
 1

Technical Report TR05-010

Department of Computer Science
Univ. of North Carolina at Chapel Hill

Facetop: Integrated semi-transparent video

for enhanced natural pointing in
shared screen collaboration

Karl Gyllstrom and David Stotts

Department of Computer Science
 University of North Carolina
Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

May 15, 2005

Facetop: Integrated semi-transparent video for enhanced
natural pointing in shared screen collaborations

Karl Gyllstrom
Department of Computer Science

The University of North Carolina at Chapel Hill

karl@cs.unc.edu

David Stotts
Department of Computer Science

The University of North Carolina at Chapel Hill

stotts@cs.unc.edu

General Terms
No terms

Keywords
Video tele-conferencing, telepresence, interpersonal commu-
nication, shared workspaces, awareness

ABSTRACT
We present an innovative tool for distributed, synchronous,
pair work that seamlessly combines video-teleconferencing
and generic application sharing. We integrate video into
the workspace as a persistent, semi-transparent, full screen
overlay, instead of an independent window that must con-
tend for screen space. Because this complicates traditional,
generic framebuffer sharing tools, we present an “overlay-
aware” screen sharing facility. We incorporate mechanisms
to maintain consistent views between users, enabling physi-
cal gestures to correspond to the same shared, visual objects.
We tailor this facility to support diverse sharing require-
ments by simultaneously providing multiple modes of shar-
ing, from generic application windows to arbitrary screen
portions.

1. INTRODUCTION
Pair programming research has revealed numerous benefits
when collaborators use the same computer, as it assists good
programming practices by involving constant, personal in-
teraction and continuous oversight in code writing[5]. How-
ever, many subtle aspects of pair programming are rendered
difficult or impossible when participants are not located at
the same device[1]. While communication facilities such as
chat and video-teleconferencing assist face-to-face interac-
tion, and mechanisms such as tele-pointers assist awareness
with respect to work on the shared workspace, there are
a rich set of tasks that fall between these two interaction
modes. Such tasks include subtle but important forms of
communication such as gesturing to a visual object (e.g.

pointing to a line on a document) and gaze awareness to
initiate conversation or communicate attention.

The importance of gestures in communication has been the
focus of much research that has revealed they play a critical
role in complementing speech[14][27][20][19]. Used collab-
oratively on shared work, gestures become powerful tools,
enabling workers to quickly and intuitively signify points
of focus[3][10]. This dynamic of gestures is difficult to re-
capture when simply using disparate tools such as video-
teleconferencing and shared-editing facilities; an effective so-
lution requires that these tools be carefully integrated. To
accomplish this, we have developed a system that weaves
video-teleconferencing and a screen sharing facility together,
to not only minimize the effort required in task switching
between communicating and editing, but more importantly,
to enable the set of subtle interactions that fall between
these two tasks. Our application achieves this by blending
the video image of another participant onto one’s desktop
through a full-screen, semi-transparent overlay that allows
both the content of a shared artifact and the image of the
other participant to be simultaneously visible (see Figure 2).
However, the incorporation of screen sharing in a full-screen
overlay introduces complications that prohibit the use of ex-
isting sharing solutions such as VNC. We have circumvented
this problem through an “overlay-aware” screen sharing fa-
cility, and furthermore, we have extended the traditional
functionality of screen sharing to provide more versatility to
the user.

Past research has introduced many levels of screen sharing
granularities along a spectrum ranging from the model to
the framebuffer. We find that, to share applications with
both (a) no requirement that they expose access to an un-
derlying, abstract representation, and (b) tight consistency
at the visual level (no view divergence), we must share at
the framebuffer, or pixel level. While numerous framebuffer
sharing facilities exist today, many of them are purposefully
general in order to support tasks such as remote administra-
tion. We instead propose a sharing facility tailored to sup-
port collaboration-only tasks. This augments framebuffer-
based application sharing with considerably stronger flexi-
bility and agility, creating a system that accomplishes the
following tasks:

• It allows the replication of visual features of one user’s
screen portion to other participants’ screens, ensuring
that all participants maintain a consistent view.

• It avoids the problems inherent in the combination of
framebuffer sharing with full screen video overlays.

• It provides for different, novel forms of sharing, includ-
ing the sharing of hand-drawn screen selections, single
windows, and sub-window portions that are anchored
to their window’s coordinates and scroll positions.

Finally, we extend this screen sharing system to allow for
an integrated “glass board” that applies the idea behind
shared whiteboards to the existing visual components, al-
lowing users to apply annotations to generic visual compo-
nents such as windows and portions of windows.

2. RELATED WORK
Significant research has contributed to facilitating group
awareness in collaboration, from developing facilities for easy
construction of groupware that supports awareness[11], to
retrofitting existing applications[4][16]. A weakness of the
former is that it forces collaborators to use tools built with
collaboration as an element of design, preventing the use of
the vast majority of more mature, single-user applications
in collaborative work. Retrofitting existing applications of-
fers the potential to free many single-user applications to be
used collaboratively, but still requires per-application devel-
opment of bridges capable of intercepting and broadcast-
ing application events. Framebuffer sharing systems such as
VNC1 provide the most general support for group aware-
ness and application sharing, but suffer limitations in flexi-
bility. WinCuts[24] presents a more flexible screen sharing
system that allows users to share portions of windows. Be-
yond flexibility issues, VNC, as we will describe later, makes
integration of overlaid video particularly problematic.

Recapturing the intuitiveness behind face to face commu-
nication has been a heavily researched area, with many
interesting approaches tackling various dynamics such as
gaze awareness and gestural communication. Hydra Unit[21]
presents early work in multiple party video-teleconferencing
that enabled gaze awareness through pairing each camera to
the display of the user viewing that video feed. MAJIC[18]
presents a system that allows multiple parties to view life-
size images of each other, removing boundaries between dis-
parate images to recreate the feeling of being physically co-
located. Hypermirror[17] integrates the mirrored image of
the user into the projected environment of other partici-
pants. This allows users to indicate direction through their
own orientation in the shared space as an alternative to gaze
direction. While all of these solutions remove much of the
difficulty associated with using video for remote communica-
tions, none of them integrate a shared workspace that allows
all users to directly manipulate common artifacts.

Other work extends communication by integrating a shared
workspace into the video. VideoDraw[29] shares a shared
video representation of each users’ hands and a common
whiteboard. VideoWhiteboard[28] modifies this work by en-
abling users to see silhouettes of each other’s full body to
enable gestural communication.

VideoArms[25][26] presents an overlay of user’s arms onto

1http://www.realvnc.com/

a shared workspace, with various compositing techniques
including silhouettes, opaque images of the arms, or semi-
transparent images. Like in Facetop, VideoArms allows the
arms of remote collaborators to show up in video form in
the viewing space of collaborative tools, giving an enhanced
sense of presence, more natural pointing, and the ability
for users to more easily distinguish one collaborator from
another (compared to using shared pointer technology, for
example). A number of qualities distinguish our work from
VideoArms. First, the camera placement in Facetop allows
inclusion of the full image of the collaborating users, in-
creasing the ability of collaborators to recognize each other
easily over simply seeing arms; if desired, Facetop can show
only arms, giving the same view as VideoArms, but Facetop
provides a more powerful range of possibilities. Second, in-
stead of working only on groupware, our work allows for the
sharing of arbitrary application windows or screen portions,
and automatically handles issues related to ensuring that
each user shares a consistent view of the shared document
(making gestures to shared objects feasible). We find that
the latter distinction is a complicated problem, and have
devoted much rigor to enabling this functionality.

ClearBoard[13][12], another closely related work, presents a
solution that emulates two users facing each other with a
glass pane between them that they can simultaneously draw
on, mirroring each’s display to allow both members a consis-
tent view of the contents of the shared “clear board”. The
implementation maintains both the image of the other per-
son and the shared virtual canvas in the same line of sight,
facilitating gaze awareness and rapid switching between face
to face communication and editing.

Our work departs from ClearBoard in a fundamental way:
where ClearBoard involves the drawing space as the shared
artifact, we integrate the entire desktop to the shared workspace.
Beyond simply sketching pieces to brainstorm and communi-
cate ideas, Facetop users can share and simultaneously edit
general application windows. This distinction introduces nu-
merous problems that prohibit simply combining Facetop
with a generic screen sharing system; this work presents a
careful integration of full screen video and a custom screen
sharing facility. In addition, our application of general draw-
ing functionality to on-screen objects provides the ability to
anchor annotations to movable objects, allowing annotations
to follow the objects they overlay if those objects are moved
by the user.

A further distinction from ClearBoard, and the other afore-
mentioned research in video presence, is that Facetop has a
greater potential for ubiquity through both physical porta-
bility and cost (it can be deployed on a laptop with an inex-
pensive, off-the-shelf web camera). In addition, where Clear-
board requires users to be directly in front of their drawing
utility, Facetop allows the incorporation of projected dis-
plays. This yields users the flexibility to sit far from the
screen and still fully operate the system.

Past work on Facetop[23][22] presented an early implementa-
tion of video and desktop integration. However, it lacked an
automated screen sharing facility; it could only be used with
group aware applications, and required manual synchroniza-
tion of window coordinates to ensure consistent views be-

tween users. In this paper, we present a system that provides
a range of screen sharing methods that work in the presence
of a video overlay rapidly updating the framebuffer. Fur-
thermore, we have extended this work by adding facilities
for automated transparency adjustment and background re-
moval to avoid cluttered video.

3. OVERVIEW
Facetop includes two main components. The first is a facil-
ity for capturing video, transferring video over a network,
and displaying transferred video to the screen as a trans-
parent overlay. The other component is an adaptable screen
sharing facility which both: (a) circumvents the problems a
traditional screen sharing application such as VNC presents,
and (b) affords an increased amount of flexibility in types
of sharing. For the remainder of this paper, we will make
comparisons to VNC as another framebuffer sharing tool,
although many of the comparisons are equally applicable
to other tools in the framebuffer sharing family, including
PCAnywhere2, Timbuktu3, and several others.

3.1 Video Integration
Facetop appears to the user as his usual desktop composited
with two video feeds, the video of his partner and the video
of himself. The video overlays cover the entire screen; in
cases where screen dimensions between users are not equal,
both instances use an overlay size representing the minimum
height and width of each’s screen. Figure 1 depicts the phys-
ical setup for a computer with Facetop running. Note the
video camera sitting on top the LCD panel pointing back
at the user; in our current work we use a $100 Sony iBot,
giving us an image that is 640 x 480 pixels of 24-bit color,
captured 30 frames per second.

Facetop simultaneously emulates two forms of interaction.
The first is face to face; users all see the image of the other
collaborator before them, displaced by a common view of
the shared workspace. As we wish each’s view to be consis-
tent with respect to horizontal orientation (e.g. text should
read left to right on all displays), we flip each image about
the y-axis to create a mirrored image of each participant.
This allows the physically impossible illusion of two workers
facing each other and maintaining a consistent view of an
object between them. Figure 2 depicts a screenshot of two
users collaborating on a shared document.

The image depicts the second simultaneous form of interac-
tion: two users working side-by-side and viewing a common
workspace. The reasons we display the video of the user to
himself are subtle, but important. First, because the video
of the user’s actions must be captured from a camera that
has a separate physical location from the display (i.e. not
directly behind it), the image of a user pointing directly at
an object may not correspond to the exact location the over-
laid video indicates. The user’s image of himself provides a
feedback mechanism, allowing the user to see exactly what
location his gestures refer to, and hence, what screen lo-
cation his partner will see him referring to. Furthermore,
the illusion of two collaborators working side-by-side, po-
tentially mitigates some of the dissonance associated with

2http://www.symantec.com/pcanywhere/
3http://www.netopia.com/software/products/tb2/mac/

using computer mediated communication to emulate face-
to-face interaction[17].

The extent of blending for either the video of either user is
configurable at run time. We provide a toolbox with sliders
that allow each user to quickly modify blending. While ap-
propriate blending levels may vary according to the content
of users’ workspaces, background objects in the video, and
user preferences, we believe that the blending should often
vary according to the different types of task with which the
users are engaged. A user concentrating on editing a docu-
ment may want the document’s window to be more visible,
while a user explaining a point may want his partner to be
more visible so he can more easily notice facial responses
to his discussion. We have explored a few options for au-
tomated adjustment of blending. To facilitate visibility of
the workspace when the user is editing, we implemented a
technique that reduces the opacity of both video overlays
when the user is frequently typing or using the mouse, and
restores it when a lapse in keyboard events has occurred. We
are also working on integrating voice recognition, increasing
the opacity of both participants when either is speaking to
make conversation more visible.

The physical objects behind a user can potentially add clut-
ter to the video image that obfuscates the view of objects
on the user’s screen. We find that user control of trans-
parency levels can offer significant reduction of clutter. Fur-
thermore, a solid wall behind the user does much to miti-
gate this problem. However, in the interest of portability, it
is infeasible to require this. Thus, we have implemented a
background removal feature using background removal tech-
niques to provide users a cleaner representation of each other
when collaborating. By maintaining an image of the back-
ground without the user in front of it, we can establish which
pixels on an image correspond to the user. We build an im-
age mask from these, then apply erosion and dilation on it
mask to remove noise. Applying this mask to the image,
such that all pixels not within the mask’s boundaries are
rendered fully transparent, we are able to recover an image
where only the user is visible. Figure 3 depicts the image of
a single user on Facetop with and without background re-
moval. Note that, for demonstration purposes, both images
feature a higher opacity of the video than would normally
be necessary.

3.2 Screen and Window Sharing
Application sharing facilities range in sharing granularity
from the model to the pixel representation. While higher-
level sharing mechanisms provide more flexibility in view
divergence, our goal was to maintain strict, pixel level cor-
respondence in views to ensure precise symmetry in coordi-
nates of visual objects. Furthermore, we required a mech-
anism that allowed sharing of arbitrary applications, thus
prohibiting sharing mechanisms that require applications to
comply with any specific multi-user functionality. For this
reason, we implemented a screen sharing mechanism that
accommodates sharing of the representations of arbitrary
windows.

While screen sharing systems such as VNC are readily avail-
able, we implemented our own system for several important
reasons. First, VNC provides updates at the framebuffer

Figure 1: A Single User on Facetop.

Figure 2: Two users on Facetop.

Figure 3: Background removal, before and after.

level only. This creates a fatal conflict with our transparent
overlay; as each frame causes a refresh of every on-screen
pixel, an immense amount of bandwidth would be necessary
to allow for 20-30 frames per second, and since our system
sends video as a compressed stream, much of VNC’s up-
dates would be spurious. As VNC employs a “pull”-based
mechanism, clients could be configured to receive data at
a slower rate to mitigate bandwidth issues. This is still
problematic for both performance and functional reasons.
First, reduced transfer rates compromise the interactive na-
ture of screen sharing. Furthermore, delayed transfers would
display overlaid frames from the other’s desktop that were
in the past, causing potentially confusing images when the
real-time video is overlaid.

Another reason we developed our own sharing mechanism
is that VNC’s full screen sharing does not provide the gran-
ularity of sharing that we find useful. In collaborative ses-
sions, for reasons of shared focus or privacy, users may want
the ability to share only a single window, or even an ar-
bitrary portion of a window or the screen. Since window
sizes, locations, and order may change, a fine grained screen
sharing system must maintain “awareness” of the underlying
visual objects. Additionally, we desired to support bidirec-
tional sharing, which creates significant difficulty when using
VNC’s full screen implementation.

We implemented a mechanism for screen sharing that sup-
ports a variety of granularities: arbitrary screen rectangles,
single windows (although multiple single windows can be
shared simultaneously), and window subsections. Arbitrary

screen rectangle sharing allows users to use a selection tool
to delineate a static portion of the screen to share. Input
events from users who do not own the window are forwarded
and translated to corresponding input events on the owner’s
window.

Window sharing allows an entire window to be shared, and
furthermore affords a user the flexibility to move, resize,
and occlude that window with other windows. To maintain
consistency in view, the dimensions of the window are trans-
ferred and updated upon changes so that instances running
on other collaborators’ screens can maintain corresponding
dimensions. If a host shares a window that is later partially
or entirely occluded by another window, the visual represen-
tation of the window will remain complete to other users.
However, in this case, we suppress remote input events to
avoid the possibility of these events unintentionally affecting
occluding windows.

There are many situations in which users may want to share
small portions of windows in order to quickly mutually inter-
act with the most relevant part of a document. We support
window subsection sharing that, like single window sharing,
allows the dimensions of windows to be adjusted. Further-
more, we provide the ability for window subsections that lie
entirely within scrollable sections’ boundaries to adjust with
the scroll. In other words, if a scroll event moves a section
of shared text to another screen location, the content of the
intended shared region is reflected to the other user, even
though the coordinates of that region have changed. Users
are not limited to rectangular regions when selecting shared
screen portions; they are free to create arbitrary shapes for
flexible selection.

We desired the ability for users to easily select the particular
sharing technique that was most appropriate for their need.
The interface currently allows users to select the technique
through a set of selection tools available via a toolbox that
can be opened when needed.

As mentioned previously, WinCuts provides similar func-
tionality in that portions of windows can be shared. Our
work distinguishes from this in that (a) users can share ar-
bitrary portions – instead of rectangles – by hand draw-
ing a shape, and (b) we provide support for sections that
are scrolled to update to the new coordinates of the object.
Furthermore, the integration of this sharing into the video
allows for more power in collaborative settings.

3.3 Glass board Interaction
Shared whiteboards are popular tools for collaborative de-
velopers seeking to visually communicate ideas. However,
their usefulness is usually limited to a set of drawing op-
erations on an opaque canvas. We contend that the shared
whiteboard paradigm is more powerful when it allows collab-
orators the ability to make drawable annotations to existing
screen objects. We thus extended the versatility of white-
boards by integrating them into Facetop as a “glass pane”,
or fully transparent window that allows opaque drawing op-
erations to be displayed that appear as drawings on the un-
derlying windows. This integration allows users to circle,
underline, or apply other common drawing operations to vi-
sual components on their screens such as images and text.

These representations remain visible until users manually
remove them.

While this “glass pane” implementation affords the tradi-
tional functionality of white boards, we feel its application
to the desktop allows for more interesting possibilities. First,
the transparent property means the drawing area need not
be a separate window that users must manage for screen
space, and coordinate with shared use. Second, a shared
drawing tool on the desktop creates a more permanent form
of telepresence. While our work encourages the use of phys-
ical gestures to reference screen objects, one might want a
semi-permanent reference, such as an underline to an im-
portant portion of text on screen. We find that a shared
glasspane over the desktop provides users the useful ability
to make generic annotations to any visual object on screen,
allowing operations such as circling emphasized objects and
drawing connecting lines between related portions of win-
dows. Figure 4 depicts the glass pane use in a Facetop ses-
sion.

To assist this general screen annotation, we offer some addi-
tional useful features to the “glass pane”. When the dimen-
sions of a drawn annotation rests entirely within a window,
that annotation is anchored to that window’s position. If
the underlying window is moved after the annotation, the
coordinates of the annotation will be adjusted accordingly.
In other words, an underline drawn beneath a word will fol-
low that word if its bounding window is moved on screen.
Furthermore, the coordinates of an annotation resting en-
tirely within a scrollable region will be adjusted with scroll
events.

4. IMPLEMENTATION
We developed Facetop on Mac OS X with a combination of
Objective-C and C, using the functionality Apple exposes
through the Cocoa, OpenGL, and Quicktime frameworks.
Cocoa is the main API exposed for Mac programming, ex-
posing a rich framework for developing and managing graph-
ical widgets. Most of the core applications within Mac OS X
are built upon Cocoa, including their web browser (Safari),
email client (Mail), text editing applications (TextEdit), as
well as their developer’s IDE (xcode). Numerous 3rd party
applications, such as the group editor SubEthaEdit and chat
program Adium are also based on Cocoa.

4.1 Transparent Overlay
We constructed the transparent overlay by connecting the
feed from the video to an OpenGL texture, displayed on a
Cocoa window sized to the dimensions of the screen. The
window is set to a “floating” level, which means it appears
above all normal (i.e. not alert panels) windows on the
screen. The window is set to ignore mouse events to prevent
interfering with the user’s ability to interact with applica-
tions.

4.2 Window Sharing
Because the overlay taints the pixels of windows with a par-
tial representation of its image, we sought to use the internal
representation of windows as the shared data source. While
a detailed, platform specific description of our implementa-
tion follows, note that the method of obtaining a window’s

internal representation is not specific to the Macintosh plat-
form, and a similar method could be used on a platform
such as Windows.

Mac OS X does not provide a direct mechanism for access-
ing the off-screen buffers of windows. We thus developed a
workaround that allowed us to acquire the underlying rep-
resentation of windows. InputManagers provide application
developers the ability to inject code between input device
events and their graphical destinations, and are loaded au-
tomatically when any Cocoa-based application is launched.
We developed a custom InputManager that exploits func-
tionality that allows developers to replace Cocoa compo-
nents with custom components. Objective-C, as a dynamic
object-oriented language, provides the ability for program-
mers to universally modify classes at runtime. In other
words, programs can extend the functionality of GUI wid-
get classes used by other programs when those processes are
launched. We thus replaced various widget object class with
custom classes that allowed for replicating their internal rep-
resentations and saving them to a shared buffer that could
be used to distribute to remote applications.

In addition, our custom components could trap and broad-
cast external windowing events, such as resizing and mov-
ing, to ensure common coordinates on remote applications.
Additionally, we customize existing scroll frame widgets to
notify the sharing facility that a shared portion existing en-
tirely within a scroll pane should be adjusted to coincide
with the new location of visual objects within that scrol-
lable region.

It is important to note that this custom code injection does
not require a recompile of existing third party code. In
theory, any application developed using Cocoa will work
with our code at launch time. While roundabout, none of
the techniques required accessing private API’s or otherwise
deprecated practices.

4.3 Generic Sharing
While most OS X applications are built upon Cocoa, there
are some that instead use Carbon, an API specifically de-
signed for C programming for ease in portability. We have
not implemented a Carbon method similar to that for Co-
coa windows, although we are exploring ways to emulate
that functionality. Instead, we implemented an alternate
method for screen sharing that operates more similarly to
VNC in that it accesses pixels at the framebuffer level. This
technique can be applied on any window, regardless of what
framework it was developed on, and presents a technique
that may be useful on platforms that expose no way to cap-
ture the underlying representation of windows.

This method introduces two main challenges. First, pixels
obtained from the framebuffer memory reflect the effect of
the overlaid video. To deal with this problem, we imple-
mented a method for overlay removal. Traditional alpha
blending functions use the following function:

overlayxy × α + sourcexy × (1− α) = visiblexy (1)

Figure 4: Glass pane.

Where overlay represents the pixel value of the overlaid im-
age, source represents the pixel value of the underlying im-
age, and visible represents the pixel that is visible on the
framebuffer. visible is accessible through the framebuffer
memory, and α is available programmatically, as it is a vari-
able controlled by Facetop. Furthermore, since we have ac-
cess to the memory the camera writes to, we can also recover
the value of overlayxy. Therefore, it is possible, with small
error, to solve for sourcexy, and recover a visual represen-
tation of a visual object beneath the Facetop overlay with
minimal effects of the overlay. Since the image of the shared
window is overlaid on the remote site, artifacts pertaining
to error are even less visible.

The second problem is that the refresh rate of the video over-
lay will generate a large volume of updates to the screen
that may not indicate that the pixels of the shared win-
dow have changed. An existing implementation of VNC up-
dates its representation of the screen pixels by the Mac OS
X API function CGRegisterScreenRefreshCallback, which al-
lows a programmer-defined function to be registered to be
invoked with updated screen rectangles whenever portions
of the screen are refreshed. Since a full screen update occurs
with every new video frame, this method will not suffice to
track local window pixel updates. We’ve implemented a pe-
riodic update mechanism to subvert this, allowing users to
specify the desired refresh rate for shared windows. While
this does not support the dynamic update rate a window
might generate when used heavily, we find that a constant
update periodicity of once per half second to once per two
seconds to honorably emulate an interactive update rate.

We have explored an alternate method for tackling the re-
fresh problem, that employs a difference-based update mech-
anism to remote hosts to minimize bandwidth usage. By

maintaining a snapshot image of a shared screen portion,
we can compare the current image to find which pixels are
different. However, while the overlay-removal error is in-
significant to the user’s eye, per pixel image comparisons
will still yield many differences that are due to the error.
We deal with this by maintaining a pixel difference thresh-
old, such that any pixel difference between a new image and
the previous snapshot that is smaller than the threshold
will not count as an update to be transmitted. As a con-
sequence, minor pixel differences in a window that are not
due to the overlay will not be reported. To deal with this,
we periodically update, instead of update on each refresh
of the window, the base snapshot to account for any drift
associated with minor pixel changes from the window itself.

The ability for shared window portions or screen annotations
to be adjusted when non-Cocoa windows are scrolled is not
supported at this point.

4.4 Glass Pane
We implemented the shared glass pane by creating a screen-
sized window with a transparent background, and setting
its depth permanently above other windows in the desktop
environment. When a user selects a screen drawing pen from
a toolbox, we toggle a parameter on the window that makes
it respond to mouse events, and renders drawn objects as
opaque. We consider each drawing event – that is, the path
created between a user’s mouse down and mouse up events –
to be a separate object, allowing us to connect drawn objects
that fall completely within window or scroll area boundaries
to those areas’ movement or scroll events. This allows drawn
objects to be anchored to movable objects, following those
objects when they are moved on the screen.

5. CONCLUSIONS AND FUTURE WORK
We have presented a significant enhancement to Facetop,
overcoming the challenges inherent in the integration of frame-
buffer sharing and semi-transparent video overlays, through
both platform-dependent and platform-independent meth-
ods. The platform-independent solution uses a video analy-
sis technique to remove the video overlay from shared por-
tions of the framebuffer. The platform-dependent method
exploits facilities specific to the operating system, gaining
some functionality and efficiency, but sacrificing generality
in implementation.

Furthermore, we extended existing methods of screen shar-
ing to provide different, useful granularities of sharing, from
arbitrary screen sections, to whole windows, to anchored
portions of windows. Finally, we have tightly woven the
concept of shared whiteboards into the desktop, assisting
collaboration by allowing users the ability to easily and uni-
versally annotate their shared workspace, and we have in-
tegrated the ability to anchor these annotations to movable
screen objects.

Despite the fact that a majority of user applications on the
Macintosh are built upon the Cocoa framework, we’re pur-
suing a technique similar to that used in our Cocoa win-
dow sharing facility to apply to Carbon windows. Rentzsch4

presents methods for overriding general C functions on the
Macintosh OS X platform, which could potentially allow for
extending Carbon window management functionality to save
window representations to shared buffers.

While we find Facetop to effectively integrate with many
forms of shared work, any use of semi-transparency in win-
dow management carries the risk of obfuscating content bound-
aries when an overlay contains similar visual content to its
underlying windows[2]. We’re currently pursuing methods
to make Facetop more amenable for use on human-based
visual data such as x-rays or photographs.

We are currently pursuing methods for integrating more
than two users into Facetop. VideoArms effectively handles
multiple users by showing only hands and arms, limiting the
amount of video introduced by each additional user. While
Facetop can also show only hands and arms, we are inter-
ested in using the full images of multiple users, in the context
of wall-sized screen spaces. One approach to this problem is
enabling multi-modal operation, where users can intuitively
switch to full-screen collaborative sessions with specific users
when needed, but otherwise keep all participants in smaller
windows along the side of the screen.

6. ACKNOWLEDGMENTS
This work was partially supported by a grant from the U.S.
Environmental Protection Agency, # R82-795901-3.

7. REFERENCES
[1] P. Baheti, E. Gehringer, and D. Stotts. Exploring the

efficacy of distributed pair programming. In XP
Universe 2003, volume 2418, pages 208–220.

4J. Rentzsch. Overriding MacOSX, 2003.
http://rentzsch.com/papers/overridingMacOSX

[2] P. Baudisch and C. Gutwin. Multiblending: displaying
overlapping windows simultaneously without the
drawbacks of alpha blending. In Proceedings of the
2004 conference on Human factors in computing
systems, pages 367–374. ACM Press, 2004.

[3] M. M. Bekker, J. S. Olson, and G. M. Olson. Analysis
of gestures in face-to-face design teams provides
guidance for how to use groupware in design. In
Symposium on Designing Interactive Systems, pages
157–166, 1995.

[4] L.-T. Cheng, S. L. Rohall, J. Patterson, S. Ross, and
S. Hupfer. Retrofitting collaboration into uis with
aspects. In CSCW ’04: Proceedings of the 2004 ACM
conference on Computer supported cooperative work,
pages 25–28, New York, NY, USA, 2004. ACM Press.

[5] L. W. e. a. D. Stotts. Virtual teaming: Experiments
and experiences with distributed pair programming.
pages 129–141, 2003.

[6] C. Gutwin, J. Dyck, and C. Fedak. The effects of
dynamic transparency on targeting performance. In
Graphics Interface, pages 105–112. CIPS, Canadian
Human-Computer Commnication Society, A K Peters,
June 2003. ISBN 1-56881-207-8, ISSN 0713-5424.

[7] C. Gutwin and R. Penner. Improving interpretation of
remote gestures with telepointer traces. In CSCW ’02:
Proceedings of the 2002 ACM conference on Computer
supported cooperative work, pages 49–57, New York,
NY, USA, 2002. ACM Press.

[8] B. L. Harrison, H. Ishii, K. J. Vicente, and W. A. S.
Buxton. Transparent layered user interfaces: an
evaluation of a display design to enhance focused and
divided attention. In CHI ’95: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 317–324, New York, NY, USA, 1995.
ACM Press/Addison-Wesley Publishing Co.

[9] B. L. Harrison, G. Kurtenbach, and K. J. Vicente. An
experimental evaluation of transparent user interface
tools and information content. In UIST ’95:
Proceedings of the 8th annual ACM symposium on
User interface and software technology, pages 81–90,
New York, NY, USA, 1995. ACM Press.

[10] S. Harrison and S. Minneman. A bike in hand: a
study of 3d objects in design. In H. Cross N.,
Christiaans and K. Dorst, editors, Analysing Design
Activity. Wiley, 1996.

[11] J. Hill and C. Gutwin. Awareness support in a
groupware widget toolkit. In GROUP ’03: Proceedings
of the 2003 international ACM SIGGROUP
conference on Supporting group work, pages 258–267,
New York, NY, USA, 2003. ACM Press.

[12] H. Ishii and M. Kobayashi. Clearboard: a seamless
medium for shared drawing and conversation with eye
contact. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 525–532.
ACM Press, 1992.

[13] H. Ishii, M. Kobayashi, and J. Grudin. Integration of
inter-personal space and shared workspace:
Clearboard design and experiments. In Proceedings of
the 1992 ACM conference on Computer-supported
cooperative work, pages 33–42. ACM Press, 1992.

[14] R. Krauss and R. Dushay. The communicative value
of conversational hand gestures. Journal of
Experimental Social Psychology, 31:533–552, 1995.

[15] R. E. Kraut, D. Gergle, and S. R. Fussell. The use of
visual information in shared visual spaces: informing
the development of virtual co-presence. In CSCW ’02:
Proceedings of the 2002 ACM conference on Computer
supported cooperative work, pages 31–40, New York,
NY, USA, 2002. ACM Press.

[16] D. Li and R. Li. Transparent sharing and
interoperation of heterogeneous single-user
applications. In CSCW ’02: Proceedings of the 2002
ACM conference on Computer supported cooperative
work, pages 246–255, New York, NY, USA, 2002.
ACM Press.

[17] O. Morikawa and T. Maesako. Hypermirror: toward
pleasant-to-use video mediated communication
system. In CSCW ’98: Proceedings of the 1998 ACM
conference on Computer supported cooperative work,
pages 149–158, New York, NY, USA, 1998. ACM
Press.

[18] K.-I. Okada, F. Maeda, Y. Ichikawaa, and
Y. Matsushita. Multiparty videoconferencing at
virtual social distance: Majic design. In CSCW ’94:
Proceedings of the 1994 ACM conference on Computer
supported cooperative work, pages 385–393, New York,
NY, USA, 1994. ACM Press.

[19] F. Rauscher, R. Krauss, and Y. Chen. Gesture, speech
and lexical access: The role of lexical movements in
speech production. Psychological Science, 7:226–231,
1996.

[20] M. G. Riseborough. Physiographic gestures as
decoding facilitators: Three experiments exploring a
neglected facet of communication. Journal of
Nonverbal Behavior, 5:172–183, 1981.

[21] A. J. Sellen. Speech patterns in video-mediated
conversations. In CHI ’92: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 49–59, New York, NY, USA, 1992. ACM Press.

[22] D. Stotts, J. Smith, and K. Gyllstrom. Support for
distributed pair programming in the transparent video
facetop. In XP/Agile Universe 2004, pages 92–104,
2004.

[23] D. Stotts, J. M. Smith, and K. Gyllstrom. Facespace:
endo- and exo-spatial hypermedia in the transparent
video facetop. In Proceedings of the fifteenth ACM
conference on Hypertext & hypermedia, pages 48–57.
ACM Press, 2004.

[24] D. S. Tan, B. Meyers, and M. Czerwinski. Wincuts:
manipulating arbitrary window regions for more
effective use of screen space. In CHI ’04: CHI ’04

extended abstracts on Human factors in computing
systems, pages 1525–1528, New York, NY, USA, 2004.
ACM Press.

[25] A. Tang, C. Neustaedter, and S. Greenberg.
Embodiments and videoarms in mixed presence
groupware. Technical report, Univ. of Calgary, 2004.

[26] A. Tang, C. Neustaedter, and S. Greenberg.
Videoarms: Supporting remote embodiment in
groupware. video. In Video Proceedings of the ACM
CSCW Conference on Computer Supported
Cooperative Work, New York, NY, USA, 2004. ACM
Press.

[27] J. C. Tang. Findings from observational studies of
collaborative work. Int. J. Man-Mach. Stud.,
34(2):143–160, 1991.

[28] J. C. Tang and S. Minneman. Videowhiteboard: video
shadows to support remote collaboration. In CHI ’91:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 315–322, New
York, NY, USA, 1991. ACM Press.

[29] J. C. Tang and S. L. Minneman. Videodraw: a video
interface for collaborative drawing. ACM Trans. Inf.
Syst., 9(2):170–184, 1991.

