Technical Report TR04-005

Department of Computer Science
Univ. of North Carolina at Chapel Hill

Single- and Dual-User Web Browsing in the Transparent
Video Facetop

David Stotts, Jason McC. Smith, and Karl Gyllstrom

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

December 1, 2003

mailto:stotts@cs.unc.edu

Single- and Dual-User Web Browsing in the
Transparent Video Facetop

David Stotts, Jason McC. Smith, and Karl Gyllstrom
Dept. of Computer Science
Univ. of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175 USA
{stotts,smithja,gyllstro} @cs.unc.edu

ABSTRACT

The Transparent Video Facetop is a novel user interface concept that
supports not only single-user interactions with a PC, but also close
pair collaborations, such as that found in collaborative Web
browsing, in distributed pair programming and in distributed extreme
programming (dPP/dXP). We recently demonstrated the Vis-a-Vid
facetop prototype as a single-user GUI for manipulating the elements
of a traditional WIMP desktop [21]. In this paper we show how the
single-user transparent video facetop can be used for fingertip control
of a Web browser, and how a dual-head facetop can be used for
paired synchronous (collaborative) Web browsing. The facetop is
not a new browser, per se, but rather a novel way to interact with a
Web brower, as well as a novel means of providing visual interaction
among users collaboratively browsing the Web.

BASIC FACETOP CONCEPTS

The transparent video facetop is a novel enhancement of the
traditional WIMP user interface, so nearly ubiquitous on today’s
computers. In the facetop, the user sees him/her self as a “ghostly”
image apparently behind the desktop, looking back at the icons and
windows from the back. Instead of a traditional desktop, we see a
“face” top. This self-image is used for visual feedback and
communications both to the user as well as to collaborators; it is also
used for desktop/application control and manipulation via a fingertip-
driven “virtual mouse”.

Figure 1: Facetop physical setup, with iBot video camera

Figure 1 shows the physical setup for a computer with a facetop
being displayed on a monitor. Note the video camera sitting on
top the LCD panel pointing back at the user; in our current work
we use a $100 Sony iBot, giving us an image that is 640 x 480
pixels of 24-bit color, captured 30 frames per second. The facetop
video window shows the PC user sitting at his/her workspace; we
reverse the image horizontally so that when the user moves a hand,
say, to the left, the image of the hand mirrors this movement on
the screen. In software, and using a high-performance 3D-graphics
video card, we make the video window semi-transparent and
composite it with the desktop image itself.

Once we have the full screen video with transparent image
compositing we get the illusion of the user watching the desktop
from behind. Mirroring means if the user physically points to an
icon on the desktop, the facetop image points to the icon as well
(with proper spatial calibration of the camera and user locations).
Using image analysis techniques we then track the user’s fingertip
in the backing window, and optionally drive the mouse from this
tracker. The user can then manipulate the desktop of a projected
computer from his seat while successfully communicating the
areas of interest on the screen to others watching the projection.

Projected displays vs. monitors

The facetop as a concept works fine on a PC with any display
technology -- a monitor, a projector, an immersive device -- but its
unique aspects are most pronounced and most effective in a
projected environment. The concept of background user video as
visual cues for control and communication came about when our
research group was discussing other work using a projected PC.
We were all sitting in chairs viewing the projection wall, but
constantly pointing at the desktop image 5 to 10 feet away.
Determining where on the wall/screen to look was largely an
exercise in visually interpolating along the line formed by a
person’s pointing arm. With the facetop, the user is right there in
the desktop image and gives an immediate visual cue as to where
to look when pointing. Figure 6 shows the facetop projected.

SYSTEM ARCHITECTURE

Our single-user facetop, shown in figures 1 through 5, is
implemented on a Macintosh platform. Our collaborative facetop,
shown in figure 6, is also Mac-based but runs on a peer-to-peer
gigabit network between two machines, to get the very high
bandwidth we need for video stream exchange. Current
experimental versions are being built for best-effort use of the
Internet.

The advantages of a Macintosh implementation are that the desktop
is rendered in OpenGL, making its image and contents not private
data structures of the OS, but rather available to all applications for
manipulation or enhancement.

Though we have been speaking of the facetop as giving the user an
illusion of being “behind” everything, the facetop is actually the
topmost application window on the Mac desktop. It also is sized full
screen, so it effectively covers the entire desktop.

Figure 2: FaceTop finger tracking (low transparency)

We dynamically control the transparency level of the facetop
window, altering it from fully opaque to fully transparent during
execution for varying useful effects. We can completely mask the
desktop by making the facetop window fully opaque, as in figure 2.
Note how the facetop window even covers and masks the title bar of
the Mac desktop. A fully opaque facetop is purely a communication
tool, and is especially useful in the two-head version (see figure 6)
for allowing collaborators to speak face-to-face about a task without
application window clutter.

We can similarly set the facetop window to full transparency; in this
form, the desktop under it shows through fully and little to no user

video is visible, giving a traditional desktop appearance. Figure 3
shows a nearly transparent facetop; the only difference between
this view and that of figure 2 is the transparency setting. The Web
browser is running and “displayed” in figure 2 as well, but it is
masked by the opaque facetop setting. If you look closely the
video image of the user is very faintly visible along with the fully
visible Web browser window. The near opaqueness of the
browser, and the faintness of the user’s face give the illusion of the
browser being “over” the video image.

The Thirteenth
International World
Wide

Conference

New York Sheraton
17-22 May 2004
New York, NY

W

il

i

Figure 4: Mid-transparency, mix of desktop and user

Most uses for the facetop will involve a semi-transparent facetop
setting, giving a mix of user video image and desktop application
window content on the screen. Figure 4 shows the same desktop
configuration as in figures 2 and 3, but with the facetop set to mid-
transparency, making the user’s image a bit stronger. In this mix,
the user’s finger can clearly be seen pointing at various hyperlinks
in the browser page contents.

Implementation details

Our implementation is beautifully simple, and potentially ubiquitous
due to its modest equipment needs. Facetop uses a $100 camera, and
runs with excellent efficiency on an Apple Powerbook, even when
processing 30 video frames a second. No supplemental electronics
are needed for wearing on the hand or head for tracking or gesture
detection. Facetop is minimally invasive on the user’s normal mode
computer use.

The current prototype was generated with a Macintosh G4 with a
high-end graphics card to perform the image transparency. We
designed for the Apple Mac platform because it has better integration
and access to the OpenGL layer in which the desktop is rendered. It
is implemented on MacOS X 10.2 by taking advantage of the
standard Quartz Extreme rendering and composition engine. QE
renders every window as a traditional 2D bitmap, but then converts
these to OpenGL textures. By handing these textures to a standard
3D graphics card, it allows the highly optimized hardware in the 3D
pipeline to handle the compositing of the images with varying
transparency, resulting in extremely high frame rates for any type of
image data, including video blended with the user interface.

The video signal is generated from a Sony iBot camera, at 640 x 480
pixels in 24-bit color with no compression, at 30 frames per second.
The iBot is set up 2 feet from the user at the keyboard, pointing back
at the user. Note that the VAV facetop will work in principle from
stored video as well as live. Tracking is done on the video frames no
matter how they are generated, and signals will go to the mouse
driver irrespective of video source.

The video application, with tracking capabilities, is run in a standard
MacOS window, set to full screen size. Using OpenGL, setting the
alpha channel level of the window to something under 0.5 (near-
transparency) gives the faint user image we need.

Figure 7 shows a block diagram of our software architecture. The
video flow through Vis-a-vid begins at the top of the diagram, from
either live video capture or archived video files, represented by
QuickTime Digital Video (QT DV) and QT Movies, respectively.
QuickTime handles both forms in a unified manner; this allows us
to intercept the video stream for analysis through the Effects layer.
We integrating our TrackerLib object tracking algorithms from the
OvalTine project [11,12] into a QuickTime Effect for simple
deployment and development. OvalTine/Ovid is a system that does
face-tracking in real-time video for embedding hyperlink anchors.

In the TrackerLib, we can use various analysis techniques to extract
positions of objects in the video frame. We use this to find the
coordinates of a user's fingertips, which is passed to the user
interface system of MacOS X by having the TrackerLib pose as a
human interface device. This allows Vis-a-vid to act like any other
input device such as a mouse. Gesture based user events are
handled by a simple plug-in to the HIDevice layer that is already in
the public domain. The HIDevice layer then passes the interface
events through to the Aqua Ul layer.

Also in TrackerLib, we can use positional and object boundary
information to alter the video stream for visual feedback to the
user. Since we are integrated with the QuickTime Effects system,
we can use the various real-time filters and effects to perform our
manipulations. One such possibility is the use of QuickTime
Sprites for marking up archived content. Sprites are an animated
overlay layer that can be used for per-object visual tracking

feedback. Another is the use of the Edge Detection filter to
create a minimally intrusive line-drawing effect for the feedback
video.

The transparency is handled by the Quartz Extreme layer, which
combines the video and UI streams into a series of OpenGL
textures with appropriate alpha channels, which are then
composited by the accelerated hardware's 3D OpenGL pipeline
and sent to the screen.

iTunes Music Store

Time Magazine's
Invention of the year.

Figure 5: Mousing and clicking with fingertip gestures

WEB BROWSING IN FACETOP

A major application area for the facetop is in Web browsing, and
the main facetop feature we exploit to do so is finger tracking.
Figure 1 illustrates the tracking in a view of the facetop when it is
fully opaque, showing the user and none of the underlying
desktop. The highlighted box around the finger is the region the
tracker operates in, and in this view we show the actual data bits
being examined (a debugging mode that can be toggled on and
off). As the user moved the hand around in view of the camera,

the tracker constantly finds the center of mass off the fingertip and
reports an <x,y> coordinate location for each frame.

We presume for this discussion that one has a Web browser that
supports mouse gestures. Opera is one browser that does this
(http://www.opera.com); another is Safari on the Macintosh, after
the addition of the freely downloadable Cocoa Gestures plug-in
package. Our experiments so far have been with Safari.

In the facetop, the user’s fingertip functions as a mouse driver, so the
browser can be controlled with finger motions rather than the mouse.
The tracker provides the <x,y> location information for moving the
mouse; the more difficult problem is designing and implementing
gestures that can serve as mouse clicks, drags, etc.

The current VAV facetop implementation has several other useful
features, most activated by key presses that act as on/off toggles.
User image transparency, for example, is altered from faint to opaque
with the left and right arrow keys. The facetop always internally
tracks the user fingertip, but moving the mouse pointer during
tracking can be toggled on and off. The search neighborhood can be
viewed as a box on the screen at the fingertip (see figure 1 for
example); this mode shows in the box the filtered bits that the tracker
actually works with, rather than showing the source image.

Link activation in the browser

As in mouse-based browsing, a link in a Web page is followed when
the mouse is clicked on it. The facetop tracker gives us mouse-
pointer location and causes mouse motion, but the harder issue is
how to click the mouse. One method we use is to have a second
tracker thread running, watching the lower left (and lower right) 150
x 150 pixel corner of the screen. When a browsing user wants to
“click” the mouse (mouse down) a finger is raised in the corner.
When the finger is removed, a mouse up event is registered. Thus a
mouse “click” (mouse up then mouse down) is done by raising and
lowering the non-browsing finger in the screen corner, while the
browsing finger is holding the mouse pointer on a link anchor.

Another mode we have for mouse click activation is key presses.
Facetop recognizes the down arrow key as a toggle between “mouse
up” and “mouse down”. Thus a mouse click is done by finger
tracking the mouse to a link, then a double press on the down arrow
key (we also allow the “z” key for use of the opposite hand). A
mouse drag is a press on the down arrow key, track/move the mouse,

then another down arrow key press (the ending mouse up).

Since finger pointing is subject to some jitter, both from finger
shaking and from slight tracker variability from frame to frame, we
use a “neighborhood search” when clicking on a Web link. Most
Web pages have link anchors that are much wider than tall (lines of
text); we presume, then, that the user has better horizontal latitude
than vertical and thus search up and down from the current mouse
position for the link to follow. Once a mouse click is activated, the
facetop gets the current coordinates for the pointer from the tracker
and queries the browser a few pixels in either vertical direction from
there for an active link. Once an active link anchor is found, the
mouse click event is sent to the browser at the link location.

Finger gestures for more browser control

In addition to mouse movement and clicking via finger movements,
we have trained the facetop with several mouse gestures for other

browser controls, using the Cocoa Gestures package for Safari
(Cocoa Gestures allows adding mouse gestures to any Mac
application written for the Cocoa API). For example, when a user
turns on finger tracking and wipes the finger to the left, this
activates the browser “back” function for the history list.
Similarly a finger wipe to the right activates the “forward”
function on the history list.

These finger gestures are analogous to mouse gestures, in that they
are only in effect if the finger is wiped when the “mouse down”
event is in force and the “mouse up” event has not happened. This
mirrors the event chain when a mouse is clicked and held, then
dragged right or left, then released. The movements between
mouse down and mouse up are interpreted as the encoded action.

Figure 5 illustrates the finger wiping “back” gesture during
browsing. It also illustrates a potential cognitive loading problem
in the facetop. The earlier screen shots (1 through 4) showed a user
with a visually busy, cluttered background. =~ Most facetop
applications will be enhanced, and the potential visual confusion
reduced, by the user sitting against a neutral colored, plain
background, more like the one in figures 5 and 6. We are
experimenting with different image rendering techniques as well
for reducing visual confusion in browsing. Instead of showing the
user in realistic video, for example, the same visual cues might be
given by showing a gray-scale, embossed image. We would want
to switch back to realistic video when the facetop was made
opaque for use as a communication tool (during collaborative
browsing, as in the next section).

PAIRED WEB BROWSING

An equally interesting domain of application for the facetop is in
collaborative systems — specifically in systems for supporting
synchronous paired tasks. We have been investigating such a
system for the past year for use in distributed Pair Programming
and distributed Extreme Programming (dPP/dXP) [1,2]. Pair
programming is a software engineering technique where two
programmers sit at one PC to develop code. One types (“drives”)
while the other reviews and assists (“navigates”); roles swap
frequently. The benefits of pair programming are well known in
co-located situations [3]; we have been exploring if they remain in
distributed contexts [9,10,20].

The facetop was developed in the context of this synchronous
close collaborative work. We have extended our experiments to
include its use is paired collaborative Web browsing. For paired
Web browsing, the primary advantage the facetop gives over other
approaches is the close coupling of communications capabilities
with examination of the content. Each user can see where the
other points in the shared Web page; they can also use the facetop
as a direct video conferencing tool without changing applications
or interrupting the Web-related activities.

For the dual-user facetop, we have built a setup that has both video
streams (each collaborator) superimposed on a shared desktop,
illustrated in Figure 6. Our current prototype uses the VNC
system for desktop sharing (http://www.realvnc.com/). Each user
sits slightly to the right so that the two heads are on different sides
of the frame when the two streams are composited. In this
“knitted together” joint image, we sit each user against a neutral

http://www.opera.com/
http://www.realvnc.com/

background to control the possible added visual confusion of the dual
facetop image.

We are working on a custom modification of VNC that will pass
uncompressed data. In our current facetop we have real-time smooth
video but “chunky” screen/desktop updates. This works for web
browsing but needs to be better for more rapidly changing
applications. Collaborating users also communicate audibly while
using the facetop via an Internet chat tool like Yahoo messenger. We
have not built audio services into the facetop itself, and see no need
to do so given the external availability of these capabilities in several
forms.

As noted earlier, we originally built this paired facetop to use in our
distributed pair programming research. These experiments have
been underway for 2 years in non-video environments, and we know
from them that programmers are successfully constructing software
systems via remote synchronous collaborations. Collaborative Web
browsing is a less complex task and so is equally well-suited for use
as a facetop application.

Figure 6: Dual-head FaceTop for collaborative browsing

Chalk passing

Passing locus of control among collaborators in a shared application
is an important issue, called floor control, or chalk passing. The user
who has “the chalk” is the one who drives the mouse and click on
links when Web browsing.

Our tracker algorithm has a loss recovery mode that produces an
interesting chalk passing behavior in the dual-user facetop. When
tracking, if the user moves the finger faster than the tracker can track,
we detect that it is “lost” by noticing no data for processing in several
consecutive frames. When this happens, the algorithm stops tracking
in a local neighborhood and does an entire image scan; this is too
computationally expensive to do each frame, but works well for the
occasional frame. In this full-frame search, the tracker acquires and
moves to the largest fingertip object it finds.

With two users, this means that chalk passing happens simply by the
user with the mouse hiding (dropping, moving offscreen) the finger.
This “loses” the tracker and starts the full screen search algorithm.
The mouse pointer immediately jumps to the other user’s fingertip

and so control passes. If there is no finger to track the tracker
“parks” in a corner until there is one.

An issue to be furthered examined is if the facetop gives the two
users a better sense of presence, or better techniques for
communicating ideas -- visually, drawing, and gestures. Our dPP
experiments continue to show that collaborating programmers
want the ability to point at the work they are sharing, to save time
otherwise spent in verbal descriptions and instructions [9,20].
Users collaboratively browsing the Web have the same needs and
desires, The facetop gives them a new, additional capability,
which is to point at Web page content without having to receive
control of the mouse. The user in control of the mouse can
continue to type, fill out Web forms, or otherwise navigate the
browser window while the other user points and discusses via the
video stream.

RELATED PRIOR WORK

The facetop combines and extends work from several different
domains of computing research. Gesture-based computer controls
have existed for a while, for example. The facetop, however, is
unique among these for two reasons. The first is transparency: the
facetop blends the traditional desktop with a video stream of the
user, mirrored and made semi-transparent. The second is the
video cues the user image gives: the user is in the desktop, as live
background wallpaper, rather than making detached gestures apart
from the image of the desktop. These video cues have proven
very effective at giving fine and intuitive control of the mouse
cursor to the user in various tasks and applications we have
experimented with.

Transparency, Ul, Video, and Gestures

Many prior research projects have experimented with aspects of
what we have unified in the facetop. Several researchers have
made systems that have transparent tools, windows, pop-ups,
sliders, widgets that allow see-thru access to information below;
these are primarily used for program interface components
[13,15]. Many systems have some user embodiment and
representation in them (avatars), especially in distributed virtual
environments like [14], but these tend to be generated graphics
and not live video. Giving your PC “eyes” is a growing concept,
as is illustrated by this 2001 seminar at MIT [16]. A system
being developed in Japan [17] uses hand activities as signals to
programs; the system uses silhouettes to make recognition easier
and faster. Our ideas for fingertip gesture control in the facetop
are related to the many efforts under way to recognize pen
gestures and other ink-based applications; the TabletPC based on
Windows with ink is now commercially available from several
manufacturers. They are also related to efforts in the past to
recognize human facial features and motions.

Hand-based user input devices are available, like the P5 glove
from Essential Reality (see P5 features on the company website
at http://www.essentialreality.com/p5 glove.asp). A glove
user wears a sensor net on the hand and the input from the device
is used to determine hand motion and gesturing, allowing mouse
driving as well as other virtual environment control activities. In
the facetop, we do the gestures from video analysis alone.

http://www.essentialreality.com/p5_glove.asp

The work most closely related to our facetop video analysis is from
the image-processing lab of Tony Lindberg in Sweden. Researchers
there have develop tracking algorithms for capturing hand motions
rapidly via camera input, and have developed demonstrations of
using tracked hand motions to interact with a PC [18,19]. One
application shows a user turning on lights, changing TV channels,
and opening a PC application using various hand gestures while
seated in front of a PC. Another experiment shows careful tracking
of a hand as it display one, two, and three fingers, and scales larger
and smaller. A third experiment uses hand gestures in front of a
camera to drive the mouse cursor in a paint program.

The missing concept in Lindberg’s work (and in other hand-gesture
work), one that we are exploiting for Vis-a-vid, is the immersion of
the user into the PC environment. In Lindberg’s work the user is
still an object separate and apart from the PC being interacted with.
In the facetop, the user is given the illusion of being part of the
environment being manipulated. We think this immersion gives
very useful and important visual cues that are absent in earlier
gesture experiments. These visual cues give the feedback needed
by a user to fine-grained control of the desktop, and also give a
more naturally learned and manipulated interface. We are currently
testing these hypotheses.

Collaborative systems, distributed workgroups

One major use for the facetop is in collaborative systems. There have
been far too many systems built for graphical support of
collaboration to list in this short paper. Most have concentrated on
synthetic, generated graphics. ClearBoard [4] is one system that is
especially applicable to our research. Clearboard was a non-co-
located collaboration support system that allowed two users to appear
to sit face to face, and see the shared work between them. The
ClearBoard experiments showed that face-to-face visibility was
enhancing to collaboration effectiveness. However, the workstations
required were expensive and used custom-built hardware. One of the
advantageous points of the facetop is its use of cheap and ubiquitous
equipment.

We are also leveraging the results of some wall-size display
experiments at UNC [6, 7]. Whimsically termed the “Office of Real
Soon Now” (a play on the name of the “Office of the Future” [5]),
it aims to get some of the benefits of large screens without waiting
years and spending large amounts money. In this project, Bishop
and Welch have produced double-width wall-sized displays for their
offices using COTS projectors, video cards, and PCs. For their
experiments they completely abandoned CRT displays and used
only projected wall displays; after 4 years neither has any intention
to return to CRTs. Benefits of the large wall displays include
greatly reduced eyestrain; better interaction capabilities with
students when discussing joint work; and expanded screen real
estate. Their experiments have focused on individual and co-
located group use of the wall displays, and have not involved
networked collaborations.

Numerous collaborative Web browsers have been built, including
recently TWiki (http://twiki.org/), CobWeb [22], CWB [23], and
CoVitesse (http:/iihm.imag.fr/demos/CoVitesse/). LIl solve the
problem of allowing 2 or more users to access simultaneously the
same Web pages, and allow some floor control to determine which
users will be able to direct the group progression from page to page.
The added advantage of the facetop over these previous efforts is

the integration of the user as video representation, along with
concurrent audio and video communications.

One last project we use results from is BellCore’s VideoWindow
project [8]. In this experiment, two rooms in different buildings
at BellCore (coffee lounges) were outfitted with video cameras
and wall-sized projections. In essence, an image of one lounge
was sent to the other and projected on the back wall, giving the
illusion in each room of a double-size coffee lounge. The
researchers discovered that many users found the setup to be very
natural for human communication, due to its size. Two people,
one in each room, would approach the wall to converse, standing
a distance from the wall that approximated the distance they
would stand from each other in face-to-face conversations. The
conclusion:

Video, when made large, was an effective and convincing
communication tool.

We leveraged this finding in creating the dual-head facetop that
we use for synchronous, collaborative Web browsing.

FOR FURTHER RESEARCH

We are experimenting with the facetop in the context of Web
browsing and other single-user and collaborative applications.
Here are several of the questions we are investigating in these
experiments:

e How effective is the VAV facetop as a mouse-replacement
in a traditional WIMP desktop?

e What is the most effective camera angle and placement for
comfortable arm movement and hand motion in a VAV
facetop?

e How does VAV effectiveness compare in a projected
environment vs. a CRT-based environment?

e How do single users rate the adoptability of the VAV

facetop?

e How do distributed pairs rate the adoptability of VAV
facetop?

e Do distributed pairs perform their tasks better with VAV
facetop?

e Will two overlaid VAV facetop’s work well as support for
close synchronous paired collaboration?

e Are there uses for the VAV in multi-user environments
other than paired collaborations?

e Can we use a broad range of user gestures in the VAV for
desktop and program control?

e How can the VAV be technically implemented for different
platforms with different levels of built-in or accelerated
graphics support?

Several issues are natural to continue to investigate in the single-
user facetop as well. Will users find moving the arm and hand in
the air too tiring? Can we make it work if the user never has to lift
his arm (adjust camera location and angle)? What gestures are
simple to make and easy to recognize for common WIMP actions
like clicking and dragging? What subset of WIMP desktop control
will users find acceptable for facetop control vs. traditional mouse
control?

The natural extension to the basic VAV concept of finger tracking

http://twiki.org/
http://iihm.imag.fr/demos/CoVitesse/

is broader gesture recognition. We want to expand the tracking
capabilities to allow a broader range of user actions to be recognized
and tracked, perhaps to even include head motions. We want to use
the hand and gesture tracking algorithms developed by Lindberg
[18,19] initially. This work allows detection of multiple fingers,
hand rotations, and scaling to and from the screen.

CONCLUSIONS

The transparent video facetop is a novel user interface technology
that has application is many computer application areas, including
both single-user Web browsing and collaborative web browsing.
The facetop works efficiently with an inexpensive firewire camera
and laptop speeds, making the concept potentially ubiquitous.
Manipulation of the browser controls is accomplished by finger
movement and pointing, combined with mouse gesture recognition
software in the browser. The facetop enhances collaborative Web
browsing beyond the capabilities of previous systems in several
ways. The users are able to see each other, to visually and audibly
communicate and discuss content, and to point to content without
having to pass the mouse control.

Acknowledgements This work was partially supported by a grant
from the U.S. Environmental Protection Agency, # R82-795901-3.

REFERENCES

[1] Beck, K., Extreme Programming Explained, Addison-Wesley,
2000.

[2] Wells, J. D., “Extreme Programming: A Gentle Introduction,”
2001, available on-line at http://www.extremeprogramming.org/

[3] A. Cockburn and L. Williams, “The Costs and Benefits of Pair
Programming,” eXtreme Programming and Flexible Processes in
Software Engineering -- XP2000, Cagliari, Sardinia, Italy, 2000.

[4] H. Ishii, M. Kobayashi, and J. Grudin, “Integration of inter-
personal space and shared workspace: ClearBoard design and
experiments,” Proc. of ACM Conf. on Computer Supported
Cooperative Work, Toronto, 1992, pp. 33-42.

[5] H. Fuchs, “The Office of the Future,” pp.
http://www.cs.unc.edu/~raskar/Office/.

[6] G. Bishop, , pp. http://www.cs.unc.edu/~gb/office.htm, The
Office of Real Soon Now.

[7] G. Bishop and G. Welch, “Working in the Office of 'Real Soon
Now',” IEEE Computer Graphics and Applications, pp. 76-78,
July/August 2000.

[8]R. S. Fish, R. E. Kraut, and B. L. Chalfonte, “The VideoWindow
System in Informal Communications,” Proc. of ACM Conf. on
Computer Supported Cooperative Work, Los Angeles, 1990, pp. 1-
11.

[9] P.Baheti, L.Williams, E.Gehringer, and D.Stotts, "Exploring the
Efficacy of Distributed Pair Programming," XP Universe 2002,
Chicago, August 4-7, 2002; Lecture Notes in Computer Science 2418
(Springer), pp. 208-220.

[10] P.Baheti, L.Williams, E.Gehringer, D.Stotts, "Exploring Pair
Programming in Distributed Object-Oriented Team Projects,"
Educator's Workshop, OOPSLA 2002, Seattle, Nov. 4-8, 2002,
accepted to appear.

[11] Smith, J., D. Stotts, and S.-U. Kum, "An Orthogonal
Taxonomy for Hyperlink Anchor Generation in Video Streams
using OvalTine," Proc. of Hypertext 2000 (ACM), May, 2000, San
Antonio, TX, pp. 11-18.

[12] Stotts, D. and Smith, J., "Semi-Automated Hyperlink Markup
for Archived Video," Proc. of Hypertext 2002 (ACM), College
Park, MD, May 2002, pp. 105-106.

[13] Eric A. Bier, Ken Fishkin, Ken Pier, Maureen C. Stone, “A
Taxonomy of See-Through Tools: The Video, Xerox PARC,
Proc. of CHI 95,
http://www.acm.org/sigchi/chi95/Electronic/documnts/videos/eab
1bdy.htm

[14] Steve Benford, John Bowers, Lennart E. Fahlén, Chris
Greenhalgh and Dave Snowdon, “User Embodiment in
Collaborative Virtual Environments,”, Proc. of CHI 95,
http://www.acm.org/sigchi/chi95/Electronic/documnts/papers/sdb_
bdy.htm

[15] Beverly L. Harrison , Hiroshi Ishii, Kim J. Vicente, and
William A. S. Buxton,“Transparent Layered User Interfaces: An
Evaluation of a Display Design to Enhance Focused and Divided
Attention,” Proc. of CHI ’95,
http://www.acm.org/sigchi/chi95/Electronic/documnts/papers/blh
_bdy.htm

[16] Vision Interface Seminar, Fall 2001, MIT,
http://www.ai.mit.edu/~trevor/6.892/

[17] T. Nishi, Y. Sato, H. Koike, “SnapLink: Interactive Object
Registration and Recognition for Augmented Desk Interface,”
Proc. of IFIP Conf. on HCI (Interact 2001), pp. 240-246, July
2001.

[18] Bretzner, L., and T. Lindberg, “Use Your Hand as a 3-D
Mouse, or, Relative Orientation from Extended Sequences of
Sparse Point and Line Correspondences Using the Affine Trifocal
Tensor,” Proc. of the 5™ European Conf. on Computer Vision, (H.
Burkhardt and B. Neumann, eds.), vol. 1406 of Lecture Notes in
Computer Science, (Freiburg, Germany), pp. 141--157, Springer
Verlag, Berlin, June 1998.

[19] Laptev, 1., and T. Lindberg, “Tracking of multi-state hand
models using particle filtering and a hierarchy of multi-scale
image features,” Proc. of the IEEE Workshop on Scale-space and
Morphology, Vancouver, Canada, in Springer-Verlag LNCS 2106
(M. kerckhove, ed.), July 2001, pp. 63-74.

[20] Stotts, D., L. Wiliams, et al., "Virtual Teaming: Experiments
and Experiences with Distributed Pair Programming," TR03-003,
Dept. of Computer Science, Univ. of North Carolina at Chapel
Hill, March 1, 2003.

[21] Stotts, D., J. McC. Smith, and D. Jen, “The Vis-a-Vid
Transparent Video FaceTop,” UIST ’03, Vancouver, Nov. 3-6,
2004, pp. 57-58.

[22] Stotts, D., S. Kim, J. Navon, J. Prins, and L. Nyland,
“CobWeb: Visual Design of Collaboration Protocols for Dynamic
Group Web Browsing," Visual Computing 2002 (Distributed
Multimedia 2002), San Francisco, Sept. 26-28, 2002, pp. 595-598.

[23] Esenther, A.W., “Instant Co-Browsing: Lightweight Real-
time Collaborative Web Browsing”, Proc. of WWW 2002,
http://www2002.org/CDROM/poster/86/.

http://www.extremeprogramming.org/
http://www.cs.unc.edu/~raskar/Office/
http://www.acm.org/sigchi/chi95/Electronic/documnts/videos/eab1bdy.htm
http://www.acm.org/sigchi/chi95/Electronic/documnts/videos/eab1bdy.htm
http://www.ai.mit.edu/~trevor/6.892/

iBot

Movies,
dvds.

Projected screen
showing tracked
fingers

\
- e oort
Video Intercept
Object Tracking TrackerLib
Videpinltering HiDevic nput
Visual Feedback Aquia mgisre
Quartz Extreme

Transparency

Hardware
Compositing

8
&

Ul Events

T

Vis-A-Vid
(Cocoa API Application)

projec

Figure 7: Vis-a-vid facetop system block diagram

	www04.pdf
	RELATED PRIOR WORK
	Transparency, UI, Video, and Gestures
	REFERENCES
	[14] Steve Benford, John Bowers, Lennart E. Fahl�
	[18] Bretzner, L., and T. Lindberg, “Use Your Han

