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Abstract

Finding design patterns in source code helps in main-
tenance, comprehension, refactoring and design validation
during software development. SPQR (System for Pattern
Query and Recognition) is a toolset for the automated dis-
covery of design patterns in source code. SPQR uses a
logical inference system to reveal large numbers of pat-
terns and their variations from a small number of defini-
tions. A formal denotational semantics is used to encode
fundamental OO concepts (which we termelemental design
patterns), and a small number of rules (which we callre-
liance operators) for combining these concepts into larger
patterns. These reliance operators, when combined with
the ς-calculus[1], provide a formal foundation we call the
rho(ρ)-calculus. In this paper we present both the formal
semantics of SPQR and a discussion of other practical ap-
plications for elemental design patterns.

1 Introduction

The System for Pattern Query and Recognition (SPQR)
[24] improves on previous approaches for finding design
patterns in source code. Other systems have been limited
by the difficulty of describing something as abstract as de-
sign patterns. A single design pattern when reduced to con-
crete code can have myriad realizations, all of which have
to be recognized as instances of that one pattern. Other sys-
tems have encountered difficulty in spanning these possi-
ble implementation variations, due to their reliance on static
definitions of patterns and variants. SPQR overcomes this
problem by using an inference system based on core con-
cepts and semantic relationships. The formal foundation of
SPQR defines base patterns and rules for how variation can
occur, and the inference engine is free to apply variation
rules in an unbounded manner. A finite number of defini-

tions in SPQR can match an unbounded number of imple-
mentation variations.

This foundation is composed of two parts: the funda-
mental concepts of object-oriented programming and de-
sign (Elemental Design Patterns), and the rules for their
variation and composition (ρ-calculus). The EDPs were de-
duced through careful analysis of the Gang of Four (GoF)
design patterns [11] for use of core object-oriented lan-
guage concepts (such as inheritance, delegation, recursion,
etc); this analysis produced eleven EDPs from which the
GoF patterns can be composed. It also produced a design
space which was filled out to produce sixteen comprehen-
sive EDPs. We speculate that these additional EDPs will
prove useful in defining design patterns from other sources.

In the remainder of this paper we first discuss related
work, and informally introduce our Elemental Design Pat-
terns. We then provide several practical applications for
these concepts, including a summary of the SPQR toolset
and its use in finding GoF design patterns. We next present
a rationale for the claim that EDPs capture the fundamen-
tal OO concepts needed for expression and composition of
larger design patterns. We conclude with the fullρ-calculus,
the formal semantics of our SPQR tools.

2 Related work

The decomposition and analysis of patterns is an estab-
lished idea, and the concept of creating a hierarchy of re-
lated patterns has been in the literature almost as long as pat-
terns themselves [6, 13, 22, 27]. The few researchers who
have attempted to provide a formal basis for patterns have
most commonly done so from a desire to perform refactor-
ing of existing code, while others have attempted the more
pragmatic approach of identifying core components of ex-
isting patterns in use.



2.1 Refactoring approaches

Attempts to formalize refactoring [10] exist, and have
met with fairly good success to date[7, 18, 20]. The primary
motivation is to facilitate tool support for, and validation of,
the transformation of code from one form to another while
preserving behaviour. This is an important step in the main-
tenance and alteration of existing systems, and patterns are
seen as the logical next abstraction upon which they should
operate. Such techniques include fragments, as developed
by Florijn, Meijers, and van Winsen [9], Eden’s work on
LePuS [8], andÓ Cinńeide’s work in transformation and
refactoring of patterns in code [19] through the application
of minipatterns. These approaches have one missing piece:
appropriate flexibility of implementation.

2.2 Structural analyses

An analysis of the ‘Gang of Four’ (GoF) patterns [11]
reveals many shared structural and behavioural elements,
such as the similarities between Composite and Visitor [11].
Relationships between patterns, such as inclusion or simi-
larity, have been investigated by various practitioners, and
a number of meaningful examples of underlying structures
have been described [4, 6, 22, 26, 27].

Objectifier: The Objectifier pattern [27] is one such ex-
ample of a core piece of structure and behaviour shared be-
tween many more complex patterns. Zimmer uses Objecti-
fier as a ‘basic pattern’ in the construction of several other
GoF patterns, such as Builder, Observer, Bridge, State,
Command and Iterator. It is a simple yet elegantly powerful
structural concept that is used repeatedly in other patterns.

Object Recursion: Woolf takes Objectifier one step fur-
ther, adding a behavioural component, and naming it Ob-
ject Recursion [26]. The class diagram is extremely similar
to Objectifier, with an important difference, namely the be-
haviour in the leaf subclasses ofHandler. Exclusive of this
method behaviour, however, it seems to be an application
of Objectifier in a more specific use. Note that Woolf com-
pares Object Recursion to the relevant GoF patterns and de-
duces that: Iterator, Composite and Decorator can, in many
instances, be seen as containing an instance of Object Re-
cursion; Chain of Responsibility and Interpreter do contain
Object Recursion as a primary component.

Taken together, the above instances of analyzed pat-
tern findings comprise two parts of a larger chain: Ob-
ject Recursion contains an instance of Objectifier, and both
in turn are used by larger patterns. This indicates that
there are meaningful relationships between patterns, yet
past work has shown that there are more primary forces at
work. Buschmann’s variants [5], Coplien and others’ id-
ioms [3, 6, 16], and Pree’s metapatterns [21] all support
this viewpoint. Shull, Melo and Basili’s BACKDOOR’s
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Figure 1. SPQR Tool Chain

[23] dependency on relationships is exemplary of the nor-
mal static treatment that arises. It will become evident that
these relationships betweenconceptsare a core piece which
grant great flexibility to the practitioner implementing pat-
terns in design, through constructs we termisotopes, which
will be treated in Section 5.4.1.

2.3 Elemental Design Patterns

Informally, Elemental Design Patterns are design pat-
terns that cannot be decomposed into smaller patterns - they
sit one level above the primitives of object-oriented pro-
gramming, such as objects, fields, and methods. As such,
they occupy much of the same space as idioms, but are
language independent, relying only on the core concepts
of object-oriented theory. They perform the same concep-
tual task as the more common design patterns however, in
that they provide solutions to common programming situa-
tions, and do so in orthogonal ways, differing only in scope.
EDPs are the foundational nuts and bolts from which con-
ceptual design frameworks are created. Also, relying only
on the theoretical basis OO, they have one distinct advan-
tage over other approaches directly involving design pat-
terns: they are formalizable. We have chosen to extend the
sigma-calculus [1] with a small set of relationship operators
that provide a simple but solid basis, theρ-calculus, from
which to perform interesting analyses.

3 Practical Applications

Elemental Design Patterns and theρ-calculus would be
interesting academic exercises only, unless there were good
reasons for performing this work. We present here three ap-
plications, including as an education tool, a set of concepts
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for programming language design, and a formal basis for
source code analysis tools.

3.1 SPQR

Our original driving problem is a ubiquitous one in soft-
ware engineering - how best to aid an engineer in compre-
hending a large or complex system. One such way is to
provide automated tools to extract conceptual information
and present it to the user in a meaningful way. Our System
for Pattern Query and Recognition [24] (SPQR) performs
this task, finding instances of known design patterns within
source code and alerting the engineer to their presence. Ob-
viously, this has many direct applications, such as system
inspection during education, ensuring that intended patterns
exist in the final code, and investigation of unintended pat-
tern instances that may provide cues for refactoring.

SPQR relies on the formal nature of EDPs and theρ-
calculus to perform the bulk of the discovery, by using an
automated theorem prover toinfer the existence of patterns
in the source code under scrutiny. The SPQR toolchain
comprises of several components, shown in Figure 1. From
the engineer’s point of view, SPQR is a single fully auto-
mated tool that performs the analysis from source code and
produces a final report. A simple script provides the work-
flow, by chaining several modular component tools, cen-
tered around tasks ofsource code feature detection, feature-
rule description, rule inference, andquery reporting. Com-
piler output of the syntax tree of a codebase (one current
input source is gcc) is transformed into our formal notation
encoded as input to the OTTER automated theorem prover
[15]. This fact set, combined with the pre-defined encod-
ings for the EDP Catalog and the relationships rules ofρ-
calculus are operated on by OTTER to find instances of de-
sign patterns which are then reported to the user. SPQR is
language and domain independent, and would be imprac-
tical without the formal foundations of our EDPs andρ-
calculus.
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As an example, Figure 2 is a system that was designed
as many are: through growth. Three distinct libraries are
interacting in well-formed ways, each under the control of
a different engineering group. Source code is unavailable to
the other groups, and design issues are partitioned as well.
After analysis by SPQR, however, it becomes clear, as in
Figure 3, that there is a hidden instance of the Decorator de-
sign pattern that provides an intriguing clue to the engineers
how to refactor the three libraries to work more effectively
together. This example is illustrated in complete detail, and
SPQR discussed more thoroughly, in prior publication.

3.2 EDPs as language design hints

While some will see the EDPs as truly primitive, we
would point out that the development of programming lan-
guages has been a reflection of directly supporting features,
concepts, and idioms that practioners of the previous gen-
erations of languages found to be useful. Cohesion and
coupling analysis of procedural systems gave rise to many
object oriented concepts, and each common OO language
today has features that make concrete one or more EDPs.
EDPs can therefore be seen as a path for incremental addi-
tions to future languages, providing a clue to which features
programmers will find useful based precisely on what con-
cepts they currently use, but must make from simpler forms.

A recent and highly touted example of such a language
construct is thedelegatefeature found in C#[17]. This is an
explicit support for delegating calls directly as a language
feature. It is in many ways equivalent to the decades old
Smalltalk and Objective-C’s selectors, but has a more def-
inite syntax which restricts its functionality, but enhances
ease of use. It is, as one would expect, an example of the



Delegation EDP realized as a specific language construct,
and demonstrates how the EDPs may help guide future lan-
guage designers. Patterns are explicitly those solutions that
have been found to be useful, common, and necessary in
many cases, and are therefore a natural set of behaviours
and structures for which languages provide support.

Most languages have some support for
ExtendMethod, through the use of either static
dispatch, as in C++, or an explicit keyword, such as
Java and Smalltalk’ssuper. Others, such as BETA[14],
offer an alternative approach, deferring portions of their
implementation to their children through theinner con-
struct. Explicitly stating ‘extension’ as a characteristic of a
method, as with Java’s concept ofextendsfor inheritance,
however, seems to be absent. This could prove to be useful
to the implementers of a future generation of code analysis
tools and compilers.

The AbstractInterface EDP is, admittedly, one of
the simplest in the collection. Every OO language supports
this in some form, whether it is an explicit programmer-
created construct, such as C++’s pure virtual methods, or
an implicit dynamic behaviour such as Smalltalk’s excep-
tion throwing for an unimplemented method. It should be
noted though that the above are either composite constructs
(virtual foo() = 0; in C++) or a non construct runtime be-
haviour (Smalltalk), and as such are learned through inter-
action with the relationships between language features. In
each of the cases, the functionality is not directly obvious in
the language description, nor is it necessarily obvious to the
student learning OO design. Future languages may benefit
from a more explicit construct.

3.3 Educational uses of EDPs

We believe the EDPs provide a path for educators to
guide students to learning OO design from first principles,
demonstrating best practices for even the smallest of prob-
lems. Note that the core EDPs require only the concepts
of classes, objects, methods (and method invocation), and
data fields. Everything else is built off of these most ba-
sic OO constructs which map directly to the core of UML
class diagrams. The new student needs only to understand
these extremely basic ideas to begin using the EDPs as a
well formed approach to learning the larger and more com-
plex design patterns. As an added benefit, the student will
be exposed to concepts that may not be directly obvious in
the language in which they are currently working. These
concepts are language independent, however, and should be
transportable throughout the nascent engineer’s career.

This transmission of best practices is one of the core mo-
tivations behind design patterns, but even the simplest of the
canon requires some non-trivial amount of design under-
standing to be truly useful to the implementer. By reduc-

ing the scope of the design pattern being studied, one can
reduce the background necessary by the reader, and, there-
fore, make the reduced pattern more accessible to a wider
audience. This parallels the suggestions put forth by Gold-
berg in 1994[12].

4 Elemental Design Patterns

The Elemental Design Patterns were deduced through
analysis of the existing design pattern literature, and then
extended to comprehensively cover the most interesting
ways in which objects can interact in object-oriented pro-
gramming. We believe that the sixteen EDPs comprise the
core of any design space.

4.1 Examination of design patterns

Our first task was to examine the existing canon of de-
sign pattern literature, and a natural place to start is the ubiq-
uitous Gang of Four text[11]. Instead of a purely structural
inspection, we chose to attempt to identify common con-
cepts used in the patterns. A first cut of analysis resulted in
eight identified probable core concepts:

AbstractInterface An extremely simple concept - you
wish to enforce polymorphic behaviour by requiring
all subclasses to implement a method. Equivalent to
Woolf’s Abstract Class pattern[25], but on the method
level. Used in most patterns in the GoF group, with the
exception of Singleton, Facade, and Memento.

DelegatedImplementation Another ubiquitous solution,
moving the implementation of a method to another ob-
ject, possibly polymorphic. Used in most patterns, a
method analog to the C++pimpl idiom[6].

ExtendMethod A subclass overrides the superclass’ im-
plementation of a method, but then explicitly calls the
superclass’ implementation internally. It extends, not
replaces, the parent’s behaviour. Used in Decorator.

Retrieval Retrieves an expected particular type of object
from a method call. Used in Singleton, Builder, Fac-
tory Method.

Iteration A runtime behaviour indicating repeated step-
ping through a data structure. May or may not be
possible to create an appropriate pattern-expressed de-
scription, but it would be highly useful in such patterns
as Iterator and Composite.

Invariance Encapsulate the concept that parts of a hierar-
chy or behaviour donot change. Used by Strategy and
Template Method.



AggregateAlgorithm Demonstrate how to build a more
complex algorithm out of parts that do change poly-
morphically. Used in Template Method.

CreateObject Encapsulates creation of an object, very
similar to Ó Cinńeide’s Encapsulate Construction
minipattern[19]. Used in most Creational Patterns.

Of these, AbstractInterface, DelegatedImplementation
and Retrieval could be considered simplistic, while Iteration
and Invariance are, on the face of things, extremely difficult.

On inspection, five of these possible patterns are cen-
tered around some form of method invocation. This led us
to investigate what the critical forms of method calling truly
are, and whether they could provide insights towards pro-
ducing a comprehensive collection of EDPs. We assume,
for the sake of this investigation, a dynamically bound lan-
guage environment and make no assumptions regarding fea-
tures of implementation languages. Categorizing the vari-
ous forms of method calls in the GoF patterns can be sum-
marized as in Table 1, grouped according to four criteria.

Assume that an objecta of typeA has a methodf that
the program is currently executing. This method then in-
ternally calls another method,g, on some object,b, of type
B. The columns represent, respectively, howa references
b, the relationship betweenA andB, if any, the relationship
between the types off andg, whether or notg is an ab-
stract method, and the patterns that this calling style is used
in. Note that this is all typing information that is available
at the time of method invocation, since we are only inspect-
ing the types of the objectsa andb and the methodsf and
g. Polymorphic behaviour may or may not take part, but
we are not attempting a runtime analysis. This is strictly an
analysis based on the point of view of the calling code.

If we eliminate the ownership attribute, we find that the
table vastly simplifies, as well as reducing the information
to strictly type information. In a dynamic language, the con-
cept of ownership begins to break down, reducing the ques-
tion of access by pointer or access by reference to a matter
of implementation semantics in many cases. By reducing
that conceptual baggage in this particular case, we are free
to reintroduce such traits later. Similarly, other method in-
vocation attributes could be assigned, but do not fit within
our typing framework for classification. For instance, the
concept of constructing an object at some point in the pat-
tern is used in the Creational Patterns: Prototype, Singleton,
Factory Method, Abstract Factory, and Builder, as well as
others such as Iterator and Flyweight. This reflects our Cre-
ateObject component, but we can place it aside for now to
concentrate on the typing variations of method calls.

At this time, we can reorganize Table 1 slightly, remov-
ing the Mediator and Flyweight entry on the last line, as no
typing attributable method invocations occur within those
patterns. We can also merge State and Bridge into the ap-

propriate calling styles, then note that four of our remaining
list are simply variations on whether the called method is
abstract or not. By identifying this as an instance of the Ab-
stractInterface component from above, we can simplify this
list further to our final collection of the six primary method
invocation styles in the GoF text, shown in Table 2. We will
demonstrate later how to reincorporate AbstractInterface to
rebuild the calling styles used in the original patterns.

A glance at the first column reveals that it can be split
into two larger groups, those which call a method on the
same object instance (a = b) and those which call a method
on another object (a 6= b).

The method calls involved in the GoF patterns now can
be classified by three orthogonal properties:

• The relationship of the target object instance to the
calling object instance

• The relationship of the target object’s type to the call-
ing object’s type

• The relationship between the method signatures of the
caller and callee

This last item recurs often in our analysis, and once it is re-
alized that it is the application of Beck’s Intention Revealing
Message best practice pattern [3], it becomes obvious that
this is an important concept we dubsimilarity.

4.2 Method call EDPs

The first axis in the above list is simply a dichotomy be-
tweenSelf and Other.1 The second describes the rela-
tionship betweenA andB, if any, and the third compares
the types (consisting of a function mapping type,F andG,
whereF = X → Y for a method taking an object of type
X and returning an object of typeY ) of f andg, simply as
another dichotomy of equivalence.

It is illustrative at this point to attempt creation of a com-
prehensive listing of the various permutations of these axes,
and see where our identified invocation styles fall into place.
For the possible relationships betweenA andB, we have
started with our list items of ‘Parent’, whereA <: B,2 ‘Sib-
ling’ where A <: C andB <: C for some type C, and
‘Unrelated’ as a collective bin for all other type relations
at this point. To these we add ‘Same’, orA = B, as an
obvious simple type relation between the objects.3

1Child is another possibility here, and a call toSame maps to BETA’s
inner, for example.

2The notation is taken from Abadi and Cardelli’s sigma calculus[1].
A <: B reads ‘A is a subtype ofB’

3Child is possible here as an addition as well, although we do not do
so at this time.



Ownership Obj Type Method Type Abstract Used In
N/A self diff Y Template Method, Factory Method
N/A super diff Adapter (class)
N/A super same Decorator
held parent same Y Decorator
held parent same Composite, Interpreter, Chain of Responsibility
ptr sibling same Proxy
ptr/held none none Y Builder, Abstract Factory, Strategy, Visitor
held none none Y State
held none none Bridge
ptr none none Adapter (object), Observer, Command, Memento
N/A Mediator, Flyweight

Table 1. Method calling styles in Gang of Four patterns

Obj Type Method Type Used In
1 self diff Template Method, Factory Method
2 super diff Adapter (class)
3 super same Decorator
4 parent same Composite, Interpreter, Chain of Responsibility, Decorator
5 sibling same Proxy
6 none none Builder, Abstract Factory, Strategy, Visitor, State, Bridge

Adapter (object), Observer, Command, Memento

Table 2. Final method calling styles in Gang of Four patterns

4.2.1 Initial list

We start by filling in the invocation styles from our final list
from the GoF patterns, mapping them to our six categories
in Table 2:

1. Self (a = b)

(a) Self (A = B, or a = this)

i. Same (F = G) . . . . . . . . . . . . . . . . . . . . . . . . . .
ii. Different (F 6= G) . . . . . Conglomeration[1]

(b) Super (A <: B, or a = super)

i. Same (F = G) . . . . . . . . . . ExtendMethod[3]
ii. Different (F 6= G) . . . . . . . RevertMethod[2]

2. Other (a 6= b)

(a) Unrelated

i. Same (F = G) . . . . . . . . . . . . . . . .Redirect[6]
ii. Different (F 6= G) . . . . . . . . . . . . Delegate[6]

(b) Same (A = B)

i. Same (F = G) . . . . . . . . . . . . . . . . . . . . . . . . . .
ii. Different (F 6= G) . . . . . . . . . . . . . . . . . . . . . . .

(c) Parent (A <: B)

i. Same (F = G) . . . . . . . RedirectInFamily[4]
ii. Different (F 6= G) . . . . . . . . . . . . . . . . . . . . . . .

(d) Sibling (A <: C,B <: C,A 6<: B)

i. Same (F = G) RedirectInLimitedFamily[5]

ii. Different (F 6= G) . . . . . . . . . . . . . . . . . . . . . . .

Each of these captures a concept as much as a syntax,
as we originally intended. Each expresses a direct and ex-
plicit way to solve a common problem, providing a struc-
tural guide as well as a conceptual abstraction. In this way
they fulfill the requirements of a pattern, as generally de-
fined, and more importantly, given a broad enough context
and minimalist constraints, fulfill Alexander’s original defi-
nition as well as any decomposable pattern language can[2].
We will treat these as meeting the definition of design pat-
terns, and present them as such.

The nomenclature we have selected is a reflection of the
intended uses of the various constructs, but requires some
defining:

Conglomeration Aggregating behaviour from methods of
Self . Used to encapsulate complex behaviours into
reusable portions within an object.

ExtendMethod A subclass wishes to extend the behaviour
of a superclass’ method instead of strictly replacing it.

RevertMethod A subclass wantsnot to use its own version
of a method for some reason, such as namespace clash
in the case of Adapter (class).



Redirect A method wishes to redirect some portion of its
functionality to an extremely similar method in another
object. We choose the term ‘redirect’ due to the usual
use of such a call, such as in the Adapter (object) pat-
tern.

Delegate A method simply delegates part of its behaviour
to another method in another object.

RedirectInFamily Redirection to a similar method, but
within one’s own inheritance family, including the
possibility of polymorphically messaging an object of
one’s own type.

RedirectInLimitedFamily A special case of the above,
but limiting to a subset of the family tree, excluding
possibly messaging an object of one’s own type.

4.2.2 The full list

We can now begin to see where the remainder of the method
call EDPs will take us. Again, we will present the listing,
and briefly discuss each new item in turn.

1. Self (a = b)

(a) Self (a = this)

i. Same (F = G) . . . . . . . . . . . . . . . . Recursion

ii. Different (F 6= G) . . . . . . . Conglomeration

(b) Super (a = super)

i. Same (F = G) . . . . . . . . . . . . ExtendMethod

ii. Different (F 6= G) . . . . . . . . . RevertMethod

2. Other (a 6= b)

(a) Unrelated

i. Same (F = G) . . . . . . . . . . . . . . . . . .Redirect

ii. Different (F 6= G) . . . . . . . . . . . . . . Delegate

(b) Same (A = B)

i. Same (F = G) . . . . . . RedirectedRecursion

ii. Diff ( F 6= G) . . .DelegatedConglomeration

(c) Parent (A <: B)

i. Same (F = G) . . . . . . . . . RedirectInFamily

ii. Different (F 6= G) . . . . . . DelegateInFamily

(d) Sibling (A <: C,B <: C,A 6<: B)

i. Same (F = G) . . .RedirectInLimitedFamily

ii. Diff ( F 6= G) . . . .DelegateInLimitedFamily

Recursion Quite obvious on examination, this is a con-
crete link between primitive language features and our
EDPs.

RedirectedRecursion A form of object level iteration.

DelegatedConglomerationGathers behaviours from ex-
ternal instances of the current class.

DelegateInFamily Gathers related behaviours from the lo-
cal class structure.

DelegateInLimitedFamily Limits the behaviours selected
to a particular base definition.

4.3 Object Element EDPs

At this point we have a fairly comprehensive array of
method/ object invocation relations, and can revisit our orig-
inal list of concepts culled from the GoF patterns. Of the
original eight, three are absorbed within our method invo-
cations list: DelegatedImplementation, ExtendMethod, and
AggregateAlgorithm. Of the remaining five, two are some
of the more problematic EDPs to consider: Iteration, and
Invariance. These can be considered sufficiently difficult
concepts at this stage of the research that they are beyond
the scope of this paper.

Our remaining three EDPs, CreateObject, AbstractInter-
face, and Retrieve, deal with object creation, method imple-
mentation, and object referencing, respectively. These are
core concepts of what objects and classes are and how they
are defined. CreateObject creates instances of classes, Ab-
stractInterface determines whether or not that instance con-
tains an implementation of a method, and Retrieve is the
mechanism by which external references to other objects
are placed in data fields. These are the elemental creational
patterns and they provide the construction of objects, meth-
ods, and fields. Since these are the three basic physical ele-
ments of object oriented programming[1], we feel that these
are a complete base core of EDPs for this classification.4

CreateObject Constructs an object of a particular type.

AbstractInterface Indicates that a method hasnot been
implemented by a class.

Retrieve Fetches objects from outside the current object,
initiating external references.

The method invocation EDPs from the previous sec-
tion are descriptions of how these object elements interact,
defining the relationships between them. One further re-
lationship is missing, however: that between types. Sub-
typing is a core relationship in OO languages, usually ex-
pressed through an inheritance relation between classes.
Subclassing, however, isnotequivalent to subtyping[1], and

4Classes, prototypes, traits, selectors, and other aspects of various ob-
ject oriented languages are expressible using only the three constructs
identified.[1]



should be noted as a language construct extension to the
core concepts of object-oriented theory. Because of this, we
introduce a typing relation EDP, Inheritance, that creates a
structural subtyping relationship between two classes. Not
all languages directly support inheritance, it may be pointed
out, instead relying on dynamic subtyping analysis to deter-
mine appropriate typing relations.

Inheritance Enforces a structural subtyping relationship.

5 Rho Calculus

Our EDPs are useful in many areas as they stand, but
for formal analysis of source code, we needed to create an
approach that would provide a semantic basis for logical in-
ferences. Rho-calculus is the formal foundation of the EDP
catalog. It allows us to encode facts about a codebase into a
simple yet powerful notation that can be directly input to au-
tomated theorem provers, such as the OTTER system used
in SPQR. Without this, the EDPs would be conceptually
useful but impractical to use in an automated tool system.

This section defines the rho fragment (∆ρ) of the ρ-
calculus which results when this fragment is added to theς-
calculus. By defining this as a calculus fragment, we allow
researchers to add it to the proper mix of other fragments
defined in [1] to create the particular formal language they
need to achieve their goals.

5.1 Definitions

Let us defineO as the set of all objects instantiated
within a given system. ThenO ∈ O is some object in the
system. Similary, letM be the set of all method signatures
within the system. Thenµ ∈ M is some method signature
in the system.O.µ is then the selection of some method
signature imposed on some object. We make no claim here
that this is a well-formed selection, and in fact we have no
need to - the underlyingς-calculus imposes that construct
for us.τ is some type in the set of all typesT defined in the
system such that ifO is of typeτ , thenO : τ .

O ∈ O,µ ∈ M, τ ∈ T

Let A be either an objectO or a method selectionO.µ.
Let A′ be another such set for distinct object and method
selections. (By convention, the base forms of the symbols
will appear on the left side of the reliance operator (relop),
and the prime forms will appear on the right hand side to
indicate distinct items.)x is a signifier that a particular re-
liance operator may be one of our three variants:{µ, φ, γ}.
µ is a method selection reliance,φ is a field reliance, and
γ is a ‘generalized’ reliance where a reliance is known, but
the exact details are not. (It is analogous to more traditional

forms of coupling theory.)
±◦ is an operator trait indicator,

allowing for the three types of reliance specialization (+,−,
◦) to be abstracted in the following rules. The appearance of
this symbol indicates that any of the three may exist there.

A = {O,O.µ}

A′ = {O′,O′.µ′}

x = {µ, φ, γ}
±◦= {+,−, ◦}

The basic reliance operator symbol,<, was selected to
be an analogue to the inheritance/subsumption of types in-
dicator in sigma calculus,<:, which can be interpreted to
mean a reliance of type. Since the typing symbol is:, this
leaves< as a natural for the concept of ‘reliance on’. This,
combined with our three symbols fromx above, gives rise
to our three reliance operators:<µ, <φ, <γ

5.2 Creation

We have three rules that create instances of our reliance
operators. First, we have the Method Invocation Relop rule,
which states that given a methodµ invoked on objectO, if
that method contains a method invocation call to methodµ′

of another objectO′, we have a method reliance between
the two, indicated by theµ form reliance operator (<µ):

O.µ ≡ [µ = ς()O′.µ′]
O.µ <µ O′.µ′

(1)

We have a similar rule for deriving an instance of a field
reliance operator. This one states that if an object’s method
O.µ contains a reference to another objectO′, then there is
a reliance between the two based on reference access of the
field, indicated by theφ form reliance operator (<φ). This
is the Method Field Relop rule:

O.µ ≡ [µ = ς()O′]
O.µ <φ O′ (2)

Similarly, if an objectO′ is referenced as an instance vari-
able data field of an objectO, then we can use the Object
Field Relop rule:

O : τ, τ = [O′ : τ ′]
O <φ O′ (3)

5.3 Similarity Specializations

We can pin down further details of the relationships be-
tween the operands of the reliance operators by inspecting
the method signatures or the object types forµ andφ form



relops, respectively, reflecting thesimilarity trait found in
the EDP catalog.

If the method signatures on both sides of aµ form relop
match, then we have a similarity invocation, and append a
+ to the relop symbol to indicate this trait:

O.µ <µ O′.µ′, µ = µ′

O.µ <µ+ O′.µ′
(4)

If, on the other hand, we know for a fact that the two method
signatures do not match, then we have a dissimilarity invo-
cation, and we append a− to the relop:

O.µ <µ O′.µ′, µ 6= µ′

O.µ <µ− O′.µ′
(5)

We follow a similar approach with the inspection of the ob-
ject types of the operands in aφ form relop. If the two types
are equal, then we have a similarity reference:

A <φ O′,O : τ,O′ : τ ′, τ = τ ′

A <φ+ O′ (6)

And if the two types are known to be unequal, then we have
a dissimilarity reference:

A <φ O′,O : τ,O′ : τ ′, τ 6= τ ′

A <φ− O′ (7)

In both theµ andφ form relops, if the above information
is not known with certainty, then the relop remains unap-
pended in a more general form.

5.4 Transitivity

Transitivity is the process by which large chains of re-
liance can be reduced to simple facts regarding the reliance
of widely separated objects in the system. The three forms
of relop all work in the same manner in these rules. The
specialization trait of the relop (±) is not taken into con-
sideration, and in fact can be discarded during the applica-
tion of these rules - appropriate traits can be re-derived as
needed.

Given two relop facts, such that the same object or
method invocation appears on therhs of the first and the
lhsof the second, then thelhsof the first andrhsof the sec-
ond are involved in a reliance relationship as well. If the two
relops are of the same form, then the resultant relop will be
the same as well.

A <x A′, A′ <x′ A′′

A <x A′′ iff x = x′ (8)

If, however, the two relops are of different forms, then the
resultant relop is our most general form,γ. This indicates
that while a relationship exists, we can make no hard con-
nection according to our definitions of theµ or φ forms.

Note that this is the only point at whichγ form relops are
created.

A <x A′, A′ <x′ A′′

A <γ A′′ iff x 6= x′ (9)

5.4.1 Isotopes

This is the key element of ourisotopes, which allow design
patterns to be inferred in aflexiblemanner. We do not re-
quire each and every variation of a pattern to be statically
encoded, instead the transitivity in theρ-calculus allows us
to simply encode the relationships between elements of the
pattern, and an automated theorem prover can infer as many
possible situations as the facts of the system provide. In this
way a massive search space can be created automatically
from a small number of design pattern definitions.

5.5 Generalizations

These are generalizations of relops, the opposite of the
specialization rules earlier. Each of them generalizes out
some piece of information from the system that may be un-
necessary for clear definition of certain rules and situations.
Information is not lost to the system, however, as the origi-
nal statements remain.

The first two generalize the right hand side and left hand
sides of the relop, respectively, removing the method selec-
tion but retaining the object under consideration. They are
RHS Generalization and LHS Generalization.

A <
x
±
◦
O′.µ′

A <
x
±
◦
O′ (10)

O.µ <
x
±
◦

A′

O <
x
±
◦

A′ (11)

This is a Relop Generalization. It indicates that the most
general form of reliance (γ) can always be derived from a
more specialized form (µ, φ).

A <x A′

A <γ A′ (12)

Similarly, the Similarity Generalization states that any spe-
cialized similarity trait form of a relop implies that the more
general form is also valid.

(x = µ, φ)
A <x± A′

A <x A′ (13)

6 Conclusion

We have presented the foundations for the System for
Pattern Query and Recognition (SPQR), comprised of the



Elemental Design Patternsand matching formalizations in
theρ-calculusfor composition into larger, more useful and
abstract design patterns as usually found in software archi-
tecture. These EDPs were identified initially through in-
spection of the existing literature on design patterns, es-
tablishing which solutions appeared repeatedly within the
same contexts, mirroring the development of the more tra-
ditional design patterns. Further, they are formally describ-
able in theρ-calculus, a notation that builds upon theς-
calculus, but adds the key concept ofreliance to the base
notation. These extensions, thereliance operatorsprovide
a large degree of flexibility to formally stating the relation-
ships embodied in design patterns asisotopes, without lock-
ing them into any one particular implementation.

These contributions will allow for new approaches to an-
alyzing software systems, education regarding design pat-
terns and best practices in object-oriented architecture, and
may help guide future language design by indicating which
design elements are most commonly used by software ar-
chitects.
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