
Characterizing the mobility and association patterns
of wireless users in a campus

Maria Papadopouli
Department of Computer Science

University of North Carolina at Chapel Hill
USA

maria@cs.unc.edu

Haipeng Shen
Department of Statistics & Operations Research

University of North Carolina at Chapel Hill
USA

haipeng@email.unc.edu

Manolis Spanakis
Department of Computer Science

University of Crete
Greece

spanakis@csd.uoc.gr

Abstract— Our goal is to characterize the mobility and
access patterns in a IEEE802.11 infrastructure. This can
be beneficial in many domains, including coverage plan-
ning, resource reservation, supporting location-dependent
applications and applications with real-time constraints,
and produce models for simulations. We conducted an
extensive measurement study of wireless users and their
association patterns on a major university campus using
the IEEE802.11 wireless infrastructure. We propose a new
methodology to characterize and analyze the wireless ac-
cess pattern based on several parameters such as mobility,
session and visit durations. This methodology can allow us
to study how user association and mobility patterns evolve
in the temporal and spatial dimension.

We show that the mobility and building type affect the
session and visit durations. As the mobility increases, the
visit duration tends to decrease stochastically. The opposite
happens in the case of the session duration. Moreover,
there exist different stochastic orders among visit durations
of different building types when conditioning on session
mobility.

I. INTRODUCTION

IEEE802.11 networks are becoming widely available
in universities, corporations, and residential areas to
provide wireless Internet access. Such networks are also
increasingly being deployed in airports, hospitals, shop-
ping centers, and other public areas. The deployment
of the wireless infrastructure in all these environments
impacts the way users access the information. For how
long is a wireless client associated with an access point
(AP)? What is the duration of its continuous wireless
access to the Internet and for how long does it stay dis-
connected? What is its AP trajectory as the device roams
through the wireless infrastructure? How do association
patterns of different types of clients (with respect to the
device, usage pattern, location, setting, mobility) differ?
How do user association and mobility patterns evolve in

the spatial and temporal dimension, as the wireless arena
expands in various settings?

Currently, most of the simulation studies on wireless
networks and protocols consider simplistic association
and mobility patterns for the wireless users [1], [2].
There are a few studies on the mobility and association
patterns in cellular networks [3], [4], [5]. However,
the rapid deployment of the IEEE802.11 infrastructures
in various environments triggers new applications and
services, that in turn, generate a richer set of traces for
analysis. There is a need for more realistic models of
user communication and association patterns. This can
be beneficial in capacity planning, administration and de-
ployment of wireless infrastructures, protocol design for
wireless applications and services, and their performance
analysis.

The key issue that drives this study is the characteriza-
tion of the continuous wireless access and user mobility
pattern. For that, we define the session of a client to
identify a continuous associations of this client to a
wireless infrastructure. We characterize the session based
on several features and distinguish two main components
of the movement pattern, namely, its continuous access to
the wireless infrastructure and its disconnection periods.
Each session can be described by a trajectory to a
sequence of APs and the duration spent at each AP.

Our thesis is that both application and infrastructure
designers can exploit the trajectory and duration estima-
tions to support caching, prefetching, graceful handoffs,
resource reservation, and capacity planning at APs. The
overhead in accessing the Internet via wireless infrastruc-
tures can be prohibitive for some real-time multimedia
applications, especially as devices experience disconnec-
tions from the Internet and frequent handoffs due to their
mobility. In a pervasive computing environment, access
points, proxies, and servers can use the estimation of
their clients visit duration and next association to prepare



the handoff, share clients or traffic load with each other,
and ensure a better quality of service characteristics.

This research extends our earlier study [6], the stud-
ies by Kotz and Essien [7], Balachandran et al. [8],
Tang and Baker [9], and Balazinska and Castro [10]
by focusing more closely on the association and mo-
bility patterns of individual clients rather than on the
entire population of mobile clients and in a finer time
granularity. We monitor the behavior of each wireless
user with respect to its association patterns and carry
out user-behavior analysis more accurately. We focus on
the analysis and modeling of session and visit durations,
and apply our methodology on extensive wireless traces.

We show that as the session mobility increases, the
visit duration tends to decrease stochastically. The op-
posite happens in the case of the session duration. This
distinction between visit and session durations gives
new insights into the wireless access characteristics.
Moreover, there exist different stochastic orders among
visit durations of different building types when condi-
tioning on session mobility. We also discover that mobile
sessions tend to be “imbalanced” with respect to their
visit durations. A family of BiPareto distribution can
model approximately the visit and session durations. As
an example, we parametrized the stationary session dura-
tion using the BiPareto distribution. Finally, we propose
a new methodology and set of metrics to describe a
session and characterize its mobility, transient nature,
spatial properties, and the disconnection periods. These
contributions nicely tie with our earlier results that model
the trajectory of the sequence of APs as a markov-chain
and predicting with high probability (86%) the AP of the
next association of a client [6].

Section II describes briefly the wireless infrastructure
and our techniques for acquiring the data. Section III
focuses on the session generation and its features for
characterizing the mobility and access patterns. Section
IV presents our measurements and provides insight about
the associations and movement of users on the campus.
Section V of this paper describes previous related re-
search. In Section VI, we summarize our main results
and discuss future work.

II. WIRELESS INFRASTRUCTURE

The UNC wireless infrastructure provides coverage
for nearly every building in the 729-acre campus and
includes a diverse academic environment. The majority
(232) of the access points (APs) on campus were config-
ured to send syslog events to a server in our department
between 12:00:00 am on February 10, 2003 and 11:59:59

pm on April 27, 2003. During this tracing period, we
recorded 8,158,341 syslog events for 7,694 clients, and
222 APs distributed among 75 buildings. A client is
a device that communicates with the campus wireless
infrastructure and is identified by a unique id based on
its anonymized MAC address. In our earlier work [6], we
describe in detail about how clients communicate with
APs, the events that allow us to log the clients’ activities,
and the measures taken to ensure privacy.

The campus primarily uses Cisco Aironet 350 802.11
access points (APs) to provide the wireless network ser-
vice [11]. An AP generates log messages for IEEE802.11
MAC level events, which indicate when a user associates,
authenticates, deauthenticates, or disassociates with the
AP. The majority of APs on campus were configured
to send this data via syslog messages to a syslog server
in our department. The messages sent by the APs are
detailed in [7], [6].

A session consists of a sequence of visits (one or
more) without any disconnection between these consec-
utive visits. Each client may have one or more sessions.
We will present the session generation process in detail
in Section III.

In addition to each AP’s unique IP address, we main-
tain information about the building the AP is located
in, its type, and its coordinates. The possible building
types are academic, administrative, athletic, business,
clinical, dining, library, residential, and theatre. We have
map coordinates for each corner of most buildings. This
allows us to estimate the centroid of each of these
buildings. For the buildings that we do not have exact
coordinates, we estimate their coordinates by visually
inspecting a campus map and calculating the distance
between the center of the building and the center of a
building with known coordinates, and then scaling that
distance according to the map’s scale.

III. SESSION GENERATION

The syslog messages are ordered based on their
timestamp (i.e., the time when they are received from
the server in our department). Our parser reads these
syslog (“info-type”) messages [12] sequentially for each
client, interprets each event with respect to the Cisco
documentation [12], creates some state information for
each client, and generates each client’s transitions from
one AP to another or to its disconnection from the
infrastructure. Its main task is to construct the visits and
sessions for each client.



A. Session generation process

The parser maintains for each client a state array
that indicates the state of the client with respect to
each AP in the infrastructure. This state corresponds
to the IEEE802.11 state variables, namely state 1 or
“unauthenticated, unassociated”, state 2 or “authenti-
cated, unassociated”, and state 3 or “authenticated and
associated” (page 22, IEEE802.11b, 1999 Edition [13]).
We also introduce the state -1 or “undefined” state which
is the initialization state for each client’s state array. The
parser also maintains the current state of a client that
indicates the AP, if any, with which the client is currently
associated. As the parsing of the syslog trace proceeds,
the parser updates each client’s current state and state
array. It also maintains a status information that indicates
whether or not these transitions are consistent with the
IEEE802.11 state diagram[13]. For example, when we
receive a deauthentication event from an AP

�
and the

�
-th entry is the state 2, the

�
-th entry changes to state 1

with a “successful deauthentication” status.
At the beginning of the tracing period, the session

generation process assumes that each client has no visits
or sessions, and initializes all the entries of their state
arrays to the undefined state. The first visit of a session
starts with the first association message after a period of
disconnection or the start of the tracing period. Each of
the remaining visits (if any) in the sequence are triggered
by a (re)association event. Essentially, the visits in a
session represent the continuous roaming of the client.

The session generator completes a visit when it
receives any of the following events, namely, a
(re)association, a deauthentication from the current AP
1, a disassociation from any AP, or reaches the end of
the tracing period. The (re)association event (of the list
above) extends the sequence of visits, and therefore the
session, by one additional visit. Its timestamp indicates
the start of the new visit and the completion of the
previous visit. All the other events (in that list) complete
the current visit and terminate the session (i.e., the
current visit becomes the last visit of the session). Their
timestamps mark the end of the current visit and session.
A period of disconnection for that client follows until the
receipt of a new (re)association event from an AP that
will start a new visit (i.e., the first visit of a new session)
or the end of the trace.

The status of each visit indicates whether or not the

1When a deauthentication event from a different than the current
AP is received, the client state with that AP becomes “deauthenti-
cated” but the event is ignored in the session generation.

event that terminated that visit and initiated a transition
(i.e., a new visit in the session or the completion of
the session) is a successful transition. To be a success-
ful transition, it must conform the IEEE802.11 state
transition diagram and not introduce any conflict or
inconsistency with the states that the session generator
maintains for that client. When the session generator
parses a disassociation event for a client from an AP
different from the current state of that client, it gener-
ates an unsuccessful transition. Similar outcome has an
association event, if prior to that, the AP that sent it (e.g.,

�
) has state 1 or -1 in the state array of that client. The

session generator extends the session by creating a new
visit (e.g., at

�
) and updates the state array accordingly.

However, since the session generator is not aware about
any (pre)authentication of this client with that AP

�
,

it considers the transition invalid. This could happen
when the authentication syslog message gets lost or the
(pre)authentication takes place prior to the tracing period
start.

The visit duration corresponds to the period from
the start of the visit until its completion. The session
duration is the sum of all the durations of the visits in
that session. We merge the consecutive (re)associations
of a client with the same access point during a session.
Each new merged visit has as duration the sum of the
duration of all the (re)associations that compose this
merged visit. Throughout the following Sections, we
refer to a “merged visit” simply as “visit”.

B. Conditions for well-defined sessions

We have a large set of sessions (235,885) and would
like to focus our analysis on those with the most reli-
able session information. Unreliable information can be
mainly due to syslog packet losses, sporadic AP failures,
partial knowledge about the configuration or IEEE802.11
implementation of the AP or client, or events that may
have happened before or after the tracing period but we
cannot verify.

We decided to select the well-defined sessions and
focus our analysis mainly on them. A session is well-
defined when it satisfies certain criteria regarding its
completion and inter-AP and inter-building transitions.
Any not well-defined session or transition is an invalid
one. We describe these conditions in the following
paragraphs.

1) Completion conditions: A session must have fin-
ished before the end of the tracing period. This condition
is necessary to compute accurate session durations. The
disassociation event that completes a session (of a client)



must come from the same AP as the current state of that
client prior to this disassociation.

The disconnection must take place with a disasso-
ciated or deauthenticated event with the reason “Suc-
cessful” or “Sender is Leaving (has left) ESS”. When
a session comes to an end with a deauthenticated “In-
activity” event, we consider the session to be not well-
defined. Although, most of the APs’ inactivity period has
been set to 30 min, we found sessions that ended due to
inactivity with an invalid duration. Since we analyze the
duration of visits and sessions, we decided to filter out
these sessions that ended with a deauthentication due to
inactivity event.

2) Inter-AP transition condition: In order for a ses-
sion to satisfy the transition condition, during the time
that the session generator forms each transition of the
session, the client status and its state array should
“reflect” (re)associations that comply the IEEE802.11
state diagram. As mentioned in Section III-A, the parser
maintains some status information for each visit that
indicates whether or not the transition to the next visit
satisfies this requirement.

3) Inter-building transition condition: We found
some sessions that cover very large inter-building dis-
tances (a few were even above 2,000ft). Given the trans-
mission range specifications, these transitions cannot be
valid. We speculate that in such case, the syslog server
did not receive all the events properly, otherwise, the
session generator would have formed either more visits
for that session (with shorter inter-building transitions)
or even multiple sessions.

With the support of an accurate positioning or tracking
system, we could have validated the distances of all inter-
building transitions. However, its deployment is costly
and would have complicated our experiments in several
ways. Given the lack of such mechanism, it becomes
difficult and tedious to detect the invalid transitions.
Finally, we decided to consider invalid all these sessions
that have an interbuilding transition with euclidean dis-
tance above 460ft. The threshold was computed based
on the transmission range specifications in [14] and our
estimations that a typical maximum distance between
any point in a building of the campus and its centroid is
around 100ft.

C. Session features

AP-Path: Each session with at least two visits to
different APs has an AP-path. We create the AP-path
for each session as follows: Each node in the AP-path

Fig. 1. Example of a session. Transitions are marked T1 through
T9 and occur in ascending order. The distances that appear are the
euclidean distances of the centroids of the buildings that are involved
in the transitions.

corresponds to a visit of the session. There is a one-to-
one mapping of the nodes in the AP-path and the visits
of the session. Consecutive visits of a session at the same
AP have been merged (as mentioned in Section III).

We connect two nodes with an edge, if they corre-
spond to consecutive visits in the session. For example,
if a wireless client that was originally disconnected
connects to APs 1, 2, 1, 1, 7, 3, 4, 5, 1, and 6 before
disconnecting, its AP path is �����������	����
��� � �� ��� � . The length of an AP path is the
number of its inter-AP transitions or edges of the AP-
path. In this example, the AP-path length is eight. Fig. 1
is a visual representation of this example.

Building-path: For each session, we define the build-
ing path to be the sequence of its inter-building tran-
sitions. To construct the building-path, first, we find
all consecutive visits to APs that belong to the same
building and map them to a “building node”. We, then,
connect two nodes with an edge, if they correspond to
consecutive visits at APs that are located in different
buildings in the session. The building path length is the
number of its inter-building transitions or building path
edges. In the above example, APs 1 and 2 belong to
building A, APs 3 and 4 to building B, AP 5 to building
C, AP 6 to building D, and AP 7 to building E. Thus,
the building path is ��������������������� and
its (building path) length is five.

Longest cycle-free subpath: A cycle in a building path
is a return to a building already visited in the session.
The longest cycle-free subpath (LCFS) is the cycle-free
building subpath in a session with the largest number of
inter-building transitions. Ties are broken by choosing
the first subpath in the session. In the example above,
the LCFS of the session is four and corresponds to the
subpath ������� �!�"�#�"� .



Metric Mean Median Max Min
LCFS 0.02 0 5 0
Unique APs 1.22 1 12 1
Unique bldgs 1.02 1 7 1
AP path length 2.68 0 8052 0
Building path length 0.23 0 248 0
Range(ft) 6.46 0 861 0
Path distance(ft) 69.64 0 9,3116 0
Duration(s) 7,395 633 4,147,354 0

TABLE I

STATISTICS ON WELL-DEFINED SESSIONS.

Path distance: The distance of two nodes in a building
path is the euclidean distance of their corresponding
buildings. The path distance is the sum of the euclidean
distances between each pair of consecutive nodes in
the building path. In our example, the path distance is
1,300ft.

Range: The range of a path is the maximum pair-
wise euclidean distance of any two nodes in the building
path. The two nodes need not be consecutive APs
traversed in the path. In our example, the range is the
euclidean distance between the centroids of building D
and building B.

Both the LCFS and range reveal how far a client
traveled with continuous wireless access. On the other
hand, the building path length, path distance, and ap-
path length reflect the total length of the roaming during
a continuous wireless access, including potentially visits
back to the same AP or at the same building. The larger
their values, the higher the mobility tends to be.

D. Session and client classification

Sessions that visit only one AP are called stationary
and have zero length AP-paths. Mobile sessions are
the ones that have at least one inter-building transition.
Sessions without any inter-building transitions can be
stationary or ones that only visited APs in a single
building. Unless otherwise stated, in this paper, we use
the term session mobility as the number of inter-building
transitions. Fig. 2 shows how the mobile sessions are dis-
tributed among clients. The mobile sessions correspond
to only a small percentage of the total sessions for most
of the clients.

We have classified the wireless clients based on their
inter-building mobility, duration at each building, and
frequency of their sessions in the trace. Depending on the
inter-building mobility, we define as short-range clients
the clients that always have zero-length building path
sessions but may visit multiple buildings on different ses-
sions, as stationary clients the subset of the short-range

Metric Mean Median Max Min
LCFS 1.10 1 5 1
Unique APs 2.79 2 12 2
Unique bldgs 2.10 2 7 2
AP path length 21.06 4 1,755 1
Bld path length 11.17 3 248 1
Range (ft) 305.49 303.91 861 79.63
Path distance (ft) 3,293 760.12 9,3116 95.75
Duration (s) 8,708 1,701 1,613,443 0

TABLE II

STATISTICS ON WELL-DEFINED MOBILE SESSIONS.

Metric 25% 50% 75% 90% 99%
Visits 4 9 24 61 166.2
Unique APs 2 3 4 5 9
Unique bldgs 2 2 3 3 4
AP path length 3 8 23 60 165.20
Blg path length 2 6 17.25 42 114.95
LCFS 1 1 2 2 3
Path dst(ft) 760 1921 5796 14,212 35,223
Duration(s) 480 2,040 5,210 10,460 131,090

TABLE III

PERCENTILE STATISTICS ON WELL-DEFINED SESSIONS WITH

RANGE GREATER THAN 380FT.

clients that visit APs in only one building throughout the
entire trace, and as mobile clients the clients that visit
two or more different buildings in the same session in
at least one of their sessions.

We have 4,115 clients that contributed with 141,653
well-defined sessions. The 24% of them are mobile and
the 69% of them have stationary sessions and no mobile
sessions. 75% of all clients are short-range clients (i.e.,
had only sessions, each session with visits in a single
building) whereas 20% of them have associated with
only one AP throughout the tracing. All the results in
our analysis in the following Sections are based on the
well-defined sessions unless otherwise stated.

IV. MEASUREMENTS AND ANALYSIS

To explore just how mobile these sessions are, we
computed some statistics on the mobility metrics defined
in Section II, which are presented in Tbls. I, II and III.

To concentrate on mobile sessions that exhibit higher
mobility, we select the ones that are above the 90-th
percentile of their range (i.e., range larger than 380ft).
There are 585 such sessions generated by 274 clients.
Tbl. III summarizes the percentiles of several variables
of the movement pattern.

A. Review of duration modeling

Balachandran et al.[8] considered a conference setting
with four APs and modeled user session durations under
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Fig. 3. Stationary vs. mobile session duration. Impact of the mobility
(number of edges) on the session duration.

minute resolution level. They found that the sessions
have durations that can be modeled by a General Pareto
distribution with a shape parameter less than 1. The
users have a behavioral pattern that revolves around
the conference schedule with the longest duration to be
three hours. Our current academic setting is completely
different from their conference setting. In our study, we
categorize the sessions according to user mobility. Our
sessions are much longer; about 9.7% of them last more
than three hours and the longest duration is about 34
days.

B. Session duration

As mentioned in Section III-D, we classify the ses-
sions as stationary and mobile. The mobile sessions
can be further divided into those with building path
length equal to one (“one-edge”) and all the others
(“multiple-edge”). Stationary sessions are sessions with
zero building-path length. As the building path length
increases, the client is considered to be more mobile. We
started by first computing the session duration medians

and found them to be 9, 18, and 34min, respectively.
Fig. 3 presents the log-log plots of the complementary

cumulative distribution function (CCDF) of the session
duration for these three types of well-defined sessions,
respectively. The numbers in the brackets indicate how
many sessions are used to derive the empirical CCDFs.
Fig. 3 shows that there exists a stochastic order among
the three types of sessions except in the tails. The CCDF
for stationary session duration is uniformly smaller than
that for one-edge mobile session duration, which is
uniformly smaller than multiple-edge mobile session
duration. This means that stationary sessions are stochas-
tically shorter than mobile sessions. As the session
mobility increases, the session duration increases as well
stochastically. A random variable � is stochastically
larger than another random variable � if �������	��
�����������
 for every � and �������	��
�������������
 for
some � [15].

Fig. 3 also considers all sessions excluding the ones
that ended with a deauthentication due to inactivity
message (a superset of the well-defined sessions). As
in the case of the well-defined sessions, mobile sessions
excluding the ones completed with a deauthentication
due to inactivity are stochastically longer than the cor-
responding stationary ones (“Mobile w/o deauth due to
inactivity” vs. “Stationary w/o deauth due to inactivity”).

On these log-log plots, a CCDF of the form �����
would appear as a straight line with slope ��� . The
CCDF of the stationary session duration (“stationary w/o
deauth due to inactivity” in Fig. 3) has two nearly linear
regimes. After observing this, we propose to model the
stationary session duration using a BiPareto distribution,
whose CCDF is given by� �  "! ��� � �$#  &%('

�
%(')! �*�,+.- �/�  10 ��2 is the minimum value of a BiPareto random

variable, which is a scale parameter. The CCDF initially
decays as a power law with exponent �	��2 . Then, in
the vicinity of a breakpoint

 3'
(with

' �42 ), the decay
exponent gradually changes to 56�72 . The parameters ( � ,5 ,
'

and
 

) can be estimated via maximum likelihood.
This distribution has been used before in wired network
to model the number of TCP connections generated by a
user session and also the average connection interarrival
times within a user session. Saniee et al. [16] provide
more details on the BiPareto distribution and its estima-
tion method.

For the model of the stationary session duration, we
subjectively estimated the parameters to be (0.05, 1.1,
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Fig. 4. (a): visit duration for stationary vs. mobile sessions. (b) and (c): visit duration for different building types in stationary and mobile
sessions, respectively.

1800, and 1). The theoretical CCDF closely follows the
empirical CCDF with a coefficient of determination, ��� ,
of 0.99. Overlay plots of theoretical CCDFs and the
empirical CCDF justify the BiPareto fits are reasonable.
The fit becomes even better, if we aggregate the durations
into minute resolution level and select a BiPareto with
parameters (0.24, 1.1, 50, and 1). We are currently
implementing the exact maximum likelihood estimation,
which should give better results.

The log-log CCDFs for mobile sessions also exhibit
two linear regions except the tails starting from 3 hours.
We propose to truncate the mobile session durations
at 3 hours and model them using a truncated BiPareto
distribution. The truncation percentage is about 9%.

The “hollow” in the well-defined mobile sessions (in
the interval � � 2�� - � 2��	� , Fig. 3) does not exist in the set of
sessions that include all mobile sessions except the ones
ended with deauthentication due to inactivity. We found
that it is introduced by a group of four clients that exhibit
a certain distinct behaviour. They have mobile sessions
that violate the valid transitions condition, have very long
AP, building paths, and LCFS with (mean,median) equal
to (131,30), (6.5,3), and (2.78,2) respectively. Also, a
very large number of these sessions had visits in three
certain dorms.

C. Visit duration

The visits can be grouped into three categories ac-
cording to the sessions they belong, namely, stationary,
one-edge mobile, and multiple-edge mobile. Fig. 4 (a)
compares the log-log CCDFs of durations for these three
types of visits. In all Figs. 4, the numbers in brackets are
the number of visits in each category. As one can see,
there again exists a stochastic order among them. As

the session mobility increases, the visit duration tends
to decrease stochastically. The result is exactly opposite
to what one sees in Fig. 3 for the session durations.
This stochastic order (as in Fig. 4 (a)) also holds when
conditioning on building types.

In stationary sessions, the visit duration matches with
the session duration. Therefore, the visit durations of
stationary sessions can be modeled by a BiPareto dis-
tribution (as discussed in Section IV-B). Based on visual
inspection of the log-log CCDF, in plots not shown
here, the BiPareto distribution can also be used to
model visit durations in stationary sessions for several
building types. As for the visits in mobile sessions, a
truncated BiPareto distribution seems reasonable after
one truncates the visit durations at 3 hours.

To summarize, the visual inspection of the log-log
CCDF and our preliminary investigation indicate that
the session and visit durations can be modeled by the
BiPareto family of distributions, each with possibly
different parameters.

D. Visit durations vs. building type

Since visits occur at different buildings, we are inter-
ested in finding if there is any relationship between the
building type and the visit duration. Fig. 4 (b) shows
log-log CCDFs of visit durations in stationary sessions
at several types of building. The figure indicates an
increasing stochastic order among dinning halls, libraries
and dormitories, and also among classrooms, libraries
and dormitories (except in the tails, where the variability
is high). The orders are also true for stationary ses-
sion durations. Because stationary sessions and visits in
stationary sessions are essentially the same. As for the
visits in mobile sessions, as shown in Fig. 4 (c), visits in
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transient.

classrooms, dinning halls, and libraries are very similar,
while there is an increasing order among dormitories,
classrooms, (dinning halls, libraries), clinics, and theaters
(except in the tails).

E. Distribution of visit duration in session

Earlier, we modeled the session and visit durations. In
this section, we focus on the distribution of the duration
across different visits within a session. Are most of the
sessions composed of relative short visits? Are the visits
well-balanced? Does the first visit differ statistically
from the last?

First, we distinguish the sessions that tend to be
composed of relative short durations. Based on the visit
duration at each building in the building path of a
session, we identify the transient sessions as the ones
that do not have any visits to a building that last more
than � min. Fig. 5 illustrates the distribution of transient
sessions for different time period � varying from 1min to
30min. We also distinguished the sessions based on the
mobility. The lower mobility sessions are the ones with
only one interbuilding transition. The higher mobility
sessions are the ones with two or more interbuilding
transitions. As expected, when the threshold increases
the fraction of transient sessions also increases. However,
it is interesting to observe that for low thresholds (e.g.,
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Fig. 7. Percentage of visits in a session with duration within an
interval of +/-10% from the median visit of that session.
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Fig. 8. Percentage of visits in a session with duration within an
interval of +/-25% from the median visit of that session.

1min or 5min), mobile sessions tend to be less transient
than the rest. Fig. 6 reveals a clustering of clients based
on their percentage of transient sessions. Notice that
more than 20% of the clients have a very high percentage
(above 90-th percentile) of sessions in which all their
visits last 30 min or less.

For those sessions with multiple visits, one interesting
question is if the first visit differs statistically from the
last visit. Our analysis shows that they look very similar
statistically and both of them are stochastically shorter
than visits in stationary sessions.

F. Individual durations within a session

Another method of investigating how the session time
is distributed among its visits is to compute the percent-
age of the visits that have duration within an interval
of the median visit of that session. We define as the
similarity index of a session, the percentage of visits
that are within a certain interval of their median (such as
[0.9*median, 1.1*median], where median, is the median
duration of the visits in that session). Fig. 7 reveals
that sessions are pretty “imbalanced” with respect to the
distribution of the visit duration. For example, more than
50% of the sessions have less than 10% of their visits in
the 10% interval of the median duration of their session.
Figs. 7 and 8 do not include the stationary sessions, since
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by definition, their similarity index is 100% (since they
have only one visit). The difference between the “All
Session” and “Mobile Sessions” is all these sessions
with visits to two or more APs located at the same
building. As expected, the larger the threshold is, the
larger fraction of sessions with higher similarity index
we have.

We have shown that, the more mobile a session is,
the longer its duration tends to be, with shorter visit
durations. Given the low similarity index presented ear-
lier, such sessions tend to have a small percentage of
long visits and a short-visit majority. As a result, a more
mobile session is less transient (harder for all visits to
fall below a certain threshold). This indicates that all our
results are consistent with each other.

G. Locality properties of clients

Earlier, we looked at the distribution and character-
istics of the visit duration in a session. However, we
wanted to know in a larger time scale where clients tend
to spend most of their wireless time. Also, what are the
locality properties of their roaming and which are the
hot spots in a campus with respect to associations.

Is there any AP that the client visits more frequently or
spends most of its time? We defined the (duration-based)
homeAP of a client to be the AP (if any) at which this
client spends a large percentage of its wireless access
time. Similarly, the (number-of-visits-based) homeAP of
a client is the AP (if any) that this client visits more
frequently. We use a threshold for the percentage of
wireless access time and number of visits that varies
from 25% to 90%.

Fig. 9 shows that the duration-based definition is more
relaxed than the frequency-based. More than 50% of

clients spend more than 75% of their time to a single
AP whereas 30% of them visit more than 75% of the
times the same AP. We also notice when a home AP
according to the duration-definition exists for a client,
it coincides with the home-AP of that client using the
number-of-visits definition.

H. Topological characteristics of mobile sessions

What are the spatial properties of the mobile access?
Which are the hotspots of the wireless infrastructure?
For this, we focus on the inter-building transitions and
pairs of buildings that correspond to the starting point
and destination of each mobile session.

Figs. 10 show all inter-building transitions of mobile
clients throughout the campus. In the leftmost plot, each
point corresponds to a building that had at least one
inter-building transition and there is an edge between
two points, if there is at least one transition between
these two buildings. Each edge has also a weight which
is the total number of such transitions. The two rightmost
graphs of Fig. 10 include only the edges with weights
that are above the 75% and 90% of all weights. In
Fig. 11 (leftmost), each point corresponds to the geo-
graphical location of a building in the campus with an
AP. There is an edge between two buildings, when there
is at least one mobile session with its first visit starting
from the first building and its last visit ending in that
(second) building. The number of such sessions gives
the weight of the edge. Figs. 11 (middle) and (right)
show only the buildings with edges of weights that are
above the 75-th and 90-th percentile of all weights.

Figs. 10 and 11, suggest a pattern of transitions of
all mobile clients. Each graph shows several separate
subgraphs that correspond to clusters of wireless activity
in the infrastructure. This result combined with the
existence of a home AP for a large percentage of mobile
clients reveals a certain spatial locality in the user access
pattern. Users tend not to move outside of each of these
clusters. In the rightmost map of Fig. 10, nodes without
edges correspond to buildings in which many mobile
clients started and ended their sessions.

The rightmost plots in Figs. 10 and 11 reveal also the
hot spots of the wireless infrastructure with respect to
where most popular inter-building transitions take place.
Comparing these two graphs, we can identify the various
hot spots of our campus wireless infrastructure. Not
surprisingly, these hot spots are indeed places that a high
student population is visiting frequently (a representative
example is the Lenoir Hall with dining center, undergrad-
uate library, classrooms, and stores in close proximity).
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Fig. 10. There is an edge between two buildings, if there is at least one session with such inter-building transition. The middle and rightmost
maps include only the edges with number of interbuilding transitions above the 75-th percentile and 90-th percentile of all, respectively.
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Fig. 11. There is an edge between two buildings, if there is at least one session that starts at one building and finishes at the other. The
leftmost map shows all the edges between buildings with at least one session. The middle and rightmost maps include only the buildings
with a number of sessions that are above the 75-th percentile and 90-th percentile of all mobile sessions, respectively.

These figures summarize the aggregated inter-building
behavior of clients. Currently, we analyze similar data
and plots combined with additional information, such
as, several session features, traffic load, off durations.
Using concepts from graph theory, the goal is to capture
in more detail how the wireless activity evolves and
the different correlations in the temporal and spatial
domain. This will allow us to provide a systematic
way to indicate not only hot spots but also regions
with intermittent connectivity or unusual or unexpected
association patterns. It can be useful in providing better
capacity planning and improved services and becomes
important in several arenas, as in one of our target
testbeds, a wireless hospital infrastructure area, with high
demand for quality of services.

I. PDA users

PDA users possibly correspond to a group of clients
with their own distinct characteristics and we were
interested in analyzing their access and mobility features.

However, we can not identify the PDA devices from the
traces. For this reason, we sent an announcement to a
UNC-local PDA-related newsgroup to find PDA users
that would be willing to share their “anonymized” MAC
address. In that way, we could identify the corresponding
clients in our syslog traces and analyze their patterns.
Some of these users also mentioned their typical usage
pattern (e.g., for what purpose they mainly use their
PDA) and affiliation at UNC. This is only a very pre-
liminary study, since only seven users responded and
we were able to trace the five of them in the trace.
There were no well-defined mobile sessions. Most of
their mobile sessions violate the inter-building transitions
or completion conditions. Three PDA users contribute
to seven mobile sessions that accessed 37 different APs
located in 16 different buildings. One distinct charac-
teristic of their pattern is the higher mean distance-
metrics compared to the mobile sessions contributed by
the remaining clients (Tbl. IV). Interestingly, most of
these long sessions were contributed by a client in a



Mean (Median) PDAs All clients-PDAs
LCFS 2 (1) 1.57 (1)
Unique APs 6.28 (4) 3.84 (3)
Unique bldgs 3.14 (2) 2.76 (2)
AP path length 9.85 (11) 24.84 (5)
Bldg path length 2.71 (1) 13.33 (3)
Range (ft) 3,154 (2,118) 910.78 (380.06)
Path dst.(ft) 3,493 (3,351) 6,76 (1,576)
Duration (s) 139,470 (3,227) 23,342 (3,731)

TABLE IV

STATISTICS ON MOBILE SESSIONS OF PDAS VS. ALL CLIENTS

EXCLUDING THE ONES WITH PDA.
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Fig. 12. Histogram of the disconnection periods (i.e., off periods
between consecutive sessions of the same client). All sessions are
considered.

medical building. 2 This is in-line with our hypothesis
that PDA users is a distinct group of clients.

J. Off duration

We consider all sessions of all clients in the trace.
Fig. 12 is a histogram of the off time on the log-10
scale, which shows that many off periods are very short.
Actually, 14% of the off durations are no more than 5s.
One possible conjecture is that some of these short off
periods are due to short-period of loss-signal. We tried to
correlate these small off periods with APs to see if there
are certain areas of “intermittent” connectivity. However
this is not an easy task with only the syslog information.
It becomes more interesting and accurate when we get
information from the physical (such as signal strength
information) and upper layers (including packet losses
and disconnections of the TCP flows).

2This study participant had mentioned using the PDA for patient
information and prescriptions.

Actually 20% of these very short off durations belong
to only 22 clients (out of the total 5397 clients), who all
have at least 70% of their off durations no longer than
5s. This provides a possible clustering for the clients.
We decided to exclude the aforementioned 22 clients. In
addition, 1037 clients are visitors who only have at most
3 off periods, who are excluded as well. Interestingly, the
27% of our clients are visitors.

In the usual log-log CCDF plot of the off durations
(not shown here), there are again two nearly linear
regions, which suggests one to use a BiPareto fit still.
However, the second linear region is almost vertical,
which suggests that the off duration has an upper limit. In
another word, the off duration is drawn from a censored
distribution. The longest off period lasts for 6,013,861s
(about 70 days). Due to the data collection period (77
days), there is a physical limit on how long an off
duration can be. To uncover the original uncensored dis-
tribution, one can guess what proportion of the data are
beyond the current maximum and take that into account.
Suppose that proportion is 0.0001, the uncensored CCDF
differs from the original data visibly only in the tail. This
improves the BiPareto fit because the tail is more linear.
Currently, we are trying to model the uncensored off
duration by a BiPareto distribution.

V. RELATED WORK

This research extends our earlier study [6], the stud-
ies by Kotz and Essien [7], Balachandran et al. [8],
Tang and Baker [9], and Balazinska and Castro [10] by
focusing more closely on the association and mobility
patterns of individual clients rather than on the entire
population of mobile clients and in a finer time gran-
ularity. We monitor the behavior of each wireless user
with respect to its association patterns and carry out user-
behavior analysis more accurately. Similarly, Balazinska
and Castro study the wireless association patterns of
users in a corporation considering aggregate information
about their associations at every AP. They do provide
a clustering of users based on their duration at one AP.
However, they only poll the APs at every 5min to get the
current association information and do not capture path
related information for these associations. To the best
of our knowledge, this is the only study using wireless
traces that tracks the associations of individual wireless
users and focuses on such clustering issues.

VI. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is a novel ap-
proach for characterizing the wireless access using as



main entities the visit, session, and disconnection peri-
ods. We propose a methodology for visit and session
generation and their analysis with extensive data from
the wireless infrastructure in a campus. We show that as
the session mobility increases, the visit duration tends
to decrease stochastically. This stochastic order still
holds when conditioning on building types. The opposite
happens in the case of the session duration. Moreover,
there exist different stochastic orders among the visit
durations of different building types when conditioning
on the session mobility.

We noticed that many of our data could be approx-
imated using the BiPareto family. Currently, we aim
in estimating the optimal parameters of the BiPareto
distribution for visit, session, and off durations. Also,
we would like to explore the correlation between visit
durations and off durations within each session. If there
is such correlation, it will improve the next-association
prediction. Moreover, it would be interesting to extend
the analysis with additional information, such as lo-
cation, signal strength, packet losses, type of device,
applications, and setting. We investigated the impact of
mobility on the session and visit durations and distin-
guished several classes of access patterns and clients.
Another direction is to investigate better models for each
distinct class of clients (or access pattern) separately. A
longer-term goal is to extend the study with traffic load
information and explore the bandwidth requirements for
different classes of clients and access patterns.

This research is a part of a comparative analysis study
on wireless access patterns in various environments,
such as a medical center, research institute, campus,
and a public wireless network. We intend to capture
the different features of their access patterns, find the
dominant ones, and model them. As new wireless appli-
cations and services are deployed, reshaping the wireless
arena, it would be interesting to observe and analyze
the evolution of the wireless access in the spatial and
temporal domain.
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