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Abstract. We present an algorithm for counting the number of integer
solutions to selected free variables of a Presburger formula. We represent
the Presburger formula as a deterministic finite automaton (DFA) whose
accepting paths encode the standard binary representations of satisfying
free variable values. We count the number of accepting paths in such a
DFA to obtain the number of solutions without enumerating the actual
solutions. We demonstrate our algorithm on a suite of eight problems to
show that it is universal, robust, fast, and scalable.

1 Introduction

The problem of counting integer solutions to selected free variables of Presburger
formulas is relevant to several applications in the analysis and transformation
of scientific programs. Researchers have used Presburger formulas to model the
iterations of a loop nest [1], the memory locations touched by a loop nest [2], the
cache lines touched by a loop nest [2], and the memory accesses incurring cache
misses [3]. The well-known Cache Miss Equations (CME) compiler framework [4]
for analyzing and tuning memory behavior is based on Presburger arithmetic.
Counting the number of solutions to such formulas allows us to estimate the
execution time of a loop nest, to evaluate the message traffic generated by a
loop nest, and to determine the cache miss rate of a loop nest, among other
things. However, the counting problem is inherently difficult to solve in its full
generality. Early work [2, 5–8] therefore took ad hoc approaches to this counting
problem; more recent work by William Pugh [9] and Philippe Clauss [1] provided
solution methods that are more systematic and complete.

Pugh’s method [9] is based on computing sums. He introduces techniques for
summing a polynomial over all integer solutions of selected free variables of a
Presburger formula. He expresses the number of solutions symbolically, in terms
of symbolic constants that are the remaining free variables in the Presburger
formula. For a given summation problem, the choice of which techniques to apply
and the order in which to apply them seems to require human intelligence. To
our knowledge, no software implementation of Pugh’s method exists.
? Erin Parker is supported by a DOE High-Performance Computer Science Fellowship.



Clauss’ method [1] is based on the vertices of parameterized polytopes and
Ehrhart (pseudo-)polynomials [10]. He models a Presburger formula as a disjoint
union of rational convex polytopes, the number of integer points in which is
equal to the number of integer solutions to selected free variables in the formula.
Clauss’ method requires a geometric preprocessing step to express the Presburger
formulas as disjoint polyhedra. Clauss expresses the number of included integer
points using Ehrhart polynomials and periodic numbers, where the free variables
are the size parameters (or the remaining free variables in the formula). Like
Pugh, Clauss produces a symbolic expression of the number of solutions. Clauss’
method is implemented in the Polylib library [11].

The examples that Pugh [9] and Clauss [1] handle have two characteristics:
they are smooth functions of their input arguments, and the constants and co-
efficients that they contain are small (typically order 10–100). Our interest in
Presburger arithmetic arises from modeling cache misses, for which the formulas
are distinctly non-smooth (see Fricker et al. [12] for examples) and contain large
constants and coefficients (cache capacity and array starting addresses being typ-
ical examples). The methods of Pugh and Clauss are impractical for handling
such formulas. Pugh’s method splinters the domain of a non-smooth formula
into many subdomains, and the choice of the applicable techniques and their
order of application grows combinatorially. Clauss’ method requires an Ehrhart
polynomial of very high degree and an impractically large number of coefficients,
and is also subject to geometric degeneracies for many problems of interest.

Ghosh et al. make similar observations in their CME work commenting that
“. . . to make the framework more effective, we should be able to automatically
solve or at least find the number of solutions to the CMEs in parametric form” [4].
They mention the methods of Pugh and Clauss as possibilities, but, given the
intrinsic difficulty of the counting problem, do not use these methods to find
the number of cache misses explicitly. Instead, they use the CMEs indirectly to
derive problem-specific optimization algorithms, and compromise the generality
of their framework as a result.

Because of the insufficiency of existing methods for our purposes, we con-
sidered other general approaches for counting solutions to Presburger formulas
that would work well for non-smooth formulas. Our counting algorithm is fun-
damentally different from the methods of Pugh and Clauss: it builds on a deep
connection between Presburger arithmetic and automata theory, and then con-
verts the counting problem for solutions of the Presburger formula into a graph-
theoretic path counting problem on the related deterministic finite automaton
(DFA). The key difference between our algorithm and the methods of Pugh and
Clauss lies in symbolic capabilities. Both Pugh and Clauss express the number
of solutions as closed-form functions of symbolic constants. Our algorithm is not
symbolic. It produces the number of solutions for a particular set of numerical
values of the symbolic constants, i.e., the result of evaluating Pugh’s or Clauss’
function at a particular point. Whether this lack of symbolic capabilities is a lim-
itation depends on the application. For instance, scheduling applications require
closed-form formulas, while actual numbers may be sufficient for load balancing.



Our counting algorithm is not the only non-symbolic approach for deter-
mining the number of integer solutions to Presburger formulas. Barvinok’s al-
gorithm [13] (with subsequent improvements by Dyer and Kannan [14]) counts
the number of integer points inside a convex polyhedron of fixed dimension in
polynomial time. The LattE (Lattice point Enumeration) tool [15], the first
known implementation of Barvinok’s algorithm, is software for the enumeration
of all lattice points inside a rational convex polyhedron. To count the number
of solutions to a Presburger formula, Barvinok’s algorithm requires a geomet-
ric preprocessing step to express the formula as a disjoint union of polyhedra.
The LattE tool does not implement the preprocessing step. Our algorithm re-
quires no such geometric preprocessing technique. The quite recent availability
of the LattE software combined with the problem of geometric preprocessing has
prevented a direct comparison with our counting approach.

The following points summarize the strengths and weaknesses of our counting
algorithm.

– The algorithm is universal, handling any problem that is expressible in Pres-
burger arithmetic.

– The algorithm is robust, handling an arbitrary representation of a problem
without need for geometric preprocessing.

– The algorithm is implemented.
– The algorithm is fast, as we will demonstrate in Sect. 5.
– The algorithm can handle formulas with large coefficients and constants, as

indicated by the example problems in Sect. 5.
– The algorithm does not handle symbolic constants.

The remainder of this paper is structured as follows. Section 2 provides a brief
review of Presburger arithmetic. Section 3 establishes the connection between
Presburger arithmetic and DFAs. Section 4 presents our counting algorithm.
Section 5 demonstrates the algorithm on eight examples. Section 6 concludes.

2 Presburger Arithmetic

Presburger arithmetic is the first-order theory of natural numbers with addition.
A Presburger formula consists of affine equality and/or inequality constraints
connected via the logical operators ¬ (not), ∧ (and), ∨ (or), and the quantifiers
∀ (for all) and ∃ (there exists). It is well-known how to express certain non-
linear constraints in Presburger arithmetic, such as floors, ceilings, quotients,
remainders [9], and bit-interleaving [3].

Consider Presburger formula P(i, j, k; n) = 1 ≤ i ≤ n ∧ 3 ≤ j ≤ i ∧ j ≤ k ≤ 5
with free integer variables i, j, and k and symbolic constant n,3 and consider
the sum S(n) =

∑n
i=1

∑i
j=3

∑5
k=j 1 with symbolic constant n. We say that

3 Although i, j, k, and n are all free variables of the formula in the terminology of
logic, we distinguish between those free variables that appear as summation indices
in the corresponding sum and those that do not.



formula P(i, j, k;n) “describes” the sum S(n) because, for any given value of n,
the number of solutions to the Presburger formula is equal to the value of the
sum, i.e., ∀n : S(n) = |{(i, j, k) : P(i, j, k; n) = true}|.

Presburger arithmetic is decidable [16]; however, the complexity of the deci-
sion procedure is superexponential in the worst case. For a sentence of length n,
the bound on storage and time required is 222pn

, for some constant p > 1 [17].
This bound is tight [18]. However, it is a worst-case bound, and prior use of Pres-
burger arithmetic in program analysis contexts has generally been well-behaved
in terms of complexity of decision and simplification algorithms.

3 The Presburger Arithmetic–DFA Connection

Our counting method exploits a fundamental connection between Presburger
arithmetic and automata theory, namely, that there exists a DFA recognizing
the positional binary representation of the solutions of any Presburger formula.
Following standard terminology, we define a DFA M as a 5-tuple (S,Σ, δ, q0, F ),
where S is a finite set of states, Σ is a finite set of symbols called the alphabet,
δ : S ×Σ → S is the transition function, q0 ∈ S is the start state, and F ⊆ S is
a set of final states. This connection is perhaps not surprising, given that DFAs
can describe arithmetic on the binary representation of natural numbers. The
key point to remember in transitioning from Presburger arithmetic to DFAs is
that we are moving from a domain of values (natural numbers) to a domain of
representations (positional binary encoding).

Büchi [19, 20] originally proved that a subset of ({0, 1}n)∗ is recognizable by a
finite state automaton if and only if it is definable in WS1S (Weak Second-order
Theory of One Successor). Boudet and Comon [21] build on this result. Because
Presburger arithmetic can be embedded in WS1S, there is a DFA recognizing the
solutions of a Presburger formula. Boudet and Comon formalize the connection
between Presburger arithmetic and automata in the following theorem.

Theorem 1 (Boudet-Comon [21]). Let φ ≡ Qnxn, . . . , Q1x1ψ be a formula
of Presburger arithmetic where Qi is either ∃ or ∀ and ψ is an unquantified
formula with variables x1, . . . , xn, y1, . . . , ym. There is a deterministic and com-

plete automaton recognizing the solutions of φ with at most O(222|φ|
) states,

where |φ| = K(φ) + V (φ), K(φ) being the sum of the sizes of each constant in
the formula φ, written in binary representation, and V (φ) being the number of
variables in formula φ.

The proof of the theorem is constructive, with the construction procedure
defined by induction on the structure of φ. The base cases are linear equalities
and inequalities, for which DFA recognizers are easy to construct [21–23]. Logical
connectives of subformulas utilize closure properties of regular sets under inter-
section, union, and complementation [24]. Existential quantification is handled
by projecting the alphabet and the transition function (producing a nondeter-
ministic finite automaton) followed by determinization and state minimization.
Universal quantification exploits the tautology ∀xφ ≡ ¬∃x¬φ.



Note that moving from Presburger formulas to DFAs does not circumvent
the difficulty of counting solutions, since both the decidability of a Presburger
formula and the construction of a DFA recognizing the formula have triple expo-
nential worst-case complexity. We choose to exploit the Presburger Arithmetic-
DFA connection because the complexity manifests in a better understood and
manageable form. Specifically, it is the translation of universal quantifiers and
negation that can cause an exponential blowup in the number of states.

The connection between Presburger arithmetic and DFAs has been widely
studied in the context of verification of system properties such as safety and
liveness. Several authors [22, 23, 25–27] have refined the procedure for construct-
ing automata from Presburger formulas, extending the scope of formulas from
natural numbers to integers, allowing the mixing of integer and real variables,
and providing tighter bounds on the number of states of the resulting DFA.
In particular, Bartzis and Bultan [22, 23] present algorithms for constructing fi-
nite automata that represent integer sets satisfying linear constraints. They use
MONA [28], an automata manipulation tool, to implement these algorithms.
Compared to similar approaches for automata representation, the methods of
Bartzis and Bultan give tighter bounds on the size of generated automata.
We use the Bartzis and Bultan construction algorithms to represent an affine
equality/inequality constraint as a deterministic finite automaton. Using the
automata-theoretic operations of union, intersection, complementation, and pro-
jection (offered in the MONA tool’s automata package), we then combine such
DFA representations of the affine equality/inequality constraints constituting a
Presburger formula to get the DFA representation of the formula.

4 The Counting Algorithm

We now present our algorithm for counting solutions to a Presburger formula.
Section 4.1 offers an example DFA used to illustrate our algorithm. Section 4.2
describes how a DFA represents the solutions of a Presburger formula. Section 4.3
looks at treating the DFA as a directed, edge-weighted graph. Section 4.4 ex-
plains how path length is used to ensure a correct solution count. Section 4.5
presents our algorithm for counting accepting paths in a DFA. Section 4.6 dis-
cusses the implementation of our counting algorithm using the Bartzis and Bul-
tan DFA-construction algorithms and the MONA tool.

4.1 Example DFA

For illustration of our counting algorithm, consider the following running exam-
ple. The Presburger formula shown in Fig. 1 describes interior misses 4 incurred
by loop nest L (of Fig. 2.a). Figure 2.b shows a version of this formula simplified
using the Omega Calculator [29, 30]. Notice that the clauses in Fig. 2.b are not
disjoint. However, this potential difficulty is not an issue during the construction

4 An interior miss is a particular type of cache miss introduced by Chatterjee et al. [3].



∃d : 0 ≤ i, j, k < 20 ∧ ((k = 0 ∧ R = 0 ∧ 4(128d) ≤ 800 + i + 20j < 4(128d + 1)) ∨ (R = 1 ∧
4(128d) ≤ i + 20k < 4(128d + 1)) ∨ (R = 2 ∧ 4(128d) ≤ 400 + k + 20j < 4(128d + 1)) ∨ (k = 19 ∧

R = 3 ∧ 4(128d) ≤ 800 + i + 20j < 4(128d + 1))) ∧ (∃u, v, w, F, e : 0 ≤ u, v, w < 20 ∧ (u < i ∨ (u = i

∧ v < j) ∨ (u = i ∧ v = j ∧ w < k) ∨ (u = i ∧ v = j ∧ w = k ∧ F < R)) ∧ ((w = 0 ∧ F = 0

∧ 4(128e) ≤ 800 + u + 20v < 4(128e + 1)) ∨ (F = 1 ∧ 4(128e) ≤ u + 20w < 4(128e + 1)) ∨ (F = 2 ∧
4(128e) ≤ 400 + w + 20v < 4(128e + 1)) ∨ (w = 19 ∧ F = 3 ∧ 4(128e) ≤ 800 + u + 20v < 4(128e + 1)))

∧ (¬(∃x, y, z, G : 0 ≤ x, y, z < 20 ∧ (x < i ∨ (x = i ∧ y < j) ∨ (x = i ∧ y = j ∧ z < k) ∨
(x = i ∧ y = j ∧ z = k ∧ G < R)) ∧ (u < x ∨ (u = x ∧ v < y) ∨ (u = x ∧ v = y ∧ w < z) ∨
(u = x ∧ v = y ∧ w = z ∧ F < G)) ∧ ((z = 0 ∧ G = 0 ∧ 4(128d) ≤ 800 + x + 20y < 4(128d + 1))

∨ (G = 1 ∧ 4(128d) ≤ x + 20z < 4(128d + 1)) ∨ (G = 2 ∧ 4(128d) ≤ 400 + z + 20y < 4(128d + 1)) ∨
(z = 19 ∧ G = 3 ∧ 4(128d) ≤ 800 + x + 20y < 4(128d + 1)))) ∧ ¬(d = e)))

Fig. 1. Presburger formula describing interior misses incurred by loop nest L in cache
set 0 (assuming a direct-mapped cache with block size 32 bytes and capacity 4K bytes,
double-precision arrays adjacent in memory and linearized in column-major order).

L: do i = 0, 19

do j = 0, 19

c = Z[i,j]

do k = 0, 19

c = X[i,k]*Y[k,j]+c

enddo

Z[i,j] = c

enddo

enddo

(1 ≤ i ≤ 4 ∧ j = 5 ∧ k = 12 ∧ R = 2) ∨
(0 ≤ i ≤ 3 ∧ j = 5 ∧ k = 12 ∧ R = 2) ∨
(4 ≤ i ≤ 7 ∧ j = 11 ∧ k = 0 ∧ R = 0) ∨
(0 ≤ i ≤ 3 ∧ j = 6 ∧ k = 0 ∧ R = 1) ∨
(5 ≤ i ≤ 8 ∧ j = 5 ∧ k = 12 ∧ R = 2)

a. b.

Fig. 2. a. Loop nest L performs the matrix multiplication Z = X · Y . b. Simplified
version of the Presburger formula in Fig. 1.

of a DFA to represent the formula. In fact, the formula requires no geometric
preprocessing for DFA construction, which makes our algorithm very robust.

The DFA in Fig. 3 recognizes the solutions of the Presburger formula in
Fig. 2.b. The start state of the DFA, q0, is at node 1. The final states in set F
are denoted with double circles. For this DFA there is one final state at node 10.
Node 2 is a garbage state. A DFA can represent n-tuples of integers in binary
notation as words over the alphabet {0, 1}n simply by stacking them, using an
equal length representation for each integer in the tuple. A label on any edge of
the DFA in Fig. 3 is a stack of four digits, each corresponding to a free variable
(i, j, k, or R). Therefore, the alphabet Σ of the DFA is{

0
0
0
0

,

0
0
0
1

,

0
0
1
0

,

0
0
1
1

,

0
1
0
0

,

0
1
0
1

,

0
1
1
0

,

0
1
1
1

,

1
0
0
0

,

1
0
0
1

,

1
0
1
0

,

1
0
1
1

,

1
1
0
0

,

1
1
0
1

,

1
1
1
0

,

1
1
1
1

}
.

Borrowing terminology from hardware logic design, an X in a stack signifies that
either a 0 or 1 is possible in that position.

4.2 Encoding Free Variable Values

Given the DFA representation of a Presburger formula, each accepting path in
the DFA encodes free variable values that constitute a solution to the formula.



10

0
0
0
0

2

0 0 0 1
0 0 1 X
0 1 X X
1,X,X,X

1

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0,X,1,X,0,X,1,X

3

0 1
0 0
0 0
1,1

4
0
1
0
0

5

1
1
0
0

X
X
X
X

X X X
0 1 1
X 0 1
X,1,X

6

X
1
0
0

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0,X,1,X,0,X,1,X

7

0
0
0
1

8

0 1
1 1
0 0
0,0

9

1
0
0
1

X X X X
0 0 1 1
0 1 0 1
0,X,1,X

X
1
0
0

X
0
0
1

0
1
0
0

0 0 0 1
0 1 1 X
X 0 1 X
X,1,X,X

0 0 0 1 1 1
0 1 1 0 1 1
X 0 1 X 0 1
X,X,1,X,X,1

11

0
1
1
0

12

1
1
1
0

0 1 1 1
X 0 0 1
X 0 1 X
X,1,X,X

1
0
0
0

X X X
0 1 1
X 0 1
X,X,1

X
1
1
0

X
0
1
0

X X X
0 0 1
0 1 X
X,1,X

0
0
1
0

0 0 0 1
0 0 1 X
0 1 X X
X,1,X,X

i
j
k
R

Fig. 3. DFA recognizing the solutions of the Presburger formula in Fig. 2.b.



The encoding is the standard binary representation of the integer values of the
free variables, proceeding from least significant bit (LSB) to most significant bit
(MSB). Formally, an encoding of a non-negative integer b is a word bm . . . b0

such that each bi is 0 or 1 and b =
∑m

i=0 bi2i. A tuple of non-negative integers
is encoded by stacking their binary representations and padding with leading 0s
to make the lengths identical.

Let a path of length i from state p to state q, denoted Pi(p, q), be a string
A ∈ Σi such that δi(p,AR) = q, where string AR is the reversal of string A.
(The string reversal is a notational device to resolve the mismatch between the
conventional MSB-first representation of numbers and the LSB-first consumption
of the encoding by the DFA.) In the DFA of Fig. 3, one path from the state 1 to

3, P1(1, 3), is
0
0
0
1

. Path P4(1, 10) =
1000
0101
1100
0010

, which goes through states 4, 7, and 11,

is an accepting path identifyng i = 8, j = 5, k = 12, and R = 2 as a solution.
To easily identify one set of states reachable from another set of states, we

extend the transition function δ : S×Σ → S to ∆ : 2S → 2S , defined by ∆(S′) =⋃
p∈S′{δ(p, a) : a ∈ Σ}. For the DFA in Fig. 3, ∆({6, 10, 11, 12}) = {2, 10}.

4.3 Treating the DFA as a Graph

The key to our algorithm for counting accepting paths in a DFA is to treat the
DFA as a weighted, directed graph. For states p and q, let wt(p, q) = |{a ∈ Σ :
δ(p, a) = q}| be the number of alphabet symbols that cause transition from state
p to state q. Given DFA M = (S, Σ, δ, q0, F ), define a directed, edge-weighted
graph as G(M) = (V, E,W ) = (S, {(p, q)|∃a ∈ Σ : δ(p, a) = q}, λ(p, q).wt(p, q)).

The problem of counting the number of solutions represented by a DFA M
reduces to a path-counting problem on the graph G(M). Let Ni(q) = |Pi(q0, q)|
be the number of paths of length i from the vertex q0 to vertex q. We build up
Ni by induction on the path length i as follows.

Theorem 2. For any vertex q and integer i > 0, Ni+1(q) =
∑

e=(p,q)∈E Ni(p) ·
W (e). If q = q0 then N0(q) = 1, else N0(q) = 0.

Proof.
∑

e=(p,q)∈E Ni(p) ·W (e) =
∑

p∈V Ni(p) · wt(p, q)
=

∑
p∈V |{A = a1a2 . . . ai ∈ Σi : δi(q0, A

R) = p}| · |{a0 ∈ Σ : δ(p, a0) = q}|
=

∑
p∈V |{A′ = a0A = a0a1 . . . ai ∈ Σi+1 : δi(q0, A

R) = p ∧ δ(p, a0) = q}|
= |⋃p∈V {A′ = a0A = a0a1 . . . ai ∈ Σi+1 : δi(q0, A

R) = p ∧ δ(p, a0) = q}|
= |{A′ = a0a1 . . . ai ∈ Σi+1 : δi+1(q0, A

′R) = q}|
= Ni+1(q).

The base case of the recurrence is trivial.

4.4 Path Length

To insure an accurate count of the accepting paths in a DFA, it is important
to take into account their length. The fundamental reason for this is that the



map from values to representations is one-to-many, since any representation of
a value may be arbitrarily extended with leading 0s without changing the value
that it represents. For example, the DFA in Fig. 3 recognizes at least two different
encodings for the values i = 8, j = 5, k = 12, and R = 2. Two possible paths are

P4(1, 10) =
1000
0101
1100
0010

and P5(1, 10) =
01000
00101
01100
00010

. Despite the fact that these two different

encodings are recognized by the DFA, they specify only one solution. We want
to avoid counting this solution twice, and we do so by counting all solutions
identified by accepting paths of the same length (i.e., by encoding the values of
all free variables in the same number of bits). For any choice of length L, the
number of accepting paths of that length in graph G(M) is equivalent to the
number of solutions to the Presburger formula represented by DFA M such that
the value of each free variable comprising the solution is in the range [0, 2L− 1].

In order for counting to be feasible, the number of solutions to the Pres-
burger formula must be finite. The Presburger formulas of interest to us are
representable by bounded polytopes, where the number of formula solutions cor-
responds to the number of integer points in the polytopes. The bounded nature
of the polytopes ensures a finite number of solutions.

Recall from Sect. 4.2 that accepting paths encode the binary representations
of integer values satisfying the Presburger formula represented by the DFA (LSB
to MSB). Each integer value has a unique binary representation with the excep-
tion of leading 0s. Therefore, a unique formula solution is represented in the
DFA by a single accepting path that may be arbitrarily extended with 0s. Let R
be the regular expression representing the set of all strings accepted by a DFA
that recognizes a Presburger formula P . In order for P to have a finite set of
solutions (in the value domain), the Kleene star operator can appear only in
limited positions in R.

Lemma 1. Let DFA M recognize Presburger formula P , and let regular expres-
sion R represent all accepting paths of M . Formula P has a finite number of
solutions if and only if R is of the form 0*S, where S is a regular expression
free of the Kleene star operator.

Proof. If formula P has a finite number of solutions, then the set of paths ac-
cepted by DFA M must represent a finite set of values. Therefore, regular ex-
pression R must represent a finite number of strings, with the exception of any
number of 0s at the beginning.

If regular expression R is of the form 0*S, then the accepting paths in DFA
M are unique except for any number of 0s at the beginning. Therefore, DFA M
recognizes a finite set of solution values.

Lemma 1 gives a property of accepting DFA paths that is critical to our
counting algorithm, and it relates the property to the finiteness of Presburger
formula solution counts. Note that this property does not apply to non-accepting
paths. For example, consider the DFA in Fig. 3, which recognizes a Presburger
formula with a finite number of solutions. The non-accepting path that goes



through nodes 1, 5, and 2 violates the 0*S pattern, since the self-loop at the
beginning of the path arbitrarily extends it with 0s or 1s.

Let Vi be the set of vertices reachable from vertex q0 via paths of length
i. To start, q0 is the only vertex reachable from itself with path length 0 (i.e.,
V0 = {q0}). In general, the set of vertices reachable from vertex q0 with path
length i is Vi = ∆(Vi−1).

The following theorem establishes that when Vi = Vi−1, the sets of vertices
reachable from vertex q0 via paths of length k ≥ i are identical. In other words,
the set of vertices reachable from the starting vertex with paths of a certain
length reaches a steady state.

Theorem 3. Given a DFA M corresponding to a Presburger formula with a
finite number of solutions, if Vi = Vi−1, then Vk = Vi−1, ∀k ≥ i.

Proof. For k = 1, the proof is trivial. Assume for k = n: if Vi = Vi−1, then Vn =
Vi−1, ∀n ≥ i. Now, if Vi = Vi−1, then Vn+1 = ∆(Vn) = ∆(Vi−1) = Vi = Vi−1,
∀n + 1 ≥ i. By induction, the theorem holds.

Now we want to relate the condition for the set of vertices reaching a steady
state to the number of accepting paths. The following theorem shows that when
Vi = Vi−1, the number of paths of length i from q0 to accepting vertices is the
same as the number of such paths of length i− 1.

Theorem 4. Given a DFA M corresponding to a Presburger formula with a fi-
nite number of solutions, if Vi = Vi−1, then

∑
q∈F∩Vi

Ni(q) =
∑

q∈F∩Vi−1
Ni−1(q).

Proof. Given the property in Lemma 1, every accepting path begins with any
number of 0s. Therefore, for any vertex q such that q ∈ Vi and q ∈ F , the only
edge involving q is (q, q) such that wt(q, q) = 1. Finally,

∑

q∈F∩Vi

Ni(q) =
∑

q∈F∩Vi

∑

e=(p,q)∈E

Ni−1(p) ·W (e)

=
∑

q∈F∩Vi

Ni−1(q) ·W (q, q)

=
∑

q∈F∩Vi

Ni−1(q).

Given Theorems 3 and 4, we know that when the set of vertices reaches a
steady state (Vk = Vi−1, ∀k ≥ i), the number of accepting paths does as well
(
∑

q∈F Nk(q) =
∑

q∈F Ni−1(q), ∀k ≥ i). Notice that set Vk can contain garbage
states, but the paths reaching steady state are only the accepting paths. Our
counting algorithm terminates when Vi = Vi−1 because we can be sure that the
number of accepting paths in the DFA has converged.



Algorithm 1. Counting solutions to Presburger formula.
Input: DFA M = (S, Σ, δ, q0, F ) corresponding to Presburger formula.
Output: Path length L, number of solutions to original Presburger formula such

that the value of each free variable is in the range [0, 2L − 1].
Method:

1 Construct the graph G(M) = (V, E, W ) from M .
2 V0 ← {q0}
3 i ← 0
4 repeat
5 i ← i + 1
6 Vi ← ∅
7 for all q ∈ V : ∃p ∈ Vi−1 ∧ (p, q) ∈ E do
8 Vi ← Vi ∪ q
9 Calculate Ni(q) using Theorem 2.

10 enddo
11 until Vi = Vi−1

12 L ← i− 1
13 return L,

∑
q∈F

NL(q)

Fig. 4. Algorithm 1 counts solutions to a Presburger formula.

4.5 The Counting Algorithm

The algorithm shown in Fig. 4 counts the number of accepting paths of length L
in a directed, edge-weighted graph G(M). We assume a representation of DFA
M = (S, Σ, δ, q0, F ) that includes the following pieces of information.

1. states, a list of all states in the DFA;
2. final, a flag for each state p indicating if p ∈ F ;
3. to, for each state p a list of the states q such that there exists a transition

from p to q; and
4. trans, a transition table such that an element p, q is the list of alphabet

symbols causing transition from state p to state q (note that in general this
table is quite sparse).

Notice that we are counting the number of accepting paths in a directed graph
without enumerating each accepting path. Therefore, the cost of our counting al-
gorithm is sublinear in the number of solutions. Line 1 of Algorithm 1 constructs
the directed, edge-weighted graph G(M) from DFA M . The set of vertices V
is simply the set of states S. The set of edges E is computed from the to lists
of all states. The weight matrix W is computed from the table trans. Element
W (i, j) is the count of all alphabet symbols in the list at trans(i, j). The cost
of line 1 is O(|V |+ |E|).

Lines 7–10 of Algorithm 1 consider all vertices q such that there is an edge
from a vertex p ∈ Vi−1 to vertex q. This step does not require enumeration of all
vertices q ∈ V to check if (p, q) ∈ E. Instead, the to list of each vertex p ∈ Vi−1



gives all such vertices q. The complexity of lines 7–10 is O(|E|), and the cost
clearly depends on the sparsity of table trans. At worst there is an edge from
every vertex p to every vertex q, making the worst-case time complexity of lines
7–10 O(|V |2). In general, the cost of computation is much less.

Finally, line 13 of Algorithm 1 requires only a query to the final flag of each
state, and its cost is O(|V |). The complexity of the entire algorithm depends
on the number of times lines 4–11 repeat, which is indicated by the output
parameter L. At worst, one or more accepting paths pass through all vertices of
G(M), making O(|V |) the upper bound on L. The bound on the complexity of
the entire algorithm is O(|E| · L), which is at worst O(|V |3). Empirical results
shown in Fig. 8 suggest that the complexity is subquadratic in |V |.

4.6 Implementation

MONA [28] is an automata manipulation tool that also implements decision
procedures for WS1S (Weak Second-order Theory of One Successor) and WS2S
(Weak Second-order Theory of Two Successors). The automata are represented
by shared, multi-terminal Binary Decision Diagrams. Bartzis and Bultan [22,
23] use the MONA tool’s automata package to implement their procedures for
constructing DFAs from linear constraints. The automata package includes DFA
operations such as union, intersection, complementation, and projection, used to
combine DFAs representing linear constraints into a DFA representing a Pres-
burger formula. Implementation of the counting algorithm in Sect. 4.5 invokes
functions of automata package to access the generated DFA’s state and transition
information.

5 Examples

This section considers eight example problems and gives results of using our
counting algorithm on each. Examples 1–7 come from related work [1, 2, 5, 6, 9,
7, 8]. Clauss [1] handles Examples 1–7, while Pugh [9] handles Examples 1–6.
Example 8 comes from [3] and is included to show the generality and robustness
of our algorithm. All running times were collected on a 450MHz Sparc Ultra 60.
Note that Pugh and Clauss give no running times for the application of their
techniques, so we cannot compare our running times to theirs.

For Examples 1–6, we have verified that the solution counts given by our
algorithm match those given by both Pugh and Clauss. For Example 7, we have
verified that our solution counts match those of Clauss. For Example 8, we have
verified that our solution counts match the interior miss counts reported by a
(specially-written) cache simulator. We use the DFA-construction algorithms of
Bartzis and Bultan [22, 23] to construct the DFA representation of the Presburger
formula in each example.

In order to count the number of solutions using Barvinok’s algorithm [13],
a geometric preprocessing step is necessary to express the formulas as disjoint
unions of polyhedra in all eight examples. The LattE tool’s [15] implementation



of Barvinok’s algorithm [13] does not include such a step, and for that reason,
we are unable to compare our counting method with Barvinok’s.

We use the following notation in the examples below. The sum Si and formula
Pi pertain to Example i. The notation (Σ : G : x) indicates a guarded sum: if
G is true, the value of the expression is x, otherwise it is 0. In the tables below,
horizontal lines indicate a change in L, the path length of accepting DFA paths.

Example 1. Consider the sum S1(n) =
∑n

i=1

∑i
j=3

∑5
k=j 1, which is described

by the Presburger formula P1(i, j, k; n) = 1 ≤ i ≤ n ∧ 3 ≤ j ≤ i ∧ j ≤ k ≤ 5. The
following table gives the results of using our algorithm for ten values of n. Results
include the number of solutions to the Presburger formula with n instantiated,
the time required to construct the DFA representation of the formula (given in
milliseconds), the number of states in the DFA representation of the formula,
the time required to count the number of accepting paths in the DFA (given in
milliseconds), and the path length L. We consider n = 3 to 8 because Clauss
does in [1]. We also consider four larger values of n. Pugh expresses the number
of solutions as (Σ : 3 ≤ n < 5 : 5n−12)+(Σ : 5 ≤ n : 6n−16). Clauss expresses
the number of solutions as (Σ : 3 ≤ n ≤ 5 : 1

2n2 + 3
2n−6)+(Σ : 6 ≤ n : 6n−16).

n
# of DFA # of count

Lformula time DFA time
solutions (ms) states (ms)

3 3 3 6 0.050

3
4 8 3 12 0.095
5 14 3 12 0.168
6 20 3 13 0.174
7 26 3 13 0.173

8 32 4 18 0.154
4

10 44 4 17 0.143

100 584 8 29 0.411 7

1000 5984 20 38 0.578 10

10,000 59,984 151 49 0.794 14

Example 2. Consider the sum S2(n) =
∑2n

i=1

∑min(i,2n−i)
j=1 1, which is described

by the Presburger formula P2(i, j;n) = 1 ≤ i ≤ 2n ∧ 1 ≤ j ≤ i ∧ i + j ≤ 2n.
The following table gives the results of using our algorithm for seven values of
n. We consider n = 1 to 3 because Clauss does in [1]. We also consider four
larger values of n. Both Pugh and Clauss express the number of solutions as
(Σ : 1 ≤ n : n2).



n
# of DFA # of count

Lformula time DFA time
solutions (ms) states (ms)

1 1 2 3 0.031 1

2 4 2 6 0.043 2

3 9 3 9 0.058 3

10 100 4 18 0.116 5

100 10,000 10 43 0.442 8

1000 1,000,000 42 65 0.772 11

10,000 100,000,000 619 90 1.243 15

Example 3. Consider the set of linear constraints {1 ≤ i, j ≤ n, 2i ≤ 3j} which
is described by the Presburger formula P3(i, j; n) = 1 ≤ i ∧ j ≤ n ∧ 2i ≤ 3j.
The following table gives the results of using our algorithm for sixteen values
of n. We consider n = 1 to 13 because Clauss does in [1]. We also consider
three larger values of n. Pugh expresses the number of solutions as (Σ : 1 ≤
n : 3n2+2n−n mod 2

4 ). Clauss expresses the number of solutions as (Σ : 2
3 ≤ n :

3
4n2 + 1

2n + [− 1
4 , 0]), where [− 1

4 , 0] is a periodic number.

n
# of DFA # of count

Lformula time DFA time
solutions (ms) states (ms)

1 1 2 3 0.030 1

2 4 2 5 0.040 2

3 8 2 8 0.054
34 14 2 11 0.075

5 21 2 12 0.079

6 30 2 15 0.095

4
7 40 2 16 0.099
8 52 2 19 0.120
9 65 2 20 0.117
10 80 2 21 0.126

11 96 2 21 0.131
512 114 2 24 0.145

13 133 2 23 0.146

100 7550 5 58 0.698 8

1000 750,500 14 97 1.274 11

10,000 75,005,000 139 138 2.226 14

Example 4. Calculate the number of distinct memory locations touched by the
following loop nest.

do i = 1, n +3
do j = 1, n

a[6i+9j-7] = a[6i+9j-7] + 5
enddo

enddo

This problem is equivalent to counting the number of distinct values of 6i +
9j − 7 such that 1 ≤ i ≤ n + 3 and 1 ≤ j ≤ n. The problem is described by the



Presburger formula P4(`; n) = ∃i, j : ` = 6i+9j−7 ∧ 1 ≤ i ≤ n+3 ∧ 1 ≤ j ≤ n.
The following table gives the results of using our algorithm for seven values of n.
We consider n = 3 to 5 because Clauss does in [1]. We also consider four larger
values of n. Pugh considers only n = 5 and finds the number of solutions to be
25. Clauss expresses the number of solutions as (Σ : 1 ≤ n : 5n).

n
# of DFA # of count

Lformula time DFA time
solutions (ms) states (ms)

3 15 6 18 0.143 6

4 20 7 19 0.083
7

5 25 7 19 0.080

10 50 10 27 0.174 8

100 500 31 40 0.291 11

1000 5000 76 57 0.441 14

10,000 50,000 374 72 0.711 18

Example 5. Calculate the number of distinct cache lines touched by the following
loop nest, which performs Successive Over-Relaxation.

do i = 2, n -1
do j = 2, n -1

a[i,j] = (2*a[i,j] + a[i-1,j]
+ a[i+1,j] + a[i,j-1]
+ a[i,j+1])/6

enddo
enddo

Pugh chooses a simple way of mapping array elements to cache lines. He
suggests that an array element a[i, j] maps to cache line [b(i− 1)/16c, j]. Clauss
uses the same mapping relation. We acknowledge that this mapping relation is
simplistic, but use it to get our first set of results. We extend this example to
consider a more interesting mapping relation in a second set of results below.

The problem that Pugh and Clauss consider is described by the Presburger
formula

P5a(x, y; n) = ∃i, j : 2 ≤ i ≤ n− 1 ∧ 2 ≤ j ≤ n− 1 ∧
((16x ≤ i− 1 < 16(x + 1) ∧ y = j) ∨
(16x ≤ (i− 1)− 1 < 16(x + 1) ∧ y = j) ∨
(16x ≤ (i + 1)− 1 < 16(x + 1) ∧ y = j) ∨
(16x ≤ i− 1 < 16(x + 1) ∧ y = j − 1) ∨
(16x ≤ i− 1 < 16(x + 1) ∧ y = j + 1)).

The table in Fig. 5 gives the results of using our algorithm for 37 values of
n. We consider n = 4 to 36 because Clauss does in [1]. We consider n =
500 because Pugh does in [9]. We also consider three other values of n. Pugh
expresses the number of solutions as (Σ : 3 ≤ n : n(1 + b(n − 2)/16c)) +



(Σ : n mod 16 = 1 ∧ n ≥ 17 : n − 2) Clauss expresses the number of solu-
tions as (Σ : 1 ≤ n : 1

16n2 + [ 1516 , 7
8 , 13

16 , 3
4 , 11

16 , 5
8 , 9

16 , 1
2 , 7

16 , 3
8 , 5

16 , 1
4 , 3

16 , 1
8 , 1

16 , 0]n +
[−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]).

Now we extend this example to consider a more interesting mapping relation.
An array element a[i, j] maps to cache line c = b(µa +β((i− 1)+n(j− 1)))/Bc,
where µa is the starting address of array a in memory, β is the array element
size in bytes, and B is the blocksize of the cache in bytes. Let β = 4 and B = 64.
This problem is described by the first-order logic formula

P5b(c;µa, n) = ∃i, j : 2 ≤ i ≤ n− 1 ∧ 2 ≤ j ≤ n− 1 ∧
(64c ≤ µa + 4(i− 1 + n(j − 1)) < 64(c + 1) ∨
64c ≤ µa + 4((i− 1)− 1 + n(j − 1)) < 64(c + 1) ∨
64c ≤ µa + 4((i + 1)− 1 + n(j − 1)) < 64(c + 1) ∨
64c ≤ µa + 4(i− 1 + n((j − 1)− 1)) < 64(c + 1) ∨
64c ≤ µa + 4(i− 1 + n((j + 1)− 1)) < 64(c + 1)).

Note that formula P5b(c; µa, n) is not a Presburger formula unless the value
of n is instantiated, as n · j is not a term of Presburger arithmetic. Speaking of
his simple way of mapping array elements to cache lines in [9], Pugh suggests,
“We could also assume more general mappings, in which the cache lines can
wrap from one row to another and in which we don’t know the alignment of the
first element of the array with the cache lines.” Such a mapping is exactly what
we have above, and the formulation of the general mapping is not expressible
in Presburger arithmetic for symbolic n. Therefore, Pugh would not be able to
handle such a mapping without instantiating n as we have done.

We consider a version of formula P5b(c; µa, n) simplified using the Omega
Calculator [29, 30]. The following table gives the results of using our algorithm
for µa ∈ {0, 21324} and n ∈ {100, 1000}. Note that starting address µa = 0
aligns with a cache line boundary and µa = 21, 324 does not, accounting for the
different solution counts. Also note that solution counts differ between formulas
P5a and P5b, with counts for the latter formula being no larger than the former.
This is as expected, being the result of cache lines wrapping across rows of the
array.

µa n
# of DFA # of count

Lformula time DFA time
solutions (ms) states (ms)

0
100 625 23 19 0.142 10
1000 62,500 3604 30 0.188 16

21,324
100 626 35 28 0.179 10
1000 62,501 3526 46 0.365 16

Example 6. Consider the sum S6(m,n) =
∑n

i=1

∑i
j=1

∑m
k=j 1, which is described

by Presburger formula P6(i, j, k;m,n) = 1 ≤ i ≤ n ∧ 1 ≤ j ≤ i ∧ j ≤ k ≤ m.
The following table gives the results of using our algorithm for several val-
ues of m and n. We consider m = 4 to 7 and n = 4 because Clauss does



n
# of DFA # of count

Lformula time DFA time
solutions (ms) states (ms)

4 4 64 6 0.041

3
5 5 65 7 0.045
6 6 65 7 0.045
7 7 67 7 0.044

8 8 65 8 0.050

4

9 9 70 9 0.054
10 10 67 9 0.055
11 11 71 9 0.052
12 12 69 9 0.053
13 13 72 10 0.063
14 14 70 10 0.064
15 15 72 9 0.051

16 16 69 10 0.062

5

17 32 85 21 0.110
18 36 75 22 0.110
19 38 92 20 0.103
20 40 90 20 0.101
21 42 91 22 0.111
22 44 91 22 0.107
23 46 91 19 0.100
24 48 86 19 0.098
25 50 93 23 0.115
26 52 86 23 0.114
27 54 92 21 0.105
28 56 90 21 0.130
29 58 92 23 0.114
30 60 91 23 0.115
31 62 92 18 0.091

32 64 76 19 0.095

6
33 97 104 35 0.255
34 102 88 35 0.243
35 105 109 32 0.227
36 108 101 32 0.228

100 700 148 50 0.475 7

500 16,000 212 76 0.826 9

1000 63,000 243 96 1.112 10

10,000 6,250,000 770 151 2.368 14

Fig. 5. Results of using our counting algorithm on Presburger formula P5a(x, y; n).



in [1]. We also consider four larger values of m and n. Pugh expresses the
number of solutions as (Σ : 1 ≤ n ≤ m : mn2

2 − n3

6 + nm
2 + n

6 ) + (Σ : 1 ≤
m < n : m2n

2 − m3

6 + nm
2 + m

6 ). Clauss expresses the number of solutions as
(Σ : 1 ≤ n ≤ m : −n3

6 + n2m
2 + nm

2 + n
6 )+(Σ : 1 ≤ m ≤ n : −m3

6 + m2n
2 + mn

2 + m
6 ).

m n
# of DFA # of count

Lformula time DFA time
solutions (ms) states (ms)

4 4 30 3 14 0.197

3
5 4 40 2 15 0.196
6 4 50 2 17 0.145
7 4 60 2 14 0.184

10 10 385 4 31 0.524 4

100 100 338,350 11 87 1.657 7

1000 1000 333,833,500 32 136 3.079 10

10,000 10,000 333,383,335,000 284 198 5.340 14

Example 7. Calculate the number of flops for the following loop nest.

do i = 0, n

do j = 0, i+m /2
do k = 0, i-n +p

a[i,j,k] = a[i,j,k-1] + a[k,j,k] * a[i,k,k]
enddo

enddo
enddo

More precisely, Clauss calculates the number of iterations in the loop nest.
This problem is described by the Presburger formula P7(i, j, k;m,n, p) = 0 ≤
i ≤ n ∧ 0 ≤ j ≤ i + m/2 ∧ 0 ≤ k ≤ i− n + p. We consider m = 1 to 8, n = 9,
and p = 1 to 8 because Clauss does in [1], and show those results in Fig. 6. In
the following table, we consider larger values of m, n, and p. Clauss expresses
the number of solutions as (Σ : n > p : 1

2np2 + 3
2np + n + 1

4mp2 + 3
4mp + 1

2m−
1
6p3 + [− 1

4 , 0]mp2 + [ 5
12 , 7

6 ]mp + [ 12 , 1]m).

n m, p
# of DFA # of count

Lformula time DFA time
solutions (ms) states (ms)

11 10 902 3 20 0.152 5

101 100 611,252 6 48 0.608 8

1001 1000 586,087,502 19 81 1.073 11

10,001 10,000 583,608,375,002 205 115 1.975 14

Example 8. Consider Presburger formula P8(j1, j2, s, d; µX) in Fig. 7. This for-
mula represents the interior misses incurred by array X due to interference from
array A during a matrix-vector multiplication. See [3] for a more detailed de-
scription of the matrix-vector multiply loop nest and the execution parameters.



p 1 2 3 4
# of DFA # of count # of DFA # of count # of DFA # of count # of DFA # of count

m solns (ms) states (ms) solns (ms) states (ms) solns (ms) states (ms) solns (ms) states (ms)

1 29 3 9 0.069 56 3 10 0.080 90 3 11 0.090 130 3 12 0.096
2 32 3 9 0.068 62 3 13 0.168 100 3 12 0.093 145 3 15 0.177
3 32 3 9 0.069 62 3 13 0.166 100 3 12 0.094 145 3 15 0.176
4 35 3 9 0.071 68 3 12 0.093 110 3 13 0.168 160 3 13 0.096
5 35 3 9 0.072 68 3 12 0.091 110 3 13 0.167 160 3 13 0.098
6 38 3 9 0.068 74 3 13 0.168 120 3 12 0.091 175 3 15 0.179
7 38 3 9 0.070 74 3 13 0.167 120 3 12 0.091 175 3 15 0.181
8 41 3 9 0.069 80 3 12 0.095 130 3 13 0.168 190 3 14 0.173

p 5 6 7 8
# of DFA # of count # of DFA # of count # of DFA # of count # of DFA # of count

m solns (ms) states (ms) solns (ms) states (ms) solns (ms) states (ms) solns (ms) states (ms)

1 175 3 13 0.164 224 2 13 0.098 276 3 15 0.177 330 2 14 0.173
2 196 3 14 0.170 252 3 17 0.127 312 3 16 0.181 375 3 18 0.129
3 196 3 14 0.171 252 3 17 0.124 312 3 16 0.183 375 3 18 0.130
4 217 3 15 0.177 280 3 16 0.185 348 3 17 0.124 420 3 16 0.180
5 217 3 15 0.178 280 3 16 0.186 348 3 17 0.125 420 3 16 0.178
6 238 3 14 0.172 308 3 17 0.129 384 3 15 0.278 465 3 18 0.127
7 238 3 14 0.171 308 3 17 0.127 384 3 15 0.181 465 3 18 0.132
8 259 3 15 0.182 336 3 15 0.177 420 3 17 0.128 510 3 17 0.125

Fig. 6. Results of using our counting algorithm on Presburger formula P7(i, j, k; m, n, p)
for m = 1 to 8, n = 9, and p = 1 to 8. In all cases, the path length L is 4.

(j2 = 0 ∧ (∃α : 1 ≤ j1 ≤ 99 ∧ 0 ≤ s ≤ 255 ∧ α < d ∧ 32s + 8192d ≤ µX ∧ 800j1 + 8192d ≤ 792 + µX + 8192α

∧ µX ≤ 31 + 32s + 8192d ∧ s + 256α < 25j1)) ∨ (∃α : 1 ≤ j1 ≤ 99 ∧ 0 ≤ s ≤ 255 ∧ 1 ≤ j2 ∧
925 + 100j1 + j2 ≤ 1024d + 4s ∧ 8192d + 32s ≤ µX + 8j2 ∧ µX + 8j2 ≤ 7 + 8192d + 32s ∧

100j1 + j2 ≤ 99 + 4s + 1024α ∧ s + 256α < 25j1) ∨ (∃α : 0 ≤ j1 ≤ 99 ∧ 0 ≤ s ≤ 255 ∧ j2 ≤ 99 ∧
25j1 ≤ s + 256α ∧ 8192d + 32s ≤ µX + 8j2 ∧ µX + 8j2 ≤ 7 + 8192d + 32s ∧ 4s + 1024α < 100j1 + j2

∧ 256 + 25j1 ≤ 256d + s) ∨ (∃α : 0 ≤ j1 ≤ 99 ∧ 0 ≤ j2 ≤ 99 ∧ 0 ≤ s ≤ 255 ∧ 8192d + 32s ≤ µX + 8j2 ∧
µX + 8j2 ≤ 31 + 8192d + 32s ∧ 1021 + 100j1 + j2 ≤ 1024d + 4s ∧ 100j1 + j2 ≤ 3 + 4s + 1024α ∧

4s + 1024α ≤ 100j1 + j2) ∨ (j2 = 0 ∧ (∃α : 1 ≤ j1 ≤ 99 ∧ 0 ≤ s ≤ 255 ∧ 257 + s + 256d ≤ 25j1 ∧
32s + 8192d ≤ µX ∧ 800j1 + 8192d ≤ 792 + µX + 8192α ∧ µX ≤ 31 + 32s + 8192d ∧ s + 256α < 25j1))

∨ (∃α : 1 ≤ j1 ≤ 99 ∧ 0 ≤ s ≤ 255 ∧ 1 ≤ j2 ∧ 257 + 256d + s ≤ 25j1 ∧ 8192d + 32s ≤ µX + 8j2 ∧
µX + 8j2 ≤ 7 + 8192d + 32s ∧ 100j1 + j2 ≤ 99 + 4s + 1024α ∧ s + 256α < 25j1) ∨ (∃α : 0 ≤ j1 ≤ 99 ∧
0 ≤ s ≤ 255 ∧ j2 ≤ 99 ∧ 25j1 ≤ s + 256α ∧ 8192d + 32s ≤ µX + 8j2 ∧ µX + 8j2 ≤ 7 + 8192d + 32s ∧

4s + 1024α < 100j1 + j2 ∧ 1025 + 1024d + 4s ≤ 100j1 + j2) ∨ (∃α : 0 ≤ j1 ≤ 99 ∧ 0 ≤ j2 ≤ 99 ∧
0 ≤ s ≤ 255 ∧ 8192d + 32s ≤ µX + 8j2 ∧ µX + 8j2 ≤ 31 + 8192d + 32s ∧ 1024 + 1024d + 4s ≤ 100j1 + j2

∧ 100j1 + j2 ≤ 3 + 4s + 1024α ∧ 4s + 1024α ≤ 100j1 + j2)

Fig. 7. Presburger formula P8(j1, j2, s, d; µX) describing interior misses on array X due
to interference from array A during matrix-vector multiply.

In the formula, µX is a symbolic constant and it represents the starting ad-
dress of array X in memory. The following table gives the results of using our
algorithm for three values of µX . Example 8 demonstrates our claim that our
algorithm can handle non-smooth formulas. The other seven examples are quite
continuous, but this formula is very “spikey” for various values of µX (as Fig. 2
in Fricker et al. [12] shows).

µX

# of DFA # of count
Lformula time DFA time

solutions (ms) states (ms)

81,920 325 978 109 1.770 7

80,000 225 929 110 1.660
8

85,440 250 800 126 2.125

Observations. The following are five noteworthy observations on the results.
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Fig. 8. Path counting time (in milliseconds) versus the number of states for 160 DFAs.
The curve y = 0.0025x1.4 is fitted to the data.

1. The number of DFA states does not grow significantly as the values of the
size constants increase, showing good scalability.

2. For all 160 DFAs considered in this section, Fig. 8 plots the time required
to count all accepting paths against the number of DFA states. This figure
illustrates a subquadratic relationship between the number of states and
counting time. Notice that counting time is markedly sublinear in the number
of solutions.

3. The running times show that the counting algorithm is far less expensive that
the DFA-construction algorithms of Bartzis and Bultan [22, 23]. However,
both are clearly quite fast.

4. Only formulas P5b(c;µa, n) and P8(j1, j2, s, d;µX) require simplification be-
fore our counting method is applied. For formula P5b, the total amount of
time to simplify all instantiations is less than 0.5 seconds. For formula P8,
the total amount of time to simplify all instantiations is less than 0.3 seconds.
The Omega Calculator [29, 30] is used for all simplifications.

5. The example formulas presented here contain large values, often up to 10,000.
The fast running times demonstrate that our counting method can handle
such values.

6 Conclusions and Future Work

We have presented an automata-theoretic algorithm for counting integer solu-
tions to selected free variables of a Presburger formula. Demonstration of our
counting algorithm on eight examples shows that it is robust, universal, fast,
and scalable. The time required to count all accepting paths scales well with the
number of DFA states and solutions.



The polyhedral methods of Pugh and Clauss and our automata-theoretic
method have complementary strengths. While the formulas in Figs. 1 and 2.b
would produce the same DFA in the end, the DFA construction time for the
formula of Fig. 1 would be prohibitively large. We therefore routinely simplify
complicated Presburger formulas such as the one in Fig. 1, P5b, and P8 as much as
possible using the Omega Calculator before constructing the DFAs and counting
solutions. On the other hand, by instantiating the symbolic parameters, our
counting algorithm can handle non-smooth formulas that are too difficult to
handle symbolically using polyhedral methods. Therefore, in cases where the
symbolic methods of Pugh and Clauss can be used simply and quickly, they
should be. For cases which are difficult or impossible for the methods of Pugh
and Clauss to handle, our counting algorithm is a nice alternative. Our algorithm
could also be effectively used as a subroutine in Clauss’ method to count the
number of solutions for the necessary number of small-sized polyhedra.
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