
SPIN: Mining Maximal Frequent Subgraphs from Graph Databases

1Jun Huan, 1Wei Wang, 1Jan Prins, 2Jiong Yang
1Department of Computer Science, University of North Carolina at Chapel Hill

Chapel Hill, NC 27599, USA
2Department of Computer Science, University of Illinois at Urbana-Champaign

Urbana-Champaign, IL 61801, USA
1{huan, weiwang, prins}@cs.unc.edu, 2jioyang@cs.uiuc.edu

Abstract

One fundamental challenge for mining recurring
subgraphs from semi-structured data is the over-
whelming abundance of such patterns. In large graph
databases, the total number of frequent subgraphs can
become too large to allow a full enumeration using
reasonable computational resources. In this paper, we
propose a new algorithm that mines only maximal fre-
quent subgraphs, i.e. subgraphs that are not a part of
any other frequent subgraphs. This may exponentially
decrease the size of the output set in the best case; in
our experiments on practical data sets, mining max-
imal frequent subgraphs reduces the total number of
mined patterns by two to three orders of magnitude.

Our method first mines all frequent trees from a gen-
eral graph database and then reconstructs all maxi-
mal subgraphs from the mined trees. Using two chem-
ical structure benchmarks and a set of synthetic graph
data sets, we demonstrate that in addition to decreas-
ing the output size our algorithm can achieve a sig-
nificant speed up over the current state-of-the-art sub-
graph mining algorithms.

1 Introduction

We focus on finding recurring subgraphs from
graph databases that are not part of other frequent sub-
graphs. Graphs are generic ways to represent com-
plicated data. Mining recurring subgraphs has many
applications such as pattern discovery in chemical in-
formatics [2] and bioinformatics [11], efficient stor-

age of semi-structured databases [5], efficient indexing
[6], and web information management [22, 16]. One
important issue in efficient graph databases mining is
handling the huge number of recurring patterns. The
phenomenon is well understood in mining “long” fre-
quent itemsets. Given a frequent itemset I , any subset
of I is also frequent hence the total number of frequent
itemsets grows exponentially in the size of the itemset.
Mining graphs have the same problem: any subgraph
of a frequent graph is frequent and the total number
can grow exponentially. Practically we do observe a
sharp increase of total number of subgraphs when we
mine even moderate sized graph databases [10].

In this paper, we propose a new graph mining al-
gorithm that mines only maximal frequent subgraphs,
which offers several advantages in processing large
databases. (1) Maximal subgraph mining significantly
reduces the total number of mined subgraphs. In ex-
periments on chemical data sets, the total number of
frequent subgraphs is up to one thousand times greater
than the number of maximal subgraphs. We can save
both space and subsequent analysis effort if the num-
ber of mined subgraphs is significantly reduced. (2)
Several “pruning” techniques, which are detailed in
this paper, can be efficiently integrated into the min-
ing process and dramatically improve the performance
of the mining algorithm. (3) We do not loose in-
formation since the non-maximal frequent subgraphs
can be reconstructed from the maximal subgraphs re-
ported. To get the actual frequency (support) of non-
maximal subgraphs requires examination of the origi-
nal database, but it is certain to be at least as high as
the frequency of the maximal subgraph. In addition,

1

the techniques used in [15] can be easily adapted to ap-
proximate the support of all frequent subgraphs within
some error bound. (4) In some applications such as
discovering structure motifs in a group of homology
proteins [8, 11], maximal frequent subgraphs are the
subgraphs of most interest since they encode the max-
imal structure commonalities within the group.

In this paper we show that maximal subgraph min-
ing can be efficiently performed. Our mining method
is based on a novel graph mining framework in which
we first mine all frequent tree patterns from a graph
database and then construct maximal frequent sub-
graphs from trees. This approach offers asymptotic
advantages compared to using subgraphs as building
blocks, since tree normalization is a simpler problem
than graph normalization. The proposed method en-
ables us to integrate well-developed techniques from
mining maximal itemsets and knowledge gained in
graph mining into a new algorithm. According to our
experimental study, such a combination can offer sig-
nificant performance speedup in both synthetic and
real data sets. The framework of our method is ver-
satile. Depending on the particular tree mining algo-
rithm, the search can be either breadth-first or depth-
first (preferred due to its better memory utilization). It
can also be designed to mine all frequent subgraphs
without major modifications.

In summary, we make three contributions: (1) we
propose a novel algorithm SPIN (SPanning tree based
maximal graph mINing) to mine maximal frequent
subgraphs of large graph databases, (2) we integrate
several optimization techniques to speed up the min-
ing process, (3) we perform an extensive analysis of
the proposed algorithm on graph databases with dif-
ferent characteristics.

The remainder of the paper is organized as follows.
Section 2 presents a formal description of the max-
imal frequent subgraph mining problem. Section 3
presents the data structure and the proposed search al-
gorithm. Section 4 presents the results of our experi-
mental study using synthetic graph databases and two
benchmark chemical data sets. We conclude the paper
with a discussion, related works, and conclusion.

2 Background

We start this section defining labeled graphs. We
define subgraph isomorphism relation to quantify the
support value of a graph in a graph database. Maximal
frequent subgraph is defined subsequently. Notations
related to trees are introduced at the end of the section.

2.1 Labeled Graph

A labeled graph G is a graph where each node and
edge has an associated label. We use ΣV and ΣE to de-
note the set of node labels and edge labels respectively.
Without loss of generality, we assume a total order ≥
on ΣV and ΣE . The labeling function δ defines the
mappings V → ΣV and E → ΣE

1.
When we study recurring subgraphs in graph

databases, it is critical to know whether a graph occurs
in another graph, as defined below:

Definition 2.1 A labeled graph G is subgraph iso-
morphic to another graph G′, if there exists an injec-
tion f : V [G] → V [G′] such that

• ∀ u ∈ V [G], (δ(u) = δ′(f(u))),

• ∀ u, v ∈ V, ((u, v) ∈ E[G] ⇒ (f(u), f(v)) ∈
E[G′]), and

• ∀ (u, v) ∈ E[G], (δ(u, v) = δ′(f(u), f(v))).

where V [G] and E[G] denote the node set and edge
set of a graph G.

The injection f is a subgraph isomorphism from G to
G′. By a slightly abused notation, we refer G as a
“subgraph” of G′, denoted by G ⊆ G′ by omitting
the word “isomorphic”; similarly G′ is referred to as a
supergraph of G. A labeled graph G is defined to be
isomorphic to another graph G′ if G and G′ are mutu-
ally subgraphs. Non-isomorphic subgraph is referred
to as a proper subgraph, denoted by G ⊂ G′ and sim-
ilarly G′ is referred to as a proper supergraph of G.
Given a set G of labeled graphs, the support of a graph
G is the fraction of graphs in G in which G occurs.

1all graphs (including trees) discussed in this paper are undi-
rected and all subgraphs are connected subgraphs.

2

Definition 2.2 Given a set G of labeled graphs and a
threshold 0 < σ ≤ 1, a subgraph G is a frequent
maximal subgraph if and only if:

• supG ≥ σ, and

• �G′, (G ⊂ G′ and supG′ ≥ σ).

Example 2.1 In Figure 1 we show three labeled
graphs P , Q and S. Both Q and S are subgraphs of P
and the mapping f : q1 → p1, q2 → p2, q3 → p3 rep-
resents an subgraph isomorphism from graph Q to P .
The graph Q has support value 2/3 in the set {P,Q, S}
because Q is a subgraph of P and Q, but not a sub-
graph of S. Given a threshold σ = 2/3, both graphs
Q and S are maximal frequent subgraphs in the data
set {P,Q, S} since no proper supergraph of either of
them is frequent.

a

a

y

y
y

(Q)

q1

q3

q2
a

b

a

y

y

(S)

s1

s3

s2

a

b

a

a

y

y

x
y

(P)

p2

p1

p3

p4

x

a

s4

xb

Figure 1. Example of a graph database G of three la-
beled graphs with subgraph relation. We assume that
the node and edge labels are ordered alphabetically.

The maximal frequent subgraph mining problem
is given a set G of labeled graphs and a threshold 0 <
σ ≤ 1, finding all maximal frequent subgraphs G such
that supG ≥ σ.

2.2 Labeled Trees

A (free) tree is an acyclic connected graph. A sub-
tree of a free tree T is a subgraph of T , which implies
that every subtree itself is a free tree. A rooted tree is a
free tree with a node designated as its root. A sequence
of distinctive nodes in a tree T is a path if consecutive
nodes are connected by en edge in T . In a rooted tree,
a node u on the path from the root to a node v is an an-
cestor of v. If u is v’s connected ancestor, u is v’s par-
ent and consequently v is u’s child. A group of nodes
sharing the same parent are siblings. A node is an in-
ternal node if it has at least one child; otherwise, it is

a leaf. An ordered rooted tree is a rooted tree where
the children of each internal node are ordered i.e. we
can refer the children of a node as its first child, sec-
ond child, and so on so forth. Tree may have labels,
i.e. each node and edge has an associated label. In
a labeled tree, a labeling function δ is provided as a
mapping from a tree’s node/edge to its associated la-
bel. We use the same symbol (δ) for both trees and
graphs and the difference is usually understood from
the context. Given an ordered rooted tree T , we define
the right-most leaf as the leaf x which all of its an-
cestors (including x itself) are ordered the least among
their siblings; the ordered rooted tree T1 obtained by
remove the right-most leaf from T is defined as the
left-most subtree of T .

Example 2.2 We present three labeled, ordered, and
rooted trees in Figure 2. Throughout the paper, we
assume that root of a ordered rooted tree is shown on
top and the children of each internal node are ordered
left to right. Node t6 of tree T is its right-most leaf.

b

a

y y

y

y y

xx y

y y

x
‘a

b

aa

a

b

a a

c d c a

(T) (S) (R)

‘

t1

t2 t3

t4 t5 t6

s1

s2 s3

s4

r1

r2 r3

r4

b

a

y y

y

y y

xx y

y y

x
‘a

b

aa

a

b

a a

c d c a

(T) (S) (R)

‘

b

a

y y

y

y y

xx y

y y

x
‘a

b

aa

a

b

a a

c d c a

(T) (S) (R)

‘

t1

t2 t3

t4 t5 t6

s1

s2 s3

s4

r1

r2 r3

r4

Figure 2. Example of three labeled ordered rooted
trees and the order 	 among such trees.

In the following discussion, we define a string rep-
resentation of a tree. We introduce two special sym-
bols “$”, “#” which we assume no tree may have
them as labels. We further assume all labels of trees
are ordered alphabetically and are greater than “$”,
which is greater than “#”. For every labeled, ordered,
and rooted tree T , there is a unique string presentation
as suggested by Chi et al. [4]. The way to derive the
string representation can be broken into two steps. In
the first step, for each edge (u, v) in T (and assume
v is u’s child), we create an artificial label for v as a
two-element sequence elvl, where el and vl are the la-
bels of the edge (u, v) and the node v, respectively2.

2Whether an edge label precedes a node label or not is not im-
portant. We just use one order throughout the paper.

3

In the second step, we perform a breadth-first enumer-
ation of the nodes in the tree, starting from the root of
the tree and following the order among children when
visiting sibling nodes. The string obtained by concate-
nating the artificial labels of the nodes according to the
traversal order, using “$” to group siblings and “#” to
label the end of the string, is the string representation
of the tree. For example, the tree T shown in Figure 2
has the string representation b$yaya$ycxdyc#. In
this example, we start with the label of the root, b. By
breadth-first enumeration, we concatenate yaya to b
since it is the artificial label of the first and the sec-
ond children of the root of T . We add $ to the partial-
completed string to group the two siblings. We con-
tinue the same enumeration for the rest of the nodes
in T ; add a # to label the end of the representation;
and finally obtain the string b$yaya$ycxdyc# as
T ’s string representation.

We use string’s lexicographical order to define a to-
tal order 	 of all labeled, ordered, and rooted tree i.e.
T 	 S if and only if the T ’s string representation is
lexicographical greater or equal to S’s string represen-
tation. For example, for the trees shown in Figure 2,
we can easily verify that T 	 S 	 R.

A free tree T can be transformed to an ordered
rooted tree by randomly designating a root and arbi-
trarily imposing order of children for every internal
node. Each such tree is referred to as the rooted or-
dered version of T . Given a free tree T , T ’s canoni-
cal representation, denoted by T (T), is the maximal
ordered rooted tree among all T ’s ordered rooted ver-
sions; the process to find such canonical representation
is referred to as the tree normalization procedure and
details of such computation can be found in [4, 21]

Before we leave the discuss about trees, we present
the following simple theorem, which we are going to
use in the next section.

Theorem 2.1 Given two rooted ordered trees X and
Y and the left-most subtree Y1 of Y , let X’s string
representation be x = x1, x2, . . . ,# and that of Y1

is y = y1, y2, . . . , yn,#, if x is grater than the prefix
y′ = y1, y2, . . . , yn of y, then X
 Y .

Proof 1 This theorem is the direct consequence of the
definition of right-most leaf and string representation
of trees.

3 Maximal Subgraph Mining

In the following discussion, we present a novel
framework for mining maximal frequent subgraphs.
We show that we can unify tree mining and subgraph
mining into one process where we first find all fre-
quent trees from a graph database and then construct
frequent cyclic graphs from the mined trees. We devel-
oped two procedures to support this new framework.
The first one is a graph partitioning method where we
group all frequent subgraphs into equivalence classes
based on the spanning trees they contain. The second
one is a set of pruning techniques which we developed
to prune graph partitions entirely or partially for effi-
cient maximal graph mining.

There are advantages in the framework we devel-
oped. First, tree related operations, such as isomor-
phism, normalization, and testing whether a tree is
a subtree of another tree, are asymptotically simpler
than the related operations for graphs, which are NP-
complete. Second, in certain applications such as
chemical structure mining, most of the frequent sub-
graphs are really trees. Last but not least, this frame-
work adapts well to maximal frequent subgraph min-
ing, which is the focus of this paper. Using a chemi-
cal structure benchmark, we show 99% of cyclic graph
patterns and 60% of tree patterns can be eliminated by
our optimization technique in searching for maximal
subgraphs; further details about the efficiency of the
optimization techniques can be found in Section 4.

3.1 Canonical Spanning Tree of a Graph

We define a subtree of an undirected graph G as an
acyclic connected subgraph of G. A subtree T is a
spanning tree of G if T contains all nodes in G. There
are many spanning trees for a given graph G. We de-
fine the maximal one according to a total order defined
on trees as the canonical spanning tree of G, denoted
by T (G).

Example 3.1 In Figure 3, we show an example of a la-
beled graph P with all four-node subtrees of P . Each
subtree is represented by its canonical representation
and sorted according to the total order 	. Each such
tree is a spanning tree of the graph P and the first one
(T1) is the canonical spanning tree of P .

4

a

b

a

a

y

y

x
b

a

y

x

y

a

a

‘ ‘

(T1) (T2)

b

a

y

x

x

a

a

b

a

y

xy
a

a

b

a

y

x

y

a

a

b

a

x

y

x

a

a

‘ ‘ ‘

(T6)(T5)(T4)

b

a

y

y

x

a

a

‘

(T3) (T7)

a

b

a

a

y

y

x
y

(P)

p2

p1

p3

p4

x

Figure 3. Example of a labeled graph P (upper-left),
P ’s subtrees, spanning trees, and its canonical span-
ning tree (T1).

In the following discussion, we study the proper-
ties of canonical spanning trees. We show that the
canonical spanning tree of a graph G is the maximal
one among those of subgraphs of G. Based on this
property, we present a greedy algorithm to compute
the canonical spanning tree of a graph. Before proving
the theorem, we prove a weaker version of it on trees.

Theorem 3.1 Given two free trees R ⊆ S, we have
T (S) 	 T (R).

Proof 2 We prove the theorem by constructing a
rooted, ordered version S1 of S such that S1 	 T (R).
Upon succeeding in constructing S1, by the definition
of the canonical spanning tree, we have T (S) 	 S1 	
T (R) and hence the proof of the theorem. To show
that such S1 always exists, let R1 = T (R) be the
canonical representation of R and f be a subtree iso-
morphism from R1 to S. Let u be the root of R1 and
M ⊆ V [S] be the set of images of nodes in V [R1] un-
der f . We construct S1, the rooted, ordered version of
S as follows: the root of the S1 is f(u); the relative
order among siblings V ⊆ M follows the order of the
corresponding nodes in R1; for nodes no in M , their
relative order is arbitrary but are all less than their
siblings that are in M . An example of such construc-
tion is shown in Example 3.2.

To complete the proof, we show that S1 	 R1. To
that end, let x = x1, x2, . . . , xh be the string repre-
sentation of R1 and y = y1, y2, . . . , yl be the string

representation of S1 and we have the following obser-
vation. Let i denote the first position where xi �= yi,
we claim that we have either one of the following two
conditions: (1) xi = $ and yi ∈ ΣE[S] and (2) xi = #
and yi ∈ ΣE[S] ∪ {$}. In other words, at the first po-
sition i where string x and y differs, the symbol xi can
only be either a # or $. This is because every node in
R1 has exactly one image in S1 and hence the first mis-
match could not happen between a node/edge label of
S1 and R1. Given the observation and recall that ev-
ery label in ΣE[S] is sorted greater than $ and that is
greater than #, we have the theorem proved.

a

b

a

y y

r1

r2 r3
a

b

a

y y

r1

r2 r3

(R1)

a

b

a

ay

y

(S)

s2

s1

s3

s4

x

S1

a

y
s5

a

b

a

ay

y

(S)

s2

s1

s3

s4

x

S1

a

y
s5

a

b

a

ay

y

(T)

t2

t1

t3
t4

y a

x
t5

a

b

a

ay

y

(T)

t2

t1

t3
t4

y a

x
t5

Figure 4. Example showing the canonical tree of tree
S is the maximal among that of all subtrees of S.

Example 3.2 In Figure 4, we show a free tree S and
an canonical representation R1 of a free tree R ⊆ S.
We map R1 to a subtree S1 of S (labeled by a dashed
rectangle) using a mapping: r1 → s1, r2 → s2, and
r3 → s3 (there are other valid subgraph isomorphisms
from R1 to S and it is left to interested users to valid
the proof if we use other subgraph isomorphisms). We
construct a rooted, ordered version X of S by using
s1 as the root and s2, s3 as the first and the second
child of s1. The relative order of s4 and s5 is not im-
portant. We just choose to flip them: s5 as the third
child of s1 and s4 as the last child. Notice in the fig-
ure that t4 has the edge label x to node t1 and there-
fore it corresponds to the node s5, as stated before.
The string representation of R1 is byaya$#; that of
X is byayaxaya$# hence that we have X 	 R1. By
definition we have T (S) 	 X and therefore we have
T (S) 	 R1 = T (R).

We prove a general form of Theorem 3.1 for graphs
as follows.

Theorem 3.2 Given two connected graphs P ⊆ Q,
we have T (Q) 	 T (P)

5

Proof 3 Let R = T (P) be the canonical spanning
tree of P . We claim that we can always find a spanning
tree S of Q such that R ⊂ S. The proof is straightfor-
ward. First, let R′ = R. Second, we can find a node u
in Q but not in R′ and connected u to R′ by an edge in
Q. Such u always exists as long as R′ is not the span-
ning tree of Q. Continue the process and finally we
get a supertree of R which is a spanning tree of Q. By
Theorem 3.1, we have T (S) 	 R. Therefore we have
T (Q) 	 T (S) 	 T (P) and the proof of the theorem.

It turns out we can prove an even stronger version of
Theorem 3.2, which asserts that the left-most subtree
S of a graph Q’s spanning tree is maximal to some ex-
tents among its “peers”. The theorem is stated below:

Theorem 3.3 Given an n-node graph Q and a tree R
that is the left-most subtree of T (Q), for every (n −1)-
node subgraph P ⊂ Q, we have R 	 T (P).

Proof 4 We prove the theorem by contradiction. Let’s
assume there is a (n −1)-node subgraph P ⊂ Q such
that S = T (P)
 R. We have T (Q)
 S (by The-
orem 3.2). Then we have T (Q)
 R (transitivity).
Finally we have T (Q)
 T (Q) (following Theorem
2.1). That leads to contradiction.

Based on the theorem, we present a greedy search
scheme in Table 1 to calculate the canonical spanning
tree of a graph G. The algorithm works by first picking
up maximal labeled nodes in G as a group of single-
node trees. It iteratively grows those trees by attaching
an additional node to each of them in all possible ways.
The resulting group of trees are inspected one by one.
Only those which are maximal among their peers are
selected for the next iteration. Because of Theorem 3.2
this scheme is guaranteed to converge to the canonical
spanning tree of a graph. Since every tree is a graph,
the procedure can be applied to obtain canonical rep-
resentations of trees also 3.

3.2 Tree-based Equivalence Class

In this section based on the canonical spanning
tree we introduced, we introduce a graph partitioning

3There is a notable difference between our procedure and the
method present in [4]. We do not define the center of the tree
but rather find the maximal string a free tree can produce. We
choose the particular way for an uniform treatment of tree and
graph canonical form as stated in Theorem 3.3

Algorithm Canonical Spanning Tree(G)
begin
1. S ← {u| u is a single-node tree with the maximal node label in G}
2. do
3. Q← {y| y is a subtree of G by including one additional node to

a tree x ∈ S}
4. S ← {y| y ∈ Q, T (y) is maximal for all tress in S}
5. until S contains spanning tree(s) of G
end

Table 1. An algorithm for finding canonical spanning
trees

method.

Definition 3.1 Tree-based Equivalence Class: Given
two graphs P and Q, we defined a binary relation ∼=
such that P ∼= Q if and only if their canonical span-
ning trees are isomorphic to each other i.e. T (P) =
T (Q). The relation ∼= is reflexive, symmetric, transi-
tive, and hence an equivalence relation.

Example 3.3 In Figure 5, we show subgraphs of
the graph P in Figure 3 which are not necessarily
trees. Subgraphs are grouped together if they share
the same canonical spanning tree. The five non-
singleton groups are shown here and the remaining
twelve groups are all singletons 4

Class II

a

b

a

a

y

y

x

x

a

b

a

a

y

y

x

a

b

a

a

y

y
y

x

a

b

a

a

y

y

x
y

x

Class I

@ @ @

b

a

y

x

y

a

a

b

a

y

x

y

a

a

x

Class III

@

b

a

y

y

x

a

a

b

a

y

y

x

a

a

y

b

a

y

y

x

a

a

x
@@

b

a

y y

a

b

a

y y

a
y

b

a

y x

a

b

a

y x

a
x

Class IV

Class V

@

@

Figure 5. Example of tree based equivalence classes
for subgraphs in graph P , presented in Figure 3.

4Throughout the paper, we are only interested in subgraphs
with at least an edge (i.e. excluding frequent nodes as trivial
cases).

6

We outline a new frequent subgraph search algo-
rithm based on the graph partitioning method dis-
cussed hereinbefore with two steps: (1) mine all
the frequent trees from a graph database and (2) for
each such frequent tree T , find all frequent subgraphs
whose canonical spanning trees are isomorphic to
T . Maximal frequent subgraphs can be found sub-
sequently among frequent ones. We would like to
discuss the first step later for two reasons. First, as
pointed out in [20], the current subgraph mining al-
gorithms can be easily tailored to find only trees from
a graph database by limiting the topology of the pat-
terns. This is true for Closegraph [20] as well as for
FFSM [10], which is our previously developed depth-
first subgraph mining algorithm. Second, most of the
techniques developed for mining subtrees from a for-
est can also be easily adapted for the same purpose.
Therefore, in the following discussion, we focus on
step 2, which is how to enumerate the equivalence
class of a tree T . The two-step division of the min-
ing algorithm is artificially introduced to make it easy
to explain the key ideas of the algorithm without ex-
ceeding details.

3.3 Enumerating Graphs from Trees

We define a joining operation ⊕ between a graph
(tree) G and a hypothetical edge connecting any two
nodes i, j in G with label el such that G ⊕ (i, j, el) =
G′ where G′ is a supergraph of G with one addi-
tional edge between nodes i and j with label el. If
the graph G already contains an edge between nodes
i and j, the joining operation fails and produces noth-
ing. If G′ is frequent, we denote the hypothetical edge
(i, j, el) as a candidate edge for G. The above defini-
tion can serve as the basis for a recursive definition of
the joining operation between a graph G and a candi-
date edge set E = {e1, e2, . . . , en} such that G ⊕ E =
(G ⊕ e1) ⊕ {e2, . . . , en}.

Let’s assume we already calculated the set of can-
didate edges C = {c1, c2, . . . , cn} from the set of all
possible frequent hypothetical edges. We define the
search space of G, denoted by G : C , as the set of
graphs which might be produced by joining the graph
G and a candidate edge set in the powerset set of C
(denoted by 2C). That is:

G : C = {G ⊕ y|y ∈ 2C} (1)

In the following discussion, the group of candidate
edges are sometimes referred to as the “tail” of the
graph G in its search space. We present a recursive
algorithm in Table 3 to enumerate the search space for
a graph G and the overall frequent subgraph search al-
gorithm is presented in Table 2.

Example 3.4 in Figure 6, we single out the largest
equivalence class (Class One) from Figure 5. We show
a tree K with its tail C = {(k2, k3, y), (k3, k4, x)}.
K’s search space is composed of four graphs
{K,KS1,KS2,KS3} (K is always included in its
search space) and is organized into a “search tree” in
analogy to frequent item set mining. This tree structure
follows the recursive procedure we present in Table 3
which can be used to explore the search space for a
given graph.

a

b

a

a

y

y

x

x

a

b

a

a

y

y

x

a

b

a

a

y

y
y

x

a

b

a

a

y

y

x
y

x

K1

K2

K3

K4

C= {(k2, k3, y), (k3, k4, x)}

Class I

K
KS1

KS2

KS3

Figure 6. Example of enumerating graph’s search
space. We use dashed lines on the subgraph KS1 and
KS3 to denote the fact that they will be pruned by an
optimization technique which is discussed in Section
3.5.1

Algorithm Maximal Subgraph Mining(G, σ)
begin
1. R← {T |T is a frequent tree in G}
2. S ← {G|G ∈ Expansion(T), T ∈ R}
3. return {G|G ∈ S, G is maximal }
end

Table 2. An outline of the maximal subgraph mining
algorithm

7

Algorithm Expansion(T)
begin
1. C ← {c| c is a candidate edge for T}
2. S ← Search Graphs (T, C)
3. return {G|G ∈ S, G is frequent, G has the same

canonical spanning tree as T has}
end
Algorithm Search Graphs(G, C = {c1, c2, . . . , cn})
begin
1. Q← ∅
2. for each ci ∈ C
3. Q← Q ∪ Search Graphs(G⊕ ci, {ci+1, ci+2 . . . , cn})
4. endfor
5. return Q
end

Table 3. An algorithm for exploring the equivalence
class of a tree T

3.4 Enumerating Frequent Trees from a Graph
Database

We outline a generic depth-first tree enumerating
method in Table 4. The algorithm begins by finding all
frequent edges from a graph database. The recursive
function Generic-Tree-Explorer is invoked to perform
a depth-first search where set C holds all trees that are
to be enumerated (candidates) and set R holds all trees
that have been enumerated. For a given n-node can-
didate X, all its frequent n + 1-node supertrees Y are
included as the candidates at the next level. Dupli-
cated candidates are detected and removed at line 7.
By adding the method to enumerate the search space
of a tree (line 9) the algorithm is in fact enumerat-
ing all frequent graphs. The updated sets are returned
where set Q holds the group of frequent graphs and
R holds the set of frequent trees. Finally, maximal
frequent subgraphs are computed from set of frequent
subgraphs.

Our method to enumerate cyclic graphs is indepen-
dent of the tree mining method and hence that people
can freely choose any tree mining method in the im-
plementation. The one we used, which is considerably
more complicated and more efficient, is based on the
FFSM algorithm [10] and is detailed in Appendix.

In summary, we developed a different method to
enumerate frequent subgraphs. The method may be
slightly more efficient than previous ones 5 but the
technique for maximal subgraphs involves inefficient

5tree related operations are treated separately from graph re-
lated operations and therefore save processing time

Algorithm Maximal Subgraph Mining(G)
begin
1. C ← {c| c is a frequent edge in G }
2. (F , S)= Generic-Tree-Explorer(C, ∅)
3. return {G|G ∈ F and G is maximal }
end
Algorithm Generic-Tree-Explorer(C, R)
begin
4. Q← ∅
5. for each X ∈ C
6. S ← {Y |Y is a frequent tree of one additional node of X ∈ C}
7. S ← S − R # avoiding duplicated search
8. (U, V)← Generic-Tree-Explore(S, R)
9. Q← Q ∪ U∪ Expansion(X) #including cyclic graphs
10. R← R ∪ {X} ∪ V
11. endfor
12. return (Q, R)
end

Table 4. An algorithm for enumerating frequent
trees/graphs based on FFSM

postprocessing. In the next section, we introduce opti-
mization techniques to improve maximal frequent sub-
graphs search.

3.5 Optimizations: Global and Local Maximal
Subgraphs

In this section by developing optimization tech-
niques, we demonstrate that maximal subgraphs can be
mined efficiently. Our developed techniques dynami-
cally remove a set of frequent subgraphs that can not
be maximal from a search space. To that end, we de-
fine a frequent subgraph G to be locally maximal if it is
maximal in its equivalence class i.e. G has no frequent
supergraph(s) that share the same canonical spanning
tree as that of G; we refer to a subgraph as globally
maximal if it is maximal frequent in a graph database.
Clearly, every globally maximal subgraph must be lo-
cally maximal but not vice versa. Our pruning tech-
niques aim to avoid enumerating subgraphs which are
not locally maximal.

3.5.1 Bottom-Up Pruning

The search space of a graph G is exponential in the
cardinality of the candidate edges set C . One heuristic
to avoid such an exponential search space is to check
whether the largest possible candidate G′ = G ⊕ C is
frequent or not. If G′ is frequent, each graph in the
search space is a subgraph of G′ and hence not max-

8

imal. This heuristics is referred to as the Bottom-Up
Pruning and can be applied to every step in the recur-
sive search procedure presented in Table 3. By apply-
ing the bottom-up pruning to the equivalence class I
presented in Figure 5, graph KS1 and KS3 are pruned.
Dynamic Reordering: An important technique re-
lated to the efficiency of the bottom-up pruning is the
dynamic reordering technique, which works in two
ways. First, it trims infrequent candidate edges from
the tail of a graph to reduce the size of the search space
(an edge candidate can become infrequent after sev-
eral iterations since other edges are incorporated into
the patterns). Second, it rearranges the order of the el-
ements in the tail according to their support value. For
example, given a graph’s tail C , by dynamic reorder-
ing, we sort the elements in C by their support values,
from lowest to highest. After this sorting, the infre-
quent “head” is trimmed. At the end of the remain-
ing tail is a family of elements individually having
high support and hence the pattern obtained by group-
ing them together is likely to still have high support
value. This heuristics is widely used in mining max-
imal itemsets to gain performance. However, without
the spanning tree framework, applying dynamic order-
ing is very difficult in any of the current subgraph min-
ing algorithms, which intrinsically have a fixed order
of adding edges to an existing pattern for various per-
formance considerations.

3.5.2 Tail Shrink

Given a graph G and a supergraph G′ of G, an em-
bedding of G in G′ is a subgraph isomorphism f from
G to G′. We prefer the term embedding to subgraph
isomorphism, though interchangeable, for more intu-
itive descriptions. In Figure 7, we show a subgraph L
and its supergraph P . There are two embeddings of
L in P : (l1 → p1, l2 → p2, l3 → p3, l4 → p4) and
(l1 → p1, l2 → p3, l3 → p2, l4 → p4). We define
a candidate edge (i, j, el) to be associative to a graph
G if it appears in every embedding of G in a graph
database. In other words, a candidate edge (i, j, el) of
G is associative if and only if for every embedding f
of G in a graph G′, G′ has the edge (f(i), f(j)) with
label el. One example of an associative edge is the
edge (l1, l3, y) to the tree L shown in Figure 7.

If a tree T contains a set of associative edges

{e1, e2, . . . , en}, any maximal frequent graph G which
is a supergraph of T must contain all such edges.
Hence we can remove these edges from the tail of T
and augment them to T with no risk of missing any
maximal ones. This technique is referred to as the tail
shrink technique. Tail shrink has two advantages: (1)
it reduces the search space and (2) it can be used to
prune the entire equivalence class in certain cases. To
elaborate the latter point, we define a set of associative
edges C of a tree T to be lethal if the resulting graph
G′ = T ⊕ C has a canonical spanning tree other than
that of T i.e. T (G′) �= T (T).

We formally prove the correctness of the tail-
shrinking optimization by the following theorem. First
we prove that if a tree T contains a group A of asso-
ciative candidates, any maximal supergraph of T must
contains all such candidates. If the group of associa-
tive candidates is lethal, we prove that any maximal
supergraph G of T can not be in T ’s equivalence class.

Theorem 3.4 Given a tree T , its tail C , a group of
associative edge A ⊆ C of T , and a maximal graph
G ⊃ T , we have G ⊇ T ⊕A (I). Further more, if A is
lethal, we have T (G)
 T (T) (II).

Proof 5 We prove (I) by showing contradiction. Let’s
assume there is a G such that G ⊃ T and G � T ⊕A,
then there is at least one c = (i, j, el) ∈ A that is
not part of G. Since c occurs in every instance of T , it
occurs in every instance of G. Then we can construct a
G′ = G⊕ c ⊃ G which has the same support value of
G and hence frequent. This contradicts to the fact that
G is maximal. For (II), we have T (G) 	 T (T⊕A) (by
Theorem 3.2) and T (T⊕A)
 T (T) (by the definition
of lethal). Therefore we have T (G)
 T (T).

Example 3.5 In Figure 7, we show an example of an
associative edge e = (1, 3, y) of L which is lethal to
L also. In the same example, the lethal edge e can be
augmented to each member of the class II to produce
a supergraph with the same support and with a canon-
ical spanning tree sorted greater than L. Therefore
the whole class can be pruned away once we detect a
lethal edge(s) to the tree L. Interested reader might
verify that the equivalence class III shown in Figure
5 also has a lethal edge and the whole class can be
pruned away by tail shrink.

9

b

a

y x

a

a

l1

l4y
a

b

a

a

y

y

x
y

(P)

p2

p1

p3

p4

x

b

a

y

y

x

a

a

x

b

a

y

y

x

a

a

y
l2 @ @

y

l3

L L LS2S1

Class II

Figure 7. An example showing how tail shrink might
be used to prune the whole equivalence class. Edge
e = (l1, l3, y), denoted by a dashed line to be distin-
guished from other edges, is associative to tree L and
lethal to L as well. The graph obtained by joining L
and e should belong to equivalence class I shown in
Figure 5.

3.5.3 External-Edge Pruning

In this section, we introduce a technique to remove
one equivalence class without any knowledge about
its candidate edges. We refer to this technique as the
external-edge pruning. We define an edge to be an ex-
ternal edge for a graph G if it connects a node in G
and a node which is not in G. We represent an exter-
nal edge as a three-element tuple (i, el, vl) to stand for
the fact that we introduce an edge with label el inci-
dent on the node i in a graph G and a node which does
not belong to G with node label vl. An external edge
(i, el, vl) is associative to a graph G if and only if:

• for every embedding f of G in a graph G′, G′ has
a node v with the label vl and is not an image of
a node in V [G] under f , and

• v connects to the node f(i) with an edge label el
in G′

.

Example 3.6 We show two examples of associative
external edges in Figure 8. One is (m1, x, a) for the
tree M and another one is (nf1, y, a) for the tree N .
If a tree T has at least one associative external edge,
the entire equivalence class of T can be pruned since
the same edge can be augmented to every member of
the class. In this example, both equivalence classes
IV and V can be eliminated due to the external-edge
pruning.

Once we find that a tree T has an associative ex-
ternal edge, the equivalence class associated with tree
T can be eliminated since the same edge can be aug-
mented to each members in T ’s equivalence class and
therefore none of them are maximal.

b

a

y y

a

b

a

y y

a
y

Class IV

@
M MS1

m1

m2
m3

a
x

b

a

y x

a

b

a

y x

a
x

Class V

@
N NS1

n1

n2
n3

a
y

Figure 8. Examples showing external edges and as-
sociative external edges.

In summary, we present three pruning techniques
to speed up maximal subgraph mining. For the graph
P shown in Figure 3, there are a total of twenty five
subgraphs of P , including itself and excluding the null
graph. These subgraphs are partitioned into five non-
singleton classes, shown in Figure 5, and twelve sin-
gleton classes (not shown). There is only one maximal
subgraph, namely, graph P itself. We have success-
fully pruned every one of the five non-singleton equiv-
alence classes (P of the equivalence class I is left un-
touched since it is maximal). What we do not show
further is that we can apply the same techniques to
the remaining twelve singleton equivalence classes to
eliminate all of them. Interested readers might verify
that themselves.

Table 5 and Table 6 integrate these optimizations
into the basic enumerate technique we presented in Ta-
ble 2 and Table 3.

3.6 Computational Details

In this section, we discuss computational details
that are important for an efficient implementation of
the SPIN algorithm. First, we present two algorithms
to support the optimizations we designed for SPIN,
namely, computing the edge candidates for a tree and
determining whether there is an external associated
edge for a frequent tree pattern. We then present two
procedures to calculate a pattern’s support value and

10

Algorithm MaxSubgraph-Expansion(T)
begin
1. C ← {c| c is a candidate edge for G}
2. A← {c| c ∈ C and c is associative }
3. ifA is lethal return ∅ #tail shrinking
4. S ← Search Graphs (T ⊕A, C − A)
5. return {G| G ∈ S, G is frequent and maximal, T (G) = T (T)}
end
Algorithm Search Graphs(G, C = {c1, c2, . . . , cn})
begin
1. if G⊕ C is frequent, return {G⊕ C} #bottom-up pruning
2. Q← ∅
3. foreach ci ∈ C
4. Q← Q ∪ Search Graphs(G ⊕ ci, {ci+1, ci+2 . . . , cn})
5. endfor
6. return Q
end

Table 5. An algorithm for exploring the equivalence
class of a tree T for maximal subgraph mining

Algorithm Maximal Subgraph Mining(G)
begin
1. C ← {c| c is a frequent edge in G}
2. (M, S)= Generic-Tree-Explorer(C, ∅)
3. returnM
end
Algorithm Generic-Tree-Explorer(C, R)
begin
4. Q← ∅
5. foreach X ∈ C
6. S ← {Y |Y is a frequent tree of one additional node of X ∈ C}
7. S ← S − R # avoiding duplicated search
8. (U, V)← Generic-Tree-Explore(S, R)
9. Q← Q ∪ U, R← R ∪ {X} ∪ V
10. if(X has no external associative edge) # external-edge prunning
11. Q←Q∪Max-subgraph-Expansion(X) #mining cyclic graphs
12. endif
13. endfor
14. return (Q, R)
end

Table 6. An algorithm for enumerating M: maximal
frequent subgraphs.

make sure it is maximal. By those procedures, we
guarantee that every pattern reported by SPIN is fre-
quent and maximal.

3.6.1 How to Calculate the Candidate Edge Set?

To calculate the candidate edge set for a tree T , we
need to scan all embeddings of T and count how many
graphs having an edge candidate e for every possible
such edge. If T has n nodes, there are up to n ∗ (n −
1)/2∗|ΣE | edges we need to monitor where |ΣE | is the
total number of edge labels in a graph database. This

computation is used frequently in the overall search
and we want to optimize it as much as possible.

The optimization relies on the depth-first tree search
method we introduced. Assuming an edge e =
(i, j, el) that connects two nodes in a tree T′ that is the
parent node of the tree T in a depth-first tree enumer-
ation algorithm, one necessary condition for e to be
frequent in T is that it must be frequent in T′. In other
words, an edge e must be a candidate edge in T′ in or-
der to be considered as a candidate edge in T . Thus,
to speed up the candidate edge calculation, T can “in-
herit” all candidate edges from its parent, verify their
frequencies, and select those that are frequent. The
additional edges T needs to be considered are those
that are not part of T ′, namely, edges that connect the
newly introduced node of T and nodes in T′.

3.6.2 How to Find an External Associative Edge?

Determining whether there is an associative external
edge for a tree T can be very expensive. This involves
scanning every embedding of T and searching for the
associative edges. With depth-first search we can use
an efficient heuristic. Given a tree pattern T , assuming
tree T ′ is T ’s parent node in a depth-first enumera-
tion, a hint of T is an associative external edge e of T′.
When we check the tree T , we first check its hints (as-
suming there is at least one from its parent node). The
reason is that if an edge is associative to a tree T′, it is
very likely to be associative to its child node also. If
at least a hint e is valid, we prune the whole equiv-
alence class of T . During such search process, we
might come to situations where we “run out of hints”,
i.e. there is no valid associative external edge from its
parent node for a tree T . In such cases, we employ an
expensive search procedure to search every embedding
of T to determine the set of associative external edges.

3.6.3 How to Calculate the Support Value for a
Cyclic Graph?

Given a correct tree enumeration algorithm, the only
thing we need to make sure about the SPIN algorithm
is that every cyclic graphs is indeed frequent. A brute
force way to guarantee this is performing a linear scan
of the graph database and using subgraph isomorphism
test to determine the support of a cyclic graph. It turns
out we have a much efficient way to perform such

11

calculation than the brute force one. Given a graph
database G, a tree T , and an edge candidate e in T ’s
tail C , the embedding set es of e is the group of em-
beddings of graph T ⊕ e in G. Given a cyclic graph
G = T ⊕ E = {e1, e2, . . . , en}, the embedding set
of G can be computed efficiently by intersecting the
embedding sets of cyclic graphs T ⊕ e for all e ∈ E.
The support of G is the fraction of graphs those em-
beddings map to. This is further explained in the fol-
lowing example. .

Example 3.7 Graph K has two embeddings in the
graph database G = {P,Q,R} showing in Figure 1.
Those are {(k1 → p1, k2 → p2, k3 → p3, k4 →
p4), (k1 → p1, k2 → p3, k3 → p2, k4 → p4)}.
Given e1 = (k2, k3, y) and e2 = (k3, k4, x) the cyclic
graph K ⊕ e has the same two embeddings while the
cyclic graph K ⊕ e2 has only the first embedding
of K. Therefore graph K ⊕ {e1, e2}) has only one
embedding:(k1 → p1, k2 → p2, k3 → p3, k4 → p4).

Where does the efficiency come from? First, we no-
tice that we do not need to perform any subgraph iso-
morphism checking. Second, we do not even need to
scan the database since if we keep the embedding set
of each candidate edge, the only operation we need
to do is set intersection. Given candidate edge set
E = {e1, e2, . . . , en}, computing the support value of
a cyclic graph G = T ⊕ E is bounded by O(|E| × n)
where n is the total number of embeddings T has. In
our implementation, we index embeddings of a tree T
by integers 1, 2, . . ., n. The embedding set of any
cyclic graph T ⊕ e can be efficiently encoded as a bit-
vector V = v1, v2, . . . , vn where vi is the 1 if and only
if T ⊕ e has the ith embedding of T . The set oper-
ation can be efficiently performed by the bitwise and
operation.

3.6.4 How to Find Maximal Subgraphs?

We notice that with the optimizations we presented, all
reported graphs G are locally maximal, i.e. there is no
supergraph of G sharing the same canonical spanning
tree. To select globally maximal subgraphs, we need
to check whether there is an extern edge e such that
if attached, the resulting graph (or tree) is frequent. If
there exists such external edge, the graph is not max-
imal. Otherwise, it is. This is similar to what we did

in searching for external associated edge and we could
use similar strategy to save computation.

4 Experimental Study

We performed our empirical study using a single
processor of a 2.8GHz Pentium Xeon with 512KB L2
cache and 2GB main memory, running RedHat Linux
7.3. The SPIN algorithm is implemented using the
C++ programming language and compiled using g++
with O3 optimization. We compared SPIN with two
alternative subgraph mining algorithms: FFSM ([10])
and gSpan [19]. Every maximal subgraph reported by
SPIN in synthetical and real data sets are cross val-
idated using results from FFSM and gSpan to make
sure it is (a) frequent, (b) maximal, and (c) unique.

4.1 Synthetic Dataset

To evaluate the performance of the SPIN algorithm,
we first generate a set of synthetic graph databases us-
ing a synthetic data generator [13]. There are six pa-
rameters to control the behavior of the synthetic graph
generator and we summarize them in Table 7. The
synthetic data generator works by first creating a set
of candidate graphs (the total number are controlled
by L) with user specified size (I). The candidates
are subsequently selected, replicated and augmented
with random selected node and edges to create a graph
database. Further details of the synthetic graph gener-
ator might be found in [13].

In Figure 10, we represent the performance com-
parison of SPIN, FFSM, and gSpan algorithms for a
synthetic data set with different support values. When
the support is set to a pretty high value e.g. 5%, the
performance of all three algorithms are pretty close.
SPIN scales much better than the other two algorithms
as we decrease the support values. At support value
1%, SPIN provides a six and ten fold speed-up over
FFSM and gSpan, respectively. We do not show data
with support value great than 5% since there is little
difference among the three methods.

We then launched a set of four experiments to test
the scalability of SPIN for important parameters listed
in Table 7. In Figure 11, we compare the performance
using different value of I , which specifies the average
size of the set of subgraphs to be embedded frequently

12

Figure 9. Left: performance comparison with different database sizes (D) using SPIN, FFSM and gSpan. Middle:
the same comparison using different average database graph sizes (T) and Right: using different number of available
labels. We fix the support value to be 1% in all cases. When we change the total number of labels, we fix the ratio
between node labels and edge labels at 1:2

Parameter meaning
D total number of graphs in a generated database
T average graph size (edges)
L the total number of potentially frequent subgraphs
I the size of the potentially frequent subgraphs (edges)
V the total number of node labels
E the total number of edge labels

Table 7. We list the set of parameters controlling
the behavior of the synthetic graph generator. We
use a single string, e.g. ”D10kT 30L200I11V 4E4”
to represent a graph database generated by a par-
ticular combination of parameters. For example,
”D10kT 30L200I11V 4E4” stands for a synthetic
graph database which contains a total of D = 10k
(10000) graphs. On average, each graph contains T
= 30 edges with up to V =4 vertex labels and E = 4
edge labels. There are total L = 200 potential fre-
quent patterns in the database with average edge num-
ber I = 11. We use a fixed value L = 200 throughout
the paper following previous published papers.

in a synthetic graph database. These subgraphs are re-
ferred to as seeds in [13] and they correlate to the set of
maximal frequent subgraphs we need to find. The re-
sults demonstrate that SPIN scales well with different
sizes of seeds. On the other hand, FFSM and gSpan
have to enumerate all subgraphs of these seeds. They
clearly experience an exponential growth of the total
number of such subgraphs (shown in the right part of
Figure 11) as the sizes of the created seeds increase.
We notice more than an order of magnitude speed-up

1 2 3 4 5 6
10

0

10
1

10
2

10
3

R
un

 ti
m

e
(s

)

Support Threshold (%)

SPIN
FFSM
gSpan

1 2 3 4 5 6
10

2

10
3

10
4

10
5

10
6

T
ot

al
 id

en
tif

ie
d

su
bg

ra
ph

s

Support Threshold (%)

SPIN
FFSM/gSpan

Figure 10. Left: performance comparison
under different support values for data set
D10kT 30L200I11V 4E4 using SPIN, FFSM
and gSpan. Here we follow the common convention
of encoding the parameters of a synthetic graph
database as a string. Right: Total frequent patterns
identified by the algorithms.

in the study and the performance gap can become even
larger as we further increase the value of I .

In Figure 9, we further compared the scalability of
the SPIN using different database sizes, different av-
erage graph transaction sizes, and different number of
node/edge labels. Throughout the experimental stud-
ies, SPIN always offers a huge performance gain com-
paring to FFSM and gSpan.

13

3 4 5 6 7 8 9 10 11

10
1

10
2

10
3

10
4

R
un

 ti
m

e
(s

)

Support Threshold (%)
3 4 5 6 7 8 9 10 11

10
2

10
3

10
4

10
5

10
6

10
7

T
ot

al
 id

en
tif

ie
d

su
bg

ra
ph

s

Support Threshold (%)

SPIN
FFSM
gSpan

SPIN
FFSM/gSpan

2 3 4 5 6 7 8 9 10 11

10
1

10
2

10
3

10
4

R
un

 ti
m

e
(s

)

Support Threshold (%)
2 3 4 5 6 7 8 9 10 11

10
2

10
3

10
4

10
5

10
6

T
ot

al
 id

en
tif

ie
d

su
bg

ra
ph

s

Support Threshold (%)

SPIN
FFSM
gSpan

SPIN
FFSM/gSpan

Figure 12. Left: performance comparison under different support values for DTP CA data set using SPIN, FFSM and
gSpan. Right: Total frequent patterns identified by the algorithms.

7 8 9 10 11 12 13 14
10

1

10
2

10
3

10
4

R
un

 ti
m

e
(s

)

Frequent Graph Size(|I|)

SPIN
FFSM
gSpan

7 8 9 10 11 12 13 14
10

3

10
4

10
5

10
6

10
7

T
ot

al
 id

en
tif

ie
d

su
bg

ra
ph

s

Frequent Graph Size(|I|)

SPIN
FFSM/gSpan

Figure 11. Left: performance comparison with dif-
ferent seed sizes(I) using SPIN, FFSM and gSpan.
Right: Total frequent patterns identified by the algo-
rithms.

4.2 Chemical Data Set

We also applied SPIN to two widely used chemi-
cal data sets to test its performance. The data sets are
obtained from the DTP AIDS Antiviral Screen test,
conducted by U.S. National Cancer Institute. In the
DTP data set, chemicals are classified into three sets:
confirmed active (CA), confirmed moderately active
(CM) and confirmed inactive (CI) according to exper-
imentally determined activities against the HIV virus.
There are in total of 423, 1083, and 42115 chemicals in
the three sets, respectively. For our own purposes, we
used all compounds from CA and from CM to form
two data sets, which are subsequently referred to as
DTP CA and DTP CM, respectively. The DTP data
can be downloaded from http://dtp.nci.nih.gov/docs/aids/
aids data.html. The characteristics of these two data

sets are summarized in Table 8.
In Figure 12, we show the performance comparison

of SPIN, FFSM, and gSpan using the DTP CA data set.
We report that SPIN is able to expedite the program up
to five(eight) fold, comparing with FFSM(gSpan) at
support value 3.3%. Mining only maximal subgraphs
can reduce the total number of mined patterns by a fac-
tor up to three orders of magnitude in this data set.
We also applied the same algorithms to the data set
DTP CM. In this case, SPIN has a performance very
close to FFSM and both are around eight fold speed-
up over gSpan. However, if we impose an additional
constraint to let FFSM output the maximal patterns it
finds among the set of frequent patterns, SPIN offers a
three fold speed-up from FFSM.

5 Related Work

Knowledge discovery from semi-structured data
sets is an active topic in the data mining/machine
learning community. Many different pattern defini-
tions were proposed from different perspectives such
as finding patterns from a single large network [14],
finding approximately matched patterns [17], mining
patterns using domain knowledge from bioinformatics
[9], and finding frequent subgraphs. The later one is
the focus of our paper.

Recent subgraph mining algorithms can be roughly
classified into two categories. Algorithms in the first
category use a level-wise search scheme based on the
Apriori property to enumerate the recurrent subgraphs
[12, 13]. Rather than growing a graph by one sin-
gle node/edge at a time, Vanetik et al. recently pro-

14

Data Set N V LV maxV minV E LE maxE minE
DTP CA 423 39.56 3.99 190 10 42.2 2.058 196 10
DTP CM 1083 31.8 3.665 220 6 34.25 2.07 234 4

Table 8. The characteristics of the two data sets. N is the total number of graphs in a data set; V and E specify
the average numbers of vertices and edges; LV and LE specify the average numbers of vertex labels and edge labels;
and maxV /minV and maxE/minE are the maximal/minimal numbers of vertices/edges of all graphs in a data set,
respectively.

posed an Apriori-based algorithm using paths as build-
ing blocks with a novel support definition [18].

Algorithms in the second category use a depth-
first search to enumerate candidate frequent subgraphs
[19, 20, 2, 10]. As demonstrated in these papers,
depth first algorithms provide advantages over level-
wise search for (1) better memory utilization and (2)
efficient subgraph testing, e.g. it usually permits the
subgraph test to be performed incrementally at succes-
sive levels during the search [10].

Our current work benefits extensively from existing
algorithms for maximal itemset mining such as [3, 7]
and frequent subtree mining algorithms [1, 21].

6 Conclusion and Future Work

In this paper we present SPIN, an algorithm to mine
maximal frequent subgraphs from a graph database. A
new framework, which partitions frequent subgraphs
into equivalence classes is proposed together with
a group of optimization techniques. Compared to
current state-of-the-art subgraph mining algorithms
such as FFSM and gSpan, SPIN offers very good scal-
ability to large graph databases and at least an order
of magnitude performance improvement in synthetic
graph data sets. The efficiency of the algorithm is also
confirmed by a benchmark chemical data set. The
algorithm of compressing large number of frequent
subgraphs to a much smaller set of maximal subgraphs
will help us to investigate demanding applications
such as finding structure patterns from proteins in the
future.

Acknowledgement We thank Dr. Jack Snoeyink
in the University of North Carolina for helpful discus-
sions about the paper.

References

[1] T. Asai, K. Abe, S. Kawasoe, H. Arimura, and
H. Sakamoto. Efficiently substructure discovery from
large semi-structured data. SDM, 2002.

[2] C. Borgelt and M. R. Berhold. Mining molecular frag-
ments: Finding relevant substructures of molecules.
In Proc. International Conference on Data Mining’02,
2002.

[3] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A
maximal frequent itemset algorithm for transactional
databases. ICDE, 2001.

[4] Y. Chi, Y. Yang, and R. Muntz. Indexing and mining
free trees. ICDM, 2003.

[5] A. Deutsch, M. F. Fernandez, and D. Suciu. Stor-
ing semistructured data with STORED. in SIGMOD,
pages 431–442, 1999.

[6] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. In VLDB’97, 1997.

[7] K. Gouda and M. J. Zaki. Efficiently mining maximal
frequent itemsets. ICDM, 2001.

[8] J. Hu, X. Shen, Y. Shao, C. Bystroff, and M. J. Zaki.
Mining protein contact maps. 2nd BIOKDD Workshop
on Data Mining in Bioinformatics, 2002.

[9] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink,
J. Prins, and A. Tropsha. Mining protein family spe-
cific residue packing patterns from protein structure
graphs. In Eighth Annual International Conference on
Research in Computational Molecular Biology (RE-
COMB), pages 308–315, 2004.

[10] J. Huan, W. Wang, and J. Prins. Efficient mining
of frequent subgraph in the presence of isomorphism.
ICDM, 2003.

[11] J. Huan, W. Wang, A. Washington, J. Prins, R. Shah,
and A. Tropsha. Accurate classification of protein
structural families based on coherent subgraph anal-
ysis. In Proc. Pacific Symposium on Biocomputing,
2004.

[12] A. Inokuchi, T. Washio, and H. Motoda. An apriori-
based algorithm for mining frequent substructures
from graph data. In PKDD’00, 2000.

[13] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In Proc. International Conference on Data
Mining’01, 2001.

15

[14] M. Kuramochi and G. Karypis. Finding frequent pat-
terns in a large sparse graph. SDM, 2004.

[15] J. Pei, G. Dong, W. Zou, and J. Han. On computing
condensed frequent pattern bases. ICDM, 2002.

[16] S. Raghavan and H. Garcia-Molina. Representing web
graphs. In Proceedings of the IEEE Intl. Conference
on Data Engineering, 2003.

[17] N. Vanetik and E. Gudes. Mining frequent labeled and
partially labeled graph patterns. ICDE, 2004.

[18] N. Vanetik, E. Gudes, and E. Shimony. Comput-
ing frequent graph patterns from semi-structured data.
Proc. International Conference on Data Mining’02,
2002.

[19] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In Proc. International Conference on
Data Mining’02, 2002.

[20] X. Yan and J. Han. Closegraph: Mining closed fre-
quent graph patterns. KDD’03, 2003.

[21] M. Zaki. Efficiently mining freqeunt trees in a forest.
SIGKDD, 2002.

[22] M. J. Zaki and C. J. Hsiao. Charm: An efficient algo-
rithm for closed itemset mining. In SDM’02, 2002.

A APPENDIX

A.1 Enumerating Frequent Trees from a Graph
Database using Modified FFSM

In this section in implementing SPIN we present
the method for mining trees from a graph database.
The method is based on a depth-first search algorithm
called FFSM (Fast Frequent Subgraph Mining), which
is designed for enumerating all frequent graph from a
graph database [10]. Since every frequent tree is a fre-
quent graph, FFSM can be quite easily tailored to mine
tree only.

We highlight several key components of the FFSM
algorithm; further details can be found in [10]. Given
an n by n adjacency matrix M of a graph (tree), we de-
fine its code as the sequence of lower triangular entries
in the order of m1,1,m2,1,m2,2, . . . ,mn,1, . . . ,mn,n

where mi,j is the entry at the ith row and jth column
of the matrix M (the upper triangular part is the mir-
ror of the lower one and is omitted). We designate

one matrix as the canonical adjacency matrix (CAM)
of a graph G if it has the largest lexicographic code
among all possible adjacency matrices of G. Based on
CAM representation of graphs, we designed a com-
pact data structure called CAM tree to assign every
frequent subgraph of a graph database a unique node in
the CAM tree. We developed two operations: a joining
operation, which is subdivided into four cases: case 1,
case 2, case 3a and case 3b, and an extension opera-
tion to dynamically construct and enumerate the CAM
tree.

Based on the FFSM algorithm, the algorithm to enu-
merate frequent trees without cyclic graphs can be out-
lined as follows: first we scan a graph database to ob-
tain all frequent edges. Second, we use the joining op-
eration case 3b and the extension operation to perform
depth first enumeration of the CAM tree to find all fre-
quent tree. The algorithm is presented in Table 9. We
claim that this algorithm is correct and non-redundant
in that we only report frequent trees and report all of
them exactly once. The formal proof of algorithm re-
quires significant materials from the FFSM algorithm
and is not directly related to current paper. We omit
the proof.

Algorithm Frequent-Graphs(G)
begin
1. C ← {c| c is a frequent edge in G}
2. return Modified-FFSM-Explore(C)
end
Algorithm Modified-FFSM-Explore((C)
begin
1. Q← ∅
2. for each X ∈ C
3. S ← { FFSM-join-case3b(X, Y)|Y ∈ C}
4. S ← S∪ FFSM-extension(X)
5. S ← {Y |Y ∈ S, Y is frequent, and it is in its canonical form }
6. Q← Q∪Modified-FFSM-Explore(S)
7. endfor
8. return Q
end

Table 9. An algorithm for enumerating frequent trees
based on FFSM

16

