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ABSTRACT
We present formal analysis methods and results from SPQR,
the System for Pattern Query and Recognition, a toolkit
that detects instances of known design patterns directly
from object-oriented source code in an automated and flex-
ible manner. Based on previous work in rho-calculus (ex-
tended Abadi/Cardelli sigma-calculus) and Pattern/Object
Markup Language (POML), the SPQR toolset is easily re-
targetable to any OO language, though our current results
are for C++ programs. In this paper we present an overview
of the current SPQR implementation, as well as both posi-
tive and negative results from running this tool on produc-
tion C++ code. We also discuss some of the more intriguing
analyses that were made possible.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—design languages, object-oriented languages; D.3.3
[Programming Languages]: Language Constructs and
Features—patterns; F.4.1 [Mathematical Logic]: [lambda
calculus and related systems]; D.2.11 [Software Engineer-
ing]: Software Architecture—patterns; D.2.7 [Software En-
gineering]: Distribution, Maintenance, Enhancement—re-
structuring, reverse engineering, and reengineering ; D.2.8
[Software Engineering]: Metrics—complexity measures,
performance measures; D.3.1 [Programming Languages]:
Formal Definition and Theory

General Terms
design, languages, measurement, theory

Keywords
design patterns, elemental design patterns, sigma calculus,
rho calculus, pattern decomposition, pattern identification,
refactoring, education

1. OVERVIEW

Design patterns have been one of the more successful soft-
ware innovations of the past decade, helping engineers pro-
duce high-quality software by describing a common language.
They are, however, a one-way technology for all practical
purposes. Finding implementations of design patterns in
source code has been difficult, but would greatly benefit
the comprehension of large systems, training of new engi-
neers, and the validation of design. Current and previous
attempts at detecting design patterns have been based on
the detection of source code constructs. Design patterns are
not properly thought of as constructs however, but as con-
cepts. This mismatch has been at the root of the lack of
practical pattern detection.

The System for Pattern Query and Recognition (SPQR) is
a research project that takes a different approach: treat-
ing design patterns as the embodiment and encapsulation
of concepts, not constructs. This enables the treatment
of object-oriented systems as a graph of related concepts
of programming. Defining the mapping between the static
constructs in source code and the flexible abstract concepts
such that they can be reliably detected is a task with several
distinct stages.

Analyzing the base literature of design patterns, namely the
seminal Design Patterns text[13], reveals many shared con-
cepts between patterns that fulfill very different purposes.
By deconstructing the established patterns into subpatterns,
we can show well formed relationships between more fun-
damental concepts of programming. In taking this to its
logical conclusion, we have established a set of Elemental
Design Patterns (EDPs). These are binary relationships be-
tween elements found directly from source code: objects,
methods, fields, and types. As such, the EDPs are immedi-
ately detectable from source code, and can be considered the
DNA of programming, but from the viewpoint of concepts,
not constructs. They form the core of what we call Concept
Oriented Programming. Design patterns are an aspect of
COP, and provide a wonderful ready-made validation suite.

Once these fundamental pieces of design patterns have been
detected from source code, we build them back into the
higher level abstractions for which we are searching. We
have extended the sigma-calculus of Abadi and Cardelli[1] to
rho-calculus[28], which defines how these conceptual items
can interrelate. Rho-calculus also defines these interrela-
tionships as a series of reliances, which we have formalized



as reliance operators. Reliance operators describe how the
EDPs can be integrated back into larger design patterns in
well-formed and precise ways. Transitivity operations allow
these integrations to be extremely flexible with respect to
the original source code. The same concept can be written
in a myriad of ways in source code, which we term iso-
topes[25, 28], but the rho-calculus and EDPs capture them
all through formal means.

Formalized EDPs and rho-calculus provide a unique oppor-
tunity: using formal theorem proving techniques to deduce
relationships of note within a system. These inferences can
be performed using an automated theorem prover such as
Otter from Argonne National Laboratories. Using our de-
tected EDPs from a source code base and the rho-calculus as
inputs, we can query Otter about the existence of higher
level patterns quickly and methodically. The results are con-
sidered potential patterns due to the currently highly con-
servative nature of SPQR. It is much quicker, however, for
an engineer to double-check the existence of a pattern whose
location is known, than to find it in the first place.

The results from SPQR can then be used to provide feed-
back to the architects of a system, establishing the presence
(or absence) of patterns they intended to be implemented.
It can also, perhaps more interestingly, find unintentional
patterns, giving designers an opportunity to make hidden
functionality more explicit in the design. To take this fur-
ther, SPQR can be trained to detect any relationship of
concepts that one wishes to find, leading to the possibility
of finding pattern fragments. These last two features can
be used as the inputs for a refactoring plan, and SPQR can
then establish the validity of the final product.

The lingua franca of SPQR is the Pattern Object Markup
Language (POML), an XML schema designed specifically
to map the salient features of sigma- and rho-calculus into
an easily parsed format. Currently, POML is used as the
input and output format for SPQR, with a sequence of XSL
transforms providing the translations between the necessary
forms, including human-ready charts and reports. Other
XSLs have been created to quickly produce code metrics
on any code base that has been reduced to a POML form.
Because of this, source code written in any language that
can be mapped to sigma-calculus can be analyzed in a simple
and methodical manner. This allows comparison of diverse
code bases in differing languages to be performed on an equal
footing.

SPQR was designed to be a practical toolset for engineers
while providing a robust platform for future research. It
has the necessary ease of use and flexibility that real world
situations demand, but retains a rich formal basis. The
choice of using an automated theorem prover has proven
to be important, as it allows for deductive reasoning to be
performed efficiently on large systems.

For ease of reading, we will defer a discussion of related
research in this area until the end of the paper.

2. SPQR: FORMALISMS
We will not provide a full review of the formal foundations
of SPQR here. We instead refer the reader to our previous

publications for a more formal treatise[24, 25, 26, 27, 28,
29]. A brief summary is, however, in order.

Two primary elements comprise SPQR’s formalisms: a cat-
alog of programming concepts derived from analysis of the
design patterns literature, the Elemental Design Patterns
(EDPs), and a formal semantics for combining and interre-
lating those concepts, called the rho-calculus, or ρcalculus.

EDPs are a series of relationships between exactly two en-
tities of object-oriented programming: objects, methods,
fields, and types[1]. They indicate the core concepts of how
these entities, primarily objects, interact with each other.
Method invocation, typing, and field accesses are examples
of this interaction. These are extremely simple pieces of pro-
gramming that practitioners use regularly, usually without
much consideration. We have cataloged some of these rela-
tionships as EDPs, and have provided extensive descriptions
using the format of the design patterns literature. In this
manner, we have brought these ubiquitous elements of pro-
gramming out of the realm of ‘unselfconsciousness’[2] and
into a common language and terminology.

By creating a well-formed catalog of such concepts which
concentrate on binary relationships, finding these EDPs di-
rectly and quickly in source code becomes possible. We seek
to provide a formal basis for the description of EDPs and to
make them more useful in the aggregate.

Rho-calculus, a synthesis of Abadi and Cardelli’s sigma-
calculus[1], and a small suite of semantics for describing rela-
tionships between entities is that formal basis. We call these
semantics reliances and use them to describe relationships
such as dependence, coupling and cohesion. Sigma-calculus
allows us to unify the various language features of object-
oriented languages, and rho-calculus allows us to treat a
multitude of traditional dependency analyses in a similarly
unified manner.

Given that under sigma-calculus the only entities that can
exist are objects, methods, fields, and types, and that fields
are merely scoped objects, we can produce five reliance op-
erators that capture the essence of reliances within sigma-
calculus. These are: inheritance (typing relation), mu (one
method invokes another method), phi (method uses a field),
kappa (a field relies on another field for its value), and sigma
(a field relies on another method for its value). These are
indicated by the notations: <:, <µ, <φ, <κ and <σ respec-
tively[28].

Following the model set forth by Abadi and Cardelli, these
five reliance operators have their own forms of transitiv-
ity and interoperation. These forms are embodied in the
rho fragments, which, when combined with the fragments of
sigma-calculus, form the complete rho-calculus.

These transitivities and interrelations allow us to recombine
EDPs into higher level abstractions, such as the Gang of
Four patterns, in a precise and meaningful way. By us-
ing a dictionary of concepts to describe interactions, we can
leverage the transitivities to map to a large number of im-
plementations of these concepts in source code, and search
over a large inferable space of relationships to find particu-



lar combinations. That dictionary is our EDP catalog, the
conceptual glue the rho-calculus, and the inference engine
the automated theorem prover Otter .

2.1 An Example EDP
As a short example, consider one of the most basic uses of
the mu-form reliance operator: a.m <µ b.m. Method m
of object a relies on a call to method m of object b. The
equality of method names is not accidental, but deliberate.
We term this relationship the Redirect EDP. It is directly
detectable in source code as a method call from a.m to b.m,
and should be obviously transitive. Though not entirely use-
ful or insightful on its own, we can apply a inheritance typing
relation to Redirect, resulting in a slightly more interesting
EDP: RedirectInFamily. RedirectInFamily, shown in Figure
1, illustrates that we are imposing a typing relation between
two distinct objects, such that for object a : A and b : B,
A is a subclass of B, or A <: B. This pattern encapsulates
the core basis of polymorphism in a family of classes, hence
the ‘InFamily’ descriptor, by sending a request to the top
of a tree of inherited classes, and allowing polymorphism to
select the proper implementation.

FamilyHead

operation()

Redirecter

operation()

target

target.operation();

Figure 1: Redirect In Family EDP

This EDP is a component of a number of more useful pat-
terns, such as Decorator[13], but it would be of little utility
if we were required to implement it precisely as shown every
time. Because we have described RedirectInFamily as a se-
ries of reliances, we can also find an instance of it in Figure 2,
in what we term an isotopic form. In this form, conceptual
integrity is retained, but flexibility is allowed and accounted
for.

3. SPQR: IMPLEMENTATION
We describe here our chain of tools from the viewpoint of
a practitioner using them. SPQR comprises several compo-
nents, as shown in Figure 3. From the engineer’s point of
view, SPQR is a single tool that performs the analysis of
source code and produces a final report. A simple script
provides the workflow by chaining several modular compo-
nent tools, which are centered around the tasks of source
code feature detection, feature-rule description, rule infer-
ence, and query reporting.

In SPQR, source code is first analyzed for particular syn-
tactic constructs that correspond to the ρ-calculus concepts

FamilyHead

operation()

Redirecter

operation()

mediary

mediary.operation2();

Mediary

operation2()

object

object.operation();

Figure 2: Redirect In Family EDP Isotope
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Figure 3: SPQR Toolchain

we are interested in. It turns out that the ubiquitous gcc

has the ability to emit an abstract syntax tree suitable for
such analysis. Our first tool, gcctree2poml, reads this tree
file and produces an XML description of the object structure
features. Figure 4 is an example of how RedirectInFamily
might look as rendered from source code. We chose an in-
termediate step so that various back ends could be used to
input source semantics to SPQR. A second tool, poml2otter
then reads this Pattern/Object Markup Language (POML)
file and produces a feature-rule input file to the automated
theorem prover. In the current package we are using Ar-
gonne National Laboratory’s Otter. Otter finds instances
of design patterns by inference based on the rules outlined
in this paper. Figure 5 shows the input to Otter for the
RedirectInFamily EDP. Finally, proof2pattern analyzes the
Otter proof output and produces a POML pattern descrip-
tion report that can be used for further analysis, such as the
production of UML diagrams.

Each stage of SPQR is independent and was designed to al-
low other languages, compilers, workflows, inference engines,
and report compilation systems to be added. Additionally,
as new design patterns are described by the community, per-
haps local to a specific institution or workgroup, they can
be added to the catalog used for query.



<object>
<name>r</name>
<type>Redirecter</type>
<method>

<name>operation</name>
<calls>

<objectname>fh</objectname>
<methodname>operation</methodname>

</calls>
</method>

</object>
<object>

<name>fh</name>
<type>FamilyHead</type>

</object>
<class>

<name>Redirecter</name>
<parent>FamilyHead</parent>

</class>

Figure 4: RedirectInFamily as POML input

all Redirecter FamilyHead r fh operation (
(Redirecter inh FamilyHead) &
(r : Redirecter) &
(fh : FamilyHead) &
((r dot operation) mu (fh dot operation)) &
(r phi fh) ->

(RedirectInFamily(Redirecter, FamilyHead,
operation))

).

Figure 5: RedirectInFamily as Otter input

The current gcctree2poml targets C++ specifically, creat-
ing a mapping from the language elements to rho-calculus,
and then representing this as POML. C++ has proven to
be an interesting challenge, but has ultimately shown to be
representable in rho-calculus rather elegantly.

4. EXPERIMENTAL VALIDATION
We are currently running experiments designed to test the
limits of SPQR in a real world environment, with code that
is legacy derived, refactored, and under active maintenance.
It is anticipated that these tests will further prove the practi-
cal nature of the SPQR methodology and lead to refinements
for scaling to yet larger test cases.

4.1 Test cases
The TrackerLib is a research quality framework for video
stream real-time object tracking that has been used in sev-
eral of our published research systems[31, 30, 32]. Several
years ago it was initiated from a refactoring of established
research code to provide an object-oriented, and more im-
portantly, conceptually clean architecture for future main-
tenance. To this end, design patterns were used as the main
guiding force. This is a reasonable test case for the SPQR
formalisms and tools. It is in a target language (C++), it
compiles cleanly with a supported compiler (gcc3.3), and it
is of sufficient but not unmanageable size (approximately
8kLOC). Design patterns were used in the re-architecting,
but have not been validated across the subsequent mainte-
nance and refactorings, archived in a Concurrent Versioning

System (CVS) repository. It is of sufficient size and complex-
ity to produce a serious test of the scalability issues under
investigation, and yet small enough that hand-checking can
be performed on subsets if necessary. One of those subsets,
NotificationCenter, contains an implementation of a Single-
ton pattern. We present the analysis of NotificationCenter
here in anticipation of leading into a more thorough analysis
of TrackerLib including following the evolution of the code
through time and observing the shifting pattern instances.

KillerWidget is an example we have used from the early
days of SPQR, and it is modeled after a problem encoun-
tered by the first author while working at a flight simulator
and graphics company[28]. Unfortunately, the original code
is not available, but the salient details necessitating a deduc-
tive search process are retained. A Decorator pattern exists
in the structure, but it does not follow the ’standard’ form
provided in [13]. Instead, there is a level of indirection that
static pattern structure detectors would be hard pressed to
work through to find the pattern instance. Indeed, it took
three engineers familiar with the original code many weeks
of analysis to uncover the basic pattern and deduce the be-
haviour. We expected that SPQR’s use of isotopes to allow
flexibility in the pattern instance would be able to find this
as easily as a direct example.

Between NotificationCenter and KillerWidget, we have two
patterns from the Gang of Four literature (Singleton and
Decorator) that provide coverage of the majority of the EDP
catalog and illustrate both structural and behavioural pat-
terns. The test case implementations illustrate both direct
and hidden pattern instances.

A third test case is the C++ std namespace. A single C++
file containing includes for the entirety of the namespace was
compiled and analyzed. While this certainly missed paths
of code that would be generated from templates when the
namespace elements were actually used, it provides at least
a baseline for reasonable expectations.

4.2 Methodology and results
We follow our earlier experiments with SPQR using much
the same methodology. In each test case, an existing build
system was augmented with one change to the gcc flags:
the addition of the --dump-translation-unit and --dump-

classes diagnostic flags. These produce raw gcc dump
files, *.tu and *.class forms respectively. The gcc2poml

tool was then used to convert these to the Pattern Object
Markup Language (POML). In the KillerWidget and Noti-
ficationCenter cases, the std namespace code was filtered
out, leaving only the code of interest. (Obviously, during
the analysis of std, this did not occur.) An XSLT trans-
form was then used to convert these descriptions to input
to the Otter automated theorem prover[15]. POML has
proven more than adequate to extract the necessary Otter
rules, and simultaneously describe the various patterns to
search for.

Table 1 shows some performance and size metrics for the
test cases. Code size is measured as strictly the code that
was fed directly to gcc and later tools - obviously there is a
lot of C++ library code that is being pulled in, particularly
in the case of std. We omit the *.class files since they are



in general an order of magnitude (or two) smaller than the
corresponding *.tu files. POML file size includes debugging
information used to map the results back to the original *.tu
file. Removing these produces on average an 18% file size
reduction.

Killer- Notification- std
Widget Center

File Sizes
C++

kB 0.8 28.1 0.5
LOC 48 1083 31

gcc .tu
kB 202.5 49516.5 14484
# of Nodes 1768 217805 137637

POML
kB 47 491.4 631.9
classes 8 58 1542
objects 7 65 512
methods 46 904 8404
fields 4 317 2015

Otter
rules 171 2227 30322

Timings (sec)
gcc 0.233 6.9 7.9
gcc2poml 6.51 244.8 262.9
spqrsearch 9.5 29.5 1929.9
Total

Table 1: Test Case Metrics

Timings were gathered through timing mechanisms internal
to the tools, and averaged over three runs. The test hard-
ware was an Apple 1.25GHZ G4 PowerBook with 512MB
of RAM running MacOS X 10.3.9. Timing information for
the spqrsearch phase is dependent on the search space be-
ing traversed. SPQR can be used in a validation manner,
or top-down approach, looking for a specific pattern and
allowing SPQR to determine the appropriate hierarchy of
dependencies and then efficiently search for all, but only
those dependencies. Alternately, SPQR can be used in a dis-
covery mode, or bottom-up approach, looking for any and
all EDPs that exist, then moving up to the Intermediate
patterns, then finally attempting to find whatever Gang of
Four patterns might exist in the code. Obviously, this lat-
ter method is much more time-consuming. The timings for
KillerWidget and NotificationCenter are for using SPQR to
find the specific pattern assumed to exist in the code, vali-
dating its existence. The std timing is for the exploratory
approach, looking for any and all EDPs, then moving up to
the Intermediate patterns, and so on.

Analysis proves the existence of a large number of EDPs, as
would be expected from their simple nature, yet the num-
ber of false positives for the more complex patterns is not
reaching the levels that were once expected. Instead, the
current code size is such that extraneous inferences that,
while correct, are not of particular usefulness, are minimal.
It is possible that larger systems will produce logically valid
inferences of patterns that are simply accidental, and not
relevant to the architecture. In such cases, limits can be im-
posed on the depth of inference chains traversed by Otter,
a simple change to the Otter input ruleset.

5. LESSONS LEARNED
SPQR provided affirmation of the existence of the expected
patterns from EDPs through particular Gang of Four pat-
terns. In addition, the experiment produced a few surprises.

5.1 Expected Validation
As can be seen in Table 2, SPQR found the expected pat-
terns: KillerWidget contains a non-direct Decorator pat-
tern, requiring inference to deduce the existence through a
number of intermediate classes, and NotificationCenter uses
a Singleton at its core to ensure single-point access to a
global event registration system. The large number of Del-
egate EDPs in each example is due to how gcc sets up ob-
ject allocation and memory management through a series
of nested calls between the constructors of a class (repre-
sented in POML and Otter as a ClassObject, as indicated
by rho-calculus), and potentially several functions that have
been represented as methods of the GLOBAL ClassOb-
ject. Refinement of the POML production tools can remove
many of these Delegate hits that while correct, are not of
particular interest.

Note that the two codebases were created with only the
highest level patterns (Decorator, Singleton, respectively) in
mind, yet a large number of smaller patterns were detected.
This is the result we expected, given the ”building block”
or ”isotopic” nature of EDPs.

5.2 Insights From Analysis
Of greater importance, perhaps, is an item that appeared
while performing the above experiment. SPQR initially did
not find the Decorator pattern while analyzing KillerWid-
get. SPQR reported appropriate EDPs and Intermediate
level patterns, but not Decorator. This prompted a care-
ful reassessment of the formalisms and relationships of the
patterns, but nothing seemed out of place. After much con-
sideration and work, we inspected the source code being
analyzed, and a subtle bug was found. SPQR was correct,
and the code was not, because a typo was calling the wrong
method. This gives us much hope in using SPQR for de-
termining the adherence of source code to an architectural
specification.

The std namespace provided a couple of interesting results
as well. Notice the tremendous number of DelegateInLimit-
edFamily EDP hits. This was entirely unexpected, and war-
ranted a closer inspection. We performed a lexicographical
sorting on the data in order to detect patterns through man-
ual reading. It quickly became obvious that almost every
instance occured in the std::locale, std::exception and
std::stream subsystems, with six common methods. This
began to make sense, once we looked at the implementations
of these subsystems. Each has a rich forest of classes that
work in concert, and inherit from one or two common base
classes. It would be expected to find a significant number of
DelegateInLimitedFamily EDPs in such a case. DelegateIn-
LimitedFamily, as the name suggests, is a Delegate EDP
that performs its method invocation on an object not of a
parent class, as in RedirectInFamily, but rather in a sibling
class, hence the ‘Limited’ nomenclature. This approach is
common, and can indicate a tightly coupled module, or can
illustrate a potential hot cluster of overactive dependencies.
A quick analysis of how many methods in the active classes



which are part of this weave, and the number of interwoven
classes and their relationships, should be able to distinguish
between the two in all but a handful of border cases.

A second grouping that emerged was repeated DelegateIn-
LimitedFamily occurrences with the same sibling classes,
but a different base class. A moment’s reflection provided
the reason. Take for example the hierarchy in Figure 6,
drawn from the std example. DelegateInLimitedFamily has
criteria that include that the Delegator and Delegatand be
sibling classes, or inherited from the same base class. In this
case the Delegator is domain error, and the Delegatand is
length error. Both inherit off of the logic error class,
and this rule is satisfied. Note however that both of these
classes also inherit from the exception class, leading to a
second instance of DelegateInLimitedFamily, all else being
equal.

Killer- Notification- std
Widget Center

EDPs
CreateObject 7 15 1009
Inheritance 4 3 208
AbstractInterface 2 - 38
Retrieve - 6 201
Conglomeration 20 - 204
Delegate 137 302 844
Delegated-

Conglomeration 20 52 302
DelegateInFamily - - 1127
DelegateIn-

LimitedFamily - - 24192
Recursion - 4 64
Redirect 20 14 259
Redirected-

Recursion - 4 64
RedirectInFamily 3 - -
RedirectIn-

LimitedFamily - - -
ExtendMethod 1 - -
RevertMethod - - -
Intermediate
FulfillMethod 8 - 76
Objectifier 12 - 16
ObjectRecursion 17 - -
RetrieveShared - 6 90
Gang of Four
Decorator 2 - -
Singleton - 1 -

Table 2: SPQR Results

This brings us to an important point: that while many EDP
hits will be logically correct, they may not be of particu-
lar interest to an engineer attempting to comprehend the
system. The logic error based DelegateInLimitedFamily
pattern is probably the only one that is necessary to gain
insights on the code at hand, yet the exception based in-
stance will also be reported. The question then becomes
how best to manage a level of detail for the engineers, lead-
ing them to conceptual cues without swamping them with
correct but essentially duplicate results? We must also bal-

ance this desire to cull extraneous results with the need to
include such logical inferences in the proofs of much larger
searches. This is, after all, the entire reason for the produc-
tion of SPQR.

logic_error

op()
op2()

domain_error

op1()

length_error

op2()

exception

op()
op2()

Figure 6: Example DelegateInLimitedFamily Hier-
archy

We assume that simpler is better, in that the most refined
and basic form of a reported pattern will be the simplest to
find and understand in the code. To this end, we use the
ignore utility of Otter to produce a running weight for in-
ferred rules. The $IGNORE element allows us to tag rules
with generated values, in this case the total proof lengths
leading to the current inferred rule, and Otter will du-
tifully ignore that data when making inferences. We can
use this data to cull out reported patterns at a later stage,
however, setting a threshold as appropriate. Post-analysis
tools could report, for instance, only the smallest weighted
instance for a particular combination of satisfiers. In the
above case, it would be possible to report the logic error

based pattern, and cull the exception based one. Note that
this in no way interferes with Otter deducing much richer
and deeper patterns that may require the exception based
instance as a satisfier, or using that instance to infer yet
deeper rules that lead to more complex and insightful de-
sign pattern instances.

5.3 Automated Training Support
One concern when dealing with formal methods such as
those behind SPQR is that it will require practitioners to
become ad hoc theoreticians or formalists. That is not the
case with SPQR, as it was designed from the beginning to
be a practical tool for the average software engineer.

Trainability of SPQR has also become of practical impor-
tance in our research, as we continue to extend the capa-
bilities of the system and the coverage of its search catalog.
Again, POML is the key to the practicality of SPQR, and
a training cycle has become evident in our work with it.



Assume that a group or developer has defined a new pat-
tern that they wish to have SPQR search for. It would be
cumbersome to require users to have a deep knowledge of
rho-calculus and the formalisms at the core of SPQR. In-
stead, SPQR can be used to train itself.

First, a canonical form pattern is written in the source lan-
guage of choice. This source code should be as basic as
possible, capturing only the salient and necessary features
needed to define the pattern. This may prove more difficult
than at first it seems - distilling a pattern down to the min-
imal canonical form is more difficult than one would think,
yet is the very essence of the art of pattern definition, no
matter the form. SPQR’s exploratory mode (as seen with
the std namespace) can assist here, by producing a compre-
hensive analysis of the exemplar code, and using the above-
mentioned weighting system to provide a minimal necessary
description. Inferred EDPs, sub-patterns, and patterns will
be reported, but in the most direct form possible. This
gives feedback to the engineer that they are either on the
right path, or need to somehow alter their code to fit their
expectations.

The minimized code is then run through SPQR in exploratory
mode a final time, and the POML results used to form the
basis of a new search definition. A new POML element de-
scribing the resulting pattern, the roles it defines, and the
code features that fulfill those roles, is added to the results
file. This process is easy to automate, being a simple text file
insertion. This final POML file is then added to the SPQR
catalog, and becomes a searchable pattern. This is the very
process we use to bootstrap the larger, more abstract design
patterns from various sources, and is quite quick. The man-
ual use of rho-calculus, or indeed even POML, is minimized
and only used for fine tuning in rare cases. We feel this is a
very automatable process, and as the catalog of lower level
design patterns increases, it will only become more so.

5.4 Other Lessons
Scalability of formal methods is always a concern, yet we
find that for SPQR the issue is nearly non-existent. While
the runtime for SPQR is approximately an order of magni-
tude greater than compilation time (using gcc 3.3) on the
same C++ code, the increase with respect to rules added
to Otter does not exhibit the exponential growth that was
feared. Instead, we see a nearly linear growth of Otter in-
put rules with code size, after taking into account redundant
code definitions among disparate translation units. Otter
in turn has shown remarkable performance as the number of
input rules as increased, an informal analysis of which leads
us to conclude that the analysis time will be slightly but not
significantly supra-linear with the number of input rules.

The use of POML as a common data format for all incom-
ing code and outgoing results allows us to quickly and eas-
ily write post-analysis tools using existing technologies such
as XSLT or the various XML parsing and manipulation li-
braries. These can be used to produce various code metrics
in a language-independent manner that previously required
language-specific parsers and analyzers.

The ease with which these metrics can be created and gath-
ered signifies that we can start to provide meaningful mea-

sures of design pattern coverage of code, using the paths of
reliance within the code as a guideline. Given the literature
linking maintainability of a system with the comprehensi-
bility of the architecture, and given that design patterns
provide a common language for comprehension, these pat-
tern coverage metrics should be indicators with metrics of
comprehensibility (within the common language of design
patterns), and may provide valuable clues as to the level of
maintainability of a codebase.

6. PREVIOUS RELATED RESEARCH
The design semantics described in this paper are based in
denotational object semantics [1], automated reasoning and
automated deduction [15], OO design patterns [13], a formal
set of flexibility and abstraction operators, and several forms
of composition.

The decomposition and analysis of patterns is an established
idea, and the concept of creating a hierarchy of related pat-
terns has been in the literature almost as long as patterns
themselves [7, 14, 22, 35]. The few researchers who have
attempted to provide a formal basis for patterns have most
commonly done so from a desire to perform refactoring of
existing code, while others have attempted the more prag-
matic approach of identifying core components of existing
patterns in use. Additionally, there is ongoing philosophical
interest in the very nature of coding abstractions, such as
patterns and their relationships.

Structural analyses. An analysis of the ‘Gang of Four’
(GoF) patterns [13] reveals many shared structural and be-
havioural elements, such as the similarities between Com-
posite and Visitor [13]. Relationships between patterns,
such as inclusion or similarity, have been investigated by
various practitioners, and a number of meaningful examples
of underlying structures have been described [5, 7, 22, 33,
34, 35]. These examples have, however, been at a scale just
below that of the original design patterns literature, and of
a much coarser granularity than the EDPs. It is because of
their still too-large size that they require further decompo-
sition to be suitably formalizable.

Objectifier: The Objectifier pattern [35] is one such exam-
ple of a core piece of structure and behaviour shared between
many more complex patterns. Its Intent is to:

Objectify similar behaviour in additional classes,
so that clients can vary such behaviour indepen-
dently from other behaviour, thus supporting var-
iation-oriented design. Instances from those classes
represent behaviour or properties, but not con-
crete objects from the real world (similar to reifi-
cation).

Zimmer uses Objectifier as a ‘basic pattern’ in the construc-
tion of several other GoF patterns, such as Builder, Ob-
server, Bridge, Strategy, State, Command and Iterator. It
is a simple yet elegantly powerful structural concept that is
used repeatedly in other patterns.

Object Recursion: Woolf takes Objectifier one step fur-
ther, adding a behavioural component, and naming it Object
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Recursion [34]. The class diagram in Figure 8 is extremely
similar to Objectifier, with an important difference, namely
the behaviour in the leaf subclasses of Handler. Exclusive
of this method behaviour, however, it seems to be an ap-
plication of Objectifier in a more specific use. Note that
Woolf compares Object Recursion to the relevant GoF pat-
terns and deduces that: Iterator, Composite and Decorator
can, in many instances, be seen as containing an instance of
Object Recursion; Chain of Responsibility and Interpreter
do contain Object Recursion as a primary component.

Refactoring approaches. Related to structural analyses
is the urge to refactor based on small discrete structural
transformations. Attempts to formalize refactoring [12] ex-
ist, and have met with fairly good success to date [8, 17,
19]. The primary motivation is to facilitate tool support for,
and validation of, the transformation of code from one form
to another while preserving behaviour. This is an impor-
tant step in the maintenance and alteration of existing sys-
tems, and patterns are seen as the logical next abstraction
upon which they should operate. Such techniques include
fragments, as developed by Florijn, Meijers, and van Win-
sen [11], Eden’s work on LePuS [9], and Ó Cinnéide’s work
in transformation and refactoring of patterns in code [18]
through the application of minipatterns. These approaches
have one missing piece: appropriate flexibility of implemen-
tation. We feel that EDPs and the rho-calculus have much
to offer in this area, providing a unifying formalism for con-
ceptual validation under structural transforms.

Conceptual relationships. Taken together, the above in-
stances of analyzed pattern findings comprise two parts of
a larger chain: Object Recursion contains an instance of
Objectifier, and both, in turn, are used by larger patterns.

This indicates that there are meaningful relationships be-
tween patterns, yet past work has shown that there are more
primary forces at work. Buschmann’s variants [6], Coplien
and others’ idioms [3, 7, 16], and Pree’s metapatterns [20]
all support this viewpoint. Shull, Melo and Basili’s BACK-
DOOR’s [23] dependency on relationships is exemplary of
the normal static treatment that arises. A related, though
type-based, approach that works instead on UML expressed
class designs, is Egyed’s UML/Analyzer system [10] which
uses abstraction inferences to help guide engineers in code
discovery. Though Reiss’s PEKOE [21] is similar in nature
to SPQR, it uses a relational database language for queries
and conceptual component definition. Beyer et al’s Cro-
coPat and RML [4] have a conceptual similarity to SPQR
and POML, but require specialized tools to manipulate, in-
stead of allowing COTS and freely available tools to do the
searches and meta-analyses.

7. CONCLUSION
We have summarized in this paper the theory and method-
ology of SPQR presented in our previous publications in
greater detail, and reported experimental data produced by
SPQR when analyzing production C++ code. Further, we
illustrate some of the practical considerations moving for-
ward with SPQR as a toolset intended for practitioners, and
how SPQR can be used to assist in its own use.
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