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Abstract 
 
In texture classification modeling the full joint 
probability distribution of features is of questionable 
value.  This paper demonstrates that marginal 
distributions of filter responses and marginal 
conditional distributions of intensity values over small 
neighborhoods are adequate to classify textures and 
can outperform methods using the joint distribution. 

The use of the Earth Mover’s Distance for marginal 
distributions is extended using PCA to build a 
Gaussian probability model for each class that 
captures the dependence between feature histograms.  
This framework is then generalized to include 
marginal conditional distributions for MRF models. 

These methods are demonstrated on the Columbia-
Utrecht database by classifying over 2800 images in 
all 61 texture classes.  Results surpass those of Varma 
& Zisserman (CVPR ‘03) and Hayman (ECCV ’04). 
 
 
1. Introduction 
 

Texture classification is one of the major problem 
areas in texture analysis.  The four main stages of a 
texture classification algorithm are (1) feature 
selection; (2) probability distribution representation; 
(3) probability distribution distance measures; and (4) 
the classifier.  A recent trend in texture classification 
has been to simplify different stages of this process.  
The work reported here extends the representation and 
distance measure developed in [7] to produce a simpler 
and more accurate texture classification algorithm.  
The resulting method is defined for a broader class of 
features and classifiers. 

The MR8 classification algorithm of Varma and 
Zisserman uses a rotationally invariant filter bank, and 
clustering to estimate the full joint probability 
distribution [10].  Representative cluster centers define 

a texton dictionary, yielding a texton histogram 
representation for each image.  The χ2 distance 
measure and a 1-Nearest Neighbor (NN) classifier are 
stages (3) and (4) of this algorithm.  A Support Vector 
Machine (SVM) classifier was recently used by [3]. 

Varma and Zisserman developed an alternative 
method, using different features based on a Markov 
Random Field (MRF) model, yielding slightly better 
results than their original algorithm [11].  The 
probability of a pixel’s intensity in an MRF model is 
conditioned on the intensities from pixels in a local 
neighborhood.  This probability was measured using 
the same texton approach, where each texton 
represents a configuration of neighboring intensities 
and the probability distribution of pixel intensities for 
that configuration.  The original distance measure and 
classifier were used. 

The use of an MRF model simplifies the texture 
classification process by eliminating the need for filter 
bank design and response collection.  Furthermore, 
MRF models require smaller support (e.g. 7x7 vs. 
49x49 [11]).  However, more features may be required, 
which complicates clustering in the joint conditional 
probability space. 

Another possible simplification when using filter 
banks is to measure marginal distributions instead of 
the joint distribution.  This is equivalent to assuming 
the features are independent.  Levina [7] developed a 
simple and effective framework for texture 
classification in this case by using the Earth Mover’s 
Distance (EMD) [6, 9] and a 1-NN classifier.  The use 
of marginal distributions greatly reduces algorithm 
complexity, by removing in particular the need to 
cluster in a high dimensional space. 

In this paper Levina’s filter bank based framework 
is extended by building a Gaussian probability model 
of each class for classification.  This model can be 
built assuming independent or dependent feature 
histograms.  The variation of each histogram in a class 



can be jointly modeled while assuming the features at 
each pixel in an image are independent.  A similar 
framework is then constructed for MRF models where 
the joint probability of a neighborhood is 
approximated by computing the probability of a pixel’s 
intensity conditioned independently on each 
neighboring pixel.  Results are reported for both 
frameworks developed here. 

In section 2, we first review the EMD and marginal 
distribution representation as used in [7].  Then, 
section 3 describes our test methodology, database, 
and base framework.  This framework is extended in 
section 4 to use Gaussian probability models, and 
generalized in section 5 for pixel intensities. 
 
2. The EMD and Marginal Distributions 
 

Rubner et al. introduced the EMD as a distance 
measure between distributions, which is based on the 
minimal cost to transform one distribution into the 
other [9].  Each distribution is represented either by a 
histogram or by a set of weighted cluster centers.  This 
optimal transformation from one distribution to 
another relies on the existence of a dissimilarity 
measure between bins and can be thought of as a 
correspondence (not necessarily 1-1) between bins of 
the two distributions. 

The EMD is a metric, if the dissimilarity between 
bins is a metric and the two distributions have the same 
total weight.  Levina showed that, in this case, the 
EMD is equivalent to the Mallows distance between 
two probability distributions [6].  This case applies for 
the rest of the paper, thus the EMD and the Mallows 
distance are used interchangeably. 

The Mallows distance between any two 
distributions P and Q in Rd, with finite p-th moments is 
defined as 
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where X and Y are random variables corresponding to 
P and Q, respectively.  That is, Mp(P,Q) is the 
minimum expected difference between X and Y over 
all joint probability distributions F for (X,Y) such that 
the marginal distribution of X is P and of Y is Q. 

Two special cases of distributions are considered 
for which the EMD can be further simplified.  In the 
first case, all bins of P and Q have the same weight 
(equi-count histograms with the same number of bins) 
and so the EMD generates a 1-1 correspondence 
between the bins of P and those of Q.  In the second 
case, the distributions are one-dimensional and an 
explicit solution that sorts the bins can be computed. 

If P and Q satisfy both conditions, then they each 
have the same number of bins, n, and can be 
represented as n-dimensional vectors P = (p1, p2, …, 
pn), Q = (q1, q2, …, qn) with p1 ≤ p2 ≤ … ≤ pn and q1 ≤ 
q2 ≤ … ≤ qn.  Each vector element is a feature value 
representing 1/nth of the distribution.  The 1-1 
correspondence between the bins of P and Q is 
between matching vector elements, making the 
Mallows distance the Lp vector norm of P and Q: 
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Now a distance measure between two images can 
be constructed using this special case of the Mallows 
distance, as follows [7].  First represent each image by 
a set of features for every pixel.  Each feature can be 
considered a random variable with an estimated 
probability distribution given by the image.  The 
features are assumed to be independent and the 
distance between corresponding features in two images 
is defined as the Mallows distance of their estimated 
marginal probability distributions.  Next, the distance 
between two images is defined as the product of the 
distances between corresponding features.  Thus the 
final distance measure between two images is the 
product of the Lp vector norms of corresponding 
features.  Levina demonstrated this framework for 
texture classification on the MeasTex and Brodatz 
databases using empirical distributions (keeping every 
pixel’s value) and a 1-NN classifier [7]. 
 
3. Preliminaries 
 

The classification problem examined in this paper, 
as in [3, 10, 11], is that of classifying a single image 
into one class from a pre-known set, whose 
descriptions are learned during training.  The images 
considered are of a single texture, obtained under 
unknown illumination and viewpoint conditions.   

Our test methodology is further defined in section 
3.1, and section 3.2 introduces the filter bank used in 
section 3.3 and our first classification algorithm in 
section 4. 
 
3.1. The CUReT Database 
 

The CUReT database contains 61 texture classes 
consisting of materials imaged under 205 viewing and 
illumination conditions [2].  Each class contains 
images from one material that experience 3D effects 
such as specularities, inter-reflections, and shadowing, 
as shown in Figure 1.  This causes large intra-class 
variability, making correct classification of the 



database a challenging task.  The limitations of this 
database are the lack of significant scale change and 
the limited in-plane rotation. 

The experimental setup of [3, 10, 11] is followed in 
this paper.  Of the 205 viewing and illumination 
configurations, 92 are used that have the largest 
minimum number of valid pixels across the samples.  
These 92 configurations are then equally split into test 
and training cases, yielding a total of 61 x 46 = 2806 
training images and 2806 test images.  Each image is 
then converted to grey scale and processed to have a 
zero mean and unit variance pixel intensity 
distribution.  

One difference in our setup vs. that of [3, 10, 11] is 
the selection of valid pixels.  For each image all pixels 
inside a cropped region, supplied with the database, are 
used, whereas [3, 10, 11] use an unspecified 200x200 
pixel region.  Our approach yields more data but has 
more pixels with inaccurate texture measurements due 
to boundary effects. 
 

3.2. The MR8 Filter Bank 
 

The MR8 filter bank consists of 38 filters and 8 
filter responses [10].  There are two isotropic filters, a 
Gaussian and a Laplacian of a Gaussian (LOG), both at 
scale σ = 10.  The 36 other filters include an edge (first 
derivative) filter at 6 orientations and 3 scales, and a 
bar (second derivative) filter at the same 6 orientations 
and 3 scales (σx, σy) = {(1, 3), (2, 6), (4, 12)}.  
Rotational invariance is achieved by storing only the 
maximum response over all orientations of a given 
filter type and scale.   
 
3.3. Marginal Distributions and 1-NN Results 
 

The marginal EMD framework described in section 
2, using the MR8 filter bank and a 1-NN classifier is 
implemented here.  The only simplification is to 
represent each filter response marginal with an equi-
count histogram, instead of its empirical distribution.  
Bins of size 10, 100, or 1,000 reduce each marginal 

from the order of 100,000 values.  With this setup 
results depend on the number of bins and the Lp norm 
(Table 1).  An accuracy of 96.54% is achieved using 
1000 bins and the L6 norm, with degrading accuracy 
for higher p values.  Results for the L2 norm are 
included since this case will be used in section 4. 

The algorithm of Varma and Zisserman, using the 
MR8 filter bank with a 1-NN classifier and a joint 
distribution estimate, achieves an accuracy of 96.93% 
and 97.43% with 610 textons and 2440 textons, 
respectively [10].  The SVM extension of this 
algorithm gives the best-known accuracy (98.46%) on 
this database [3].  Although these algorithms 
outperform the marginal implementation, they are 
computationally more expensive. 

Improved results and reduced computational 
complexity are achieved in the next section by 
extending the marginal framework to other classifiers. 

 

# Bins L2 Norm L6 Norm
10 94.44% 94.01%

100 95.69% 95.72%
1000 96.04% 96.54%  

Table 1: Classification accuracy for the marginal 
EMD algorithm using the MR8 filter bank and a 
1-NN classifier. 

Figure 1:  Three images from the “Plaster B” sample
in the CUReT database, illustrating the large intra-
class variability. 

 
4. The Extended Gaussian Framework 
 

One of the major drawbacks of a 1-NN classifier is 
its computational complexity, since for each test image 
the distance to every training image must be computed.  
Building a parametric model for the variability of each 
class is computationally more efficient and can be 
constructed using the framework discussed in section 
2. In this section, two methods of constructing 
parametric models are presented. 
 
4.1. Local Gaussian Models 

 
One of the simplest parametric models is the 

multivariate Gaussian distribution.  In this section 
models for each feature are built independently, so first 
consider a single feature.  Then each image is a single 
distribution represented as a point in a high 
dimensional space, where the dimension is the number 
of bins used to represent each distribution.  Define the 
Mallows distance between two distributions as the L2 
norm, making this a Euclidean space. Next, the 
dimensionality of the space is reduced to obtain a full 
rank covariance matrix for each class.  Principal 
Component Analysis (PCA) is applied to all the 



training images, generating the common directions of 
variation.  A small number (5-15) of these modes are 
used and a class-specific Gaussian model is estimated. 

The final probability of a class is given as the 
product of each feature’s Gaussian model.  Using this 
classifier with the marginal MR8 algorithm from the 
previous section gives the results in Table 2.  Along 
with a significant gain in speed, accuracy is increased 
to 98.86% when 1000 bins and 10 eigenmodes are 
used. As the number of eigenvectors is increased, the 
classifier quickly spikes at its maximum accuracy, 
presented in Table 2, and then slowly drops off until 
one of the class covariance matrices is no longer 
invertible.  One possible interpretation of this drop off 
is that higher modes contain unwanted intra-class 
variability, which is projected out when these modes 
are not included. 
 
4.2. A Global Gaussian Model 
 

The above approach assumes the distribution of 
each feature is independent, as well as the features 
themselves.  Alternatively, the joint intra-class 
variation of feature marginals can be computed.  One 
approach is to combine each image’s marginal 
histograms into one vector and to apply PCA as above, 
forming a single multivariate Gaussian model for each 
class.  While promising results were achieved, they 
were inconsistent across the number of bins, and 
accuracy degraded rapidly once the optimal number of 
eigenmodes was passed. 

This lead to the final method: compute PCA modes 
as in section 4.1, combine these reduced marginal 
representations into one vector, and then apply PCA 
again forming once more a single multivariate 
Gaussian model for each class.  The most remarkable 
accuracy of 99.54% is achieved when only 10 bins and 
3 eigenmodes are used per feature (local modes) and 
14 eigenmodes for the final Gaussian model (global 
modes).  In addition, an accuracy of over 99% is 
achieved for all combinations of numbers of bins, local 
modes, and global modes, where at least 97% of the 
total variance is captured at the local level, the local 
model is not extremely overfit, and at least 99% is 
captured at the global level.  For 10, 100, or 1000 bins 
at least 3 local modes and 14 global modes are 
necessary to meet this requirement.  Table 3 shows 
results for the valid range of global modes using 10 
bins and 3 local modes per marginal. 

This algorithm is very computationally efficient and 
generates a compact representation of each image.  To 
classify this database, it is sufficient to save only 80 
values per image (10 bins for each feature), which can 
be further reduced to 14 values. 

The local PCA can lead to the projection of points 
into invalid histograms, the consequences of which 
have not been examined.  PCA could also be used to 
speed up the 1-NN classifier when the L2 norm is used; 
this produced similar results as before. 

# Bins # Eigenmodes Local Gaussian
10 5 97.29%

100 10 98.61%
1000 10 98.86%  

Table 2: Classification accuracy for the marginal 
MR8 algorithm with independent multivariate 
Gaussian models per feature. 
 

# Global Eigenmodes Global Gaussian
1 14.72%
2 33.50%
4 67.57%
6 90.16%

10 98.68%
14 99.54%
18 99.32%
22 99.39%  

Table 3: Classification accuracy for the marginal 
MR8 algorithm using a single multivariate Gaussian 
model per class, 10 bins per marginal, and 3 local 
eigenmodes.  At an accuracy of 99.54% only 13 of 
2806 images are classified incorrectly. 
 

 
5. The Marginal MRF Framework 
 

In this section an algorithm is developed using the 
complete local neighborhood of pixel values instead of 
filter responses.  An approximation to the full joint 
probability of these intensities is developed and then 
the preceding framework is used for classification.  
Results are reported for neighborhoods of size 1x1, 
3x3, 5x5, and 7x7, where the 1x1 neighborhood is 
supplied for comparison.  Multi-scale neighborhoods, 
generated using a Gaussian filter, are then examined. 
 
5.1. Conditional Probability Representation 

 
Let xc be a valid pixel in an image, with intensity 

I(xc) and neighbors y1, y2, …, yn.  We seek to estimate 
the joint distribution 

)).(),...,(),(( 1 nc yIyIxIp  
Disregarding boundary effects, the marginal 
distributions of these intensities are identically 
distributed.  Thus, a useful approximation cannot 



assume fully independent intensities.  First, the 
distribution is rewritten as 
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The intensities of the set of neighbors are assumed to 
be conditionally independent given xc, yielding 
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Finally, by assuming the intensities of the neighbors to 
be identically distributed and by the spatial symmetry 
of the set of neighbors, the final probability measure 
can be rewritten as 
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A representation of these conditional distributions 
akin to that of the marginals is desired.  The 
conditional probability p(X|Y) is represented by 
measuring p(X) with equi-count histograms for a fixed 
number of Y-intensity ranges.  Y-intensity ranges are 
determined using an equi-count histogram as well, thus 
allowing each p(X) to be measured with the same 
accuracy.  To compute the representation of p(X|Y) the 
values of Y are sorted and binned.  Then for each bin 
the corresponding values of X are found, sorted, and 
binned. 

Now, a distance measure needs to be defined 
between two conditional probabilities.  Let p(X|Y) and 
p(Z|W) be two conditional probabilities measured at 
intensity ranges y1, y2, …, yn and w1, w2, …, wn, 
respectively.  First note that the distance measure 
needs only to compare p(X|yi) to p(Z|wi) for i = 1, …, n 
because X and Y, and Z and W, are identically 
distributed so any differences between Y and W will 
have corresponding differences between X and Z. 
Thus the actual intensity ranges of Y and W are 
ignored.  The distance between p(X|yi) and p(Z|wi) is 
defined to be the Mallows Distance.  These distances 
are then combined using the same Lp norm as in the 
Mallows distance to form the total distance between 
two conditional distributions.  Ordering the 
distributions into a vector makes this distance 
correspond to its Lp vector norm. 
 
5.2. Local Neighborhoods 
 

For 1-NN classification, the total distance between 
two images can be constructed using probability 
measure (1) by multiplying together the individual 
conditional terms and the unconditioned term 
(measured as in section 2).  The classification accuracy 
of this algorithm is shown in Table 4.   

Modeling each factor of (1) by a multivariate 
Gaussian distribution (as in section 4.1) significantly 

improves accuracy (Table 5).  Note that good results 
were still achieved using fairly coarse histograms (10 
intensity ranges each with a 10 bin histogram).  These 
results are comparable to those of an algorithm 
modeling the full conditional probability of a pixel’s 
intensity given its local neighborhood [11]: 95.87%, 
97.22%, and 97.47% accuracy for 610 textons and 
3x3, 5x5, and 7x7 neighborhoods, respectively.  The 
algorithm presented here slightly outperforms [11] for 
610 textons; however [11] yields a higher accuracy 
(98.03%) for 2440 textons and a 7x7 neighborhood. 

N L2 Norm L6 Norm
1 68.07% 70.81%
3 87.78% 88.99%
5 90.31% 91.77%
7 92.16% 92.52%  

Table 4:  Classification accuracy using NxN pixel 
neighborhoods and the 1-NN classifier. Each 
conditional probability is represented using 40x40 
histograms (40 intensity ranges each with a 40 bin 
histogram). 

 
N 10x10 Histograms 40x40 Histograms
1 77.51% 82.39%
3 96.36% 97.18%
5 97.26% 97.40%
7 97.58% 97.93%  

Table 5:  Classification accuracy using NxN pixel 
neighborhoods and a Gaussian model for each 
conditional probability with 15 PCA modes. 

The algorithm presented in this section 
demonstrates that conditioning a pixel’s intensity 
independently on each of its neighbors provides 
adequate information for classification.   

 
5.3. Multi-scale Neighborhoods 
 

This local neighborhood approach uses information 
from a much smaller spatial extent around each pixel 
than filter based methods.  Larger neighborhoods are 
expected to improve accuracy, however there is a 
quadratic increase in the number of features with the 
scale of the neighborhood.  Multi-scale neighborhoods 
can be used to alleviate this problem. 

A pixel’s multi-scale neighborhood includes the 
original 3x3 local neighborhood.  A Gaussian filter is 
then used to generate 3x3 neighborhoods that 
summarize progressively larger spatial areas.  For each 
level a Gaussian filter with σ = 1.4 is applied to the 
image used in the preceding level.  The 3x3 



neighborhood for a level is defined as the nine pixels 
twice the distance from the center pixel as in the 
previous level. 

Classification accuracy is improved to 98.93% 
(Table 6) when four multi-scale neighborhoods are 
used.  These neighbors supply filter responses, 
however, making this a simple filter bank based 
approach.  This method also demonstrates one way in 
which the joint distribution of filter-based features can 
be approximated using conditional independence. 

 

6. Discussion and conclusions 
 

Accurate and computationally efficient methods for 
texture classification play an important role in texture 
research.  This paper shows that the use of the 
Mallows (Earth Mover’s) distance allows several 
simplifications, resulting in efficient classification 
algorithms. 

One major simplification when using filter banks is 
the use of marginal distributions.  This paper, as in [7], 
demonstrates the effectiveness of this framework.  
Furthermore, modeling the intra-class dependence 
between marginal histograms is shown to be a 
powerful tool. 

Classifier choice strongly affects computational 
complexity and accuracy.  In this paper, multivariate 
Gaussian probability models are shown to be superior 
to 1-NN classifiers often used in texture classification 
and achieve a classification accuracy of over 99% on 
the CUReT database. 

The use of normalized pixel intensities as features 
further reduces algorithm complexity.  A novel 
approach is presented here to approximate of the joint 
distribution of these intensity values using conditional 
independence.  However, in contrast to [11], the most 

accurate results were achieved by filter bank rather 
than pixel intensity based methods. 

In conclusion, this paper shows that algorithms 
based on low dimensional equi-count histograms, the 
Mallows distance between probability distributions, 
and Gaussian probability models are effective and 
efficient for classification.  Algorithms presented here 
using pixel intensities and the MR8 filter bank achieve 
the best-known accuracy to date on the CUReT 
database. 
 
7. References # Levels 10x10 Histograms 40x40 Histograms

2 98.47% 98.54%
3 98.68% 98.90%
4 98.79% 98.93%  

Table 6: Classification accuracy using multi-scale 
3x3 neighborhoods and a Gaussian model for each
conditional probability with 15 PCA modes. 

 
[1] O. Cula and K. Dana.  Compact representation of 

bidirectional texture functions.  In Proc. CVPR, vol. 1, 
pages 1041-1047, 2001. 

[2] K. Dana, B. van Ginneken, S. Nayar, and J. Koenderink.  
Reflectance and Texture of Real World Surfaces.  ACM 
Trans. on Graphics, vol. 18, no. 1, pages 1-34, 1999. 

[3] E. Hayman, B. Caputo, M. Fritz, and J. Eklundh.  On 
the Significance of Real-World Conditions for Material 
Classification.  In Proc. ECCV, 2004. 

[4] D. J. Heeger and J. R. Bergen.  Pyramid-Based texture 
analysis/synthesis. In Proceedings AMC SIGGRAPH, 
pages 229-238, 1995. 

[5] T. Leung and J. Malik.  Representing and recognizing 
the visual appearance of materials using three-
dimensional textons. IJCV, pages 29-44, 2001. 

[6] E. Levina, P. Bickel.  The Earth Mover’s Distance is the 
Mallows Distance: Some insights from statistics. In 
Proc. ICCV, pages 251-256, 2001. 

[7] E. Levina.  Statistical Issues in Texture Analysis. Ph.D. 
Dissertation, Department of Statistics, UC Berkley, 
Spring 2002. 

[8] J. Puzicha, Y. Rubner, C. Tomasi, and J. M. Buhmann.  
Empirical evaluation of dissimilarity measures for color 
and texture.  In Proc. CVPR, 1999. 

[9] Y. Rubner, C. Tomasi, and L. J. Guibas.  A metric for 
distributions with applications to image databases.  In 
Proc. ICCV, pages 59-66, 1998.  

[10] M. Varma and A. Zisserman.  Classifying images of 
materials:  Achieving viewpoint and illumination 
independence.  In Proc. ECCV, vol. 3, pages 255 – 271, 
2002. 

[11] M. Varma and A. Zisserman.  Texture Classification:  
Are Filter Banks Necessary?, In Proc. CVPR, vol. 2, 
pages 691-698, 2003. 

 


	1. Introduction 
	2. The EMD and Marginal Distributions 
	3. Preliminaries 
	3.1. The CUReT Database 
	3.2. The MR8 Filter Bank 
	3.3. Marginal Distributions and 1-NN Results 
	4. The Extended Gaussian Framework 
	4.1. Local Gaussian Models 
	4.2. A Global Gaussian Model 

	5. The Marginal MRF Framework 
	5.1. Conditional Probability Representation 
	 
	5.2. Local Neighborhoods 
	5.3. Multi-scale Neighborhoods 

	6. Discussion and conclusions 
	7. References 


