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We describe a method for protein family identification using a graph representation of proteins.
The method incorporates a novel fast subgraph isomorphism method based on a graph index to
query a new structure for occurrences of family fingerprints and to assign it to a protein family
with a confidence value. This method can provide an independent assignment of the protein
family for a new structure in silico, in cases where sequence alignments and structural matches
fail to provide proper annotation. Using Gene Ontology and cross validation, we further validate
the annotation power of the mined fingerprints.

1. Motivation

Structural genomics projects have produced a large number of protein structures
which are encoded in the fully-sequenced genomes; the ultimate goal of these
projects is to solve structures of all possible protein folds. These projects present
a serious challenge 26 for conventional structural biology, as a large and growing
number of structures produced have unknown function.

Several functional annotation methods have been proposed, which broadly fall
into two categories – sequence-based annotation methods (based on multiple se-
quence alignment or study of phylogeny and evolution) and structure-based anno-
tation methods. Methods based only on sequences work when they can determine
an alignment with another protein or domain of known function with at least 40%
sequence identity. Proteins with less than 40% sequence identity (i.e. in the so-
called twilight zone of sequence alignment) are not guaranteed to have homolo-
gous structures, and can diverge in function even if the structures are similar.

It is widely known that protein function relies on its structure and that structure
is better conserved during evolution than sequence 28. Structure-based annotation

∗ Portions of this research were supported by NSF grants 0076984 and 9988742.

1



August 3, 2004 2:24 Proceedings Trim Size: 9in x 6in psb

2

methods would thus be expected to offer clues about an unknown function; in-
deed, global structural similarity to a protein of known function often indicates
functional similarity. If both sequence and global structure similarity fail to reveal
a function, insights from local function-related patterns become critical. Features
that could be identified by local structural patterns include the nucleotide-binding
surface motif of P-loop containing proteins 31; the functional core of native Triose
Phosphate Isomerases and those redesigned on a Ribose Binding Protein tem-
plate 7; and the Ser-His-Asp catalytic triad in all Serine Proteases and several
other classes of enzymes such as the αβ-hydrolase and esterase families 6. Some
of these cases are believed to have arisen by convergent evolution.

Patterns such as the catalytic triad, often called residue packing patterns or
structural motifs, occur in several different families of proteins. There are sets of
patterns that occur together in almost all members of a family, and very rarely in
the rest of the PDB. Such a combination of residue packing patterns, called family
signatures or fingerprints 13, uniquely identifies a family and thus can be used to
decide if a new structure belongs to the family or not.

In this paper, we present a novel automated algorithm to assign a protein a
functional family, using local structural patterns which are highly associated with
known functional families. Our method works in two stages, built upon our earlier
work on deriving protein family-specific fingerprints 13,15,12. In the first stage,
we use a fast subgraph isomorphism algorithm to find all occurrences of family-
specific subgraph fingerprints in a protein to be annotated. In the second stage, we
assign a family and a significance score to the query, depending on the fingerprints
found in it, and search the Gene Ontology (GO) and SCOP family databases to
detect functional neighbors of the family.

The rest of this paper is organized into the following sections: the Related
work section summarizes current methods for discovering local structural mo-
tifs associated with function. The Methods section discusses the techniques used
for obtaining and prioritizing family-specific fingerprints, searching for them in a
query protein and classifying the protein using the results, and clustering the Gene
Ontology. The Experiments section covers the performance improvements from
using the graph index, validation of our methods and their application to classify
protein families and find functional neighbors of an existing family in SCOP and
GO.

1.1. Related Work

Traditionally, family assignment was done by global structural alignment or fold
comparison. Domain-based methods cluster protein folds by expert human judg-
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ment(SCOP 21); combined expert and automated recognition (CATH 23); Hidden
Markov Models based on sequence 4,10,18 and structure 1; and structure compar-
ision (DALI 11,VAST 19,9,PRiSM 35). Recently, attention has shifted to structure
similarity at a much more local level than that of fold (domain), where interesting
patterns are composed of a limited number of residues. The rationale behind the
shift is that the real function is usually carried by a few residues which, if mutated,
have significant effect on the protein function.

Comparing to the relatively developed field of protein fold comparison and
classification, the algorithms to find local structure motifs are limited. We
overview here two major methods; see also recent reviews on methods for as-
signing function from structure 16,17. The first method is geometric hashing, orig-
inally developed in computer vision, and successfully applied to comparing a pair
of protein structures 22 and a protein structure to a structure database 3,32. Pat-
terns identified by geometric hashing include the serine protease catalytic triad
and the ribonuclease and lysozyme catalytic domains 32. The second method uses
subgraph matching to detect recurring structural motifs 2,20,24,25,27,34. Many
patterns are found by this method which include the catalytic triad, a His-His por-
phyrin binding pattern, and the zinc-finger Cys-Cys-His-His patterns. Compared
to geometric hashing, graphs may have labeled edges and nodes and thus in ad-
dition to geometric information they can model residue charge, residue-residue
interaction, bond type, sequence numbers and other information. Other methods
based on Inductive Programming Language 29 and Fuzzy Functional Forms 8 are
also used for inferring structure motifs from protein 3D structures.

Our approach for finding local structural patterns is related to methods from
graph theory and data mining but with significant improvements. We extend the
pair-wise comparison to multiple structure comparison and enhance the algorithm
to find patterns of any topologies with arbitrary sizes. Our method assumes no
prior knowledge about functional features to be searched for (but such knowledge
can be easily incorporated). The method is fully automated and fast enough to find
family-specific fingerprints 13 in large families of structurally similar or dissimilar
proteins.
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2. Methods

2.1. Modeling Protein Structures by Graphs

To find recurring substructural motifs, we represent protein structures as labeled
undirected graphs, and search for common subgraphs in the structures of the pro-
teins in a family. Our protein graphs have a node for every residue, and pairs
of nodes connected by edges of two types: peptide bond edges that connect two
primary-sequence consecutive residues, and spatial proximity edges that connect
two residues that are nearby in 3D space but not consecutive along the primary
sequence. Nodes are labeled by residue type. It is possible to merge two or more
node types to create a reduced set of node labels, and to further classify edges
based on ranges of edge lengths. We determine spatial proximity between nodes
using the almost-Delaunay (AD) edges 13. An almost-Delaunay graph gives sets
of neighbors for each residue in the presence of a bounded uncertainty in the point
coordinates, and is parameterized by this uncertainty. While not much larger or
slower to compute than Delaunay graphs 13, they are more robust to small changes
in the point coordinates.

2.2. Mining Protein Family Fingerprints

We mine frequent subgraphs from the graph representations of multiple proteins
using an algorithm 14 based on a depth-first search on a spanning tree represen-
tation of subgraphs; this is much faster than exhaustive enumeration or clique
detection. A frequent subgraph is defined as one that occurs in more than a frac-
tion sF of the proteins in the family; sF is called the minimum support and is
by default chosen as 0.9. A maximal frequent subgraph has no supergraph that is
frequent.

Any subgraphs found to be frequent in the family are then checked against the
background, a dataset of 6500 non-redundant proteins from CulledPDB 33 with
parameters as shown in Table 1, that represents the whole Protein Data Bank.
Any subgraph that occurs in more than a fraction sB of the background is re-
moved from consideration; sB is denoted the maximum background frequency
and is by default chosen as 0.05. The remaining frequent subgraphs with high
family support and low background frequency are sorted in decreasing order of
size and increasing order of background frequency; these correspond to spatial
packing patterns that are unique to the family and rarely seen outside of it, and are
stored as the family fingerprints.
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2.3. Querying a New Protein

The problem of annotating the query protein with a set of fingerprints derived from
a putative family then becomes one of searching the graph of the query protein for
occurrences of subgraphs. Done naively, this is a subgraph isomorphism search,
which is known to be an NP-complete problem. However, we use an index of
graph similarity to speed up the search.

To quickly filter the subgraphs matching a pattern, we build a k-level local
neighborhood index for the graph database of family fingerprints. At each vertex
in a graph we store a 20 × k matrix, where entry i, j contains the number of
residues of each type i that can be reached from the vertex by a path of length at
most j. This is shown in Figure Figure 1. We typically choose k = 3 since the
subgraphs are typically small (3–12 residues), and since proteins are compact—
higher-level indices have less discriminating power. The computation of these
numbers is easy using the symmetric adjacency matrix of the graph. If A is the
adjacency matrix with ones on the diagonal, then the off-diagonal entries give the
adjacencies for level 1, and multiplying the adjacencies for level j by A, setting the
diagonal to zero and all positive values to unity gives the adjacencies for level+(j+
1).

Neighbor StringLabelNode

1: A1S1  2: A1D1H1S1ALA4

1: A1H1S1  2: A2H1S1ASP3   

1: A1D1H1S1 2:S1ALA 1

SER

HIS

1: A2D1H15

1: A1D1S1  2: A2D1S12

ASP 1

ALA 3

SER 2

subgraph

ASP 3

ALA 4

SER 5

HIS 2

ALA 1

graph

1: S1  2: D1S1ALA3

1: A1D1SER2

1: S1  2: A1S1ASP1   

Neighbor StringLabelNode

Figure 1. We show an example of the proposed graph index. Top: the two matching graphs.
A solid arrowed line connects two matching node; the dotted-arrowed line connects two
node which have the same type but have different graph index and hence could not be a
matching pair. Bottom: the node id, node type, and its index (neighbor string) for each
node in the two graphs.

We say that a query matches a subgraph at a vertex by comparing entries of
their 20 × k matrices: A query vertex u can match a subgraph vertex v with the
same label only if each entry of the index matrix of u is at least the corresponding
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entry of the matrix of v. This is illustrated in Figure 1. We can compare the index
matrices row by row from shorter to longer paths, and eliminate from considera-
tion all subgraphs that do not have any matches for all their vertices in the query.
If a subgraph satisfies the graph index, this does not guarantee an embedding in
the query; we subsequently use Ullman’s 30 algorithm to verify these matches and
find valid occurrences of the subgraph from them.

We define two measures of pruning performance of our graph index: The
efficiency (η) of a graph index for a particular dataset of query and graph database
is the average ratio of the number of true matches for a subgraph in the query and
the number of index matches for the same subgraph. Index matches are possible
residue assignments that satisfy the graph index, and thus η measures the overhead
in pruning non-adjacent embeddings. For the dynamic programming algorithm,
we can estimate η for each subgraph as the fraction of nodes traversed that led
to successful matches. Dynamic programming is much more efficient than an
exhaustive match that may have to enumerate an exponential number of index
matches.

Another measure is the hit rate, the ratio of the number of subgraphs actually
present within a query to the number returned by the graph index, i.e. the number
of subgraphs with nonzero match efficiency.

2.4. Significance of family assignment

Having found the fingerprints of family F that occur in a query protein q, the
simplest method to assign a significance to q being in F is by counting the fin-
gerprints and comparing with the expected counts for family and background pro-
teins, based on support values sB and sB used to select fingerprints. If there are
CF fingerprints, an average family protein is expected to have sF CF of them, an
average background protein to have sBCF , and both these are normally distributed
about their means with variances CF sF (1− sF ) and CF sB(1− sB) respectively.
These distributions can be used to assign a p-value for the query with N q finger-
prints belonging to the family or the background. This model is crude since it
assumes that all fingerprints are equally discriminating and are independent, but
it is a good first approximation of the family assignment. A better model is from
the joint probability distribution of the fingerprints X q1 . . .Xqn found in query q:

P (q ∈ F |Xq1 . . . Xqn ∈ q) =
P (q ∈ F )P (Xq1 . . . Xqn ∈ q|q ∈ F )

�
S∈{F,B} P (q ∈ S)P (Xq1 . . . Xqn ∈ q|q ∈ S)

Here we estimate P (q ∈ F ) as NF /N , where NF is the number of proteins
in the family and N is the total number of proteins in the background.
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2.5. Gene Ontology Enrichment Assessment

The GO Consortium 5 was formed to integrate the efforts to regulate the vocab-
ulary for various genomic databases of diverse species in such a way that it can
show the essential features shared by all the organisms. GO terms and the ”is-a”
and ”part-of” relationships form directed acyclic graphs(DAGs) in which a par-
ent node describes functions exhibited by its child nodes. Terms that are lower
in height (i.e. close to the root) describe more general functions; the greater the
height, the more specific the function.

The goal of GO enrichment evaluation is to measure whether a set of pro-
teins sharing a fingerprint is enriched with proteins from a particular category to
a greater extent than that would be expected by chance. A geometric distribution
is used to model the probability of observing at least k proteins from n proteins
sharing the same fingerprint by chance in a category containing f proteins from

a total protein size of g. The P-value is given by P = 1 − ∑k
i=0

(f
i)(g−f

n−i)
(g

n)
. For

example, if the majority of proteins in the list appear from one category, then it is
unlikely that this happens by chance and the category’s P-value would be close to
0.



August 3, 2004 2:24 Proceedings Trim Size: 9in x 6in psb

8

3. Experiments and Results

3.1. Performance of the Graph Index

All the family datasets used in our experiments, along with the number of finger-
prints found, are listed in Table 1.

SCOP family # # Remarks
ID name proteins fprints
46626 Cytochrome C 34 5 contain His-Cys-Cys triad;

used in Figure 2
88854 Protein Kinase catalytic 29 30 small fingerprints
50847 Fatty Acid Binding (FABP) 11 32 used in Table 2

query short # Remarks
list description proteins
CASP5 17 homology models submitted 17 All models on FABP template
T0137 for target T0137 in CASP5 scored high ( Table 2)
CulledPDB CulledPDB at 90% sequence ID, 6500 background dataset, also for
/background 3 Å resolution, R-factor 1.0 non-redundant family members
sample Randomly selected sample of 620 Used to benchmark
background background proteins graph indexing

We report the match efficiency and hit rate for the CASP target dataset
matched against the Fatty Acid Binding Protein fingerprint set in Table 2. Clearly,
using the graph index improves the efficiency and hit rate. The improvement in
the running time seems higher in cases where more subgraphs are found. To inves-
tigate this, we selected as a benchmark query about a tenth of our non-redundant
background dataset, i.e. the first 620 proteins with between 42–1017 residues and
between 117–5463 bonds in their AD(0.1) graph representations.

In Figure 2, we show the times taken to search for the 5 Cytochrome C finger-
prints within the sample background dataset, with and without the graph index.
Family fingerprints by definition are usually not found in the background, and the
cumulative running times do not differ substantially in this case. We also picked
11 subgraphs with between 3 and 5 nodes that are frequent in the background –
these 11 subgraphs have on the average 60 occurrences in our background dataset.
Now the search using the graph index is still linear and takes about 1 second per
query (0.014 second per occurrence found), while without the indexing only three
subgraphs had been searched within one query in 30 minutes and the fourth did
not finish running within 3 hours. This shows the scalability of our graph index to
search many large dense proteins with multiple occurrences of subgraphs.
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Query # fam No graph index Using local nhd graph index
protein FP Time η Hit rate Time η Hit rate
name (sec) (sec)
AL025 1 17 107.14 0.02 0.59 1.52 0.23 0.85
AL044 1 17 86.91 0.03 0.59 1.12 0.27 0.89
AL397 1 17 110.15 0.02 0.59 1.90 0.24 0.85
AL400 1 2 65.12 0.04 0.09 0.64 0.07 0.33
TS011 1 3 133.15 0.03 0.13 0.32 0.11 0.27
TS070 5 6 69.01 0.03 0.26 0.22 0.21 0.67
TS086 1 16 107.27 0.02 0.55 0.83 0.26 0.80
TS086 4 1 1 2.59 0.05 0.05 0.06 0.12 0.25
TS132 1 4 109.68 0.03 0.17 0.61 0.21 0.44
TS139 1 4 118.54 0.01 0.17 0.25 0.17 0.36
TS203 1 17 111.51 0.02 0.59 1.91 0.24 0.85
TS231 1 2 4.50 0.03 0.09 0.07 0.15 0.40
TS231 4 1 41.19 0.09 0.05 0.14 0.15 0.50
TS233 1 17 99.85 0.07 0.59 1.98 0.23 0.85
TS233 2 2 10.49 0.08 0.13 0.37 0.05 0.50
TS282 2 4 87.69 0.03 0.17 0.92 0.10 0.50
TS283 1 6 48.85 0.03 0.26 0.28 0.20 0.67
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Figure 2. An easy case (left): searching for 5 fingerprints of the Cytochrome C SCOP fam-
ily (all containing the functional His-Cys-Cys triad and additional neighboring residues) in
620 random proteins, a tenth of our CulledPDB dataset. Cumulative running time is plotted
against cumulative number of query proteins. Though there were almost no matches, the
graph index was still a little faster than no indexing. A hard/dense case (right): searching
for 11 wholly hydrophobic subgraphs with 3–5 nodes that are frequent in 620 random pro-
teins, a sample of our CulledPDB dataset. Each protein has on the average 60 occurrences
of these 11 subgraphs. Comparing the two cases, we see that the graph index takes not
much more time for this densely occurring set of subgraphs than for the sparsely occurring
set. Without the graph index, however, this case is intractable; only 3 subgraphs could be
searched in an 856-residue query within three hours of processing.

3.2. Validating the Fingerprints by Cross Validation

We validated the fingerprints of a family by cross-validation, i.e. by removing a
subset of members of a family, finding the fingerprints from the rest and then an-
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notating the removed members using the fingerprints derived from the remaining
members. For example, in the serine proteases family dataset with 65 members,
when we removed around 15% of the family (10 members), we got 907 finger-
prints from the remaining 55 members. The 10 removed members have on aver-
age 856 of the 907 (94%) fingerprints. The ratio between the number of recovered
fingerprints to the total number of fingerprints is defined as the hit ratio. We per-
formed a standard 6 fold cross validation and the average hit ratio is 0.81 with
standard deviation 0.07. This suggests that on average a true positive protein (the
one that we know belongs to the family) is expected to contain around 80% of the
total fingerprints we have. Given the fact that we usually have tens (more likely
hundreds) fingerprints, we would expect that on average the any true positive pro-
teins should contains enough fingerprints to be annotated correctly.

3.3. Comparing Datasets from GO and SCOP classification

We collected two groups of serine proteases from two independent sources. The
first dataset we collected is from the Gene Ontology node: Trypsin activity molec-
ular function (ID:0004295). We also obtained a group of serine proteases from
two SCOP families: Eukaryotic Serine proteases (ID:40595) and Prokaryotic Ser-
ine Proteases (ID:50495) and mixed them together. We refer the first group as the
GO SP dataset and the second one as the SCOP SP dataset. For both datasets,
we used the cullpdb list to obtain the non-redundant structures. The two datasets
are summarized in Table 3. It would be interesting to check whether these two
different annotation systems agree with each other or not. For that purpose, we
annotate the proteins from GO SP according to SCOP and the results are listed
below. From the table, we found that the GO annotation and SCOP annotation
agree with each other quite well.

3.4. GO Enrichment Analysis of Protein Groups Featuring Fingerprints

To further comparing the two classification systems, we carry the following exper-
iment. In this experiment, given a list of proteins sharing a fingerprint from SCOP
serine protease family, we try to evaluate how the functions of these proteins are
distributed in GO. 72 fingerprints are discovered based on proteins from Serine
Proteases Family. For each fingerprint, the proteins in the background dataset in
which it occurs (hits) are extracted into a list and evaluated for GO enrichment.
The size of the protein lists ranges from 60 to 97. We observe that the GO cate-
gories related to peptidase activity (shown in 3) are consistently enriched in all
72 protein lists, with p-value smaller than 1.0 ∗ 10E − 15.

The result suggests that proteins sharing the same fingerprint may have similar
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SCOP PDBID+Chain
UA 1md8a 1nl1a 1os8a 1p3ca 1p57a 1p57b 1pq7a 1q0pa 1qy6a 1s83a 1ssxa
49855 1nt0a 1nzia
50495 1agja 1arb0 1hpga 1l1ja 1qtfa 1sgpe 2sfa0 2sga0 1ky9a 1l1ja 1lcy a
50514 1ao5a 1autc 1azza 1bio0 1bqya 1brup 1cgha 1ddja 1dlea 1eaxa 1ekbb

1elt0 1elva 1eq9a 1eufa 1f7za 1fi8a 1fiwa 1fiza 1fizl 1fona 1fuja
1fxya 1g2la 1gg6b 1gg6c 1gj7a 1gj7b 1gvkb 1gvza 1h4wa 1h8dh 1h8dl
1hj8a 1hj9a 1iaua 1kdqa 1kdqb 1kigh 1klih 1lo6a 1ltoa 1m9ua 1mzaa
1nn6a 1npma 1orfa 1pfxc 1ppfe 1rfna 1rtfb 1ton0 1trna 1ucyj 1ucyk
2hlca 2pkaa 2pkab 3rp2a 1pytd

54807 3proc
57197 1autl 1edmb 1g2lb 1kigl 1klil 1rfnb
57415 1bhta
57441 1i71a 1ki0a 1krn0 1pmla 3kiv0 5hpga
57631 1iodg 1j34c 1lqvc
74933 1ky9a 1lcya

GO:0008233 : peptidase activity (k:55/f:377)
 GO:0004175 : endopeptidase activity (k:55/f:297)
   GO:0004252 : serine-type endopeptidase activity (k:55/f:130)
    GO:0004263 : chymotrypsin activity (k:52/f:73)
   GO:0004295 : trypsin activity (k:55/f:85)   
  GO:0008236 : serine-type peptidase activity (k:55/f142)  
   GO:0004252 : serine-type endopeptidase activity (k:55/f:130)

Figure 3. Significantly enriched GO categories for a list of 62 proteins. Given a GO category, k is
the number of proteins in the 62 proteins belonging to the category, and f is the number of proteins in
the CulledPDB dataset belonging to the category.

molecular functions. Based on this observation, we can define a functional neigh-
bor relation between families that share fingerprints, with strength proportional to
the number of fingerprints shared. This method can be used to classify families of
proteins with unknown function, or to derive new function annotations based on
functional neighbors.

4. Conclusion

We developed a fast subgraph matching algorithm to match a protein family spe-
cific substructure (a fingerprint) to a large set of proteins structures. We evaluated
the biological significance of such search using training sets from SCOP and Gene
Ontology. Our results demonstrate that the fingerprints identified by our algorithm
is stable and can be used to infer functions from unknown proteins.
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