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Abstract

We present formal analysis methods and results from
SPQR, the System for Pattern Query and Recognition, a
toolkit that detects instances of known design patterns di-
rectly from object-oriented source code in an automated
and flexible manner. Based on previous work in rho-
calculus (extended Abadi/Cardelli sigma-calculus) and Pat-
tern/Object Markup Language (POML), the SPQR toolset is
easily retargetable to any OO language, though our current
results are for C++ programs. In this paper we present an
overview of the current SPQR implementation, as well as
both positive and negative results from running this tool on
production C++ code. We also discuss how the basic for-
malisms can be applied to other software analyses such as
refactoring support and architectural evaluation and com-
parisons.

1 Overview

Design patterns, first described for OO software by
Gamma et al. [11], have become a common vocabulary in
which software developers discuss and communicate design
and architecture ideas. Identifying instances of design pat-
terns in source code is an important problem which has, un-
til now, been elusive; if solved effectively, it would greatly
assist software developers to produce systems which adhere
to good design principles. Effectively identifying design
patterns in source code would help in maintenance, compre-
hension, refactoring and design validation during software
development.

The abstract and informal nature of design patterns is
what makes them both valuable as a design vocabulary (they
can succinctly encapsulate a vast number of highly variable
architectures and implementations) and difficult to formal-
ize for effective analysis and tool support. Our approach
formalizes these concepts by two main strategies: clas-
sic divide-and-conquer (we seek easy-to-find small, foun-
dational patterns and use automated inference to compose

them into the larger algorithm- and system-scale structures),
and formalized variability (we create within our semantics
notions of variance from ideal structure).

SPQR (System for Pattern Query and Recognition)[24,
25, 26] is a toolset that implements our methodology for
practical analyses of source code. We use a formal denota-
tional semantics to encode fundamental OO concepts which
we term Elemental Design Patterns (EDPs), and a small
number of rules which we call reliance operators, for com-
bining these concepts into larger patterns. These reliance
operators, when combined with the sigma-calculus[1], pro-
vide a formal foundation we call the rho-calculus. In the fol-
lowing sections we will give a brief discussion of the theory
behind SPQR and present results gathered from applying
the tools to a body of production C++ code.

1.1 Previous Related Research

The design semantics described in this paper are based in
denotational object semantics [1], automated reasoning and
automated deduction [13], OO design patterns [11], a for-
mal set of flexibility and abstraction operators, and several
forms of composition.

The decomposition and analysis of patterns is an estab-
lished idea, and the concept of creating a hierarchy of re-
lated patterns has been in the literature almost as long as pat-
terns themselves [5, 12, 21, 32]. The few researchers who
have attempted to provide a formal basis for patterns have
most commonly done so from a desire to perform refactor-
ing of existing code, while others have attempted the more
pragmatic approach of identifying core components of ex-
isting patterns in use. Additionally, there is ongoing philo-
sophical interest in the very nature of coding abstractions,
such as patterns and their relationships.

Refactoring approaches.Attempts to formalize refac-
toring [10] exist, and have met with fairly good success to
date [6, 15, 18]. The primary motivation is to facilitate tool
support for, and validation of, the transformation of code
from one form to another while preserving behaviour. This
is an important step in the maintenance and alteration of
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existing systems, and patterns are seen as the logical next
abstraction upon which they should operate. Such tech-
niques include fragments, as developed by Florijn, Mei-
jers, and van Winsen [9], Eden’s work on LePuS [7], and
Ó Cinńeide’s work in transformation and refactoring of pat-
terns in code [17] through the application of minipatterns.
These approaches have one missing piece: appropriate flex-
ibility of implementation.

Structural analyses. An analysis of the ‘Gang of
Four’ (GoF) patterns [11] reveals many shared structural
and behavioural elements, such as the similarities between
Composite and Visitor [11]. Relationships between pat-
terns, such as inclusion or similarity, have been investi-
gated by various practitioners, and a number of meaning-
ful examples of underlying structures have been described
[3, 5, 21, 30, 31, 32].

Objectifier: The Objectifier pattern [32] is one such ex-
ample of a core piece of structure and behaviour shared be-
tween many more complex patterns. Its Intent is to:

Objectify similar behaviour in additional classes,
so that clients can vary such behaviour inde-
pendently from other behaviour, thus supporting
variation-oriented design. Instances from those
classes represent behaviour or properties, but not
concrete objects from the real world (similar to
reification).

Zimmer uses Objectifier as a ‘basic pattern’ in the construc-
tion of several other GoF patterns, such as Builder, Ob-
server, Bridge, Strategy, State, Command and Iterator. It
is a simple yet elegantly powerful structural concept that is
used repeatedly in other patterns.

Object Recursion:Woolf takes Objectifier one step fur-
ther, adding a behavioural component, and naming it Object
Recursion [31]. The class diagram in Figure 2 is extremely
similar to Objectifier, with an important difference, namely
the behaviour in the leaf subclasses ofHandler. Exclusive
of this method behaviour, however, it seems to be an ap-
plication of Objectifier in a more specific use. Note that
Woolf compares Object Recursion to the relevant GoF pat-
terns and deduces that: Iterator, Composite and Decorator
can, in many instances, be seen as containing an instance of
Object Recursion; Chain of Responsibility and Interpreter
do contain Object Recursion as a primary component.

Conceptual relationships. Taken together, the above
instances of analyzed pattern findings comprise two parts
of a larger chain: Object Recursion contains an instance
of Objectifier, and both, in turn, are used by larger pat-
terns. This indicates that there are meaningful relationships
between patterns, yet past work has shown that there are
more primary forces at work. Buschmann’s variants [4],
Coplien and others’ idioms [2, 5, 14], and Pree’s metap-
atterns [19] all support this viewpoint. Shull, Melo and
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Figure 1. Objectifier
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Figure 2. Object Recursion

Basili’s BACKDOOR’s [23] dependency on relationships
is exemplary of the normal static treatment that arises. Re-
lationships betweenconceptsare vital to the flexibility to
the practitioner implementing patterns in design, through
constructs we termisotopes, which have been discussed in
prior publications [26]. A related, though type-based ap-
proach that works instead on UML expressed class designs,
is Egyed’s UML/Analyzer system [8] which uses abstrac-
tion inferences to help guide engineers in code discovery.
Reiss’s PEKOE [20], though similar in nature to SPQR,
uses, instead, a relational database language for queries and
conceptual component definition.

1.2 A Design Calculus: Basic Concepts

OO design patterns[11] have become a common vocab-
ulary in which software developers discuss and communi-
cate design and architecture ideas. Finding design patterns
in source code helps in maintenance, comprehension, refac-
toring and design validation during software development.
SPQR (System for Pattern Query and Recognition)[24, 25,
26] is a toolset for the automated discovery of design pat-
terns in source code. SPQR uses a logical inference system
to reveal large numbers of patterns and their variations from
a small number of definitions. A formal denotational se-
mantics is used to encode fundamental OO concepts (which
we term Elemental Design Patterns, or EDPs), and a small



number of rules (which we call reliance operators) for com-
bining these concepts into larger patterns. These reliance
operators, when combined with the sigma-calculus[1], pro-
vide a formal foundation we call the rho-calculus.

SPQR improves on previous approaches for finding de-
sign patterns in source code. Other systems have been lim-
ited by the difficulty of converting something as abstract
as design patterns into concrete expressions without being
overly restrictive. A single design pattern when reduced
to concrete code can have myriad realizations, all of which
have to be recognized as instances of that one pattern. Other
systems have had difficulty due to their reliance on static
definitions of patterns and variants. SPQR overcomes this
problem by using an inference system based on core con-
cepts and semantic relationships. The formal foundation of
SPQR defines base patterns and rules for how variation can
occur; the inference engine is then free to apply variation
rules in an unbounded manner. A finite number of defini-
tions in SPQR can match an unbounded number of imple-
mentation variations.

In our next sections we summarize the formalisms and
theory behind SPQR, which are published in full detail in
[26]. They are included here for completeness, and the
reader may wish to skip to Section , referring to the the-
oretical discussion as necessary.

1.3 Rho Calculus

The rho calculus consists of two major features: reliance
operators, and ubiquitous transitivity. We will give a brief
overview of the reliance operators, an example of how their
formalization can be used to produce basic programming
concepts that are easily found in source code, and a short
discussion on the necessity of transitivity.

1.3.1 Reliance operators

We have four forms of reliance operator that we will briefly
discuss here; formal treatments can be found in [25, 26]. All
four operators have a common notation and basis, however.
Given two objects in a codebase,o andp, we can use the
sigma calculus notation to indicate aselectionof a method
or field (sigma calculus treats them more or less equally) via
thedot operator, such aso.m or p.n. We use this notation
as well.

Our four forms arise from the combination of methods
and fields asm and n. m may be a method or field, as
cann. If both m andn are methods, we have the method
invocation operator,<µ. If m is a method, andn is a field,
then the<φ, or field use operator, is used.m a field, and
n a method gives us the<σ or state change operator, and
finally, the cohesion operator,<κ, indicates a reliance of a
field m on another fieldn.

We described in previous work that an annotation to the
operator could be used to indicate a concept we termsimi-
larity. Two dotright selections are similar if they have the
same selector notation. In other words, if two methods have
the same selection tag (hereafter called the ‘name’) for their
source language, then they are ‘similar’. ‘Similar’ in this
context means adherence to the Intention Revealing Selec-
tor best practices pattern as defined by Kent Beck[2]. In
that, Beck states “Name methods after what they accom-
plish.” Following this pattern means that if we see two meth-
ods with the same name, then we can deduce that for most
cases, they are intended to perform similar, if not exactly,
the same task; this principle holds for fields as well. We
can use this relationship to further deduce quite a number
of interesting properties of relationships.

We indicate the two types of similarity, object, and
selection, by a dot notation that reflects theo.m nota-
tion, to clarify what is being indicated to be similar:
{+,−, ◦}.{+,−, ◦}. The◦ indicates a placeholder of inde-
terminate status of similarity. (If both sides of the notation
are indeterminate, it can be eliminated altogether.)

The notation is a direct indication of the relationship be-
tween the left hand and right hand sides of the reliance op-
erator:o.m <−.+

µ p.n states that objectso andp are known
to be distinct objects, and methodm of objecto calls a sim-
ilarly named methodn of p. We can deduce thatm andn
perform similar tasks, and so we can further infer thato.m
is redirecting a portion of its intended workload to objectp
as a subtask.

1.3.2 Method Invocation

Expanding on this idea, we can create a grid of the most
meaningful method call relationships (Table 1) and popu-
late it with what each relationship means to the programmer
conceptually. (Each row is a leftdot (scope) similarity, each
column is a dotright (method) similarity.)

An object with a method calling itself, obviously, is the
classic Recursion. It is indicated byo.m <+.+

µ p.n, where
o = p and m = n. If the methodm calls some other
methodn in the same object, we call this Conglomeration,
o.m <+.−

µ p.n.

+ -
+ Recursion Conglomeration
- Redirection Delegation

Table 1. Basic <µ similarity concepts

We can extend these concepts to external objects as well,
where it is explicitly known thato 6= p. In such cases,
we term invocation of a similar method to be a Redirec-
tion (o.m <−.+

µ p.n), (indicating a redirection of a similar



portion of the workload) while a dissimilar method is a Del-
egation (o.m <−.−

µ p.n) (delegating out any subtask).
A similar process can be carried out for the other three

reliance operator forms, but the above will serve for the pur-
poses of illustration in this paper. A full treatment can be
found in our previous publications.

1.3.3 Transitivity

The above reliance operators are of limited use without the
last key piece of the rho-calculus: transitivity. It should be
obvious that reliances are transitive: if A relies on B, and B
relies on C, then A relies on C as well. More formally: Tran-
sitivity is the process by which large chains of reliance can
be reduced to simple facts regarding the reliance of widely
separated objects in the system. The four forms of relop
all work in the same manner in these rules. The similarity
trait of the reliance operator is not taken into consideration,
and in fact can be discarded during the application of these
rules; appropriate traits can be re-derived as needed.

This seems at first to be an obvious extension of the re-
liance operators, and yet it leads to quite powerful inference
capabilities that are not to be found in other systems design
research, as we shall see.

1.4 Patterns Catalog

We have previously described, informally, our cata-
log of Elemental Design Patterns[24], and the manner in
which they can be used to compose larger, more complex
patterns[26], with the goal of expressing the ubiquitous
‘Gang of Four’ patterns[11]. We will discuss here how the
reliance operators conveyed in this paper lead to a much
larger number of useful concepts that we use to formally de-
fine our EDPs, and thereby define an extremely large num-
ber of potential patterns in a flexible and transitive manner.
We will from now on refer to the various forms and variants
of the reliance operators developed in section 1.3 as EDPs,
since they form several of the core patterns in that catalog.

1.4.1 Method Invocations as EDPs

We revisit our method reliances from section 1.3.2, where
we described four conceptual variants of the<µ operator,
based on dual axes of similarity. We now add the concept
of typing information to this grid, and derive eight more
useful concepts for our definition.

We showed in section 1.3.2 that the<+.◦
µ form was op-

erating on the same object, while<−.◦
µ was an interobject

coupling. The former construct can be expanded by type,
when it is noted that the self-typing of an object can include
superclass scoping of method calls.

FamilyHead

operation()

Redirecter

operation()

target

target.operation();

Figure 3. Redirect In Family EDP

We can apply a inheritance typing relation to the Redi-
rect and Delegate EDPs, resulting in another ubiquitous pat-
tern pair: RedirectInFamily and DelegateInFamily. Redi-
rectInFamily is shown in Figure 3, and illustrates that we
are imposing a typing relation between two distinct objects,
again, such that for objecto : O andp : P , O <: P . Dele-
gateInFamily is a similar construct, with only a variance on
the dotright similarity. These two patterns encapsulate the
core basis of polymorphism in a family of classes, hence
the ‘InFamily’ descriptor, by sending a request to the top of
a tree of inherited classes, and allowing polymorphism to
select the proper implementation.

Other typing relations have been investigated, such as
‘Other object, Sibling type relation’ and ‘Other object, Self
type relation’, leading to a richer suite of EDPs includ-
ing concepts such as Delegation, RedirectedRecursion (the
foundation of the Chain of Responsibility GoF pattern) and
several others.

In addition to these method invocation EDPs, we have
identified and defined a number of other design and ob-
ject management issue concepts: CreateObject, AbstractIn-
terface, FulfillMethod, RetrieveShared, and others. Again,
these are formally and fully treated in our previous publica-
tions.

1.5 Pattern composition

Composition of the EDPs can quickly lead to powerful
constructs and abstractions. One such is Singleton, a de-
sign pattern difficult to capture using standard static struc-
tural techniques, since it uses class-level abstractions, has
run-time behaviour that must be described, and can be im-
plemented in many various ways.

We use the technique described in [1] for class-based lan-
guages and create a ’class object’ in the rho calculus that is
responsible for creating new objects of a given type, and
is a convenient and appropriate place to embed class-level



methods and fields.
From the description given in [11], we know that Sin-

gleton: (a) returns a single shared instance of itself; (b)
stores that instance privately at a class level; (c) provides
a method for retrieving that instance, again at class level.
From this, we can almost directly define Singleton in terms
of our EDPs and the rho calculus:

SC isclassobjforS
SC.gettor : S

SC.instance : S
RetrieveShared(clientmethod.clientsink,

SC.gettor, SC.instance)
Singleton(S, SC.gettor, SC.instance)

(1)

This definition is simple, direct, and to the point. It
is also highly flexible. RetrieveShared is a basic concept
that we have defined as a composition of two EDPs: Cre-
ateObject and Retrieve. CreateObject and Retrieve are both
defined as reliance operator constructs, and the transitivity
properties of those provide a high degree of variance of im-
plementation (we term such a variation anisotope[25, 26]).

These isotopes are a key element of our approach and al-
low design patterns to be inferred in aflexiblemanner. We
do not require each and every variation of a pattern to be
statically encoded, instead the transitivity in theρ-calculus
allows us to simply encode the relationships between ele-
ments of the pattern, and an automated theorem prover can
infer as many possible situations as the facts of the system
provide. In this way a massive search space can be created
automatically from a small number of design pattern defini-
tions.

For instance, in section 1.4.1, we introduced the Redi-
rectInFamily EDP. In Figure 4, we illustrate an isotope of
that pattern, which at first looks quite different structurally -
and yet, by the definition of our reliance operators, we have
the same satisfiability of our RedirectInFamily conditions,
via transitivity. This variance of implementation without
requiring a redefinition in the rho-calculus is the core idea
behind an isotope - it allows for a great degree of flexibil-
ity in a system’s implementation of a design pattern while
maintaining the conceptual integrity of that pattern.

From static constructs easily detectable in source code,
and three axes of interaction (our four reliance forms, sim-
ilarity, and type relation) we have derived a suite of simple
concepts that can be composed via rules of relationship tran-
sitivities into a catalog of rich design patterns. Our initial
goal is the definition of the Gang of Four catalog in SPQR,
but we see this as merely a beginning. The newly emerg-
ing system and architecture design patterns [4, 22] are of a
scale even larger than those in the GoF, but we are confident
that the approach and foundation we have created here will
allow for the compositions needed to capture these as well.

FamilyHead

operation()

Redirecter

operation()

mediary

mediary.operation2();

Mediary

operation2()

object

object.operation();

Figure 4. Redirect In Family EDP Isotope
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Figure 5. SPQR Toolchain

2 Experiment Setup

2.1 The SPQR Tool chain

We describe here our chain of tools from the viewpoint
of a practitioner using them. This toolset, the System for
Pattern Query and Recognition, comprises several compo-
nents, shown in Figure 5. From the engineer’s point of
view, SPQR is a single tool that performs the analysis from
source code and produces a final report. A simple script
provides the workflow, by chaining several modular compo-
nent tools, centered around tasks ofsource code feature de-
tection, feature-rule description, rule inference, andquery
reporting.

In SPQR, source code is first analyzed for particular syn-
tactic constructs that correspond to theρ-calculus concepts
we are interested in. It turns out that the ubiquitousgcc
has the ability to emit an abstract syntax tree suitable for
such analysis. Our first tool,gcctree2poml, reads this tree
file and produces an XML description of the object struc-



<object>
<name>r</name>
<type>Redirecter</type>
<method>

<name>operation</name>
<calls>

<objectname>fh</objectname>
<methodname>operation</methodname>

</calls>
</method>

</object>
<object>

<name>fh</name>
<type>FamilyHead</type>

</object>
<class>

<name>Redirecter</name>
<parent>FamilyHead</parent>

</class>

Figure 6. RedirectInFamily as POML input

all Redirecter FamilyHead r fh operation (
(Redirecter inh FamilyHead) &
(r : Redirecter) &
(fh : FamilyHead) &
((r dot operation) mu (fh dot operation)) &
(r phi fh) ->

(RedirectInFamily(Redirecter, FamilyHead,
operation))

).

Figure 7. RedirectInFamily as OTTER input

ture features. Figure 6 is an example of the RedirectIn-
Family pattern definition derived from example code. We
chose an intermediary step so that various back ends could
be used to input source semantics to SPQR. A second tool,
poml2otterthen reads this Pattern/Object ML (POML) file
and produces a feature-rule input file to the automated the-
orem prover, in the current package we are using Argonne
National Laboratory’s OTTER. OTTER finds instances of
design patterns by inference based on the rules outlined in
this paper. Figure 7 shows the input to OTTER for the Redi-
rectInFamily EDP. Finally,proof2patternanalyzes the OT-
TER proof output and produces a POML pattern description
report that can be used for further analysis, such as the pro-
duction of UML diagrams.

Each stage of SPQR is independent, and was designed
to allow other languages, compilers, workflows, inference
engines, and report compilation systems to be added. Ad-
ditionally, as new design patterns are described by the com-
munity, perhaps local to a specific institution or workgroup,
they can be added to the catalog used for query.

3 Experimental Validation

We are currently running experiments designed to test
the limits of SPQR in a real world environment, with code
that is legacy derived, refactored, and under active mainte-
nance. It is anticipated that these tests will further prove
the practical nature of the SPQR methodology and lead to
refinements for scaling to yet larger test cases.

3.1 Test cases

TheTrackerLibis a research quality framework for video
stream real-time object tracking that has been used in sev-
eral of our published research systems[28, 27, 29]. Several
years ago it was initiated from a refactoring of established
research code to provide an object-oriented, and more im-
portantly, conceptually clean architecture for future mainte-
nance. To this end, design patterns were used as the main
guiding force. This is a reasonable test case for the SPQR
formalisms and tools. It is in a target language (C++), it
compiles cleanly with a supported compiler (gcc3.3), and
it is of sufficient but not unmanageable size (approximately
8kLOC). Design patterns were used in the re-architecting,
but have not been validated across the subsequent mainte-
nance and refactorings, archived in a Concurrent Versioning
System (CVS) repository. It is of sufficient size and com-
plexity to produce a serious test of the scalability issues un-
der investigation, and yet small enough that hand-checking
can be performed on subsets if necessary. One of those sub-
sets,NotificationCenter, contains an implementation of a
Singleton pattern. We present the analysis of Notification-
Center here in anticipation of leading into a more thorough
analysis of TrackerLib including following the evolution of
the code through time and observing the shifting pattern in-
stances.

KillerWidget is an example we have used from the early
days of SPQR, and it is modeled after a problem encoun-
tered by the first author while working at a flight simulator
and graphics company[26]. Unfortunately, the original code
is not available, but the salient details necessitating a deduc-
tive search process are retained. A Decorator pattern exists
in the structure, but it does not follow the ’standard’ form
provided in [11]. Instead, there is a level of indirection that
static pattern structure detectors would be hard pressed to
work through to find the pattern instance. Indeed, it took
three engineers familiar with the original code many weeks
of analysis to uncover the basic pattern and deduce the be-
haviour. We expected that SPQR’s use of isotopes to allow
flexibility in the pattern instance would be able to find this
as easily as a direct example.

Between NotificationCenter and KillerWidget, we have
two patterns from the Gang of Four literature (Singleton and
Decorator) that provide coverage of the majority of the EDP



catalog and illustrate both structural and behavioural pat-
terns. The test case implementations illustrate both direct
and hidden pattern instances.

A third test case is the C++std namespace. A single
C++ file containing includes for the entirety of the names-
pace was compiled and analyzed. While this certainly
missed paths of code that would be generated from tem-
plates when the namespace elements were actually used, it
provides at least a baseline for reasonable expectations.

3.2 Methodology and results

We follow our earlier experiments with SPQR using
much the same methodology. In each test case, an exist-
ing build system was augmented with one change to the gcc
flags: the addition of the--dump-translation-unit
and --dump-classes diagnostic flags. These produce
raw gcc dump files,*.tu and *.class forms respec-
tively. Thegcc2poml tool was then used to convert these
to the Pattern Object Markup Language (POML). In the
KillerWidget and NotificationCenter cases, thestd names-
pace code was filtered out, leaving only the code of interest.
(Obviously, during the analysis ofstd , this did not occur.)
An XSLT transform was then used to convert these descrip-
tions to input to the OTTER automated theorem prover[13].
POML has proven more than adequate to extract the neces-
sary OTTER rules, and simultaneously describe the various
patterns to search for.

Table 2 shows some performance and size metrics for
the test cases. Code size is measured as strictly the code
that was fed directly to gcc and later tools - obviously there
is a lot of C++ library code that is being pulled in, particu-
larly in the case ofstd . We omit the*.class files since
they are in general an order of magnitude (or two) smaller
than the corresponding*.tu files. POML file size includes
debugging information used to map the results back to the
original*.tu file. Removing these produces on average an
18% file size reduction.

Timings were gathered through timing mechanisms in-
ternal to the tools, and averaged over three runs. The
test hardware was an Apple 1.25GHZ G4 PowerBook with
512MB of RAM running MacOS X 10.3.9. Timing infor-
mation for thespqrsearch phase is dependent on the
search space being traversed. SPQR can be used in a val-
idation manner, or top-down approach, looking for a spe-
cific pattern and allowing SPQR to determine the appropri-
ate hierarchy of dependencies and then efficiently search for
all, but only those dependencies. Alternately, SPQR can be
used in a discovery mode, or bottom-up approach, looking
for any and all EDPs that exist, then moving up to the In-
termediate patterns, then finally attempting to find whatever
Gang of Four patterns might exist in the code. Obviously,
this latter method is much more time-consuming. The tim-

Killer- Notification- std
Widget Center

File Sizes
C++

kB 0.8 28.1 0.5
LOC 48 1083 31

gcc .tu
kB 202.5 49516.5 14484
# of Nodes 1768 217805 137637

POML
kB 47 491.4 631.9
classes 8 58 1542
objects 7 65 512
methods 46 904 8404
fields 4 317 2015

OTTER

rules 171 2227 30322
Timings (sec)
gcc 0.233 6.9 7.9
gcc2poml 6.51 244.8 262.9
spqrsearch 9.5 29.5 1929.9
Total

Table 2. Test Case Metrics

ings for KillerWidget and NotificationCenter are for using
SPQR to find the specific pattern assumed to exist in the
code, validating its existence. Thestd timing is for the
exploratory approach, looking for any and all EDPs. Since
no Intermediate or higher patterns could be made from the
EDPs found, those runs were not performed.

Analysis proves the existence of a large number of EDPs,
as would be expected from their simple nature, yet the num-
ber of false positives for the more complex patterns is not
reaching the levels that were once expected. Instead, the
current code size is such that extraneous inferences that,
while correct, are not of particular usefulness, are minimal.
It is possible that larger systems will produce logically valid
inferences of patterns that are simply accidental, and not
relevant to the architecture. In such cases, limits can be im-
posed on the depth of inference chains traversed by OTTER,
a simple change to the OTTER input ruleset.

4 Lessons Learned

SPQR provided affirmation of the existence of the ex-
pected patterns from EDPs through particular Gang of Four
patterns. In addition, the experiment produced a few sur-
prises.



4.1 Expected Validation

As can be seen in Table 3, SPQR found the expected
patterns: KillerWidget contains a non-direct Decorator pat-
tern, requiring inference to deduce the existence through
a number of intermediate classes, and NotificationCenter
uses a Singleton at its core to ensure single-point access
to a global event registration system. The large number of
Delegate EDPs in each example is due to how gcc sets up
object allocation and memory management through a series
of nested calls between the constructors of a class (repre-
sented in POML and OTTER as a ClassObject, as indicated
by rho-calculus), and potentially several functions that have
been represented as methods of theGLOBAL ClassOb-
ject. Refinement of the POML production tools can remove
many of these Delegate hits that while correct, are not of
particular interest.

Killer- Notification- std
Widget Center

EDPs
CreateObject 7 15 1009
Inheritance 4 3 208
AbstractInterface 2 - 38
Retrieve - 6 201
Conglomeration 20 - 204
Delegate 137 302 844
Delegated-

Conglomeration 20 52 302
DelegateInFamily - - 1127
DelegateIn-

LimitedFamily - - 25669
Recursion - 4 64
Redirect 20 14 259
Redirected-

Recursion - 4 64
RedirectInFamily 3 - -
RedirectIn-

LimitedFamily - - -
ExtendMethod 1 - -
RevertMethod - - -
Intermediate
FulfillMethod 8 - 76
Objectifier 12 - 16
ObjectRecursion 17 - -
RetrieveShared - 6 90
Gang of Four
Decorator 2 - -
Singleton - 1 -

Table 3. SPQR Results

Note that the two codebases were created with only the

highest level patterns (Decorator, Singleton, respectively) in
mind, yet a large number of smaller patterns were detected.
This is the result we expected, given the ”building block” or
”isotopic” nature of EDPs.

4.2 Unexpected Results

Of greater importance, perhaps, is an item that appeared
while performing the above experiment. While analyz-
ing KillerWidget, the expected Decorator pattern was not
found. Appropriate EDPs were being reported, as were the
Intermediate level patterns, but the final Decorator was not.
This prompted a careful reassessment of the formalisms
and relationships of the patterns, but nothing seemed out of
place. After much consideration and work, the source code
being analyzed was inspected, and a subtle bug was found,
where a typo had been calling the wrong method. SPQR
was correct, the code was not. This gives us much hope in
using SPQR for determining the adherence of source code
to an architectural specification.

4.3 Other Lessons

Scalability of formal methods is always a concern, yet
we find that for SPQR the issue is nearly non-existent.
While the runtime for SPQR is approximately an order of
magnitude greater than compilation time (using gcc 3.3) on
the same C++ code, the increase with respect to rules added
to OTTER does not exhibit the exponential growth that was
feared. Instead, we see a nearly linear growth of OTTER in-
put rules with code size, after taking into account redundant
code definitions among disparate translation units. OTTER

in turn has shown remarkable performance as the number of
input rules as increased, an informal analysis of which leads
us to conclude that the analysis time will be slightly but not
significantly supra-linear with the number of input rules.

The use of POML as a common data format for all in-
coming code and outgoing results allows us to quickly and
easily write post-analysis tools using existing technologies
such as XSLT or the various XML parsing and manipula-
tion libraries. These can be used to produce various code
metrics in a language-independent manner that previously
required language-specific parsers and analyzers.

The ease with which these metrics can be created and
gathered signifies that we can start to provide meaning-
ful measures of design pattern coverage of code, using the
paths of reliance within the code as a guideline. Given the
literature linking maintainability of a system with the com-
prehensibility of the architecture, and given that design pat-
terns provide a common language for comprehension, these
pattern coverage metrics should be indicators with metrics
of comprehensibility (within the common language of de-
sign patterns), and may provide valuable clues as to the level



of maintainability of a codebase.

4.4 Extension to Architecture

SPQR was initially designed to find instances of design
patterns, but we have found that we have the capability to
detect a broader range of code relationships and constructs
than we first expected. In doing so, we have created a solid
basis for the construction of not only definitions of estab-
lished design patterns, but of any code construct and set of
relationships that is desired, and the ability to search for
same in source code.

Using the same technique we have developed for the cur-
rent catalog of design patterns in SPQR, we can further
compose existing design patterns into higher level abstrac-
tions suitable for the architectural patterns described in the
literature such as in [4] and [22]. This hierarchy of ab-
stractions mirrors closely the software design-level model
pryamid proposed in [16]: a systematic organization of con-
ceptual pieces starting at the object and method level, inter-
connected with formalized reliance relationships. As SPQR
broadens in scope, higher levels of abstraction should be
attainable through the same fundamental methodology we
have demonstrated to date:

1) Develop a collection of Elemental Architectural Pat-
terns (EAPs), formal expression of fundamental architec-
tural principles from which larger architectural patterns are
formed (much as we showed GoF design patterns to be com-
posed of EDPs).

2) Develop formal definitions of architectural patterns in
terms of the rho-calculus and structural/architectural prop-
erties both from EAPs, and from the design pattern level of
the factbase.

3) Develop formal definitions of any needed new rela-
tionships that must exist among design patterns in order for
architectural level patterns to exist.

4) Develop new variance rules, if any, that express ways
in which architectural patterns may deviate from the ”ideal”
definitions.

5) Apply SPQR as for design patterns, but working with
architectural level catalogs; the structural facts it will work
with are all the base level EDPs (the connection to actual
code), and all the inferences made while reasoning about
higher-level design patterns. Architectural evaluation and
comparisons

Step 5 above is where the SQPR system draws conclu-
sions about architecture-level abstractions based on what it
finds in terms of design patterns in the code. However, the
information that is inferred and save about design patterns
is now independent of the specific code implementation that
was the starting point. Design pattern facts are all code-
independent. This means that two different code implemen-
tations might both express the same set of design patterns,

arranged in the same relationships to each other, and there-
fore be judged to be realizations of the same architecture.

We are working on other metrics that can quantify
aspects of the architectural factbase that SPQR gathers,
thereby giving us some basis for code-independent compar-
ison of different architectures. The ultimate questions to be
answered are:

”Here is codebase A, and there is codebase B... ”
– ”Which has the better design?”
– ”Does architecture of A (or B) follow our practices and

standards?”
– ”Compare A to B... where are the significant differ-

ences?”

5 Conclusion

We have summarized in this paper the theory and
methodology of SPQR presented in our previous publica-
tions in greater detail, and reported experimental data pro-
duced by SPQR when analyzing production C++ code. Fur-
ther, we have outlined a well-formed path for the extension
of these formalisms and tools to the abstractions and rela-
tionships of architecture-level patterns and analysis.
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