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ABSTRACT
Delaunay tessellations and Voronoi diagrams capture

proximity relationships among sets of points. When
applied to points representing protein atoms or residue
positions, they are used to compute molecular surfaces
and protein volumes, to define cavities and pockets, to an-
alyze and score packing interactions, and to find structural
motifs. Since atom and residue coordinates are known
imprecisely, we explore the effect of coordinate pertur-
bation on Delaunay-based scoring and motif finding. We
define and compute the almost-Delaunay tetrahedra, which
are tetrahedra that can become part of a Delaunay tes-
sellation if the point coordinates are perturbed by at most
ε ≥ 0, and the probability that each is Delaunay assuming
random Gaussian perturbations of all points. By analyzing
these tetrahedra, we show that Delaunay four-body
potential functions are robust and derive a new method to
detect structural motifs. An implementation in MATLAB is
available from http://www.cs.unc.edu/∼debug/papers/AlmDel.

INTRODUCTION
The Voronoi diagram and Delaunay tessellation, which are
geometric structures defined for sets of points, have found
use in many areas of science and engineering (Aurenham-
mer, 1991; de Berg et al., 2000; Boissonnat and Yvinec,
1998; Okabe et al., 1992). Below, we survey a number
of applications in computational molecular biology, in-
cluding scoring packing interactions and finding structural
motifs. It is natural to ask whether these analyses are sta-
ble and robust under changes to the input coordinates. In
this work we complement the empirical answers given for
specific applications with a mathematical approach that
considers the possible structures that could be defined by
nearby inputs.

For a finite setP ∈ R3 of point sites, the Voronoi
diagram is the decomposition of space into regions with
the same set of closest neighbor sites (Voronoi, 1908).
TheDelaunay tessellationis a decomposition of the same
space based on an “empty sphere property:” (Delaunay,
1934) if a subset of sites,S ⊂ P , lie on the boundary of
a sphere that is otherwise empty of sites, then the convex

hull of S is a region of the Delaunay tessellation.
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Fig. 1. Two-dimensional Voronoi diagram (dashed) and Delaunay
tessellation (solid) for sitesa–h. Shows circumcircle for4cfg.

Figure 1 illustrates the two-dimensional Voronoi and
Delaunay for sitesa–h. Codes for computing both are
available in standalone programs (Barber et al., 1996;
Watson, 1981) and packages such as MATLAB (www.
mathworks.com).

Richards (1974) pioneered the use of Voronoi diagrams
to compute protein volumes. This has been an active
research area, with more detailed empirical analysis of
parameters (Gerstein et al., 1995; Tsai et al., 1999; Tsai
and Gerstein, 2002), with refinements on the definition
of the surface, often by interaction with randomly placed
solvent molecules (Liao et al., 2001; McConkey et al.,
2002; Soyer et al., 2000), and with analysis of differential
packing in the core and surface regions (Gerstein et al.,
1995; Liang and Dill, 2001).

The Delaunay tessellation gives structure that can
help define and detect pockets and cavities in pro-
teins (Bakowies and van Gunsteren, 2002; Liang et al.,
1998), and even to analyze mechanical properties of
proteins (Kobayashi et al., 1997).

Both the Voronoi and Delaunay have been used to score
residue interactions in folded proteins and decoys. The
contact area between Voronoi regions of residues has
been incorporated into 2-body (Zimmer et al., 1998) and
geometric potentials (Angelov et al., 2002).

The Delaunay tessellation collects sets of four “neigh-
boring” representative points into tetrahedra, as defined in
the next section. Researchers have analyzed the frequency
of occurrence of different amino acid types in tetrahedra
to develop empirical four-body potentials to score folded
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proteins and try to distinguish the native state from de-
coys (Carter et al., 2001; Krishnamoorthy and Tropsha,
2003; Munson and Singh, 1997; Singh et al., 1996; We-
berndorfer et al., 1999). The four-body potentials comple-
ment fragment-based methods (Simons et al., 1997) and
pairwise potentials (Miyazawa and Jernigan, 1996) to cap-
ture favorable or unfavorable packing interactions. Simpli-
cial Neighborhood Analysis of Protein Packing (SNAPP)
(http://mmlsun4.pha.unc.edu/psw/3dworkbench.html) was devel-
oped to exploit Delaunay tessellation as a computational
structural biology tool.

Voronoi and Delaunay structures have also been used
in the search for local motifs. Wernisch et al. (1999) use
the Voronoi contacts to partition proteins into structural
domains with minimal interaction between them. Wako
and Yamato (1998) compute the Delaunay tessellation of
Cα carbons and find patterns of the backbone sequence
among Delaunay neighbors to identify local motifs for
helices and sheets.

Stability and robustness
We would like to know if these Delaunay and Voronoi
analyses are stable and robust under changes to the input
coordinates. The Delaunay and Voronoi themselves are
not robust: small changes to the coordinates of nearly co-
spherical input points can cause large changes to the set of
regions in both diagrams.

In this paper, we consider which additional sets of
sites could become edges, triangles, or tetrahedra of
the Delaunay tessellation if all sites are perturbed by a
minimum amountε ≥ 0. We can also calculate the
probability that a set is in a Delaunay tessellation if the
perturbations are random Gaussian distributions.

The Definitions and Methods section gives formal
definitions and their properties. The Algorithms section
sketches how to compute the almost-Delaunay threshold
and Delaunay probability for a tetrahedron. Our general
framework of almost-Delaunay simplices in arbitrary
dimensions, their geometrical properties and algorithms
to compute them are covered in a companion paper in
Computational Geometry (Bandyopadhyay and Snoeyink,
2004). In the Discussion, we focus on three questions: how
do additional tetrahedra introduced by perturbation affect
point sets (from random to proteins), how do they affect
statistical potentials, and how can they help recognize
structural motifs?

There has been empirical work on estimating the robust-
ness of Voronoi and Delaunay analysis. The best studied is
the problem of estimating volumes for surface molecules.
Empirical stability analysis has been performed by com-
puting the volumes of many copies of a protein during a
molecular dynamics computation (Gerstein et al., 1995),
or by checking thirty thousand crystallographic structures
for small organic compounds (Tsai et al., 1999). Gerstein

et al. point out that the analysis of volumes at the surface
is sensitive to the radii chosen for water molecules, and to
the method of defining bisecting planes for atoms of dif-
ferent sizes.

Empirical analysis is more difficult for fold scoring,
because we are unlikely to have a significant number of
independent structures to test significance. Carter et al.
(2001) correlated empirical folding free energy change
∆∆G with SNAPP scores of mutant vs. wild type
proteins. Cammer and Tropsha, in unpublished work,
observed that four-body statistical potentials derived with
Delaunay tessellation ofCα vs. side chain centroid
representations are similar but not identical.

Empirical analysis has another difficulty: even when
there is enough evidence to support an observed phe-
nomenon, it can be difficult to assess whether the root
cause is biological, or purely geometric. For example, a
study of Voronoi faces (regions with two closest sites)
observed that the faces on the surface had an average
of 5.03 edges (Angelov et al., 2002). In fact, this av-
erage is determined by the number of facesf and the
genus (number of holes)g according to Euler’s relation:
eavg = 6 + (12g − 12)/f . Thus, only for proteins with
about a dozen surface faces and no holes can the average
be close to 5.

DEFINITIONS AND METHODS
Consider, by way of example, a finite set of points, or
sites, representing theCα positions of the residues of a
protein. We assume, to make description easier, that the
sites are in general position—no four lie on a common
plane and no five lie on a common sphere. We begin with
some definitions that are standard in geometry (de Berg
et al., 2000; Boissonnat and Yvinec, 1998).

A k-simplexis the convex hull ofk + 1 affinely inde-
pendent points, called theverticesof the simplex. In 3D,
we have 3-simplices (tetrahedra), 2-simplices (triangles),
1-simplices (edges), and 0-simplices (vertices). TheDe-
launay tessellationconsists of simplices with the empty
sphere property: a simplex is Delaunay if and only if some
sphere circumscribing the vertices is empty of other sites.
The vertices of a Delaunay simplex are “neighbors” in the
sense that some point (the circumcenter) is closer to them
than the rest of the sites—thus, the vertices of a Delaunay
simplex define a region in the Voronoi diagram.

Any simplex that is not Delaunay could become Delau-
nay if the sites move to satisfy the empty sphere property.
Suppose that by moving sitesP = {p1, p2, . . . , pn}
to P ′ ⊂ {p′1, . . . , p′n}, we can make the simplex
{p′1, . . . , p′4} be empty. We measure this motion by the
maximum distance anyp′i is frompi, and say that simplex
{p′1, . . . , p′4} is in AD(ε). The minimum distanceε is
denoted theAD thresholdof the simplex. For example,

2



Almost-Delaunay Tetrahedra

Delaunay simplices have threshold 0. Figure 2(a) shows
a small movement in our two-dimensional example that
makesbf a Delaunay edge. Note that we allow all sites to
move—not just the vertices of the simplex.
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Fig. 2.a) Movement can makebf into a Delaunay edge, and triangle
bcf andbfg into Delaunay triangles. b) The smallest movement can
be found from a minimum-width annulus.

ALGORITHM
The computation of almost-Delaunay thresholds can be
expressed as a computational metrology problem of
measuring roundness of a manufactured object (Garcia-
Lopez et al., 1998).Two parameters help us speed up our
algorithm for proteins:
Edge Length Prune:In proteins, only residues within
about 10Å are close enough to be considered neighbors
for evaluating contacts, packing, and volume occupancy.
Thus, we prune all edges longer than anedge-length prune
parameter, and all simplices that contain a long edge.
We follow the work on SNAPP (Carter et al., 2001) and
use a 10Å prune in this paper; we have experimented
with values from 8Å, where the first few AD tetrahedra
typically appear, to 15̊A.

Threshold Cutoff:To study the effects of perturbation
on the Delaunay tessellation of protein coordinates from
the PDB (www.rcsb.org), certain small ranges of threshold
ε are of interest. Rounding in the coordinates to two
decimal places is captured by perturbations of at most
0.01 Å. Possible errors in the last digit are captured by
perturbations of 0.1̊A. Uncertainties of atom position due
to thermal motion, X-ray refinement resolution, choice
of representative point for a residue, or configurational
change could make ranges up to 0.5Å, 1 Å, or 2 Å
worthy of study. We use 2̊A as a threshold cutoffin
our experiments unless otherwise stated, covering all the
above ranges of perturbation.

We run our experiments with a MATLAB implemen-
tation of this algorithm, available onhttp://www.cs.unc.edu/
∼debug/papers/AlmDel. It takes a few seconds to a minute on
a 2.0GHz computer to compute almost-Delaunay thresh-
olds for a typical protein chain with 100–600 residues for
typical values of cutoff and prune parameters. The com-
panion paper (Bandyopadhyay and Snoeyink, 2004) has
more details of the algorithm and a detailed analysis of

running time.
Delaunay probability:The almost-Delaunay simplices

AD(ε), as defined, capture a worst-case scenario for
perturbations of sizeε. For the typical case, assuming
known, independent probability distributions for the
positional uncertainty of each site, we may compute the
probability of each tetrahedron occurring in the Delaunay
tessellation. We are able to express thisDelaunay proba-
bility for each tetrahedron as an integration problem that
can be approximated by Monte Carlo methods (Bandy-
opadhyay and Snoeyink, 2004). We can show that the
almost-Delaunay tetrahedra with smallε are the only
ones that need to be considered; an efficient procedure for
generating allAD(ε) tetrahedra allows us to scale our
analysis to proteins.

SNAPP
Simplicial Neighborhood Analysis of Protein Packing
(SNAPP) scores protein structures using the likelihood
of neighboring four-tuples of residues from the Delaunay
tessellation of their sidechain centroids. Carter et al.
(2001) observed the frequencies of the 8855 unique
combinations from choosing 4 of 20 amino acids with
replacement in a training set of 1100 proteins selected
to span different folds and families. Krishnamoorthy and
Tropsha (2003) additionally divide the tetrahedra into five
classes, based on adjacency of their residues along the
backbone. Afour-body potential tablerecords the log-
likelihood of each four-tuple in the Delaunay tessellations
of proteins in the training set. Each new protein structure
is scored by summing the potentials of its own Delaunay
tetrahedra. Krishnamoorthy and Tropsha (2003) weight
each tetrahedron’s score by tetrahedron type (specifically,
by the ratio of the type’s frequency to its frequency in
the training set), which improves discrimination between
native proteins and decoys.

We evaluated the sensitivity of the SNAPP scores to a
change in the Delaunay tessellation in two ways, which
correspond roughly to average and worst-case perturba-
tions. For average case, we estimated the Delaunay proba-
bility (Bandyopadhyay and Snoeyink, 2004) of each tetra-
hedron, and evaluated new potentials and new scores by
weighting each tetrahedron by its probability. We assumed
that the average radius of perturbation was 0.1Å. For the
worst case, we used the subset of the AD tetrahedra with
threshold at most 0.3̊A, in addition to the Delaunay tetra-
hedra (D+AD-SNAPP) or instead of the Delaunay tetrahe-
dra (AD-SNAPP). This threshold cutoff was chosen so that
almost every residue is touched by some AD tetrahedron.

When comparing scores, one must be aware of their
sensitivity to the number of tetrahedra. The SNAPP
scores as defined in Carter et al. (2001) tend to increase
with the number of Delaunay tetrahedra, since more
Delaunay tetrahedra indicate better packing. The sum of
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the Delaunay probabilities of AD(0.3) tetrahedra for all
proteins in our training set are within 99–101% of the
number of Delaunay tetrahedra at any value of edge length
prune. Thus,Delaunay-probability SNAPPand original
SNAPP scores can be compared directly.

When we augment the Delaunay with additional almost-
Delaunay tetrahedra, however, the SNAPP score should
not automatically increase. In fact, we have seen that more
AD tetrahedra may indicate lower stability and worse
packing. To perform comparisons between Delaunay, AD
or D+AD-SNAPP, therefore, we may divide each residue’s
score by the number of tetrahedra it appears in (per-residue
local averaging), or divide the total score for a protein by
the total number of Delaunay, AD or D+AD tetrahedra
used to compute it (global averaging). Global averaging
has the advantage of providing a single number as a
SNAPP score, which allows for easier comparison than
the profile of the per-residue scores from local averaging.

We adapted the C++ code of Krishnamoorthy and
Tropsha (2003) to evaluate log-likelihood potentials and
compute SNAPP scores using Delaunay probability and
almost-Delaunay tetrahedra. The training set was picked
from the CulledPDB and WHATIF databases as described
by Krishnamoorthy and Tropsha (2003). We generated
tables of 4-body potentials using Delaunay probabilities,
and using AD or D+AD tetrahedra, which show the same
trend in log-likelihood scores for individual four-tuples as
SNAPP, with some noise. In the Discussion section we
compare the SNAPP scores for native proteins and their
decoys from the4statereduceddecoy set in the Decoys
’R’ Us database (Samudrala and Levitt, 2000), on which
the original SNAPP scores best distinguish decoys from
the native structure.

RESULTS AND DISCUSSION
We sought to answer three questions:

1. We relax the definition of Delaunay tetrahedra to
include almost-Delaunay tetrahedra up to some
thresholdε. What effects does this have on data
ranging from random point sets to synthetic chains
to native protein structures? Are the effects differ-
ent whenCα or sidechain centroids are used as
representative points?

2. Does the SNAPP analysis of protein packing give
similar results when applied to this enlarged set
of tetrahedra (whether weighted by probability or
unweighted)?

3. Can patterns of almost-Delaunay tetrahedra be used
to recognize structural motifs?

Distribution of almost-Delaunay tetrahedra
To compare almost-Delaunay tetrahedra on proteins and
non-protein data structures, we selected a small protein

size range (62–68 residues) for which we knew we had
a good set of decoys from the Decoys ’R’ Us database
(Samudrala and Levitt, 2000). We chose an AD threshold
cutoff of 2Å and pruned edges that were longer than 10Å.
Because the packing density is important in Voronoi and
Delaunay analysis (Gerstein et al., 1995; Liang and Dill,
2001), we selected point sets that fit in a bounding box
with sides of 20–25̊A, with the exception of chains from
random walks.

Uniform Random:33 instances of 64 randomly gener-
ated points, uniformly distributed in a 20̊A cube.

Non-Colliding Random Walks:33 instances of 64-step
random walks generated by removing packing potentials
from a Monte Carlo chain-growing algorithm (Gan et al.,
2000, 2001), reimplemented by David O’Brien. TheCα

carbons of the chain backbone are grown on a 3-1-1 lattice
with angle constraints on each step and inter-Cα distances
greater than unity. These do not respect the bounding box.

Folded Chains with MJ Potential:33 instances from
the above chain-growing algorithm, using a pairwise
potential (Miyazawa and Jernigan, 1996) for the 65
residue protein 2cro and enforcing a 20–25Å bounding
box to generate more protein-like structures. This method
does not do a good job of growing secondary structure.

Decoys ’R’ Us:33 instances from the4statereduced
decoy data set of Samudrala and Levitt (2000) that pack
into a box with 20–25̊A sides. These are built to have good
secondary structure, but may have suboptimal packing.

Protein Represented byCαs: 33 small proteins with 60
to 69 residues that lie in a similar bounding volume, cho-
sen from the CulledPDB database (Wang and Dunbrack,
2002) for less than 25% sequence identity, better than
2.4Å resolution and R-factor 0.3(listed in Table 3).

Protein Represented by Sidechain Centroids:the same
33 proteins.

Syntheticα-helix: 33 instances ofCα atoms of residues
along the helical path of radius of 2.3̊A, with a pitch of
5.4 Å and 3.6 residues per turn, with±0.125 Å uniform
random noise applied tangentially and radially.

For each of these point sets, we produced histograms
of the distribution of the almost-Delaunay tetrahedra for
thresholds from 0 to 2̊A, with buckets at every 0.1̊A. In
Figure 3 we plot the mean values in each bucket, with error
bars for the standard deviations. The 0 bucket contains the
Delaunay tetrahedra only, so it is drawn darker.

We can make some observations from these graphs.
1.) Random walk had the smallest number of Delaunay

and almost-Delaunay tetrahedra. This set did not respect
the 20–25Å bounding box, so many of its tetrahedra had
edges longer than 10̊A and were pruned.

2.) Theα-helix had a similar low number of tetrahedra,
with a striking distribution of positive almost-Delaunay
thresholds: three sharp peaks atε = 0.3, 0.7 and 1.2,
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(a) (b)

(c) (d)
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Fig. 3. Mean histograms of AD threshold for different structures. (a) random points (b) random walks lattice (c) chains folded with MJ
potential (d) Decoys ’R’ Us chains (e) proteins represented byCα (f) proteins represented by sidechain centroids (g) syntheticα-helix. (h)
shows that the cumulative number of tetrahedra in the average protein grows slower than in the average random point set.

which arise from the regular geometric pattern. Although
not seen in the summary graph, individualCα histograms
also revealα-helix peaks; we will show that they charac-
terize residues inα-helices.

3.) Proteins represented by sidechain centroids produce
the same number of Delaunay tetrahedra, but fewer AD
tetrahedra than those represented byCαs. With sidechain
centroids, the residue positions are more widely spaced
and the number of short edges is likely to be smaller.
The edge-length prune can be increased to compensate.
Individual side-chain centroid histograms do not show
differences in structure as much asCαs.

4.) The progression from random points, to chains with
MJ potential, to the decoys with good secondary structure
to the proteins shows that as the well-packed point sets

become more structured, the number of AD tetrahedra
decreases. In proteins there is a noticeable drop in the
number of almost-Delaunay tetrahedra at low threshold
values relative to the number of Delaunay tetrahedra, and
the number of tetrahedra do not grow as quickly as they
do in random points or chains. (See Figure 3(h).)

The last observation suggests that fewer tetrahedra can
change under geometric perturbation in proteins than in
random point sets. This is reassuring, since we depend
on PDB coordinates for geometric analysis of proteins.
Rather than place undue significance on this, however,
we go on to explore how statistical potentials can change
when the almost-Delaunay tetrahedra are added.
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Robustness of SNAPP analysis
Figure 4 plots SNAPP scores for the protein 2cro and a
tenth of its4statereduceddecoy set, in order of increasing
RMSD (similar data and figures are available for 1sn3,
3icb, 4rxn and 4pti on the web and in the appendix). We
used globally averaged scores computed on the AD(0.3)
tetrahedra of the sidechain centroids for most of these
experiments. A “weighted” score means we weight each
tetrahedron type by its frequency (Krishnamoorthy and
Tropsha, 2003), in addition to weighting by Delaunay
probabilities. We summarize our findings below:

1.) The Delaunay-probability SNAPP score is within
±5% of the SNAPP score for99% of the decoys, while
the weighted Delaunay-probability score also closely
follows the SNAPP score. Both unweighted and weighted
methods are able to distinguish the decoys that SNAPP can
distinguish.

2.) For most of the proteins in this decoy set, the
weighted Delaunay probability SNAPP tends to increase
the distinction between the score of the native structure
and some decoys with SNAPP scores close to it. Figure 7
shows one of the exceptions, where many decoy scores
higher than the native structure are worsened.

3.) Globally averaged AD-SNAPP and D+AD-SNAPP
scores loosely follow SNAPP, though SNAPP itself shows
only a weak decreasing trend with increasing RMSD.
Weighted SNAPP scores distinguish decoys from the
native structure better than unweighted scores (Krish-
namoorthy and Tropsha, 2003), but both scores are less
successful when averaged for comparison, since the
number of tetrahedra does play a part in the distinction.
D+AD-SNAPP and AD-SNAPP scores are almost equally
successful or unsuccessful as the averaged SNAPP scores.

4.) The per-residue averaged Delaunay and Delaunay-
probability profile scores are within±6% for 99% of the
residues in our decoy set. Per-residue averaged scores of
AD and D+AD SNAPP loosely follow those for SNAPP,
though there are outliers. 88% of residue AD-SNAPP
scores and 98.5% of residue D+AD-SNAPP scores in the
set were within±20% of SNAPP.

5.) Among scores computed fromCαs and sidechain
centroids, the centroids are better able to distinguish
decoys from the native state for all our variants, as
observed by Krishnamoorthy and Tropsha (2003) for
SNAPP.

These comparisons allow us to make the following
claim: the Delaunay tessellation is a robust measure of the
quality of protein packing as evidenced by the invariance
of relative SNAPP scores between proteins and decoys
and the numeric similarity of total and profile Delaunay-
probability SNAPP and Delaunay SNAPP scores. Further
analysis of the discrepancies between the scores may
indicate structures and residues where using the Delaunay

(a)

(b)

(c)

Fig. 4. Comparing scores of some SNAPP variants for 2cro native
state (darker bar at extreme left) and some decoys in order of
increasing RMSD, against Delaunay based SNAPP scores (x’s).
(a) Delaunay-probability vs. Delaunay (b) weighted Delaunay-
probability vs. weighted Delaunay (c) Weighted D+AD vs. globally
averaged weighted Delaunay

to calculate scores may lead to errors.

Determining secondary structure motifs
Wako and Yamato (1998) suggested that the Delaunay tes-
sellation of backboneCαs gives a framework to recognize
structural motifs in proteins. The almost-Delaunay tetra-
hedra extend this framework and make it more discerning.

Each tetrahedron will use a set of residues that can be
denoted by their sequence numbers, such asi + (1 2 4 5),
or by a vertex use/gap pattern,••◦••. This pattern and the
sequential pattern,i + (1 2 3 4) or ••••, occur in helical
regions of a protein (Singh et al., 1996).

Wako and Yamato (1998) define a code for each
Delaunay tetrahedronτ based on relative ordering of the
vertices ofτ and its up to four neighbors. They show
example superpositions of common structures that have
the same codes. Not all common structures will have
the same code, however; changes to the Delaunay due to
perturbation of coordinates can change the codes.
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By considering the almost-Delaunay tetrahedra we can
search for patterns in the backbone sequence and the
threshold values at which they arise, and detect motifs
more accurately and robustly. We wrote a MATLAB
program to tabulate the frequent patterns for tetrahedra
and the associated distributions of AD threshold, and
applied it initially to synthetic models of secondary
structure motifs, such as theα-helices described earlier.
For each motif and its associated patterns, we modified
the histogram plot of AD thresholds to draw a stacked
bar chart of the AD tetrahedra classified according to the
pattern they fall into. Thesepattern histogramscan reveal
the structural motifs in regular histograms. We use them
to discriminate three basic secondary structure elements:
α-helices,β-sheets andβ-turns.

Discriminating theα-helixThe Delaunay tessellation of
the α-helix is built on two repeating patterns mentioned
above. The almost-Delaunay tetrahedra add several pat-
terns with characteristic threshold values that are detailed
in Table 1, and visible in Figure 3(g).

µ(ε) σ(ε) Patterns
0 0.00 •••• ••◦••
0.31 0.11 •◦••• •••◦•
0.64 0.03 ••◦◦••
0.74 0.04 •◦◦••• •◦•◦•• •◦••◦•

••◦•◦• •••◦◦•
0.82 0.08 •◦◦••◦• •◦••◦◦•
1.22 0.04 •◦◦◦••• •◦◦•◦•• •◦•◦◦•• •◦•◦•◦•

••◦◦◦•• ••◦◦•◦• ••◦•◦◦• •••◦◦◦•
Table 1.Patterns forAD(ε) tetrahedra in a syntheticα-helix. Prune
= 10 Å and cutoffε < 2 Å.

In a qualitative analysis, we studied pattern histograms
for 30 proteins with varying degrees ofα-helical content,
and for decoys from the Kesar and Levitt (1999) local
minima decoy set. Residues were represented byCαs
or sidechain centroids, the threshold cutoff was set to
2.0 Å, and the edge length prune was varied between 9.0
and 12.0Å. Figure 5 shows typical pattern histograms
for the protein 2cro. Theα-helical peaks are present but
somewhat diffuse forCα histograms of proteins withα-
helical content, and are lacking for sidechain centroids
and for proteins with no significantα-helical content,
e.g. immunoglobulin andγ-chymotrypsin. For decoys
built by fixing the helix structure, theα-helical peaks
are sharp, but there are noticeably fewernon-pattern
tetrahedra (tetrahedra whose corresponding threshold
values do not fall into the associated patterns). This
indicates poorer packing of secondary structure. It will be
interesting to investigate non-pattern tetrahedra as a tool
for distinguishing decoys from the native state.

For more quantitative analysis, we can isolate individual
α-helices using the patterns and AD thresholds. We
partition the AD tetrahedra by pattern and keep only
the tetrahedra whose thresholds are in a range that is
characteristic of each pattern for anα-helix. That is, we
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Fig. 5. Comparing the pattern histograms of 2cro and its decoys.
(a) 2croCαs (b) 2cro sidechain centroids (c) LMDS decoy with
minimum RMSD

keep thresholds between 0.2–0.4 for the patterns with one
gap in 5 residues, between 0.6–0.9 for patterns with 2 gaps
in 6 residues, and between 0.9–1.3 for patterns with 3 gaps
in 7 residues. Next we count, for each pattern, how many
Delaunay and AD tetrahedra use each residue. Based on
these counts we decide at which residues anα-helix can
start or end. Empirically, 4, 8 and 8 tetrahedra in two out
of the three patterns with 1, 2 and 3 gaps in sequence
is enough to start a helix, a total of 10 tetrahedra in all
patterns is required to maintain it, and any of the 3 counts
becoming 1 or zero is low enough to end it.

We observe from Table 4 that the Delaunay patterns
alone cannot distinguishα-helices from 310-helices.
However, filtering using AD thresholds removes most of
the tetrahedra in310 andπ helices, and the empirical rules
for α-helix start and stop eliminate the remaining. Thus
our AD patterns are capable of distinguishingα- from
310-helices purely using geometric criteria.

Evaluation ofα-helix assignmentsWe compared the
assignments made by our algorithm with DSSP (Kabsch
and Sander, 1983) for a subset of 45 proteins chosen
to span the different architectures in CATH (Orengo
et al., 1997). The numbers of residues inα-helices were
generally within 5–10% of DSSP, as seen in Table 2. Most
individual helices were correctly detected, up to an error of
two residues in the start or end positions. These numbers
indicate a good match between our method and a standard
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method forα-helix detection.
The largest deviations from DSSP secondary structure

assignments can be explained by non-robustness of
DSSP’s measures of hydrogen bonding. A sequence of
residues (118–133) in the unstructured protein 1bg5 that
looks convincingly like anα-helix is classified asβ-turn
by DSSP since it is distorted and missing a few H-bonds.
The PDB header records indicate a helix structure, and
the AD method finds this helix. Thus our assignment has
50% moreα-helix than DSSP on 1bg5.

PDB ID # α-helix β-strand β-turn
/chain resid DSSP AD DSSP AD PRO AD
1aa8A 340 91 83 96 100 49 46
1ahl 49 0 0 6 5 14 10
1aorA 605 246 247 82 97 82 77
1b2p 238 0 0 110 97 40 35
1bg5 254 70 102 0 12 68 32
1bp1 456 100 87 204 196 48 43
1brx 209 158 158 10 8 12 10
1cem 363 168 162 8 28 52 47
1div 149 48 54 46 38 13 13
1dlc 584 177 191 174 167 73 56
1dze 225 164 179 10 4 14 9
1ejdA 418 128 138 105 134 43 40
1era 62 0 0 23 30 10 8
1f8d 388 5 4 171 177 71 59
1gab 53 35 29 0 0 0 2
1gmc 240 17 19 78 72 55 46
1havA 216 11 11 98 78 29 37
1hcd 118 0 0 55 35 25 16
1ilg 270 142 143 21 14 30 21
1kapP 470 66 73 98 153 91 74
1lrv 233 90 100 0 0 29 36
1lxa 262 40 44 70 96 60 51
1mbn 153 118 115 0 0 6 8
1npoA 81 0 0 26 15 16 17
1oen 524 133 112 126 138 86 94
1ospO 251 8 8 131 123 42 40
1pdc 45 0 0 6 8 13 14
1plq 258 37 37 111 117 43 30
1pprM 312 220 220 0 4 16 10
1rie 127 8 10 43 29 28 24
1rthA 543 157 157 127 125 70 46
1timA 247 106 101 42 51 15 18
1tl2 235 20 4 96 63 41 51
1tsg 98 10 17 4 12 39 20
1vdf 230 185 185 0 0 8 13
1ytf 100 34 37 40 22 24 10
2acy 98 24 24 41 18 10 6
2bnh 456 188 171 52 85 58 62
2hgf 97 9 10 28 25 26 19
2imm 114 0 0 58 57 33 17
2vsgA 358 166 181 17 23 58 46
3daaA 277 79 82 81 57 40 32
4bcl 350 55 62 171 169 44 30
4jdwA 360 82 80 71 77 55 51
8gch 240 21 24 78 76 55 41

Table 2. Numbers ofα-helical andβ-sheet residues assigned by
DSSP (Kabsch and Sander, 1983) andβ-turn residues assigned
by PROMOTIF (Hutchison and Thornton, 1996), and by our AD
patterns and thresholds for 45 protein chains with different CATH
architectures.

We conclude that peaks in the distribution of the
AD tetrahedral thresholds are a reliable,sequence-
independentmeans of determining that a protein hasα-
helix and quantifying the number and location of the
helices.

Discriminatingβ-sheetsWe investigated the AD thresh-
old distribution of several proteins that are classified as
mainly β under the CATH classification (Orengo et al.,
1997). No single threshold value seems to be characteris-
tic of β-sheets, and all patterns based on sequence inter-
val have a standard deviation of around 0.3Å, indicating a
large spread and no peaks. The relative flatness ofβ-sheets
makes their AD tetrahedra dependent on the positions of
neighbors rather than on local geometry, so that picking
a tetrahedron from residues on two or three strands with
varying horizontal offset (skew) and inter-strandsepara-
tion does not yield a pattern in the AD threshold.

However, theexistenceof AD tetrahedra that span two
strands does yield a pattern, as long as they have a
relatively low threshold (we used 1.0̊A) and are evaluated
at a low value of the edge length prune, at most 10Å.
This pattern is seen in themaximum gap in sequenceof
the tetrahedron, which as we observed was 1, 2 or 3 in
the case ofα-helical patterns. For two parallelβ-strands,
tetrahedra consecutive in sequence along the strands have
the same maximum sequence gap, so that allowing for
skew in the tetrahedra, the histogram distribution of the
gap shows a sharp peak with width equal to the skew,
corresponding to the sequence separation between the
strands.For anti-parallelβ-strands, the sequence gap is
distributed in a consecutive interval as the tetrahedra step
from one end of the strand to another, leading to a plateau
in the histogram with a gentle rise towards the center of the
interval where skewed tetrahedra from both sides tend to
converge. Thus we can conservatively isolate theβ-sheet
tetrahedra by detecting ranges in this histogram lying in
plateaus or peaks, as shown in Figure 6.

We can isolate the beta strands from the tetrahedra by
searching for the residue on each strand that is “most
connected” with a residue on another strand, much like
we did for α-helices. We implement this search as a
mutual maximum frequency of occurrence search for each
residue. If residuea occurs most frequently in tetrahedra
with residueb, and vice versa, thena and b are most
connected, and we choose them as neighbors in adjacent
β-strands. In this way we build up a list of candidate strand
neighbors, and then cluster those that are in parallel or
anti-parallel sequences to complete theβ-sheet.

Evaluation ofβ-sheet assignment:We tested theβ-sheet
residue count as well as individual strand positions against
the DSSP values for the same 45 proteins. The results are
summarized in Table 2.

In general,β-sheet determination was less accurate than
α-helix determination, since we could not find a signature
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based on the AD thresholds to restrict the search, and
often segments that were parallel to each other but did
not have the geometry of aβ-sheet were misclassified, for
example, twoβ turns in front of adjacent parallel strands
in the β-α-β protein 2bnh. To avoid this kind of error,
we modified our method to take theα-helix andβ-turn
determinations to be more accurate, and reject detected
“sheets” that overlap with anα-helix or aβ-turn. We also
reject sheets with less than two residues in each strand.
Note that this method does not detect isolatedβ-bridges
or strands.

Detectingβ-turnsThe primary criteria for defining beta
turns (Lewis et al., 1973; Richardson, 1981; Hutchison
and Thornton, 1994) have been that the first and fourth
residues in the sequence have theirCαs less than 7.0̊A
apart, and the residues involved are not helical. According
to the Richardson classification that is most widely used
at present, there are 6 distinct types of turns (I,I’,II,II’,VIa
and VIb) based on geometry and chirality, along with
a miscellaneous category IV that captures anything not
fitting into the previously defined categories.

The approach of Wako and Yamato (1998) does not
work for all beta-turns, since beta-turns do not differ
significantly from other motifs in their sequence ordering
and nearest-neighbor tetrahedra codes. Tropsha and
others (Singh et al., 1996) have used tetrahedrality as
an additional geometric discriminator. Tetrahedrality is
a measure of deviation of edge lengths of a tetrahedron
from those of an ideal tetrahedron. It is defined as below,
whereli is the length of edgei, i ∈ {1..6}:

T =
∑
i<j

(li − lj)
2/15l̄2 (1)

Tetrahedra that include theCαs of four residues in a
beta-turn have a high degree of similarity in their edge
lengths, which leads to a low value of tetrahedrality (less
than 0.2).

We present a hybrid approach using AD tetrahedra,
where we examine the AD thresholds of tetrahedra with
four residues in sequence and withCi

α–Ci+3
α distance

being less than 7.0̊A. The pattern that corresponds to a
β-turn is, broadly speaking, a low or zero threshold and
low tetrahedrality at the tetrahedron that is in the turn,
surrounded by higher thresholds on either one or both
sides of the turn. More precisely, we have determined 6
different categories of turns, corresponding to threshold
ranges as given in Table 5. Turns that overlap detected
helices are rejected.

Evaluation of β-turn detection Our categories of
residues inβ-turns do not coincide with the Richard-
son classification (Richardson, 1981), though usually
the β-turns that we miss lie in the miscellaneous (IV)
category whose geometry is hardest to classify. The AD
method performs somewhat better than combining theCα

distance (<7.0 Å) and tetrahedrality (< 0.2) criteria, and

significantly better than Delaunay-based methods (Wako
and Yamato, 1998).

We do not compare the accuracy ofβ-turn assignment
to DSSP directly, since DSSP classification ofβ-turns
as pairs of residues in S and T conformation (turns
without and with hydrogen bonding) is observed to be
inaccurate. Instead, we compare with the PROMOTIF
program (Hutchison and Thornton, 1996), which detects
turns based on phi and psi angles and classifies each using
the Richardson classification (Richardson, 1981).

Modeling pseudo-visual secondary structure assign-
mentWe wanted to compare the results of our method,
along with DSSP, against a method that models assign-
ment of secondary structures by visual inspection of
the Cα trace by a human expert, as suggested by David
and Jane Richardson (personal communication). Our
”pseudo-visual” helix assignment is based on the idea of
fitting residues on the surface of a cylinder, as described
by (Drennan et al.). We implemented Kahn’s method
to find the helix axis (Kahn, 1989), taking the cross
product of the bisectors of the angles formed by three
consecutiveCαs as the local axis direction, and using
least-squares fitting. By checking that other parameters
are within normal ranges for anα-helix (local curvature
94–104◦, pseudo-dihedral angle 35–58◦, rise per residue
1.25–1.85Å, and local radius2.4 ± 0.3 Å), we can
approximate pretty well the visual intuition of residues
lying on a cylinder and discriminate310 helices from
α-helices. Tolerance in the axis direction and a pass that
smoothes isolated gaps in helices ensure that helices
with imperfections and even bends are assigned correctly,
e.g. helix G of 1MBN.

We have not yet implemented a pseudo-visual method
for assignment ofβ-sheets. The GAS-P program (,
Drennan et al.) identifies individual residues inβ-strand
geometry using a strategy much like Kahn’s method,
though it does not search for residues on adjacent strands
or model the distance and twist between strands.

The “pseudo-visual”β-turn assignment currently uses
the distance criterion that is the definition of aβ-turn,
and the condition of low tetrahedrality (< 0.2) as
described above. Though tetrahedrality is not a visually
intuitive parameter, the results from this method look
surprisingly accurate, so we include it as an alternative
method to compare with the AD and DSSP (PROMOTIF)
assignments.

Comparison between AD, DSSP and pseudo-visual as-
signmentTo compare AD and DSSP assignments alone, as
noted above, we generated side-by-side structural assign-
ments for the residues in 45 protein chains representing al-
most all the CATH (Orengo et al., 1997) architectures, and
summed up the assignments inα-helix,β-sheet andβ-turn
categories in Table 2. We also developed tools to convert
the AD tetrahedra and secondary structures assigned us-
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ing AD, DSSP and pseudo-visual methods into the popu-
lar Kinemage format (Richardson and Richardson, 1994)
for 3D visualization and comparison. The structural as-
signments and kinemages are available on our web site.
We observed that AD, DSSP and pseudo-visual helix as-
signments agree in most cases, while there are often dis-
crepancies in the other assignments but for the most part
they are visually plausible. In some cases as discussed for
1bg5, AD assignments match the pseudo-visual assign-
ments while DSSP does not due to robustness issues.

In AD β-sheet assignments, often the distance between
the two strands is non-uniform or differs too much from
the ideal hydrogen bonding distance; thus DSSP does
not find aβ-sheet while AD does. Thus augmenting AD
with inter-strand distance and other geometric criteria
may improve its accuracy. In some cases (e.g. THR153–
ALA155 and ASP108–GLY110 in 4aah chain A) AD finds
a sequence to beβ-sheet, and DSSP does not, though
visually the inter-Cα distances and geometry seem right
for hydrogen bonding. There may be differences from
the canonicalβ-sheet (e.g. inter and intra-strand twist or
differences in side-chain positions) that are not detected
by AD. But in some cases DSSP assignment may not be
robust, and AD may lead to a structure assignment that
conforms to the visual by tuning geometric parameters.

CONCLUSIONS AND FUTURE WORK
We have introduced the tools of almost-Delaunay tetra-
hedra and Delaunay probability to give worst-case and
average-case analysis of the Delaunay tessellation un-
der perturbation of the input sites, and we have given
two initial applications of these tools. Our experiments
indicate that SNAPP scores are robust, quantify this to
some extent, and our variants of SNAPP may be used
in applications where robustness is critical. One goal of
our future work would be to pinpoint the location and
magnitude of the error such an application makes by using
the Delaunay.

Our method forα-helix detection performs well quanti-
tatively and qualitatively, distinguishing different types of
helices purely from geometric criteria. We can detectβ-
sheets andβ-turns too, with somewhat less accuracy than
helices. We have compared our secondary structure as-
signments numerically and visually with established meth-
ods to show that they are plausible. We plan to extend our
approach to detect other structural motifs, and to consider
the sensitivity of other analyses to the perturbation of co-
ordinates in Voronoi diagrams and Delaunay tessellations.
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APPENDIX

1bxyA 1d0dA 1h2sB 1i2tA 2igd 1dtdB 1nxb
1isu 1vie 1f94 1kveA 1svfA 1c8c 1gl2C
1icfI 1c9oA 2nllA 1b3aA 1b67A 1gutA 1fe0A
1e0bA 1tafA 1c4qA 1kliL 1dul 1r69 1gcqC
1a8o 1napA 1f9rA 1ku5A 1f9sA

.

Table 3. The 33 small protein chains whoseCαs and sidechain
centroids were used to compare their AD threshold distributions
against different datasets. These were chosen from the CulledPDB
database (Wang and Dunbrack, 2002) to have 60–69 residues, less
than 25% sequence identity, better than 2.4Å resolution and R-
factor 0.3.

µ(ε) σ(ε) Patterns
0 0.00 •••• ••◦••
0.38 0.03 •◦••• •••◦•
0.63 0.03 ••◦◦••
1.06 0.03 •◦◦••• •◦•◦•• •◦••◦•

••◦•◦• •••◦◦•
0.82 0.06 •◦◦••◦• •◦••◦◦•
1.34 0.04 ••◦•◦◦• ••◦◦•◦• •◦•◦◦•• •◦◦•◦••
1.55 0.06 •◦◦◦••• •••◦◦◦•
1.65 0.06 ••◦◦◦•• •◦•◦•◦•

Table 4.Patterns forAD(ε) tetrahedra in a synthetic310-helix. Prune
= 13 Å and cutoffε < 2 Å.
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Fig. 6. The histogram of maximum gap in sequence for AD(1.0)
tetrahedra in 1bnh shows two sharp peaks: the first at 3–4
corresponds to theα-helices, while the one at∼ 25 indicates
parallelβ-sheets.

Category ε in turn lower ε higher ε
bordering turn bordering turn

1 (0, 0.25) > 0.29 > 0.5

2 0 0 > 0.25
3 0 > 0.09 > 0.3

4 [0.25, 0.4) > 0.5 > 0.7
5 (0, 0.2) (0, 0.2) > 0.3
6 [0, 0.2) [0, 0.2) (0, 0.2)

Table 5.Ranges of AD thresholds for tetrahedra inβ-turns.

(a)

(b)

(c)

(d)

Fig. 7. Comparing scores of SNAPP variants for 1sn3 native state
(darker bar at extreme left) and some decoys in order of increasing
RMSD, against Delaunay based SNAPP scores (x’s). (a) Delaunay-
probability SNAPP vs. Delaunay SNAPP (b) Weighted Delaunay-
probability SNAPP vs. weighted Delaunay SNAPP (c) D+AD-
SNAPP vs. globally averaged Delaunay SNAPP (d) Weighted
D+AD-SNAPP vs. globally averaged weighted Delaunay SNAPP
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