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ABSTRACT hull of S is a region of the Delaunay tessellation.

Delaunay tessellations and Voronoi diagrams capture
proximity relationships among sets of points. When
applied to points representing protein atoms or residue
positions, they are used to compute molecular surfaces
and protein volumes, to define cavities and pockets, to an-
alyze and score packing interactions, and to find structural
motifs. Since atom and residue coordinates are known
imprecisely, we explore the effect of coordinate pertur-
bation on Delaunay-based scoring and motif finding. We
define and compute the almost-Delaunay tetrahedravhich
are tetrahedra that can become part of a Delaunay tes-
sellation if the point coordinates are perturbed by at most
e > 0, and the probability that each is Delaunay assuming
random Gaussian perturbations of all points. By analyzing
these tetrahedra, we show that Delaunay four-body
potential functions are robust and derive a new method to
detect structural motifs. An implementation in MATLAB is
available from http://www.cs.unc.eda/debug/papers/AlmDel

Fig. 1. Two-dimensional Voronoi diagram (dashed) and Delaunay
tessellation (solid) for sites—h Shows circumcircle for\cfg.

Figure 1 illustrates the two-dimensional Voronoi and
Delaunay for sitesa—h Codes for computing both are
available in standalone programs (Barber et al., 1996;
Watson, 1981) and packages such as MATLAB (www.
mathworks.com).

Richards (1974) pioneered the use of Voronoi diagrams
to compute protein volumes. This has been an active
research area, with more detailed empirical analysis of
parameters (Gerstein et al., 1995; Tsai et al., 1999; Tsai
INTRODUCTION and Gerstein, 2002), with refinements on the definition
The Voronoi diagram and Delaunay tessellation, which argf the surface, often by interaction with randomly placed
geometric structures defined for sets of points, have foundolvent molecules (Liao et al., 2001; McConkey et al.,
use in many areas of science and engineering (Aurenham902; Soyer et al., 2000), and with analysis of differential
mer, 1991; de Berg et al., 2000; Boissonnat and Yvinecpacking in the core and surface regions (Gerstein et al.,
1998; Okabe et al., 1992). Below, we survey a numben995; Liang and Dill, 2001).
of applications in computational molecular biology, in- The Delaunay tessellation gives structure that can
cluding scoring packing interactions and finding structurahelp define and detect pockets and cavities in pro-
motifs. It is natural to ask whether these analyses are staeins (Bakowies and van Gunsteren, 2002; Liang et al.,
ble and robust under changes to the input coordinates. I1998), and even to analyze mechanical properties of
this work we complement the empirical answers given forproteins (Kobayashi et al., 1997).
specific applications with a mathematical approach that Both the Voronoi and Delaunay have been used to score
considers the possible structures that could be defined hgsidue interactions in folded proteins and decoys. The
nearby inputs. contact area between Voronoi regions of residues has

For a finite setP € R® of point sites the Voronoi  been incorporated into 2-body (Zimmer et al., 1998) and
diagramis the decomposition of space into regions withgeometric potentials (Angelov et al., 2002).
the same set of closest neighbor sites (Voronoi, 1908). The Delaunay tessellation collects sets of four “neigh-
The Delaunay tessellatiors a decomposition of the same boring” representative points into tetrahedra, as defined in
space based on an “empty sphere property:” (Delaunayhe next section. Researchers have analyzed the frequency
1934) if a subset of sites§ C P, lie on the boundary of of occurrence of different amino acid types in tetrahedra
a sphere that is otherwise empty of sites, then the convex develop empirical four-body potentials to score folded
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proteins and try to distinguish the native state from de-et al. point out that the analysis of volumes at the surface
coys (Carter et al., 2001; Krishnamoorthy and Tropshais sensitive to the radii chosen for water molecules, and to
2003; Munson and Singh, 1997; Singh et al., 1996; Wethe method of defining bisecting planes for atoms of dif-
berndorfer et al., 1999). The four-body potentials compleferent sizes.
ment fragment-based methods (Simons et al., 1997) andEmpirical analysis is more difficult for fold scoring,
pairwise potentials (Miyazawa and Jernigan, 1996) to capbecause we are unlikely to have a significant number of
ture favorable or unfavorable packing interactions. Simpliindependent structures to test significance. Carter et al.
cial Neighborhood Analysis of Protein Packing (SNAPP)(2001) correlated empirical folding free energy change
(http://mmisun4.pha.unc.edu/psw/3dworkbench hwwas devel- AAG with SNAPP scores of mutant vs. wild type
oped to exploit Delaunay tessellation as a computationgroteins. Cammer and Tropsha, in unpublished work,
structural biology tool. observed that four-body statistical potentials derived with
Voronoi and Delaunay structures have also been useDelaunay tessellation of’, vs. side chain centroid
in the search for local motifs. Wernisch et al. (1999) useepresentations are similar but not identical.
the Voronoi contacts to partition proteins into structural Empirical analysis has another difficulty: even when
domains with minimal interaction between them. Wakothere is enough evidence to support an observed phe-
and Yamato (1998) compute the Delaunay tessellation aiomenon, it can be difficult to assess whether the root
C, carbons and find patterns of the backbone sequenaause is biological, or purely geometric. For example, a
among Delaunay neighbors to identify local motifs for study of Voronoi faces (regions with two closest sites)

helices and sheets. observed that the faces on the surface had an average
» of 5.03 edges (Angelov et al., 2002). In fact, this av-
Stability and robustness erage is determined by the number of fagesnd the

We would like to know if these Delaunay and Voronoi genus (number of holeg) according to Euler’s relation:
analyses are stable and robust under changes to the inpyt,, = 6 + (12¢g — 12)/f. Thus, only for proteins with
coordinates. The Delaunay and Voronoi themselves arabout a dozen surface faces and no holes can the average
not robust: small changes to the coordinates of nearly cdse close to 5.

spherical input points can cause large changes to the set of

regions in both diagrams.

In this paper, we consider which additional sets ofDEFINITIONS AND METHODS
sites could become edges, triangles, or tetrahedra d&fonsider, by way of example, a finite set of points, or
the Delaunay tessellation if all sites are perturbed by &ites representing th€’, positions of the residues of a
minimum amounte > (. We can also calculate the protein. We assume, to make description easier, that the
probability that a set is in a Delaunay tessellation if thesites are in general position—no four lie on a common
perturbations are random Gaussian distributions. plane and no five lie on a common sphere. We begin with

The Definitions and Methods section gives formalsome definitions that are standard in geometry (de Berg
definitions and their properties. The Algorithms sectionet al., 2000; Boissonnat and Yvinec, 1998).
sketches how to compute the almost-Delaunay threshold A k-simplexis the convex hull oft + 1 affinely inde-
and Delaunay probability for a tetrahedron. Our generapendent points, called theerticesof the simplex. In 3D,
framework of almost-Delaunay simplices in arbitrary we have 3-simplices (tetrahedra), 2-simplices (triangles),
dimensions, their geometrical properties and algorithmd4.-simplices (edges), and 0-simplices (vertices). Dee
to compute them are covered in a companion paper itaunay tessellatiortonsists of simplices with the empty
Computational Geometry (Bandyopadhyay and Snoeyinksphere property: a simplex is Delaunay if and only if some
2004). In the Discussion, we focus on three questions: howphere circumscribing the vertices is empty of other sites.
do additional tetrahedra introduced by perturbation affecthe vertices of a Delaunay simplex are “neighbors” in the
point sets (from random to proteins), how do they affectsense that some point (the circumcenter) is closer to them
statistical potentials, and how can they help recognize¢han the rest of the sites—thus, the vertices of a Delaunay
structural motifs? simplex define a region in the Voronoi diagram.

There has been empirical work on estimating the robust- Any simplex that is not Delaunay could become Delau-
ness of Voronoi and Delaunay analysis. The best studied isay if the sites move to satisfy the empty sphere property.
the problem of estimating volumes for surface moleculesSuppose that by moving siteB® = {pi,p2,...,pn}
Empirical stability analysis has been performed by comto P’ C {p},...,p,}, we can make the simplex
puting the volumes of many copies of a protein during a{p}, ..., p,} be empty. We measure this motion by the
molecular dynamics computation (Gerstein et al., 1995)maximum distance ary, is from p;, and say that simplex
or by checking thirty thousand crystallographic structures{p/, ..., p,} is in AD(e). The minimum distance is
for small organic compounds (Tsai et al., 1999). Gersteidenoted theAD thresholdof the simplex. For example,
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Delaunay simplices have threshold 0. Figure 2(a) showsunning time.

a small movement in our two-dimensional example that Delaunay probability:The almost-Delaunay simplices
makesh f a Delaunay edge. Note that we allow all sites toAD(¢), as defined, capture a worst-case scenario for
move—not just the vertices of the simplex. perturbations of size. For the typical case, assuming
known, independent probability distributions for the
positional uncertainty of each site, we may compute the
probability of each tetrahedron occurring in the Delaunay
tessellation. We are able to express thadaunay proba-
bility for each tetrahedron as an integration problem that
can be approximated by Monte Carlo methods (Bandy-
opadhyay and Snoeyink, 2004). We can show that the
almost-Delaunay tetrahedra with smallare the only
ones that need to be considered; an efficient procedure for

Fig. 2.a) Movement can makef into a Delaunay edge, and triangle generating a"AD(E) tetrahedra allows us to scale our

bef andbfg into Delaunay triangles. b) The smallest movement ca\n"’malySis to proteins.
be found from a minimum-width annulus.
SNAPP

Simplicial Neighborhood Analysis of Protein Packing

ALGORITHM (SNAPP) scores protein structures using the likelihood
The computation of almost-Delaunay thresholds can bef neighboring four-tuples of residues from the Delaunay
expressed as a computational metrology problem ofessellation of their sidechain centroids. Carter et al.
measuring roundness of a manufactured object (Garcig2001) observed the frequencies of the 8855 unique
Lopez et al., 1998).Two parameters help us speed up owombinations from choosing 4 of 20 amino acids with
algorithm for proteins: replacement in a training set of 1100 proteins selected
Edge Length Prunein proteins, only residues within to span different folds and families. Krishnamoorthy and
about 10A are close enough to be considered neighbordropsha (2003) additionally divide the tetrahedra into five
for evaluating contacts, packing, and volume occupancyclasses, based on adjacency of their residues along the
Thus, we prune all edges longer thareaiye-length prune backbone. Afour-body potential tableecords the log-
parameter, and all simplices that contain a long edgdikelihood of each four-tuple in the Delaunay tessellations
We follow the work on SNAPP (Carter et al., 2001) andof proteins in the training set. Each new protein structure
use a 10A prune in this paper; we have experimentedis scored by summing the potentials of its own Delaunay
with values from 84, where the first few AD tetrahedra tetrahedra. Krishnamoorthy and Tropsha (2003) weight
typically appear, to 14. each tetrahedron’s score by tetrahedron type (specifically,

Threshold CutoffTo study the effects of perturbation by the ratio of the type’s frequency to its frequency in
on the Delaunay tessellation of protein coordinates fronthe training set), which improves discrimination between
the PDB (www.rcsb.org, certain small ranges of threshold native proteins and decoys.
e are of interest. Rounding in the coordinates to two We evaluated the sensitivity of the SNAPP scores to a
decimal places is captured by perturbations of at mosthange in the Delaunay tessellation in two ways, which
0.01 A. Possible errors in the last digit are captured bycorrespond roughly to average and worst-case perturba-
perturbations of 0.A. Uncertainties of atom position due tions. For average case, we estimated the Delaunay proba-
to thermal motion, X-ray refinement resolution, choicebility (Bandyopadhyay and Snoeyink, 2004) of each tetra-
of representative point for a residue, or configurationahedron, and evaluated new potentials and new scores by
change could make ranges up to @51 A, or 2 A weighting each tetrahedron by its probability. We assumed
worthy of study. We use A as athreshold cutoffin  that the average radius of perturbation wasA.For the
our experiments unless otherwise stated, covering all thevorst case, we used the subset of the AD tetrahedra with
above ranges of perturbation. threshold at most 0.8, in addition to the Delaunay tetra-

We run our experiments with a MATLAB implemen- hedra D+AD-SNAPB or instead of the Delaunay tetrahe-
tation of this algorithm, available oittp://www.cs.unc.edu/ dra (AD-SNAPR. This threshold cutoff was chosen so that
~debug/papers/AimDelt takes a few seconds to a minute on almost every residue is touched by some AD tetrahedron.
a 2.0GHz computer to compute almost-Delaunay thresh- When comparing scores, one must be aware of their
olds for a typical protein chain with 100-600 residues forsensitivity to the number of tetrahedra. The SNAPP
typical values of cutoff and prune parameters. The comscores as defined in Carter et al. (2001) tend to increase
panion paper (Bandyopadhyay and Snoeyink, 2004) hasith the number of Delaunay tetrahedra, since more
more details of the algorithm and a detailed analysis oDelaunay tetrahedra indicate better packing. The sum of
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the Delaunay probabilities of AD(0.3) tetrahedra for all size range (62-68 residues) for which we knew we had
proteins in our training set are within 99-101% of thea good set of decoys from the Decoys 'R’ Us database
number of Delaunay tetrahedra at any value of edge lengttBamudrala and Levitt, 2000). We chose an AD threshold
prune. ThusDelaunay-probability SNAPRnd original  cutoff of 2A and pruned edges that were longer thari10
SNAPP scores can be compared directly. Because the packing density is important in Voronoi and
When we augment the Delaunay with additional almostDelaunay analysis (Gerstein et al., 1995; Liang and Dill,
Delaunay tetrahedra, however, the SNAPP score shoul2l001), we selected point sets that fit in a bounding box
not automatically increase. In fact, we have seen that moreith sides of 20-2%, with the exception of chains from
AD tetrahedra may indicate lower stability and worserandom walks.
packing. To perform comparisons between Delaunay, AD

or D+AD-SNAPP, therefore, we may divide each residue’s Umfor_m Ran_dom33 nstances .Of 64 randomly gener-
ated points, uniformly distributed in a 20cube.

score by the number of tetrahedra it appears in (per'reS'dueNon—CoIIiding Random Walkss3 instances of 64-step

local averaging, or divide the total score for a protein by random walks generated by removing packing potentials
the total number of Delaunay, AD or D+AD tetrahedraf 9 lo cha y Tef Ig P h gp |
used to compute itglobal averaging. Global averaging rom a Monte C?‘“’ chain-growing algorithm (Ganetal.,

' 2000, 2001), reimplemented by David O’'Brien. Tog

g?\ISA;h: s?:cci)\:gmve\l/ﬂﬁ:hoglgv?/\g?‘g]rge;lsisel:]%lgmmgﬁggrrl ;Saé’:larbons of the chain backbone are grown on a 3-1-1 lattice
' P with angle constraints on each step and irftgreistances

the profile of the per-residue scores from local averaging. : .
. reater than unity. These do not respect the bounding box.
We adapted the C++ code of Krishnamoorthy and’ Folded Chains with MJ Potential33 instances from

Tropsha (2003) to evaluate log-likelihood potentials an(éhe above chain-growing algorithm, using a pairwise
compute SNAPP scores using Delaunay probability anotential (Miyazawa and Jernigan, 1996) for the 65

almost-Delaunay tetrahedra. The training set was picker sidue protein 2cro and enforcing a 20-&%oundin
from the CulledPDB and WHATIF databases as describe X in-lik 9 hi 9 hod
by Krishnamoorthy and Tropsha (2003). We generate oXx to generate more protein- ke structures. This metho

. ; ) ... does not do a good job of growing secondary structure.
tables of 4-body potentials using Delaunay probabilities

) . ’ Decoys 'R’ Us:33 instances from thdstatereduced
+ .
and using AD or D+AD tetrahedr_a, \.N.h'Ch show the Samedecoy data set of Samudrala and Levitt (2000) that pack
trend in log-likelihood scores for individual four-tuples as . , 2 :
) : ) . . into a box with 20-2% sides. These are built to have good
SNAPP, with some noise. In the Discussion section we : ;
Secondary structure, but may have suboptimal packing.

compare the SNAPP scores for native proteins and their Protein Represented H,s: 33 small proteins with 60

decoys from theistatereduceddecoy set in the Decoys to 69 residues that lie in a similar bounding volume, cho-

'R’ Us database (Samudrala and Levitt, 2000), on which
the original SNAPP scores best distinguish decoys fro sen from the CulledPDB database (Wang and Dunbrack,

the native structure rTéOOOZ) for less than 25% sequence identity, better than
' 2.4 A resolution and R-factor 0.3(listed in Table 3).

RESULTS AND DISCUSSION 33Prr)(r)(t)et:(|er:nl;%epresented by Sidechain Centroitee same
We sought to answer three questions: Synthetiav-helix: 33 instances of’,, atoms of residues

1. We relax the definition of Delaunay tetrahedra toalong the helical path of radius of 2/8 with a pitch of
include almost-Delaunay tetrahedra up to someb.4 A and 3.6 residues per turn, with0.125 A uniform
thresholde. What effects does this have on datarandom noise applied tangentially and radially.
ranging from random point sets to synthetic chains

. ; . For each of these point sets, we produced histograms
to native protein structures? Are the effects differ- b P J

, ) . of the distribution of the almost-Delaunay tetrahedra for
ent whenC, or sidechain centroids are used asy,oqhoids from 0 to A, with buckets at every 0.4. In
representative points? Figure 3 we plot the mean values in each bucket, with error

2. Does the SNAPP analysis of protein packing givebars for the standard deviations. The 0 bucket contains the
similar results when applied to this enlarged setDelaunay tetrahedra only, so it is drawn darker.
of tetrahedra (whether weighted by probability or \We can make some observations from these graphs.

unweighted)? 1.) Random walk had the smallest number of Delaunay
3. Can patterns of almost-Delaunay tetrahedra be use@nd almost-Delaunay tetrahedra. This set did not respect
to recognize structural motifs? the 20—25A bounding box, so many of its tetrahedra had
o edges longer than 18 and were pruned.
Distribution of almost-Delaunay tetrahedra 2.) Thea-helix had a similar low number of tetrahedra,

To compare almost-Delaunay tetrahedra on proteins andith a striking distribution of positive almost-Delaunay
non-protein data structures, we selected a small proteithresholds: three sharp peakseat= 0.3, 0.7 and 1.2,
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Fig. 3. Mean histograms of AD threshold for different structures. (a) random points (b) random walks lattice (c) chains folded with MJ
potential (d) Decoys 'R’ Us chains (e) proteins represented'by(f) proteins represented by sidechain centroids (g) synthetielix. (h)

shows that the cumulative number of tetrahedra in the average protein grows slower than in the average random point set.

which arise from the regular geometric pattern. Althoughbecome more structured, the number of AD tetrahedra

not seen in the summary graph, individda| histograms decreases. In proteins there is a noticeable drop in the

also reveah-helix peaks; we will show that they charac- number of almost-Delaunay tetrahedra at low threshold

terize residues in-helices. values relative to the number of Delaunay tetrahedra, and
3.) Proteins represented by sidechain centroids produdée number of tetrahedra do not grow as quickly as they

the same number of Delaunay tetrahedra, but fewer Ao in random points or chains. (See Figure 3(h).)

tetrahedra than those represented’hys. With sidechain

centroids, the residue positions are more widely spaced

and the number of short edges is likely to be smaller.

The edge-length prune can be increased to compensateThe last observation suggests that fewer tetrahedra can

Individual side-chain centroid histograms do not showchange under geometric perturbation in proteins than in

differences in structure as much@ss. random point sets. This is reassuring, since we depend
4. The progression from random points, to chains withon PDB coordinates for geometric analysis of proteins.

MJ potential, to the decoys with good secondary structur&ather than place undue significance on this, however,

to the proteins shows that as the well-packed point set4€ go on to explore how statistical potentials can change
when the almost-Delaunay tetrahedra are added.
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Robustness of SNAPP analysis JTgtal SNAPP scores for native 2cro and decoys
. . = wusing Delaunay
Figure 4 plots SNAPP scores for the protein 2cro and a JI:I using Delaunay probability

L = x

150 B

L - _ =

tenth of its4statereduceddecoy set, in order of increasing

RMSD (similar data and figures are available for 1sn3,
3icb, 4rxn and 4pti on the web and in the appendix). We
used globally averaged scores computed on the AD(0.3)
tetrahedra of the sidechain centroids for most of these

100

Total SNAPP score

50

experiments. A “weighted” score means we weight eac(? % 26 36 45 51 58 68

B . a} Decoy RMSD from native structure (Angstrom}
tetrahedron type by its frequency (Krishnamoorthy an
Tropsha, 2003), in addition to weighting by Delaunay Jotal SNAPP scores for native 2cro and decoys

= using weighted Delaunay
[ using weighted Delaunay proebability
150 R

I = =1 x
H e LT o fa - e oo L
WA L R Frrd ] T e [ e

probabilities. We summarize our findings below:

1) The Delaunay-probability SNAPP score is within
+5% of the SNAPP score fa99% of the decoys, while
the weighted Delaunay-probability score also closely
follows the SNAPP score. Both unweighted and weighted
methods are able to distinguish the decoys that SNAPP can
distinguish.

2) For most of the proteins in this decoy set, the(b)
Weighted Delaunay prObab”ity SNAPP tends to increase Global avg SNAPP scores for native 2cro and decoys
the distinction between the score of the native structure ' ' oy A miG e DA ey
and some decoys with SNAPP scores close to it. Figure 7
shows one of the exceptions, where many decoy scores
higher than the native structure are worsened.

3.) Globally averaged AD-SNAPP and D+AD-SNAPP
scores loosely follow SNAPP, though SNAPP itself shows
only a weak decreasing trend with increasing RMSD. o
Weighted SNAPP scores distinguish decoys from thec) Y Decoy RMSD o etV st ctiire (AR GSErom)
native structure better than unweighted scores (Krish-
namoorthy and Tropsha, 2003), but both scores are le$dg. 4. Comparing scores of some SNAPP variants for 2cro native
successful when averaged for comparison, since th&late (darker bar at extreme left) and some decoys in order of
number of tetrahedra does play a part in the distinctionincreasing RMSD, against Delaunay based SNAPP scores (x's).
D+AD-SNAPP and AD-SNAPP scores are almost equallyt@ Deélaunay-probability vs. Delaunay (b) weighted Delaunay-
successful or unsuccessful as the averaged SNAPP scor8©Pability vs. weighted Delaunay (c) Weighted D+AD vs. globally

. averaged weighted Delaunay

4. The per-residue averaged Delaunay and Delaunay-
probability profile scores are withift6% for 99% of the
residues in our decoy set. Per-residue averaged scores
AD and D+AD SNAPP loosely follow those for SNAPP, - :
though there are outliers. 88% of residue AD-SNAPPDe'[ermlnlng secondary structure motifs

scores and 98.5% of residue D+AD-SNAPP scores in th¥Vako and Yamato (1998) suggested that the Delaunay tes-
set were withint=20% of SNAPP. sellation of backbon€’,,s gives a framework to recognize

5) Among scores computed froifi,s and sidechain structural motifs_, in proteins. The aImo;t—DeIauqay tetra-
centroids, the centroids are better able to distinguistiedra extend this framework and make it more discerning.
decoys from the native state for all our variants, as Each tetrahedron will use a set of residues that can be
observed by Krishnamoorthy and Tropsha (2003) fordenoted by their sequence numbers, such-a$1245),
SNAPP. or by a vertex use/gap pattewwoee. This pattern and the

sequential pattern,+ (1234) or eeee, occur in helical

These comparisons allow us to make the followingregions of a protein (Singh et al., 1996).
claim: the Delaunay tessellation is a robust measure of the Wako and Yamato (1998) define a code for each
quality of protein packing as evidenced by the invarianceDelaunay tetrahedron based on relative ordering of the
of relative SNAPP scores between proteins and decoygertices of7 and its up to four neighbors. They show
and the numeric similarity of total and profile Delaunay- example superpositions of common structures that have
probability SNAPP and Delaunay SNAPP scores. Furthethe same codes. Not all common structures will have
analysis of the discrepancies between the scores mdkie same code, however; changes to the Delaunay due to
indicate structures and residues where using the Delaungerturbation of coordinates can change the codes.
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2
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By considering the almost-Delaunay tetrahedra we can so0Hlistogram for 2cro C_oc s, 64 residues
. No pattern
search for patterns in the backbone sequence and the 22 Fatiorn with 2 gang in 6
threshold values at which they arise, and detect motifs 200 Consecuive panern ||

more accurately and robustly. We wrote a MATLAB g
program to tabulate the frequent patterns for tetrahedra &
and the associated distributions of AD threshold, and
applied it initially to synthetic models of secondary o =
structure motifs, such as the-helices described earlier. (@ g AD Thréshold

. . . e istogram for 2cro SC-centroids, 64 residues
For each motif and its associated patterns, we modified 4ce R
the histogram plot of AD thresholds to draw a stacked 300 = E::t::m:t:ig:gsn'":,
bar chart of the AD tetrahedra classified according to the
pattern they fall into. Theggattern histogramsan reveal

1.5 2

200

Frequency

the structural motifs in regular histograms. We use them 100
to discriminate three basic secondary structure elements: N
a-helices,3-sheets ang-turns. ) °° 0% Ao Thrdshola | 0 2
Discriminating thea-helix The Delaunay tessellation of 2elRorrasdecoy with min RMSD, & oo, 04 residites
the a-helix is built on two repeating patterns mentioned Patfern 'with 3 gaps in 7
300 Pattern with 1 gap in 5 H

above. The almost-Delaunay tetrahedra add several pat- Conseeutive pattern
terns with characteristic threshold values that are detailed o
in Table 1, and visible in Figure 3(g).

Freﬂuenc%

w(e) o(e) Patterns

0 0.00 eeee o000 (C)

0.31 0.11 eceee eee00

0.64 0.03 eecoee Fig. 5. Comparing the pattern histograms of 2cro and its decoys.
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Table 1. Patterns ford D (¢) tetrahedra in a synthetie-helix. Prune keep threSh_OIdS between 0.2-0.4 for the pattems_ with one
— 10 A and cutoffe < 2 A. gap in 5 residues, between 0.6-0.9 for patterns with 2 gaps
in 6 residues, and between 0.9-1.3 for patterns with 3 gaps
In a qualitative analysis, we studied pattern histogramén 7 residues. Next we count, for each pattern, how many
for 30 proteins with varying degrees athelical content, Delaunay and AD tetrahedra use each residue. Based on
and for decoys from the Kesar and Levitt (1999) localthese counts we decide at which residuesyvamelix can
minima decoy set. Residues were represented’hg  start or end. Empirically, 4, 8 and 8 tetrahedra in two out
or sidechain centroids, the threshold cutoff was set taf the three patterns with 1, 2 and 3 gaps in sequence
2.0A, and the edge length prune was varied between 9. enough to start a helix, a total of 10 tetrahedra in all
and 12.0A. Figure 5 shows typical pattern histograms patterns is required to maintain it, and any of the 3 counts
for the protein 2cro. Thev-helical peaks are present but becoming 1 or zero is low enough to end it.
somewhat diffuse fot”,, histograms of proteins with- We observe from Table 4 that the Delaunay patterns
helical content, and are lacking for sidechain centroidsalone cannot distinguishn-helices from 3;4-helices.
and for proteins with no significant-helical content, However, filtering using AD thresholds removes most of
e.g. immunoglobulin andy-chymotrypsin. For decoys the tetrahedra ifi;; and helices, and the empirical rules
built by fixing the helix structure, thev-helical peaks for a-helix start and stop eliminate the remaining. Thus
are sharp, but there are noticeably fewwn-pattern our AD patterns are capable of distinguishing from
tetrahedra (tetrahedra whose corresponding threshold3;,-helices purely using geometric criteria.
values do not fall into the associated patterns). This Evaluation of a-helix assignment&Ve compared the
indicates poorer packing of secondary structure. It will beassignments made by our algorithm with DSSP (Kabsch
interesting to investigate non-pattern tetrahedra as a toaind Sander, 1983) for a subset of 45 proteins chosen
for distinguishing decoys from the native state. to span the different architectures in CATH (Orengo
For more quantitative analysis, we can isolate individuakt al., 1997). The numbers of residuesdirhelices were
a-helices using the patterns and AD thresholds. Wegenerally within 5-10% of DSSP, as seen in Table 2. Most
partition the AD tetrahedra by pattern and keep onlyindividual helices were correctly detected, up to an error of
the tetrahedra whose thresholds are in a range that tsvo residues in the start or end positions. These numbers
characteristic of each pattern for anhelix. That is, we indicate a good match between our method and a standard
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method fora-helix detection. We conclude that peaks in the distribution of the
The largest deviations from DSSP secondary structurdD tetrahedral thresholds are a reliableequence-
assignments can be explained by non-robustness d@idependentmeans of determining that a protein has
DSSP’s measures of hydrogen bonding. A sequence dfelix and quantifying the number and location of the
residues (118-133) in the unstructured protein 1bg5 thaielices.
looks convincingly like am-helix is classified ag-turn Discriminating5-sheetdNe investigated the AD thresh-
by DSSP since it is distorted and missing a few H-bondsold distribution of several proteins that are classified as
The PDB header records indicate a helix structure, andhainly g under the CATH classification (Orengo et al.,
the AD method finds this helix. Thus our assignment had.997). No single threshold value seems to be characteris-

50% morex-helix than DSSP on 1bg5. tic of B-sheets, and all patterns based on sequence inter-
val have a standard deviation of around 8,3ndicating a

PDBID  # a-helix (-strand B-tumn large spread and no peaks. The relative flathegssifeets
/chain  resid DSSP AD DSSP AD PRO AD makes their AD tetrahedra dependent on the positions of
i:ﬁlgA Z’go 901 803 %6 1(;0 119 1‘(‘)6 neighbors rather than on local geometry, so that picking
laorA 605 246 247 82 97 82 77 a tet_rahedr(_)n from residues on two or three strands with
1b2p 238 0 0 110 97 40 35 varying horizontal offsetgdkewy and inter-strancgepara-
1bg5 254 70 102 0 12 68 32  tiondoes notyield a pattern in the AD threshold.
1bpl 456 100 87 204 196 48 43 However, theexistenceof AD tetrahedra that span two
Lbrx 209 158 = 158 o8 1210 gyands does yield a pattern, as long as they have a
lcem 363 168 162 8 28 52 47 lativelv low threshold d 14 and luated
1div 149 48 54 46 38 13 13 relatively low threshold (we used 14) and are evaluate
1dlc 584 177 191 174 167 73 56 at a low value of the edge length prune, at mostALO
1dze 225 164 179 10 4 14 9 This pattern is seen in thmaximum gap in sequenoé
lejdA 418 128 138 105 134 43 40 the tetrahedron, which as we observed was 1, 2 or 3 in
lera 62 o 0 23 30 10 8 the case ofw-helical patterns. For two parallétstrands,
1fed 388 5 4 171 177 71 59 tetrahed fve i I the strands h
1gab 53 s 29 0 0 o 2 etrahedra consecutive in sequence along the strands have
1gmc 240 17 19 78 72 55 46 the same maximum sequence gap, so that allowing for
lhavA 216 1 11 98 78 29 37 skew in the tetrahedra, the histogram distribution of the
1hed 118 0o 0 55 35 25 16 gap shows a sharp peak with width equal to the skew,
lilg 210 142 = 143 2114 3021 corresponding to the sequence separation between the
lkapP 470 66 73 98 153 91 74 trands. F i leB-strands. th .
iy 233 90 100 0 0 29 36 strands.For anti-para e@_—s rands, the sequence gap is
1Ixa 262 40 44 70 96 60 51 distributed in a consecutive interval as the tetrahedra step
1mbn 153 118 115 0 0 6 8 from one end of the strand to another, leading to a plateau
InpoA 81 0 0 26 15 16 17 in the histogram with a gentle rise towards the center of the
loen 524 133 112 126 138 86 94

interval where skewed tetrahedra from both sides tend to

18320 221 g g 1361 1%3 1432 110 converge. Thus we can conservatively isolatetheheet
1plg 258 37 37 111 117 43 30 tetrahedra by detecting ranges in this histogram lying in
lpprtM 312 220 220 0 4 16 10 plateaus or peaks, as shown in Figure 6.
Lrie 127 8 10 4329 28 24 We can isolate the beta strands from the tetrahedra by
LrthA 543 157157 127 125 70 46 gearching for the residue on each strand that is “most
1imA 247 106 101 42 51 15 18 .o . .
1112 235 20 4 9% 63 1 51 connected” with a residue on another strand, much like
1tsg 98 10 17 4 12 39 20 we did for a-helices. We implement this search as a
1vdf 230 185 185 0 0 8 13 mutual maximum frequency of occurrence search for each
ytf 100 34 3 40 22 24 10 residue. If residue occurs most frequently in tetrahedra
2acy 98 24 24 4118 10 6 with residueb, and vice versa, then and b are most
2bnh 456 188 171 52 85 58 62 . . :
2hgf 97 9 10 28 25 26 19 connected, ano_l we choose_them as nelghbors in adjacent
2imm 114 0 0 58 57 33 17 (B-strands. In this way we build up a list of candidate strand
2vsgA 358 166 181 17 23 58 46 neighbors, and then cluster those that are in parallel or
igalaA 3?575 57§ 222 . ;311 lg; :2 gg anti-parallel sequences to complete thsheet.

c . .
sdwA 360 & 80 7 A Evaluation ofg-sheet assignmeniye tested th&g-sheet

8gch 240 51 24 78 76 55 a1 residue count as well as individual strand positions against
Table 2. Numbers ofa-helical and3-sheet residues assigned by theé DSSP values for the same 45 proteins. The results are
DSSP (Kabsch and Sander, 1983) afdurn residues assigned summarized in Table 2.

by PROMOTIF (Hutchison and Thornton, 1996), and by our AD  |n general 3-sheet determination was less accurate than

gfct:ﬁtrgcstfrr;i thresholds for 45 protein chains with different CATH , iy determination, since we could not find a signature
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based on the AD thresholds to restrict the search, ansignificantly better than Delaunay-based methods (Wako
often segments that were parallel to each other but didnd Yamato, 1998).
not have the geometry of/@sheet were misclassified, for ~ We do not compare the accuracy @fturn assignment
example, twas turns in front of adjacent parallel strands to DSSP directly, since DSSP classification @turns
in the 5-a-( protein 2bnh. To avoid this kind of error, as pairs of residues in S and T conformation (turns
we modified our method to take thehelix andS-turn  without and with hydrogen bonding) is observed to be
determinations to be more accurate, and reject detectedaccurate. Instead, we compare with the PROMOTIF
“sheets” that overlap with an-helix or ag-turn. We also  program (Hutchison and Thornton, 1996), which detects
reject sheets with less than two residues in each strantlurns based on phi and psi angles and classifies each using
Note that this method does not detect isolatedridges  the Richardson classification (Richardson, 1981).
or strands. Modeling pseudo-visual secondary structure assign-
DetectingG-turns The primary criteria for defining beta mentWe wanted to compare the results of our method,
turns (Lewis et al., 1973; Richardson, 1981; Hutchisoralong with DSSP, against a method that models assign-
and Thornton, 1994) have been that the first and fourtment of secondary structures by visual inspection of
residues in the sequence have th@jss less than 7.8  the C,, trace by a human expert, as suggested by David
apart, and the residues involved are not helical. Accordingnd Jane Richardson (personal communication). Our
to the Richardson classification that is most widely usedpseudo-visual” helix assignment is based on the idea of
at present, there are 6 distinct types of turns (I,I',11,II,Vla fitting residues on the surface of a cylinder, as described
and VIb) based on geometry and chirality, along withby (Drennan et al.). We implemented Kahn’s method
a miscellaneous category IV that captures anything naio find the helix axis (Kahn, 1989), taking the cross
fitting into the previously defined categories. product of the bisectors of the angles formed by three
The approach of Wako and Yamato (1998) does notonsecutiveC,s as the local axis direction, and using
work for all beta-turns, since beta-turns do not differleast-squares fitting. By checking that other parameters
significantly from other motifs in their sequence orderingare within normal ranges for am-helix (local curvature
and nearest-neighbor tetrahedra codes. Tropsha a®d—104, pseudo-dihedral angle 35-58ise per residue
others (Singh et al., 1996) have used tetrahedrality a.25-1.85A, and local radius2.4 + 0.3 A), we can
an additional geometric discriminator. Tetrahedrality isapproximate pretty well the visual intuition of residues
a measure of deviation of edge lengths of a tetrahedrolying on a cylinder and discriminat8,, helices from
from those of an ideal tetrahedron. It is defined as below-helices. Tolerance in the axis direction and a pass that

wherel; is the length of edgé i € {1..6}: smoothes isolated gaps in helices ensure that helices
T=> (l—1)*/15 (1)  with imperfections and even bends are assigned correctly,
i<j e.g. helix G of LMBN.

Tetrahedra that include th€,s of four residues in a  We have not yet implemented a pseudo-visual method
beta-turn have a high degree of similarity in their edgefor assignment of(3-sheets. The GAS-P program (,
lengths, which leads to a low value of tetrahedrality (lesDrennan et al.) identifies individual residuesrstrand
than 0.2). geometry using a strategy much like Kahn’s method,

We present a hybrid approach using AD tetrahedrathough it does not search for residues on adjacent strands
where we examine the AD thresholds of tetrahedra wittor model the distance and twist between strands.
four residues in sequence and wietf —~C'+3 distance The “pseudo-visual’3-turn assignment currently uses
being less than 7.8. The pattern that corresponds to athe distance criterion that is the definition ofdaturn,
[-turn is, broadly speaking, a low or zero threshold andand the condition of low tetrahedrality<( 0.2) as
low tetrahedrality at the tetrahedron that is in the turn,described above. Though tetrahedrality is not a visually
surrounded by higher thresholds on either one or botintuitive parameter, the results from this method look
sides of the turn. More precisely, we have determined &urprisingly accurate, so we include it as an alternative
different categories of turns, corresponding to thresholdnethod to compare with the AD and DSSP (PROMOTIF)
ranges as given in Table 5. Turns that overlap detectedssignments.
helices are rejected. Comparison between AD, DSSP and pseudo-visual as-

Evaluation of g-turn detection Our categories of signmeniTo compare AD and DSSP assignments alone, as
residues ing-turns do not coincide with the Richard- noted above, we generated side-by-side structural assign-
son classification (Richardson, 1981), though usuallyments for the residues in 45 protein chains representing al-
the g-turns that we miss lie in the miscellaneous (IV) most all the CATH (Orengo et al., 1997) architectures, and
category whose geometry is hardest to classify. The ABummed up the assignmentsirhelix, 5-sheet angs-turn
method performs somewhat better than combiningthe categories in Table 2. We also developed tools to convert
distance £7.0A) and tetrahedrality< 0.2) criteria, and  the AD tetrahedra and secondary structures assigned us-
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ing AD, DSSP and pseudo-visual methods into the popuKrishnamoorthy for his SNAPP scoring, and Robert Paul Berretty
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Histogram of longest gap in sequence for 1boh [B-=-F). 456 res

Fig. 6. The histogram of maximum gap in sequence for AD(1.0)
tetrahedra in lbnh shows two sharp peaks: the first at 3-4
corresponds to thew-helices, while the one at 25 indicates
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Fig. 7. Comparing scores of SNAPP variants for 1sn3 native state
(darker bar at extreme left) and some decoys in order of increasing
RMSD, against Delaunay based SNAPP scores (x's). (a) Delaunay-
probability SNAPP vs. Delaunay SNAPP (b) Weighted Delaunay-
probability SNAPP vs. weighted Delaunay SNAPP (c) D+AD-
SNAPP vs. globally averaged Delaunay SNAPP (d) Weighted
D+AD-SNAPP vs. globally averaged weighted Delaunay SNAPP

12



