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ABSTRACT

Latency greatly degrades the usability of head-mounted virtual reality systems. This paper discusses consequences of latency,
examines sources of latency, investigates techniques to reduce latency, and proposes to integrate existing solutions into a system that
approximates zero latency for the most critical types of errors. First, effects of latency are examined such as degraded user experience,
lowered user performance, and simulator sickness. System delay is then analyzed from the tracker to the display. Advantages and
limitations of existing methods for reducing latency are discussed, followed by an explanation of how software performance engineering
allows one to analyze and optimize performance. Finally, a proposed system is presented that integrates three techniques: system delay
reduction, head-orientation prediction, and post-rendering image correction in hardware. The proposed system could approximate zero
latency for head-mounted virtual reality.
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1 INTRODUCTION

The fundamental idea of virtual reality (VR) is to present the user with perspective images that change appropriately at correct times
as she moves. A head-mounted display (HMD) is a tracked display rigidly attached to a user’s head that presents the visual representation
of the world [Sutherland 1968]. System delay is defined as the true end-to-end delay of the entire system from the time of tracking to the
time of display. If a VR system does not compensate for this system delay then the images are not presented at the correct times. Latency
is defined as the effective delay of the system as perceived by the user. Without prediction or correction, latency is equal to system delay.
If one could accurately predict and correct for system delay so that the image looks correct for the time of display, then the effective
latency would be equal to zero.

Latency is a primary factor in detracting from the sense of presence in VR [Meehan et al. 2003]. The slower the response of the
system, the more the visual world seems to lag behind the user’s actions. Reducing latency (improving responsiveness) provides more
believable virtual worlds and is important for natural and precise interaction within these environments. However, exact latency
requirements of VR are not yet known. A tool is needed that would allow researchers to determine the threshold of human perception of
latency and the point when latency begins to impact task performance. A system with near-zero latency would allow one to slowly raise
latency levels until human subjects are able to differentiate among the conditions.

This paper discusses latency and its effects on users of head-mounted VR systems. Various topics are investigated in order to
develop a better understanding of latency causes, effects, sources, and reduction. Topics include human computer interaction, software
engineering, and hardware architecture. By applying concepts from these fields, I describe how to reduce latency and, consequently,
improve VR systems. Methods of system analysis and optimization, prediction, and post-rendering image correction are applied to achieve
the goal of near-zero (within a millisecond) latency for the most important type of errors.

Section 2, Degrading Effects of Latency, explains why users of tracked HMDs are susceptible to the ill effects of latency. Problems
include dynamic error, oscillopsia, degraded visual acuity, and degraded human performance. The most critical type of latency-induced
error — error due to head rotation — is also discussed.

Section 3, Sources of System Delay, investigates latencies associated with various hardware and software components in a typical
VR system. Tracking, networking, application, rendering, display, and synchronization delays all contribute to total system delay.

Sections 46 discuss three methods of reducing latency — system analysis and optimization, prediction, and post-rendering image
correction. Section 4, System Analysis and Optimization, describes how to reduce system delay by pinpointing delay components.
Software performance engineering, measurement, and timing diagrams help to better understand system delay. The section ends with an
example that reduces system delay by reducing synchronization delays. Section 5, Prediction, explains how to predict head movement.
Prediction is required because instantaneous computation is impossible — there will always be some system delay. By the time a new
image is computed and presented, the user may be looking in a different direction. Thus, head pose needs to be predicted for the time the
new image will be displayed to the user. Section 6, Post-Rendering Image Correction, discusses how post-rendering image correction can
correct for a small head-rotation error. The system determines the amount of error and corrects for it by modifying the image scan-out at
the last possible moment before display.
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Section 7, Proposed Method, proposes to integrate the above three methods of reducing latency. The method consists of minimizing
system delay and delay variance, estimating the average system delay (the prediction interval), predicting user orientation for the instant
when the image appears, rendering for the predicted orientation, and correcting the remaining yaw orientation (i.e. looking left/right) error
at the last possible moment.  The end result is a system where users perceive near-zero latency. Figure 1 (top) shows a simplified
pipeline of a typical VR system. The proposed system, shown in Figure 1 (bottom), integrates a predictor and corrector. Rate gyroscopes
give angular velocity and are used as input to the predictor and corrector. The new head pose that is output from the predictor is the best
guess as to where the user will be looking when the image is displayed. Just before display of each scanline, the corrector computes the
current head yaw error and applies a correction.

The paper ends with Section 8, Conclusion and Future Work.

Tracking | Application/Render [ Display

A Typical VR System

Tracking [ Predictor ™| Application/Render ™ Corrector ™ Display

Our Proposed System

Figure 1. Overview of a typical VR system and the proposed system.

2 DEGRADING EFFECTS OF LATENCY

2.1 Registration Error

Registration error is the difference between where a pixel appears to be and where the pixel would appear if it were a physical object
in the real world [Holloway 1995]. Registration errors are more obvious with optical-see-through displays than non-see-through displays,
since users can directly compare the real world with the virtual world. These errors can further be classified as static or dynamic [Azuma
and Bishop 1994]. Static errors result from optical distortion, incorrect viewing parameters, imprecise calibration of equipment, etc., and
occur even when the user keeps her head completely still. Dynamic errors result from temporal mismatch between head movements and
the visual display; they do not occur until the user moves her head.

Latency causes dynamic errors when there is head movement. As latency and head movement each increase, dynamic errors
increase. This causes the graphics to appear to “swim” or chase after the real world as the user moves her head. Even for moderate head
velocities, latency causes more registration error than all other registration errors combined [Holloway 1995]. For most virtual
environments, yaw error is larger than other errors as a result of the user turning the head left/right both faster and more often than other
movements.

Dynamic error can be computed by simple mathematics. For example, given a display width of 640 pixels and a field of view of 32
degrees, there are 0.05 degrees per pixel. Assuming a moderate yaw head rotation of 50 degrees per second, the horizontal error is

(50 degrees / second) / (0.05 degrees / pixel) = 1 pixel / ms.

This example illustrates one pixel of error for every millisecond of latency. Faster head rotations have more pixel error. This
calculation shows latency must be reduced to the millisecond range to obtain pixel accuracy. Since today’s best VR systems have latency
in the 30 millisecond range, this simple requirements analysis suggests there is much room for improvement.

2.2 Usability Problems

Error due to latency has serious usability consequences. Latency causes visuals to lag behind other perceptual cues creating sensory
conflict. Contradiction among cues can result in oscillopsia, degraded visual acuity, and degraded human performance. In this section,
information is derived from [Allison et al. 2001] unless otherwise referenced.

Oscillopsia



IPjjerald 5/14/2004 8:36 PM Page 3 of 16

Oscillopsia is the perceived oscillation of the entire visual world when in reality the world is stable. A person with oscillopsia
perceives the visual world to swim or oscillate in space and loses a sense of perceptual stability of the environment. This symptom has
been reported with drug toxicity, brain injury, and damage to the vestibular system.

Oscillopsia can result from the mismatch between head motion, eye movement, and visuals. As the head moves, the motion is
detected by the vestibular system in the inner ears, giving the perception of head motion even if there is no visual change. Vestibular
signals cause compensatory eye movements to keep eye gaze stable. The visual system assumes the world is stable even with eye or head
movements. Optic flow is movement of the entire visual image; vection is the perception of self-motion generated by optic flow. If
vection does not match eye gaze change and head movement as determined by the vestibular system, then oscillopsia may result.

Latency in VR can cause oscillopsia, which increases with increasing latency and increasing head movement. VR should not cause
these oscillopsiac effects, and the world should appear stable to a user as she moves within that environment.

Degraded Visual Acuity

In addition to Oscillopsia, latency can also cause degraded vision. Images moving faster than two degrees per second on the retina
result in motion blur as perceived by the user. As the user moves her head then stops, the image is still moving when she has stopped
(assuming some latency). Motion blur and degraded visual acuity result.

Degraded Human Performance
The level of latency necessary to impact performance negatively may be less than the level of latency that can be perceived. In non-
see-through applications, although users may not consciously notice latency, performance may suffer.

[So and Griffin 1995] study the relationship between latency and operator learning. The task consisted of tracking a target with the
head. Training did not improve performance when there was 120 ms of latency or more. Thus, the subjects were unable to learn to
compensate for these latencies in this task.

Discrimination of Inconsistent Latency

[Ellis et al. 1999] have shown that users are just as sensitive to changes in latency with a small base latency as those with a larger
base latency. Users are able to reliably discriminate increases of 33 ms independent of base latency. These results suggest consistent
latency is an important factor to consider in VR.

2.3 Determining Acceptable Latency

Exact latency requirements for head-mounted VR are not yet determined due to the limitations of current technology. Systems have
been built with latencies in the 30 millisecond range but it is unknown if latencies below this range significantly effect the user. One
motivation for building a low-latency VR system is to perform user studies to discover the threshold of human perception of latency.
Acceptable latency cannot be determined until such a system exists.

3 SOURCES OF SYSTEM DELAY

[Miné 1993] and [Olano et al. 1995] characterize system delays in VR and discuss various methods of reducing latency. This section
expands on these concepts of breaking down system delay. System delay is the sum of delays from tracking, networking, application,
rendering, and synchronization between components. Figure 2 illustrates components contributing to system delay in a typical VR system.
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Figure 2. Sources of system delay in a typical VR system.

3.1 Tracking

Tracking technology can include techniques that complicate latency analysis. For example, many tracking systems add filters to
smooth jitter. If filters are used, the resulting output pose is only partially determined by the most recent tracker reading. Some trackers
use different filtering models for different situations — latency during some movements may differ from that during other movements. For
example, the 3rdTech HiBall tracking system [3rdTech 2002] allows the option of using multi-modal filtering. A low-pass filter is used to
reduce jitter if there is little movement, whereas a different model is used for higher velocities.

3.2 Networking

Communication between disparate VR system components often uses a standard network. For example, the tracking component is
often located on a machine separate from the rendering computer. Network delay can vary due to protocol stacks, interrupts, send rates,
buffering, etc.

Communication between remote components is normally implemented using TCP/IP, since easy-to-use libraries exist. Using TCP/IP
may require a private network so that unrelated network traffic will not cause unexpected delays. If sub-millisecond clock synchronization
between components is required, better protocols may be necessary.

Networking tasks incur operating system overhead and can contribute to system delay. Whereas delay is reduced by having the
latest information from preceding system components as soon as that information is available, many messages may overload the system. A
high rate of context switches (e.g., 1000 interrupts per second) can dramatically reduce system performance. In such a case, the system
may spend a large proportion of resources switching between tasks, resulting in increased system delay.
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3.3 Application

Application delay is task-dependent and also varies among virtual environment models. The application component often consists of
application-specific computation that is not tightly coupled with tracking and rendering and therefore may be able to be executed
asynchronously from the rest of the system. This is discussed further in Section 4.4, Reducing Synchronization Delays.

3.4 Rendering

Like application delay, rendering delay depends on the complexity of the environment. The rendering rate is the number of times
the system can render the entire scene per second. The rendering time is the inverse of the rendering rate (seconds per render) and is
equivalent to rendering delay in non-pipelined rendering systems. Some systems reduce the rendering time by culling out objects outside
the field of view, but at the cost of inconsistent delay. If consistent delay is important, then such culling should be turned off.

Rendering is normally computed separately from the application, typically on graphics hardware. Current graphics cards can render
at rates over one hundred renders per second for hundreds of thousands of polygons per render. Although rendering is no longer a major
component in most systems, it still contributes to system delay.

3.5 Display
Due to the large and difficult-to-predict response times of typical licquid crystal displays (LCDs) [Nakanishi et al. 2001], this paper
focuses on the more consistent cathode ray tube (CRT) displays.

A CRT sweeps the display, scanning out left-to-right in a series of horizontal lines from top to bottom [Whitton 1984]. This pattern
is called a raster, and each horizontal line is called a scanline. The timings of the scanlines are precisely controlled to draw pixels from
memory to the correct locations on the screen. Not all pixels are drawn to the screen in a CRT at the same time. The bottom-right pixel is
drawn nearly a frame time after the top-left pixel.

A frame is the full-resolution image that is scanned out to the display hardware. The frame rate is the number of frames updated to
the display per second. Note this is different than the rendering rate described above in Section 3.4, Rendering. The frame time is the
inverse of the frame rate (seconds per frame). Displays commonly have frame rates of 60 frames per second (Hz), which is equivalent to a
frame time of 16.7 milliseconds. All examples in this paper use frame rates of 60 Hz.

Dual access to image memories can be accomplished by using a double-buffer scheme. The display processor renders to one buffer
while the refresh controller feeds data from the other buffer to the display. The vertical sync is a signal that occurs at the start of each
frame. Normally, the system waits for this vertical sync to swap buffers. The newly rendered image is then scanned out to the display
while a yet newer image is rendered.

Waiting for vertical sync comes at the price of a large amount of variable delay, since the system must wait between 0 and 16.7 ms.
If the system does not wait to swap on vertical sync, then tearing occurs during head movements and appears as a discontinuous image due
to regions of the frame being rendered for different head poses. This originates from the buffer swap occurring while the frame is being
scanned out to the display hardware. Part of the frame is from the previous rendering and part from the current rendering, hence from
multiple points of view if there is any head movement. When the system waits to swap buffers on vertical sync, no tearing is evident
because there is a single rendering for the entire frame. Thus, VR systems normally avoid tearing at the cost of additional and variable
delay.

Tearing between two poses decreases with increasing pose coherence. As the sampling rate increases in time, adjacent pose
coherence increases, resulting in less tearing. If the system were to render each pixel with the correct up-to-date viewpoint, then tearing
would occur between pixels. The difference in poses between pixels would be small compared to the pixel sizes, resulting in a smooth
image — without perceptual tearing. [Mine and Bishop 1993] call this just-in-time pixels.

Rendering could conceivably perform at a rate fast enough that buffers would be swapped for every pixel. Although the entire image
would be rendered, only a single pixel would be displayed for each rendered image. However, a 640x480 image would require a rendering
rate of over 18 MHz — clearly impossible for the foreseeable future using standard rendering algorithms and commodity hardware. If a
new image were rendered for every scanline, then a 640x480 image would require nearly 29 KHz — still not possible with today’s
hardware. In practice, today’s systems can render at rates up to 600 Hz, which make it possible to show ten new images per frame time.
As the rendering rate increases, the tearing becomes less evident and the system approaches a just-in-time pixels implementation.

Figure 3 shows a frame that does not wait on vertical sync superimposed over a frame that does wait on vertical sync. The figure
shows what a static virtual block would look like when a user is turning her head from right to left. The tearing is obvious when not
waiting on vertical sync, due to four renderings for the frame at four different times.

In current VR systems, the irregular delays created by waiting on vertical sync can be the largest source of variance in system delay.
Ignoring vertical sync greatly reduces overall latency and its variability (at the cost of image tearing).
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Rendered for pose at time tn I Rectangular object as displayed
with waiting on vertical sync
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Rendered for pose at time tn+1
Rendered for pose at time tn+2
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Figure 3. A frame showing a rectangular object as the user is looking from right to left with and without waiting to swap on
vertical sync. The result of not waiting to swap vertical sync to swap is perceived as image tearing.

3.6 Synchronization
Total system delay is not simply a sum of component delays. Synchronization among components contributes to system delay and
delay variability even if individual component times are known.

Pipelines stages depend upon data from the previous stage. When a stage starts a new computation and the previous stage has no
updated data, then old data must be used. Although the previous stage may almost be complete, the system does not know this, and data
that are nearly an entire stage time old are used.

Trackers provide a good example of a synchronization problem. Commercial tracker vendors report the latency of their systems.
However, this is normally the response time or minimum delay incurred when the tracker outputs information at the same time the next
stage of the pipeline requires that information. The tracking update rate (outputs per second) is also a crucial factor and affects both
average delay and delay consistency. The system can require the latest pose at any time and the resulting delay may be up to a full tracker
report time more than the response time. If a tracker reports 50 times per second then the average delay = response time + (1 /2) * (1 / 50)
= response time + 10 ms. The delay range = average delay +/- (1 / 2) * (1 / 50) = response time + 10 +/- 10 ms. A high update rate is
essential for low and consistent delay.

4 SYSTEM ANALYSIS AND OPTIMIZATION

Software performance engineering can be used to reduce system delay to levels that meet requirements. Delay measurements and
timing diagrams help to develop a better understanding of system delay. This section ends with an example of how to reduce system delay
using these concepts.
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4.1 Software Performance Engineering

Software performance engineering (SPE) is a method of constructing software systems to meet responsiveness goals [Smith 1986].
SPE models software requirements and designs. SPE also evaluates whether predicted performance metrics meet the specified goals.
Performance refers to response time or throughput as perceived by users and is the primary concern. If performance goals are not met,
then developers propose and assess alternatives. The process of detailed design, coding, and testing continues in order to develop more
precise models and predicted performance until requirements are met.

Figure 4 shows the core SPE methodology. Each iteration of this figure is a life-cycle phase. Systems go through various life-cycle
phases from creation to end of maintenance. A key part of the SPE method is collecting data to determine if the current implementation
meets requirements and if further optimization is needed. If modifying the current life-cycle phase cannot meet requirements then the
system must be reconfigured and a new life-cycle phase is started.

Figure 5 shows the SPE method applied to the proposed system. The developer first configures the system and models the virtual
world. The system is then tested while gathering timings of total system delay as well as various component timings. If the system delay
is not acceptable, the developer must determine the bottlenecks and decide if they can be removed. If the bottlenecks can be removed, one
does so and goes back to the gather-timings stage. If little gain can be had from optimizations then the system must be simplified in some
way. This simplification may include reducing the geometric complexity of the virtual world, simplifying the physics rules of the
simulated world, etc. The developer then iterates though new life-cycle phases until the system delay is reduced to the desired level. If the
system is changed in a significant way that results in a delay above an acceptable level (e.g. a more detailed model is substituted into the
world), then the developer must again iterate through a new life-cycle phase.

Define SPE considerations for
thig life oycle phase

¥

Execute life cycle phase

¥

Gather Data

¥

Construct and evaluate model
appropriate for this life cycle plan

L4

I3

Repart results, report
alternatives
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Revise performance goal

¥
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Figure 4. SPE Methodology Diagram.
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Figure 5. SPE methodology diagram applied to reducing latency.

4.2 Measurement
To better understand system delay, one must measure timings for not only the end-to-end system delay but also for sub-components
of the system. Statistical measures such as the mean and standard deviation can be derived from several such measurements.

The latency meter [Miller and Bishop 2002; Miné 1993] is a device that measures system delay. This device sends a signal to the
oscilloscope as the arm of the latency meter crosses the vertical (where the vertical is defined as the low point of the arc of a pendulum’s
motion). The latency meter test application then renders an alternating white/black screen when the application senses that the tracker
crosses the vertical. A photodiode attached to the display then sends another signal to the oscilloscope when it senses the change of white
to/from black. The difference of the times between the two signals, as measured on the oscilloscope, is the system delay. The video signal
can also be sent directly to the oscilloscope. Since the color change is white to/from black, one can look at any of the rgb video signals to
see when the change occurs. In this case the delay measured is total system delay minus the display delay.

Timings can further be analyzed by sampling signals at various stages of the pipeline and measuring the time differences. The
parallel port can be used to output timing signals from both the tracking PC and application PC. These signals are precise in time since
there is no additional delay due to a protocol stack; writing to the parallel port is equivalent to writing to memory;.

Synchronization delays between two adjacent stages of the pipeline can be determined indirectly through measurement. If the delays
of individual stages are known, then the sum of two adjacent stages can be compared with the measured delay across both stages. The
difference is the synchronization delay between the two stages.

4.3 Timing Analysis

This section presents an example timing analysis and discusses complexities encountered when analyzing system delay. Figure 6
shows a timing diagram for a typical VR system. The display stage is considered to compute discrete frames for this analysis even though
individual pixels are scanned out at different times. The display stage always begins computation (scanout) at the time of vertical sync
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because the system waits to swap buffers then. The image delays are the time from the beginning of tracking until the start of the display
of a frame (i.e., they are equivalent to system delay minus display delay).

As can be seen in the figure, the rendering stage cannot start computing a new result until the application stage first completes and
then the rendering stage completes its current computation. The other stages cannot start a new computation until similar requirements are
met. In several locations, a stage computes a redundant result since no new input data is available from the previous stage.

The display stage of the pipeline displays frame »n with the results from the most up-to-date rendering. All the stages happen to line
up fairly well for frame n, and image i delay is not much more than the sum of the individual stage components. Frame n+1 repeats the
display of an entire frame because no new data is available when starting to display that frame. Frame n+1 has a delay of an additional
frame time more than the image i delay. Frame n+4 is delayed even further due to similar reasons. No redundant data is computed for
frame n+5, but image i+2 delay is quite large because the rendering and application stages must complete their previous computations
before starting new computations.

[ ]not used
[ limage i data
Image i+1 data _ _
[ ] Image i+2 data iy image i+3 delay 5

B Image i+3 data L image i+2 delay
image i+1 delay

image i delay

Vertical sync  Swap buffer

16.7 ms / \

frame n-2 | frame n-1| frame n {frame n+1 | frame n+2frame n+3 frame n+d frame n+5

Display

Rendering | |

Application | |

Tracking | | |

time

Figure 6. A timing diagram for a typical VR system. In this non-optimal example, the pipeline stages execute concurrently
but stages must wait for previous stages to provide new information in order to compute new information themselves.

4.4 Reducing Synchronization Delays

It is evident from the above timing analysis that reducing system delay and delay variability is not a simple matter of optimizing
individual stages, since synchronization delay can be large and vary considerably. Fortunately, simple changes to standard VR systems
can greatly reduce synchronization delay.

[Bryson and Johan 1996] dramatically reduce system delay for systems with a long application stage. The application does not
necessarily need to know about tracking. The rendering stage can rely on transformations directly from the tracking stage, thus bypassing
the application stage. The renderer uses the most up-to-date application data, which is independent from tracking, even though that data
can be quite old. Therefore, depending on the coupling between components, this application stage may add little or even no delay. This
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allows immediate natural viewer interaction through head movement even though the actual application may be updating at a much slower
rate. Bryson and Johan describe an example of a simulated wind tunnel where the simulation (i.e., the application) is independent and
updates at a slower rate than the rest of the system. For complex simulations, the wind vectors may take several seconds to compute the
next step of the simulation. However, the user is free to examine the static steps of the simulation from different points of view at
interactive rates.

Pipeline stages can often be divided into independent sub-steps to reduce delay. This can greatly decrease synchronization times by
reducing wait times. For example, waiting to swap on vertical sync (as described in Section 3.5, Display) adds a large amount of delay and
delay variance since the entire frame must be scanned out before swapping buffers. If the frame can be broken into smaller steps by not
waiting to swap on vertical sync, then delay and its variability are greatly reduced. The entire frame takes the same amount of time to
display (the frame time), but each individual component of that frame uses the most up-to-date rendered image.

Figure 7 shows an example of reducing system delays. The system does not wait to swap on vertical sync. The application is
executed asynchronously from the rest of the system. Even though the rendering times are relatively large, a typical latency is not much
larger than the contributing component sums because wait times are short. As the rendering times get smaller, the system delay decreases
and a just-in-time pixels solution is approached as described in Section 3.5, Display.

Vertical sync Swap buffer

J 16.7 ms _

frame n-2 |frame n-1 ‘ frame n |frame n+1/|frame p+2 n+3

Display

Rendering ‘

frame

Application l

Tracking

Time

Figure 7. Timing diagram with small synchronization delays. The application is executed asynchronously and does not wait
to swap on vertical sync.

5 PREDICTION

Perfect prediction would allow a system to have zero effective latency. Unfortunately, predicting human head motion is impossible
due to human non-determinism. However, for small prediction intervals and small angular head frequency, a system can predict
reasonably well where the user will look. The prediction interval p is equal to the estimated system delay.  is the angular frequency and
is proportional to how often the user changes direction per second. The acceptability of p depends on the value of @, implementation,

L
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operator task, user tolerance of error, etc. If p initially does not produce satisfactory results, then one can iteratively reduce p until
adequate as discussed in the previous section (Section 4, System Analysis and Optimization).

5.1 Prediction Error

Prediction error increases rapidly with increasing p and increasing w even with perfect noise-free tracking inputs [Azuma and Bishop
1995]. For prediction with a second order polynomial (i.e., position, velocity, and acceleration) the rate of error growth is roughly p?w?.
One result of this error appears as visual jitter, which is the magnification of high frequency signals or noise. Users perceive this visual
jitter as shaking of the display.

If p is not equal to system delay, then the system will predict for the wrong time. Since consistent delay can be difficult to obtain in
practice, it may be possible to continually monitor system delay and set p to the recent average system delay. Unfortunately, precise
timing measurements can be difficult to obtain in real-time with today’s systems.

Most trackers provide six degree of freedom (DOF) data (position and orientation). Numerical differentiation allows estimation of
velocity and acceleration from this six DOF data. Whereas velocity and acceleration data generally improve prediction, derivative
estimation from discrete data is not precise and accentuates noise. Computing acceleration through double differentiation results in even
greater noise. Thus, reading velocity and acceleration directly from inertial based devices is a more accurate method.

5.2 Inertial-based prediction

[Azuma and Bishop 1994] found in their study that inertial-based prediction (i.e., prediction based on gyro and accelerometer
readings) is 2-3 times more accurate than non-inertial-based prediction and 5-10 times more accurate than no prediction (for p equal to 60
ms).

Rate gyroscopes directly measure angular velocity. This greatly reduces the error in extrapolation because there is no need to
differentiate discrete data. The angular velocities from the gyroscopes can be integrated over time to obtain change in orientation. This
integrated orientation has a low-frequency drift caused by integration error buildup, but when integrating over short times drift is
insignificant.

Accelerometers can directly measure linear acceleration. However, the improvement in prediction is small compared to using
gyroscopes, since translation error is typically minor compared to orientation error.

6 POST-RENDERING IMAGE CORRECTION
This section starts by describing environment mapping, which improves performance by mapping images onto a cube surrounding
the user, and concludes with a simplified version that corrects yaw error with fast scanline shifts.

6.1 Environment mapping

Environment mapping allows quick viewing of complex worlds by projecting the world onto the six sides of a large cube
surrounding the user [Greene 1986]. Unfortunately no motion parallax is possible with environment maps. However, for objects at a
reasonable distance from the user, small translations result in little registration error. Environment mapping can be optimally implemented
by recognizing that rotations cause every pixel to shift location. Head rotation simply alters what part of display memory is accessed —
no other computation is required [Regan and Pose 1994].

6.2 Image Transformations

Environment mapping can be further simplified by projecting the world onto a single image plane instead of a cube. This technique
works well if the user is looking in the same general direction as the original projected image plane. After projection, small movements
can occur after projection with no perceived error.

Much of the latency due to rendering can be reduced by using a two-pass algorithm. The first pass, which may take several
milliseconds, renders the scene to a larger-than-screen-sized polygon. The second pass then renders the polygon from the current
viewpoint to account for the current viewpoint. Since only a single polygon is rendered, this second pass is quick and occurs in constant
time independent of scene complexity.

The second pass can be further sped up by shifting the image instead of re-rendering from the current viewpoint. Small user yaw and
pitch rotations can be approximated after projection with image shifts. Image shifting is unable to correct for roll, but fortunately error due
to roll is minor compared to error due to pitch and yaw. The projected image must be larger than the final displayed image in order for
subset selections to yield enough pixels to fill the entire display device.

The Reflex HMD [Kijima et al. 2001] implements a horizontal and vertical image correction in hardware. This system renders an
image with a larger field of view than the HMD. A fast gyroscope determines what part of the larger image should be extracted just before
display, effectively shifting the entire image. Their system uses a LCD for display.

One can go beyond image shifting by shifting individual scanlines through frame buffer re-addressing. This can almost completely
remove yaw error due to display delay. The display processor can render a larger image than the display device can display. Scanlines
can then be individually extracted, instead of the entire frame, based on the current orientation.
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7 PROPOSED METHOD

I have described problems due to latency and several methods of reducing latency. To overcome the limitations of these methods, I
now propose a hybrid method combining system analysis and optimization, prediction, and post-rendering image correction that yields a
system with approximately zero latency. The method concentrates on reducing orientation error, which is the largest source of registration
error. Translation error is small for large environments where objects are at a distance [Regan and Pose 1994]. Even for closer objects,
error due to motion parallax is small compared to rotational errors for typical user movements.

7.1 Method Overview

First one reduces system delay and delay variance to a reasonable level using the SPE methodology. A prediction interval p below
80 ms (i.e., system delay) is a good initial goal [Azuma and Bishop 1994]. Using gyroscopes in addition to standard tracking, the system
predicts three DOF orientation for the time when the image will be displayed and renders a large image for that view. Post-rendering
image correction then corrects the yaw error due to imprecise prediction. The system performs this correction every scanline by updating
the current yaw orientation from the gyroscope, calculating the error, and selecting the appropriate starting scanline address from the large
rendered image. The gyroscope read, error calculation, and scanline shifts are implemented in specialized hardware and occur less than
0.1 ms before scanout, allowing the latest head orientation to be used for selecting appropriate pixels from the larger image.

If results are unacceptable, the SPE methodology is repeated (reducing system delay) until latency-related errors and their effects are
acceptable.

7.2 Component relationship
All steps of the proposed method are related, and the system must be integrated carefully because the timing and accuracy of
preceding steps non-linearly and dramatically affect the size of error in succeeding steps.

Small prediction intervals require only small system delay. Since error goes as the square of the prediction interval, smaller
prediction intervals result in much less error. These smaller errors can be corrected for with post-rendering image correction (for yaw
orientation). If early steps contain too much error, then that error becomes difficult to correct in later steps. This relationship can also be
thought of in reverse — the better the post-rendering image orientation correction then the less accuracy is required of the predictor, which
allows for more system delay. However this relationship is only a square-root relationship.

Figure 8 shows this reduction in error. If the final resulting error is not small enough, then the SPE method is repeated until
requirements are met.

— Non-optimized system

,

Reduction of System Delay I
Prediction I
— Correction

¥

Image Error Due to Latency

Figure 8. Error due to latency is decreased in each step of the process. If the error after correction is not acceptable, the
SPE method is repeated until requirements are met.

7.3 Implementation Details

Figure 9 shows a block diagram of the proposed solution. The PC, Tracker and CRT are standard components of typical VR
systems. Additional components required for the proposed system are three gyroscopes (one for each axis) and a specialized image-
correction chip (ICC).

Angular velocities are determined from the gyroscopes and are read by both the predictor (contained in the PC) and the ICC. The
predictor uses angular velocities from all three gyroscopes, but the ICC uses only yaw velocity. The predicted angle offsets are simply the
current angular velocities multiplied by the system delay p. The predicted yaw angle offset a is sent to the ICC. Note the figure shows the
a line conceptually, but in reality o is sent as a pixel in the DVI signal. In addition, a time signal is sent via the parallel port from the PC to
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the ICC. This time signal informs the ICC when to start integrating angular velocities to determine the integrated angular offset 3, where 3
is updated every scanline. The difference between a and B is the error A and is proportional to the number of pixels that need to be shifted.

Gyro
A2D
time .| Integration angle offset 3
B
Predicted v
angle offset a
> A=a-
R : A
Tracker[— Predictor !

)

Renderer | videg|nyy (NF SRAM Controller ?| D2A ™ CRT
T

Application

PC ICC

Figure 9. Block diagram of the proposed system.

7.4 Results

The end result of the proposed method as perceived by the user is near-zero latency. Yaw orientation error, which is the largest type
of error, is especially reduced by the post-rendering image correction.

Figure 10 shows a timing diagram of the proposed system. The application stage is not shown, since the rendering stage receives
transformations directly from the tracker. The majority of the system delay in this example comes from rendering. Prediction and
correction easily compensates for this small system delay.
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Figure 10. Timing diagram of the proposed system.

Figure 11 shows three versions of a frame (showing the same static virtual block as in Figure 3) composited together as the user is
turning the head right-to-left. The figure compares a frame that waits on vertical sync, a frame that does not wait on vertical sync, and the
proposed hybrid solution with scanline correction. As in Figure 3, the four larger regions in Figure 11 represent renderings for the
predicted point of view at different points in time.

The skewed lines represent shifted scanlines of the rectangular object. The rectangular object appears similar to a parallelogram on
paper but appears as a rectangle to a user looking right-to-left in a dynamic display due to the scanlines being displayed at different points
in time. Instead of having four large tears, there are many small tears; the tears are not as evident since each tear is small. This correction
shifts individual scanlines to correct for differences in time. The result is just-in-time scanlines, which reduces display latency without
adding disturbing tearing artifacts.
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Rectangular object as displayed
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i
1]
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Figure 11. Output image with shifted scan lines.

8 CONCLUSIONS AND FUTURE WORK

Several subtopics of computer science have been reviewed in order to understand and reduce ill effects caused by latency. Studying
these issues leads to a hybrid system, which should result in reduction of the most critical types of error due to system delay. The
proposed solution combines system analysis and optimization, prediction, and post-rendering image correction.

The human limits of latency perception are not yet known, since no such system has reduced latency to such a level. To determine
these human limits, a system must first be built that is capable of reducing latency below the noticeable threshold and then user studies
must be conducted to determine requirements of VR. Since the proposed method concentrates on the most common type of dynamic errors
(i.e., horizontal errors caused by yaw rotations), other dynamic errors may become more apparent as the horizontal error is reduced.

Vertical error could be reduced, in a way similar to horizontal error correction, by shifting scanlines vertically. Unfortunately,
vertical scanline shifts require an additional frame time of delay and more sophisticated post-rendering hardware. Tracker position data
and/or accelerometers can help with prediction of position but cannot help with post-rendering 2D image correction. If full translation
correction is needed, then a full 3D warp is required [Mark et al. 1997]. 3D transformations of depth images cause visual artifacts that
appear as ‘holes’ due to motion parallax. In many situations, these artifacts can be greatly reduced if prediction is done well.

The proposed system is currently in the process of development, and it remains to be seen how such a hybrid system compares with
existing systems. The error due to other unsolved problems (calibration, distortion, etc.) may outweigh dynamic errors for smaller system
delays. Regardless, latency and dynamic registration will continue to be problematic in the foreseeable future.
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