uses
a timer to estimate when segments can be assumed to be
lost and should be retransmitted. This RTO timer is re-
set whenever ACK for new data is received (and in some
cases, when new data is transmitted). If the RTO timer
expires before the next ACK for new data arrives, the seg-
ment with the smallest unacknowledged byte is assumed
to be lost and is retransmitted. Loss of the retransmissions
is also detected using the timer—but the timer interval is
exponentially increased for detecting loss of successive
retransmissions of the segment.

Fast Retransmit/Recovery (FR/R): When a TCP re-
ceiver receives out-of-order segments (those with se-

Figure 1: Implicit TCP Retransmission

quence numbers higher than the next expected), it sends a
duplicate ACK for the highest in-order segment received.
When the sender receives three duplicate ACKs (TDA)
contiguously, it infers a segment loss and retransmits the
smallest unacknowledged segment.

The NewReno sender then enters the fast recovery
phase, which ends only after all of the data sent before
the first segment loss detection, is acknowledged. During
fast recovery, if the sender receives a partial ACK (PA)
for only some of this data, it infers that the next segment
expected by the receiver has been lost and retransmits it.
If the RTO timer expires on any segment, the sender ex-
its FR/R and adopts the timer-based recovery mechanisms
described before.

Selective ACKs (SACKs): SACKs are used in loss re-
covery and help the sender determine which segments are
lost in case of multiple losses. The TCP SACK option
is used along with duplicate ACKs and contains up to�

SACK blocks, which specify contiguous blocks of the
most recently received out-of-order data. Because SACK
is tied to TDA detections, it is used only in FR/R. The ex-
act manner in which a sender responds to the receipt of
SACK blocks has not been standardized.

2.2 Passive Inference of TCP Losses and
Detection/Recovery Mechanisms

Why not consider all retransmissions? Our first ob-
jective is that of reliably inferring packet losses from
passively-collected TCP traces. Since TCP retransmits
segments on detecting packet losses, the simplest ap-
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Figure 2: Unneeded Retranmission

proach is to simply look for the reappearance of some seg-
ments in the TCP link trace and assume that the original
transmission was lost (and subsequently detected and re-
transmitted by TCP). However, this approach can lead to
over-estimation of losses as illustrated in Figure 1, which
depicts part of a TCP connection selected from the UNC-
2004 trace. Segment 2 is retransmitted during a post-
timeout period, although the original transmission was
successful (as is confirmed by the subsequent ACK se-
quence). Note that while the segment was retransmit-
ted, this was not the result of any explicit loss detec-
tion/recovery attempt by the TCP protocol. This exam-
ple, thus, illustrates that in order to reliably infer packet
losses, it is important to track the explicit triggering of
TCP’s loss detection and recovery mechanisms.

Why not simply replicate TCP sender state? It turns
out that even simply tracking the triggering of loss de-
tection/recovery mechanisms in a TCP connection is not
sufficient for reliably inferring packet losses. This is be-
cause of two main reasons related to TCP’s inability to
accurately infer packet losses:

Some packet losses do not trigger TCP’s loss detec-
tion/recovery phases. For implementation efficiency, TCP
senders maintain only a limited history/memory about un-
successful transmissions. In particular, if multiple packet
losses are followed by a timeout, the sender explicitly dis-
covers and recovers only from the first of those losses.

As a result, the remaining packet losses may not get dis-
covered by simply tracking the envocation of the loss de-
tection/recovery mechanisms described above. Figure 1
illustrates this for segment 1, which was unsuccessfully
transmitted the first time. The segment gets retransmitted
in the post-timeout period, but without explicitly trigger-
ing TCP’s loss detection/recovery mechanisms.

A TCP sender may incorrectly infer packet losses. TCP
may retransmit a packet too early if its RTO computation
is not conservative. Furthermore, some packet re-ordering
events may result in the receipt of TDAs, triggering a loss
detection/recovery phase in TCP. In fact, Figure 2, which
again depicts part of a TCP connection selected from the
UNC-2004 trace (and visualized using the tcptrace util-
ity [5]), plots the example of a connection in which a sin-
gle packet reordering event resulted in the triggering of� �

subsequent phases of fast retransmit/recovery, which
lasted for more than � seconds!

Basic Approach Based on the above discussion, our ba-
sic approach for passive inference of TCP losses is to:
(i) implement partial state-machine for a TCP sender that
uses the ACK stream to track the triggering of loss de-
tection/recovery mechanisms, and (ii) augment the state
machine with extra state and logic about the transmission
order and timing of all previously-transmitted packets,
in order to infer real packet losses with better accuracy
than TCP. Using this basic approach, we can track three
quantities related to TCP losses within each connection:
(i) all retransmissions, (ii) actual packet losses, and (iii)
segments that are explicitly retransmitted by TCP (hence-
forth, referred to as explicit retransmissions) as a result of
triggering of its detection/recovery mechanisms. In Sec-
tion 3.2, we compare the distribution of these three quan-
tities across the connections we analyze.

2.3 Practical Challenges in Loss Inference
Three kinds of practical concerns complicate the imple-
mentation of the above approach. We describe these con-
cerns and how we address them below.

2.3.1 Diverse and Non-documented TCP Stacks

The Challenge TCP implementations written by dif-
ferent operating system (OS) programmers may differ
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(sometimes significantly) in either their interpretations or
their conformance to TCP specification/standards. Fur-
thermore, a few aspects of TCP—such as how a sender
responds to SACK blocks—are not standardized. As a
result, the sender-side state machines are specific to the
OS they run on. This results in two main challenges in
implementing our basic approach: The difference in im-
plementations on different OSes necessitates that we im-
plement different programs to analyze connections orig-
inating from different sender-side OSes. More signifi-
cantly, given the trace of a TCP connection, it is non-
trivial to identify the corresponding sender-side OS and
decide which OS-specific analysis program to use for an-
alyzing the connection.

Most OSes either have proprietary code or have in-
sufficient documentation on their TCP implementations.
Without detailed knowledge of the loss detection/recovery
implementations, it is not possible to replicate these
mechanisms in our OS-specific analysis programs.

Our Approach We extract sufficient details about the
implementation of loss detection/recovery in several
prominent OS stacks by using an approach similar to the
t-bit approach described in [13]. Specifically, we have in-
stalled four different OSes—namely, Windows XP, Linux
2.4.2, FreeBSD 4.X, and Solaris—on experimental lab
machines and run the Apache web-server on each ma-
chine. We expect this range of OSes to cover a ma-
jority of the connections we analyze. We then imple-
ment an application-level TCP receiver (by borrowing
from the t-bit code base) that initiates TCP connections
to each of the server machines and requests HTTP ob-
jects. Once the server machines start sending the objects,
the receiver artificially generates different sequences in
the ACK stream to trigger loss detection/recovery mech-
anisms on the sender-side stacks (including TDAs, time-
outs, partial ACKs, etc). We then use the manner in which
the server responds to the ACK stream for inferring sev-
eral characteristics of the sender-side TCP implementa-
tion, including the computation of RTO, the number of
duplicate ACKs that trigger FR/R, and the response to
SACK blocks. Details of the extracted characteristics can
be found in [16]. We use these details in our implementa-
tion of four OS-specific trace analysis programs.

For each TCP connection to be analyzed, we run its

packet trace against all four analysis programs. We then
select the program that is able to explain each retransmis-
sion event. Events that cannot be explained by any pro-
gram are counted as unexplained and are not used in the
reported results.

2.3.2 Delays and Losses Between Monitor and
Sender

The Challenge Packet traces used in passive analysis
are typically collected at links that aggregate traffic from
a large and diverse population. As a result, there may be
several network links on the path between a TCP sender
and the trace monitoring point. Thus, the data packets
transmitted by the sender may experience delays, losses,
or reordering before the monitor observes them; the same
is true for ACK packets that traverse between the monitor
and the sender. Consequently, the data and ACK streams
observed at the monitor may differ from those seen at the
TCP sender. In particular, if some of the TDAs observed
at the monitor fail to reach the sender, the analysis pro-
grams may incorrectly conclude that the sender has en-
tered FR/R. Similarly, if a data packet gets lost before it
reaches the monitor, and subsequently gets retransmitted,
the analysis programs may fail to infer that the packet has
been re-transmitted. Thus, the programs may not be able
to accurately track the sender-side state machine.

Our Approach In order to deal with this complication,
we use a simple approach in which loss indications in the
ACK stream trigger only tentative state changes in the
monitor state machine, which are confirmed only by sub-
sequent retransmission behavior by the sender.

Note that the RTT measured at the monitor (monitor-
receiver-monitor) is less than that measured at the sender
(sender-receiver-sender). For passive loss analysis, this
implies that the RTO computed at the monitor may be
smaller than that used by the sender. Fortunately, this dis-
crepancy does not negatively impact our analysis—this is
because the RTO is used as a minimum threshold for the
gap between the original transmission and retransmission
of a lost segment, in order to identify retransmissions that
occur due to timeouts. Therefore, a smaller-than-actual
value of RTO would simply lower the threshold and still
be able to correctly infer such retransmissions.
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2.3.3 Non-availability of SACK Options

The Challenge A large number of traces do not capture
the TCP option field. Sack blocks are transmitted in these
TCP options and hence are not available for passive anal-
ysis of these traces. The sender may have used the sack
block information to retransmit certain packets. In ab-
sence of these blocks, the monitor will fail to accurately
identify the cause of these retransmissions and hence may
not mark them correctly.

Our Approach To overcome this problem, we develop
heuristic to identify whether a packet could have been
triggered by incoming sack information. Since sack in-
formation is used in FR/R we apply our heuristic only in
this state.

In FR/R a retransmission can be triggered by a time-
out, a partial ack, or a sack block. Using this information,
we develop our heuristic as follows. We mark a packet
retransmission as sack triggered if (i) the connection is in
FR/R, (ii) the packet is not explained by either timeout
or a partial ack, and (iii) the sequence number of the re-
transmitted packet is less than the highest sequence num-
ber that was in flight when the connection entered FR/R.
We validated this heuristic using a one hour segment from
the unc traces. We first ran the state machine with the
sack blocks available and noted the retransmissions which
were sack triggered. Then we removed the sack blocks
from this trace and ran the state machine with the heuristic
to identify sack triggered retransmissions. The state ma-
chine with the complete information about the sack blocks
identified 54160 sack events. The state machine using the
heuristics identified all of these events, but also marked
4333 of the unexplained events as sack triggered. Apart
from the low number of unexplained events incorrectly
classified the heuristics works very well.

2.4 Summary of Our Methodology
Our methodology for reliably inferring TCP losses and
the triggering of TCP loss detection/recovery mechanisms
can be summarized as follows.

1. We first extract the implementation details of four
prominent TCP stacks (Windows XP, Linux 2.4.2,
FreeBSD, Solaris) using the approach described in
Section 2.3.1.

2. We then replicate the loss detection/recovery re-
lated mechanisms in four OS-specific analysis state
machines—these state machines use the data and
ACK streams as input. Loss indications in the ACK
stream are used to only tentatively trigger state tran-
sitions, which are confirmed only by subsequent seg-
ment retransmission behavior.

3. We then augment these machines with extra logic
and state about all previously-transmitted packets,
in order to infer packet losses with accuracy greater
than TCP.

4. We then run each connection trace against all four
machines and use the results from the one that can
explain most of the observed retransmissions. In
case more than one machine matches this criteria, we
select one randomly (both give same results).

We have implemented the above machines in the C pro-
gramming language. Our implementations can run all
four state machines on more than a million connections
in a few minutes.

Several details of our methodology and implementation
have not been included in this section due to space con-
straints. These details can be found in [16].

Previously, Allman [6] and Jaiswal[10] have presented
methods for passive estimations of losses. Allman’s
method of passively detecting TCP losses relies on du-
plicate acks transmitted in response to unnecessary re-
transmissions after a timeout. While this method works
relatively well it does not identify exactly which of the
retransmitted segments was unnecessarily retransmitted.
Also for the traces we analyzed we found that the Allman
method sometimes identifies only 25% of the unneeded
retransmissions. Jaiswal et. al. used a state machine sim-
ilar to our FreeBSD state machine for passive loss esti-
mation. It does not take into consideration the variation
that exits among the various implementation stack. They
also do not try to explicitly identify the cause of a retrans-
mission in the recovery region. We tested this state ma-
chine on the ibi trace and the unc trace. Jaiswal’s state
machine identified only 75% of the timeouts events for
the ibiblio trace. This can be explained by the fact that
the ibi trace comes from predominantly Linux machines
and Linux uses a minimum timeout interval of ��������� ,
which is not modeled by Jaiswal’s state machine. For unc
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trace which predominantly consists of Windows machine,
Jaiswal’s code identified only 60% of the retransmission
due to duplicate acks. This happens because they use
a fast retransmit threshold of  duplicate acks while the
windows machines use a default threshold of � duplicate
acks. Thus, we can see that by modeling the implementa-
tion details of different stacks we are able to identify more
retransmission correctly.

3 Analysis of Lossy TCP Connec-
tions

The analysis methodology described in Section 2 gives
us the ability to: (i) identify actual packet losses among
the retransmissions within a connection, and (ii) identify
the triggering of different loss detection/recovery mecha-
nisms. We next apply our methodology to analyze TCP
connection traces collected from

�
different global loca-

tions. In this section, we first describe these data sources
and then present our characterization of the TCP loss de-
tection/recovery phases observed in each trace.

3.1 Data Sources

Table 1 describes the traces used in our analysis. These
traces are collected from links with transmission capacity
ranging from 10 Mbps to OC-48. The abi traces [3] are
collected from a backbone link of the Internet-2 network
(Abilene); the jap trace [4] is collected off a trans-Pacific
link connecting Japan to the US; the unc and lei [1] traces
are collected at the campus-to-Internet links of the Uni-
versity of North Carolina and University of Leipzig, re-
spectively; the ibi trace captures traffic served by a cluster
of high-traffic web-servers hosted at UNC (ibiblio.org);
the bel [2] trace collects traffic at the Internet link of a
laboratory at Bell Labs. All traces except the one from
the link to Japan were collected using Endace DAG cards.
The Abilene, Leipzig, and Bell Labs traces are from the
NLANR repository. Most traces, other than bel, represent
a fairly diverse and large population. The abi, lei, and bel
traces do not include SACK options.

For our analysis in the rest of this paper, we use only
those connections that transmit at least 10 segments. Fur-
thermore, since our objective is to study TCP losses, we
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select only those connections in which at least one seg-
ment retransmission is observed. Table 2 shows the im-
pact of applying the latter filter. While less than ���"!
of connections that transmit at least 10 segments also
retransmit some segments, these connections carry most
of the bytes in this class. This is further confirmed by
Figure 3, that plots the distribution of bytes transmitted
within lossy TCP connections as well as connections with
no losses, for the abi, ibi, and jap traces. We find that
within each trace, the average number of bytes transmit-
ted within lossy connections was significantly higher than
among connections with no loss. Furthermore, the traces
vary significantly in the distribution of bytes transmitted
per connection—this adds to the diversity of our results.
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Trace Duration Average TCP Load # Connections # Bytes # Packets
Abilene-OC48-2002 (abi) 2h 211.41 Mbps 7.1 M 190.3 G 160.1 M
Liepzig-1Gbps-2003 (lei) 2h 45m 9.53 Mbps 2.4 M 11.8 G 17.3 M

Japan-155Mbps-2004 (jap) 4h 1.93 Mbps 0.3 M 3.5 G 3.7 M
UNC-1Gbps-2005 (unc) 4h 74 Mbps 14.5 M 133.3 G 151.0 M
Ibiblio-1Gbps-2005 (ibi) 4h 90.64 Mbps 0.9 M 163.2 G 158.9 M

BellLabs-10Mbps-2002 (bel) 144h 0.82 Mbps 4.0 M 53.0 G 55.6 M

Table 1: General Characteristics of Packet Traces

Aggregate All Connections Lossy Connections
Trace Loss Rate # Connections # Bytes # Packets % Connections % Bytes % Packets

abi 0.7 % 388.9 K 180.1 G 148.5 M 17.60 % 68.11 % 68.85 %
lei 2.2 % 75.4 K 10.5 G 12.6 M 18.82 % 74.88 % 77.24 %
jap 6.7 % 18.5 K 3.3 G 3.1 M 48.65 % 96.08 % 93.44 %
unc 1.8 % 774.8 K 121.3 G 129.6 M 21.82 % 78.45 % 77.83 %
ibi 1.2 % 287.5 K 161.8 G 157.2 M 27.31 % 83.30 % 82.37 %
bel 0.7 % 368.4 K 50.2 G 51.6 M 42.09 % 80.67 % 83.58 %

Table 2: Characteristics of Connections That Transmit More Than 10 Segments

Figure 4 plots the distribution of loss rates observed
among the lossy connections (with losses estimated us-
ing the methodology described in Section 2). We find that
connection loss rates observed in our traces vary from less
than �$#&%�! to more then '��(! with most in the range of 1-
10%. Furthermore, the distribution of loss rates among
lossy connections varies significantly across the traces.
This illustrates the diversity of the data sets we are using
for our analysis.

3.2 Accuracy of TCP Loss Detection
Note that our analysis methodology of Section 2 lets us
classify a retransmission into one of four categories (also
see Figure 5):

) Explicit Retransmissions: As described in Sec-
tion 2.2, these are retransmissions that occur as a
result of an explicit triggering of TCP’s loss detec-
tion/recovery mechanisms. These mechanisms could
be one of

�
—RTO-based, TDA-based, PA-based,

and SACK-based.

Figure 5: Taxonomy of Retranmissions

) Implicit Retransmissions: These are the extra seg-
ments that get retransmitted after a timeout, but not
as a direct result of an explicit loss detection attempt
by TCP (examples given in Section 2.2).

) Network Reordering: Retransmission of segments
that are lost between the sender and the monitor ap-
pears mostly in the form of out-of-order (OOO) seg-
ments. These segments may be classified as either
explicit or implicit retransmissions by our analysis
programs. Some OOO segments, however, are not
due to retransmissions, but simply packet reordering
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Total Actual Explicit TCP retransmissions Network
Trace Retransmission % Loss % Timeout % Dupack % Partial Ack % Sack % Unexp Reordering

abi 1456.8.5 K 67.9 % 31.0 % 16.7 % 3.0 % 0.0 % 8.68 % 14.9 %
lei 338.9 K 80.6 % 41.0 % 11.0 % 5.2 % 7.0 % 0.2 % 15.1 %
jap 258.7 K 79.3 % 33.8 % 19.15 % 5.1 % 6.5 % 5.1 % 6.4 %
unc 2929.1 K 78.1 % 35.1 % 13.6 % 5.7 % 6.7 % 11.6 % 6.6 %
ibi 2502.0 K 71.6 % 31.0 % 16.3 % 5.9 % 0.3 % 0.5 % 4.0 %
bel 1935.1 K 18.4 % 14.0 % 3.29 % 0.8 % 0.5 % 43.3 % 32.1 %

Table 3: Classification of retransmissions seen
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on the path between the sender and the monitor.
) Unexplained Retransmissions: Finally, it is not fea-

sible for us to incorporate all variants of sender-side
TCP implementations in our analysis. Consequently,
we may not be able to explain some retransmissions
in some connections.

Tables 3 and 4 classify all retransmissions observed in
lossy connections, into one of the above four categories.
We observe that:

) Our state machines are able to classify 47-99.8% of
all retransmissions that appear in the traces. We be-
lieve this high rate of success has been achieved due
to the world-wide dominance of the Windows XP
and Linux OSes, which are incorporated in our anal-
ysis.

Figure 6 plots the distributions of the fractions of re-
transmission events within a lossy connection, that
are unexplained by our analysis programs. We find
that most of the unexplained events come from a
small fraction of connections.

) Nearly 1-10% of TCP retransmissions are im-
plicit, and occur without any explicitly loss detec-
tion/recovery attempt by TCP.

) Around 4-32% of OOO events occur as a result of
network packet reordering between the sender and
the monitor.

) TCP detects losses by RTOs 14-40% of the time, and
by TDAs 4-19% of the time. The large use of ex-
pensive RTOs is indicative of the inability of TCP to
use the faster FR/R under current traffic conditions.
1-6% and 0-7% of subsequent losses are detected in
FR/R by PAs and SACKs, respectively. Both of these
mechanisms help reduce the time spent by TCP in
detecting and recovering from multiple losses.

We see a large number of unexplained results in the bel
trace. We manually inspected these traces and found that
a large number of connections do not originate from any
of the TCP implementations that we have modeled.

TCP’s Loss Detection Accuracy For any retransmis-
sion, our analysis also attempts to find out if the re-
transmission was unnecessary (i.e., the original trans-
mission had successfully reached the receiver). We do
this by observing if the segment gets acknowledged be-
fore the retransmission time plus the minimum RTT of

8



Total Actual Implicit
Trace Retran % Loss % Unneeded % Retran

abi 1456.8.5 K 67.9 % 1.2 % 9.8 %
lei 338.9 K 80.6 % 1.9 % 7.0 %
jap 258.7 K 79.3 % 1.9 % 2.4 %
unc 2929.1 K 78.1 % 7.7 % 9.9 %
ibi 2502.0 K 71.6 % 0.6 % 1.1 %
bel 1935.1 K 18.4 % 0.04 % 2.8 %

Table 4: distribution of retransmissions

the connection—if so, the retransmission is unnecessary.
We identify unnecessary retransmissions in a post-timeout
phase by analyzing the pattern of ACKs generated in re-
sponse to the retransmission. For example, the retrans-
mission of segment 2 is unnecessary in Figure 1, as is
indicated by the generation of duplicate ACKs for it.

Table 4 lists the fraction of retransmissions that are un-
necessary in each of our traces. We find that this fraction
can range from 0-8%.

The table also lists the fraction of actual packet losses
that do not explicitly trigger TCP’s loss detection mecha-
nisms (and are recovered due to implicit retransmissions).
We find that this fraction ranges from 1-10%, indicating
that TCP is oblivious to this fraction of packet losses.

3.3 Characterization of TCP Loss Detec-
tion/Recovery

Our state-machine analysis is able to determine which of
three high-level states a TCP connection is in during its
entire lifetime: normal, detection, and recovery. We de-
fine the normal state for a TCP connection to begin with
the transmission time of the first data segment of the con-
nection or at the end of a recovery interval (defined be-
low). The normal state ends and the detection state begins
at the transmission time of the first segment that is ulti-
mately lost. The detection state ends and the recovery
state begins with the transmission time for the retrans-
mission of the lost segment that began the detection state.
The recovery state ends and the normal state begins with
the receipt of an ACK that includes the highest sequence
number in flight at the end of the detection period. Except
for the case discussed next, a TCP connection that expe-

riences losses cycles through the state sequence: (normal,
detection, recovery). The common exception to this se-
quence is that a detection interval (state) can be logically
embedded in the recovery state when multiple segments
in flight are lost and the loss is detected, for example by a
timeout. If a detection interval occurs during the recovery
state, the termination condition for the recovery state is
simply extended so that it ends with the receipt of an ACK
for the highest sequence number in flight at the end of the
embedded detection interval. We use the phrase “normal,
detection, recovery interval” to mean the duration that the
connection spends in the indicated state.

We can further refine the TCP detection and recov-
ery states by noting how a loss was detected – time-
out or 3 duplicate ACKs. Thus we can report results
for 5 TCP states:normal, detection-RTO, detection-TDA,
recovery-RTO, recovery-TDA. Note that for recovery in-
tervals that have embedded detection intervals, the initial
loss-detection condition is used to classify the TCP state,
e.g., if a recovery state is initiated because of loss detec-
tion by 3 duplicate ACKs, we report the results for the en-
tire recovery interval for recovery-TDA even though time-
out loss detections may occur during the recovery interval
(and, therefore, extend its duration).

In this section we provide a detailed examination of the
TCP mechanisms by characterizing loss processes with
respect to these states. Our motivation for doing this is
to better understand the dynamics of TCP loss detection
and recovery mechanisms and how they relate to the loss
processes experienced by a TCP connection. By relating
loss processes to TCP connection states we can examine
such issues as:

- How is the number of segments in flight related to the

9
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Figure 7: No.of segment in normal loss free runs
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Figure 8: Duration in RTT of normal loss free run

number of lost segments from that flight?
- How does the number of segments lost at the begin-

ning of (and during) a recovery interval relate to the dura-
tion of the recovery interval?

- How does the loss process during a recovery interval
(both retransmitted segments and new segments sent in
fast recovery) compare with the loss process elsewhere?

We believe the results reported in this section are the
first detailed examination of losses experienced by TCP
connections considering the current state of the TCP con-
nection when loss occurs.

Normal State When TCP is operating in the normal
state, we are primarily interested in the number of suc-

cessful segment transmissions and the duration of the in-
terval before a loss (recall that the transmission of a seg-
ment that is ultimately lost marks the end of a normal
interval and the beginning of a detection interval). Fig-
ures 7-8 give the distributions of the number of segments
transmitted in normal intervals and the normal interval
duration normalized to the current estimated RTT. The
RTT used for this normalization is computed as the cur-
rent weighted average at the interval’s termination using
the TCP weights: RTT = (7/8)*RTT + (1/8)*sampleRTT
where sampleRTT is measured for every segment yield-
ing a valid sample value according to Karn’s algorithm
instead of once per window as is done in most TCP imple-
mentations. The median number of segments transmitted
in normal intervals is in the 10-20 range across traces. For
some traces only about 20% of normal intervals contain
more than 20 segments while in others 20% of normal in-
tervals contain 100 or more segments. About 15% of nor-
mal interval last less than 1 RTT, the median duration is 5-
10 RTTs, and only around 10% last longer than 100 RTTs.
If most of these intervals represent times when TCP is in
congestion avoidance, the congestion window would have
limited opportunity to increase. Note that these results are
somewhat different from those in Figures 25-26 discussed
in section 3.4 that show similar distributions for loss-free
runs, including those that occur during detection or recov-
ery intervals.

Detection State When TCP is operating in the detection
state, we are primarily interested in (a) the number of seg-
ments in flight at the time the first loss is detected, (b) the
number of those in-flight segments that are also lost (the
number of outstanding lost segments at the beginning of
the recovery period), and (c) the duration, normalized to
estimated RTT, of the detection interval (the time between
the transmission of the lost segment and the time its loss
is detected). The latter is an indication of how effective
real TCP connections are at detecting loss so they can ini-
tiate recovery actions. The distributions of these metrics
are given in Figures 9-12 for detection-RTO states and in
Figures 13-16 for detection-TDA states.

In the vast majority of RTO cases (90%) there are five
or fewer segments in flight when a loss is detected. Com-
bined with our finding that a large percentage of loss de-
tections are by RTO this indicates that TCP windows are

10
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Figure 9: No. of packets in flight at detection-TO

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Fraction of flight lost before RTO

abi
bel
ibi

jap
lei

unc

Figure 10: Fraction of packets in flight that where
lost at detection-TO
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Figure 11: No. of Segments lost at detection-TO
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Figure 12: Duration in RTT for detection-TO inter-
vals
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often too small to allow for sending enough segments to
trigger detection of losses by three duplicate ACKs. As
expected from the small flight sizes, the number of seg-
ments lost in the flight is typically only 1 in about 70%
of detection-TO intervals and 2 in about 10%. Note that
in these traces we observe zero real losses in 5-30% of
TO intervals. These represent cases in which the ensuing
retransmission was unnecessary, primarily because one or
more ACKs were lost. We found that a non-trivial frac-
tion (about 20%) of timeout detections occurred in less
than 2 RTTs. As expected, the majority (roughly 60%) of
timeout detections happened in 3-5 RTTs while a substan-
tial number required more than 10 RTTs. These longer
intervals probably reflect the exponential growth in RTO
caused by losses of retransmissions. Analysis for the bel
show that for 50% of the connections, the minimum time-
out is itself greater than 100 RTTs. This result in the very
long detection durations for these connections.

As expected, we find almost double the segments in
flight when loss is detected by three duplicate ACKs when
compared with RTO detection. However, most (70%)
of the flight sizes fall in a relatively narrow range be-
tween 4 and 10 segments. Because these flights are larger
the number of lost in-flight segments also increases. In
50% of flights more than 25% of in-flight segments have
been lost when a loss has been detected by three dupli-
cate ACKs. From a timeliness standpoint, loss detection
by three duplicate ACKs is clearly effective. About 90%
of detection intervals require 2 or fewer RTTs. Unfortu-
nately this advantage is offset by our finding that RTO de-
tection is often required, probably because of small win-
dow sizes.

Recovery State When TCP is operating in the recov-
ery state, we are primarily interested in (a) the number
and fraction of additional segments lost during the recov-
ery interval, considering both retransmitted segments and
new segments sent in fast recovery, and (b) the duration
normalized to estimated RTT of the recovery interval (the
time between the detection of the initial lost segment and
the full recovery of all outstanding lost segments includ-
ing those that may be lost during the recovery interval).
The distributions of these metrics are given in Figures
17-19 for recovery-TO states and in Figures 20-22 for
recovery-TDA states.
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Figure 13: No. of packets in flight at detection-
TDA
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Figure 14: Fraction of packet in flight that were lost
at detection-TDA
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Figure 15: No. of segments lost during detection-
TDA
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Figure 16: Time in RTT for detection-TDA interval
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Figure 17: Fraction of packet lost during a
recovery-TO interval
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Figure 18: No. of segments lost during a recovery-
TO interval
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Figure 19: Time in RTT of the duration of
recovery-TO interval
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Figure 20: Fraction of packet lost during a
recovery-TDA interval

It is relatively rare for additional segments to be lost
during recovery after an RTO. In 75-95% of such recov-
ery intervals zero additional segments are also lost. When
losses do occur, in only a small percentage of intervals are
more than 2 or 3 additional segments lost. About half of
the RTO recovery intervals take around 1 RTT but a sig-
nificant fraction (20%) take more than 2-3 RTT. In four
of the traces, we found no significant differences in these
metrics between recovery after RTO and recovery after 3
duplicate ACKs (TCP’s fast recovery algorithm). In two
of the traces (Leipzig and UNC) there were noticeably
more segments lost in fast recovery.

Figure 24 shows the distribution of new segments trans-
mitted during recovery intervals initiated by RTO. Figure
23 shows the distribution of new segments transmitted
during recovery intervals initiated by 3 duplicate ACKs
(TCP’s fast recovery algorithm). Comparing these two
figures gives a indication that increasing the congestion
window for additional duplicate ACKS during fast recov-
ery is effective in keeping more segments in flight (be-
tween 10 and 35% of recovery intervals transmit 2 or
more new segments with fast recovery compared with 5%
of interval that transmit 2 or more new segments during
recovery after RTO). Combined with the finding that very
few transmissions during recovery are themselves lost,
this indicates that fast recovery can achieve the desired
effect of helping keep new segments entering the network
as old segments depart.

3.4 General Loss characteristics
We next report the results from analyzing segment losses
in TCP connections without considering the state of the
connection with respect to loss detection and recovery.
One of our objectives in reporting the results in this sec-
tion is to see if measurements taken from more recent
traces and analyzed with a more comprehensive state ma-
chine approach confirm prior reported results. In con-
sidering the results we report in this section it is impor-
tant to avoid interpreting them as indicative of the inher-
ent packet-loss processes along the paths traversed by the
connections. Because TCP fundamentally operates in a
“closed loop” process where losses cause TCP to adapt
its sending rate downward, the losses observed by the con-
nection are likely to be reduced as a result. Further, other
TCP connections that share congested path segments with
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Figure 21: No. of segments lost during a recovery-
TDA interval
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Figure 22: Time in RTT of the duration of a
recovery-TDA interval
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Figure 23: Number of Segments transmitted in
recovery-TDA
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Figure 24: Number of Segments transmitted in
recovery-RTO
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the TCP connection being analyzed are likely to observe
losses also and adapt their sending rates to achieve fewer
losses. As discussed in [14] this points out the problem
with trying to infer Internet loss rates using data collected
with a mechanism (TCP) whose goal is to reduce what
we are trying to measure. To determine overall Inter-
net packet loss rates, sampling approaches that don’t use
TCP to send packets are preferred (see for example [18]).
Our results should be interpreted as characterizing the loss
processes actually experienced by TCP connections as in-
fluenced by both inherent network conditions and the TCP
adaptive mechanisms.

In our analysis of loss we follow the notations used
in [18]. We encode the sequence of segment transmis-
sions within each TCP connection as a binary time series
(with necessarily unequal time spacing) where a success-
fully received segment is represented by 0 and a lost seg-
ment is represented by 1. We then apply simple counting
functions to the time series for each connection to count
the number of segments represented by sequences of con-
secutive 0 values (“loss-free runs”) and consecutive 1 val-
ues (“loss runs”). A run, either loss-free or of losses, at the
end of the connection is not included to avoid a bias to-
ward underestimating run lengths. For each TCP connec-
tion, we also record a second time series consisting of the
time at which the segment was transmitted (for both suc-
cessful and lost transmissions). Using these time stamps
along with the counting functions on the binary time se-
ries we can determine the duration of loss-free and loss
runs. As we did in reporting results in earlier sections, we
consider only those connections that transmit 10 or more
segments and that have 1 or more of those segments that
are retransmitted.

Figure 25 shows the distribution of the number of seg-
ments in loss-free runs over all the connections analyzed.
The median loss-free run is approximately 10 segments
and loss-free runs of more than 100 segments are rare.
These results indicate significantly longer loss-free runs
than reported by Allman, et al [6]. For example, we find
that 40-50% of loss-free runs are more than 10 segments
while they found about 15% longer than 10 segments. The
distribution of the durations of loss-free runs is shown
in Figure 26 for durations normalized to the current es-
timated RTT of the connection. Note that as in previous
sections, the RTT used for this normalization is computed
as the current weighted average at the run’s termination
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Figure 25: No. of segment in loss free runs
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Figure 26: Duration in RTT of loss free runs
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Figure 27: No. of consecutive segments lost
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Figure 28: Duration in RTT of loss run

using the TCP weights: RTT = (7/8)*RTT + (1/8)*sam-
pleRTT where sampleRTT is measured for every segment
yielding a valid sample value according to Karn’s algo-
rithm instead of once per window as is done in most TCP
implementations. The median loss-free duration is about
10 RTT while those lasting more than 100 RTT are infre-
quent.

Figure 27 shows the distribution of the number of seg-
ments in loss runs over all the connections analyzed.
Around 75% of loss runs are a single segment and ap-
proximately 90% are at most 2 segments. These results
are quite similar to those reported in [6] and [17]. The
distribution of the durations of loss runs is shown in Fig-
ure 28 for durations normalized to the current estimated
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Figure 29: Conditional probability of loss
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Figure 30: No. of continuous losses when one or
up to 3 successful retransmission are neglected
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RTT of the connection. Since loss runs are at most a few
segments, most durations last only a fraction of an RTT.
We note however, that approximately 10% of loss runs
occur over durations longer than 1 RTT with some last-
ing more than 100 RTTs. The most likely explanation
for this observation is that several consecutive retransmis-
sion are lost, each being sent after longer intervals as the
RTO timer backs off exponentially. Another issue to con-
sider is to what extent do the losses observed by TCP of-
ten appear as ”bursts” of consecutive (correlated in time)
losses as analyzed in [15]. One direct indicator that losses
are not independent can be obtained by comparing the
overall unconditional loss probability with the conditional
loss probability conditioned on the event that the previous
packet was lost [15]. For each TCP connection we com-
puted its unconditional loss rate and its overall conditional
loss probability considering all the lost segments. Figure
29 shows the distribution of conditional loss probabilities
per connection for all the traces (refer to Figure 4 for the
unconditional loss rates). The conditional loss probabili-
ties per connection vary substantially from trace to trace
indicating that network conditions leading to correlated
losses (e.g., persistent full queues) may be quite different
in parts of the Internet. Interestingly, a substantial num-
ber of connections had a conditional loss probability of
zero (ranging from 30% of connections in one trace to
90% in another with most in the 40%-60% range). The
number of connections with conditional loss probability
of 0.50 or greater ranges from 40% to 10%. Overall, this
seems to indicate that in many connections all losses ex-
perienced are independent events but in others losses are
strongly correlated. This could imply that a single loss
model (independent vs correlated) is not appropriate for
all TCP connections.

For the results shown in Figures 27-28, loss runs are
considered to be terminated by a single successful seg-
ment transmission. Because one successful transmission
may occur even during a loss episode in which almost all
segments are lost, treating a loss run as ending at a single
successful transmission may tend to underestimate the im-
pact of bursts of losses. We examined this issue by relax-
ing the termination condition for counting the number of
segment in a loss run. We tried requiring both 2 and 4 suc-
cessful transmissions to terminate the count of segments
in a loss run. The distribution of the number of segments
in loss runs over all the connections in three of the traces

is shown in Figure 30 using these new termination condi-
tions (results for the other three traces are similar). While
the change tends to produce somewhat more longer runs,
we conclude that the differences are not substantial.

4 Related Work

There is a considerable body of work on passive analy-
sis of TCP connections and its loss characteristics. Tcp-
trace [5] is one of the many tools available for pas-
sive analysis. However, these tools do not maintain
enough state to accurately infer the loss characteristics
TCP. In [10], the authors has proposed a state machine
based approach for analysis of TCP connections. They
find that 9-19% of retransmission seen in the backbone
where unneeded while 7-25% of out of sequence events
were because of packet reordering. In [6], the authors
have presented a method to passively estimate unneeded
retransmission occurring after a timeout. They found that
on an average 33% retransmission in Reno implementa-
tion and 2% of retransmission for Sack TCP implementa-
tion were unneeded. 60% of loss events were identified as
singleton events.

There has also been considerable work on loss charac-
teristics of a path using active measurements. [7] and
[14] study the correlation between packet losses. Both of
them found that if an earlier packet is lost the next packet
is much more likely to be lost. [15] and [18] study the
loss periods using active measurements. 95% of the loss
periods seen by [18] were smaller than �*������� .In [15],
the author observed that the outage duration spanned an
order of magnitude. While 10% of the outages lasted less
than 33ms there was 10% of outages which lasted more
than 3.2 seconds.

Finally, we look at some work on identifying TCP be-
havior. In [13], the authors have propsed an active meth-
ods of estimating the TCP protocols used and their im-
plementation details.Alberto [12] used the tbit tool and
identified the behavior of a large number of servers over
a difference of  years. They found that currently almost
68% of servers use sack information. This highlights the
importance of using sack information for TCP analysis.
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5 Concluding Remarks
We have developed a state machine based approach to
passively identify loss events for TCP connections. To
account for the diverse and non-documented TCP stacks,
we have developed several versions of our state machines
for many important variants. We demonstrate the effec-
tiveness of our method in classifying retransmissions and
associating the losses with TCP’s detection and recovery
mechanism.

Using the state machines, we conducted a large scale
study of diverse set of traces. Few of the interesting ob-
servations we made were as follows. 40% of loss detec-
tion occurs due to timeouts. This happens mainly because
of TCP’s inability to reach large window sizes in the pres-
ence of losses. Average run of normal phase is only 5-10
RTTs. 5-30% of detection due to timeout occurs because
the ack is lost and not the data packet. As expected, 30%
of timeouts occur in 3-5 RTTs while 90% of detection due
to duplicate acks take place in less than 2 RTTs. TCP ex-
periences no more than 2 consecutive losses 91% of the
time; however, 20-30% of loss-recovery takes more than
2 RTTs. Finally, we find that while there are a few connec-
tions for which the loss events are independent, there also
exist connections where the loss events are highly corre-
lated. This has significant implication from modeling per-
spective because an assumption about loss independence
cannot be made in either direction.

In our opinion, this is the first attempt at studying the
loss events as they occur in the TCP detection and recov-
ery interval. The implementation sensitive state machine
approach can also be used to address a wide range of re-
search questions like the growth of congestion windows in
a connection, validation of assumption made in models,
etc. Currently we are working on improving the perfor-
mance of the state machine in terms of identifying more
TCP variants.
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