Technical Report TR03-032

Department of Computer Science
Univ. of North Carolina at Chapel Hill

Elemental Design Patterns and the)-calculus: Foundations for
Automated Design Pattern Detection in SPQR

Jason McC. Smith and David Stotts

Dept of Computer Science
Univ. of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

smithja@cs.unc.edu

September 23, 2003



Elemental Design Patterns and the-calculus: Foundations for Automated
Design Pattern Detection in SPQR

Jason McC. Smith David Stotts
University of North Carolina at Chapel Hill  University of North Carolina at Chapel Hill
Sitterson Hall CB #3175 Sitterson Hall CB #3175
Chapel Hill, NC 27599-3175 Chapel Hill, NC 27599-3175
smithja@cs.unc.edu stotts@cs.unc.edu
Abstract tions in SPQR can match an unbounded number of imple-

mentation variations.

Finding design patterns in source code helps in main-  Thjs foundation is composed of two parts: the funda-
tenance, comprehension, refactoring and design validation yental concepts of object-oriented programming and de-
during software development. SPQR (System for Patternsjgn (Elemental Design Patterns), and the rules for their
Query and Recognition) is a toolset for the automated dis- ariation and compositiorpcalculus). The EDPs were de-
covery of design patterns in source code. SPQR uses &jyced through careful analysis of the Gang of Four (GoF)
logical inference system to reveal large numbers of pat- gesign patterns [11] for use of core object-oriented lan-
terns and their variations from a small number of defini- guage concepts (such as inheritance, delegation, recursion,
tions. A formal denotational semantics is used to encodeetc); this analysis produced eleven EDPs from which the
fundamental OO concepts (which we tegfemental design  GoF patterns can be composed. It also produced a design
pattern, and a small number of rules (which we ca-  gpace which was filled out to produce sixteen comprehen-
liance operatojsfor combining these concepts into larger sjye EDPs. We speculate that these additional EDPs will

patterns. These reliance operators, when combined withprove useful in defining design patterns from other sources.
the ¢-calculus[1], provide a formal foundation we call the

rho(p)-calculus In this paper we present both the formal
semantics of SPQR and a discussion of other practical ap-
plications for elemental design patterns.

In the remainder of this paper we first discuss related
work, and informally introduce our Elemental Design Pat-
terns. We then provide several practical applications for
these concepts, including a summary of the SPQR toolset
and its use in finding GoF design patterns. We next present
a rationale for the claim that EDPs capture the fundamen-
1 Introduction tal OO concepts needed for expression and composition of
larger design patterns. We conclude with the fudlalculus,

The System for Pattern Query and Recognition (SPQR) the formal semantics of our SPQR tools.
[24] improves on previous approaches for finding design
patterns in source code. Other systems have been limited
by the difficulty of describing something as abstract as de-2 Related work
sign patterns. A single design pattern when reduced to con-
crete code can have myriad realizations, all of which have
to be recognized as instances of that one pattern. Other sys- The decomposition and analysis of patterns is an estab-
tems have encountered difficulty in spanning these possi-lished idea, and the concept of creating a hierarchy of re-
ble implementation variations, due to their reliance on static lated patterns has been in the literature almost as long as pat-
definitions of patterns and variants. SPQR overcomes thisterns themselves [6, 13, 22, 27]. The few researchers who
problem by using an inference system based on core conhave attempted to provide a formal basis for patterns have
cepts and semantic relationships. The formal foundation of most commonly done so from a desire to perform refactor-
SPQR defines base patterns and rules for how variation canng of existing code, while others have attempted the more
occur, and the inference engine is free to apply variation pragmatic approach of identifying core components of ex-
rules in an unbounded manner. A finite number of defini- isting patterns in use.



2.1 Refactoring approaches Source Code

\L gce

Attempts to formalize refactoring [10] exist, and have gec Parse Tree
met with fairly good success to date[7, 18, 20]. The primary l' gectreeom
motivation is to facilitate tool support for, and validation of,

the transformation of code from one form to another while Object XML |
oml2otter

preserving behaviour. This is an important step in the main- \l, SPQR
tenance and alteration of existing systems, and patterns are EDP Catalog ~ OTTER Input

seen as the logical next abstraction upon which they should

operate. Such techniques include fragments, as developed Rho Calculus l OTTER
by Florijn, Meijers, and van Winsen [9], Eden’s work on v

LePus [8], andO Cinreide’s work in transformation and
refactoring of patterns in code [19] through the application

OTTER Proofs

proof2pattern

of minipatterns. These approaches have one missing piece: Found Patterns Report
appropriate flexibility of implementation. (XML, UML, etc)
2.2 Structural analyses Figure 1. SPQR Tool Chain

AnlanaIyS|s %f thz Gtang: of IFouCri k()Gr(?F)'patteI:rnls [11]'[ [23] dependency on relationships is exemplary of the nor-
reveals many shared structural and behavioural €1ementS,, ,; static treatment that arises. It will become evident that

;u?htfas thhe_ smg)llzi\ertles bet\;\t/een Compr)]osne_ ar|1d y|5|tor [1_1]_' these relationships betweeanceptsre a core piece which
elationships between patlerns, such as inclusion or SIm"grant great flexibility to the practitioner implementing pat-

larity, T)ave fb een |qve?t||gated bly var]:ous dpr;alc;tlt|ort1erst, andterns in design, through constructs we tésatopeswhich
a number of meaningful examples of underlying structures o\ o treated in Section 5.4.1.

have been described [4, 6, 22, 26, 27].
Objectifier: Thg Obijectifier pattern [27] is one such ex- 2.3 Elemental Design Patterns
ample of a core piece of structure and behaviour shared be-
tween many more complex patterns. Zimmer uses Objecti-
fier as a ‘basic pattern’ in the construction of several other
GoF patterns, such as Builder, Observer, Bridge, State
Command and Iterator. Itis a simple yet elegantly powerful
structural concept that is used repeatedly in other patterns.
Object Recursion: Woolf takes Obijectifier one step fur-
ther, adding a behavioural component, and naming it Ob-
ject Recursion [26]. The class diagram is extremely similar
to Objectifier, with an important difference, namely the be-
haviour in the leaf subclasseslidandler. Exclusive of this

Informally, Elemental Design Patterns are design pat-
terns that cannot be decomposed into smaller patterns - they
'sit one level above the primitives of object-oriented pro-
gramming, such as objects, fields, and methods. As such,
they occupy much of the same space as idioms, but are
language independent, relying only on the core concepts
of object-oriented theory. They perform the same concep-
tual task as the more common design patterns however, in
that they provide solutions to common programming situa-

. : ... tions, and do so in orthogonal ways, differing only in scope.
method behaviour, however, it seems to be an appllcatlonEDPs are the foundational nuts and bolts from which con-

of Objectifier in a more specific use. Note that Woolf com- . .
. . ceptual design frameworks are created. Also, relying only
pares Object Recursion to the relevant GoF patterns and de- . ) -
] : . on the theoretical basis OO, they have one distinct advan-
duces that: Iterator, Composite and Decorator can, in many : : . .
. o . . tage over other approaches directly involving design pat-
instances, be seen as containing an instance of Object Re-

cursion; Chain of Responsibility and Interpreter do contain L?”::;_T;ﬁjzes f[ci;r\?vilézgzlr?{aﬁvsee?Zl}l(ree?:t?jr?;hgo §X§2?otze
Object Recursion as a primary component. 9 b op

Taken together, the above instances of analyzed pa,[_that provide a simple but solid basis, thecalculus, from

tern findings comprise two parts of a larger chain: Ob- which to perform interesting analyses.

ject Recursion contains an instance of Objectifier, and both ] o

in turn are used by larger patterns. This indicates that3 Practical Applications

there are meaningful relationships between patterns, yet

past work has shown that there are more primary forces at Elemental Design Patterns and thealculus would be
work. Buschmann’s variants [5], Coplien and others’ id- interesting academic exercises only, unless there were good
ioms [3, 6, 16], and Pree’s metapatterns [21] all support reasons for performing this work. We present here three ap-
this viewpoint. Shull, Melo and Basili's BACKDOOR’s plications, including as an education tool, a set of concepts
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for programming language design, and a formal basis for
source code analysis tools.

Figure 3. Primary discovered pattern roles
3.1 SPOR

As an example, Figure 2 is a system that was designed
as many are: through growth. Three distinct libraries are
interacting in well-formed ways, each under the control of
a different engineering group. Source code is unavailable to
the other groups, and design issues are partitioned as well.
After analysis by SPQR, however, it becomes clear, as in

Our original driving problem is a ubiquitous one in soft-
ware engineering - how best to aid an engineer in compre-
hending a large or complex system. One such way is to
provide automated tools to extract conceptual information
and present it to the user in a meaningful way. Our System

for Pattern Query and Recognition [24] (SPQR) performs Figure 3, that there is a hidden instance of the Decorator de-

this task, finding instances of known design patterns within _. . Lo .
: . ; sign pattern that provides an intriguing clue to the engineers
source code and alerting the engineer to their presence. Ob;

) . . o how to refactor the three libraries to work more effectively
viously, this has many direct applications, such as system

. : ) . ) . together. This example is illustrated in complete detail, and
inspection during education, ensuring that intended patternsspQR discussed more thoroughly, in prior publication
exist in the final code, and investigation of unintended pat- ' '
tern instances that may provide cues for refactoring. i i

SPQR relies on the formal nature of EDPs and the ~3-2 EDPs as language design hints
calculus to perform the bulk of the discovery, by using an
automated theorem prover iifer the existence of patterns While some will see the EDPs as truly primitive, we
in the source code under scrutiny. The SPQR toolchainwould point out that the development of programming lan-
comprises of several components, shown in Figure 1. Fromguages has been a reflection of directly supporting features,
the engineer’s point of view, SPQR is a single fully auto- concepts, and idioms that practioners of the previous gen-
mated tool that performs the analysis from source code anderations of languages found to be useful. Cohesion and
produces a final report. A simple script provides the work- coupling analysis of procedural systems gave rise to many
flow, by chaining several modular component tools, cen- object oriented concepts, and each common OO language
tered around tasks sburce code feature detectidrature- today has features that make concrete one or more EDPs.
rule descriptionrule inferenceandquery reporting Com- EDPs can therefore be seen as a path for incremental addi-
piler output of the syntax tree of a codebase (one currenttions to future languages, providing a clue to which features
input source is gcc) is transformed into our formal notation programmers will find useful based precisely on what con-
encoded as input to the OTTER automated theorem provercepts they currently use, but must make from simpler forms.
[15]. This fact set, combined with the pre-defined encod- A recent and highly touted example of such a language
ings for the EDP Catalog and the relationships ruleg-of  construct is thelelegatefeature found in C#[17]. This is an
calculus are operated on by OTTER to find instances of de-explicit support for delegating calls directly as a language
sign patterns which are then reported to the user. SPQR ideature. It is in many ways equivalent to the decades old
language and domain independent, and would be imprac-Smalltalk and Objective-C’s selectors, but has a more def-
tical without the formal foundations of our EDPs apd inite syntax which restricts its functionality, but enhances
calculus. ease of use. ltis, as one would expect, an example of the



Delegation EDP realized as a specific language construct, ing the scope of the design pattern being studied, one can
and demonstrates how the EDPs may help guide future lan+educe the background necessary by the reader, and, there-
guage designers. Patterns are explicitly those solutions thafore, make the reduced pattern more accessible to a wider
have been found to be useful, common, and necessary iraudience. This parallels the suggestions put forth by Gold-
many cases, and are therefore a natural set of behaviourberg in 1994[12].
and structures for which languages provide support.

Most languages have some Sl_Jpport for 4 Elemental Design Patterns
ExtendMethod, through the use of either static
dispatch, as in C++, or an explicit keyword, such as
Java and Smalltalk'super. Others, such as BETA[14],
offer an alternative approach, deferring portions of their
implementation to their children through thener con-
struct. Explicitly stating ‘extension’ as a characteristic of a
method, as with Java’s concept @ftendsfor inheritance,
however, seems to be absent. This could prove to be usefu
to the implementers of a future generation of code analysis o .
tools and compilers. 4.1 Examination of design patterns

The AbstractInterface EDP is, admittedly, one of
the simplest in the collection. Every OO language supports  Our first task was to examine the existing canon of de-
this in some form, whether it is an explicit programmer- Sign pattern literature, and a natural place to start is the ubig-
created construct, such as C++'s pure virtual methods, oruitous Gang of Four text[11]. Instead of a purely structural
an implicit dynamic behaviour such as Smalltalk’s excep- inspection, we chose to attempt to identify common con-
tion throwing for an unimplemented method. It should be Ccepts used in the patterns. A first cut of analysis resulted in
noted though that the above are either composite construct€ight identified probable core concepts:
(virtual foo() = 0; in C++) or a non construct runtime be-
haviour (Smalltalk), and as such are learned through inter-Abstractinterface An extremely simple concept - you
action with the relationships between language features. In ~ Wish to enforce polymorphic behaviour by requiring
each of the cases, the functionality is not directly obvious in all subclasses to implement a method. Equivalent to
the language description, nor is it necessarily obvious to the ~ Woolf's Abstract Class pattern[25], but on the method

student learning OO design. Future languages may benefit  level. Used in most patterns in the GoF group, with the
from a more explicit construct. exception of Singleton, Facade, and Memento.

The Elemental Design Patterns were deduced through
analysis of the existing design pattern literature, and then
extended to comprehensively cover the most interesting
ways in which objects can interact in object-oriented pro-
gramming. We believe that the sixteen EDPs comprise the
pore of any design space.

i Delegatedimplementation Another ubiquitous solution,

3.3 Educational uses of EDPs moving the implementation of a method to another ob-
ject, possibly polymorphic. Used in most patterns, a
We believe the EDPs provide a path for educators to method analog to the CHgimplidiom[6].

guide students to learning OO design from first principles,
demonstrating best practices for even the smallest of prob-ExtendMethod A subclass overrides the superclass’ im-
lems. Note that the core EDPs require only the concepts  Plementation of a method, but then explicitly calls the
of classes, objects, methods (and method invocation), and ~ superclass’ implementation internally. It extends, not
data fields. Everything else is built off of these most ba- replaces, the parent’s behaviour. Used in Decorator.
sic OO constructs which map directly to the core of UML Retrieval Retrieves an expected particular type of object
class diagrams. The new student needs only to understand from a method call Upsed N gin leton )éFL)Jilder Fjac-
these extremely basic ideas to begin using the EDPs as a torv Method ' 9 ' '
well formed approach to learning the larger and more com- y '

plex design patterns. As an added benefit, the student willieration A runtime behaviour indicating repeated step-
be exposed to concepts that may not be directly obvious in ping through a data structure. May or may not be

the language in which j[hey are currently working. These possible to create an appropriate pattern-expressed de-
concepts are language independent, however, and should be scription, but it would be highly useful in such patterns
transportable throughout the nascent engineer’s career. as Iterator and Composite.

This transmission of best practices is one of the core mo-
tivations behind design patterns, but even the simplest of thelnvariance Encapsulate the concept that parts of a hierar-
canon requires some non-trivial amount of design under- chy or behaviour doot change. Used by Strategy and
standing to be truly useful to the implementer. By reduc- Template Method.



AggregateAlgorithm Demonstrate how to build a more propriate calling styles, then note that four of our remaining
complex algorithm out of parts that do change poly- list are simply variations on whether the called method is
morphically. Used in Template Method. abstract or not. By identifying this as an instance of the Ab-

. ) ) stractinterface component from above, we can simplify this

CreateObject Encapsulates creation of an object, Very jist further to our final collection of the six primary method
similar to O Cinreide’s Encapsulate Construction jnyocation styles in the GoF text, shown in Table 2. We will
minipattern[19]. Used in most Creational Patterns.  gemonstrate later how to reincorporate Abstractinterface to

Of these, Abstractinterface, Delegatedimplementation rebuild the calling styles used in the original patterns. .
and Retrieval could be considered simplistic, while Iteration . A glance at the first column re_veals that it can be split
) . er: into two larger groups, those which call a method on the
and Invariance are, on the face of things, extremely difficult. e .
. ; . ] same object instance & b) and those which call a method
On inspection, five of these possible patterns are cen- .
tered around some form of method invocation. This led us °" another Objecm#_b)' .
to investigate what the critical forms of method calling truly The m?thOd calls involved in the GOF. pa.tterns now can
are, and whether they could provide insights towards pro- be classified by three orthogonal properties:
ducing a comprehensive collection of EDPs. We assume,
for the sake of this investigation, a dynamically bound lan-
guage environment and make no assumptions regarding fea-
tures of implementation languages. Categorizing the vari-
ous forms of method calls in the GoF patterns can be sum-
marized as in Table 1, grouped according to four criteria.
Assume that an object of type A has a method that
the program is currently executing. This method then in-
ternally calls another methog, on some object), of type
B. The columns represent, respectively, howeferences
b, the relationship betwee# andB, if any, the relationship
between the types of and g, whether or noty is an ab-
stract method, and the patterns that this calling style is use
in. Note that this is all typing information that is available
at the time of method invocation, since we are only inspect-
ing the types of the objectsandb and the methodg and 4.2 Method call EDPs
g. Polymorphic behaviour may or may not take part, but
we are not attempting a runtime analysis. This is strictly an  The first axis in the above list is simply a dichotomy be-
analysis based on the point of view of the calling code. tween Self and Other.r The second describes the rela-
If we eliminate the ownership attribute, we find that the tionship betweem and B, if any, and the third compares
table vastly simplifies, as well as reducing the information the types (consisting of a function mapping typeandG,
to strictly type information. In a dynamic language, the con- whereFF = X — Y for a method taking an object of type
cept of ownership begins to break down, reducing the ques-X and returning an object of typ€) of f andg, simply as
tion of access by pointer or access by reference to a mattetanother dichotomy of equivalence.
of implementation semantics in many cases. By reducing |tjs illustrative at this point to attempt creation of a com-
that conceptual baggage in this particular case, we are fregyrehensive listing of the various permutations of these axes,
to reintroduce such traits later. Similarly, other method in- and see where our identified invocation styles fall into place.
vocation attributes could be assigned, but do not fit within For the possib|e re|a‘[ion5hips betwedrand B, we have
our typing framework for classification. For instance, the started with our list items of ‘Parent’, where<: B 2 ‘Sib-
concept of constructing an object at some point in the pat-|ing’ where A <: ¢ and B <: C for some type C, and
ternis used in the Creational Patterns: Prototype, Singleton;uUnrelated’ as a collective bin for all other type relations
Factory Method, Abstract Factory, and Builder, as well as at this point. To these we add ‘Same’, &r= B, as an
others such as Iterator and Flyweight. This reflects our Cre-gpvious simple type relation between the objécts.
ateObject component, but we can place it aside for now to
concentrate on the typing variations of method calls. 1Child is another possibility here, and a call§ame maps to BETA's
At this time, we can reorganize Table 1 slightly, remov- inner, for example. _ o
ing the Mediator and Flyweight entry on the last line, as no , <:T'}§r22tdast';”is'sat;'j§g/ ;;OL”B,Abad' and Cardellis sigma calculus[1]
typing attributable method invocations occur within those  3¢pi4 is possible here as an addition as well, although we do not do
patterns. We can also merge State and Bridge into the apso at this time.

e The relationship of the target object instance to the
calling object instance

e The relationship of the target object’s type to the call-
ing object’s type

e The relationship between the method signatures of the
caller and callee

This last item recurs often in our analysis, and once it is re-
alized that it is the application of Beck’s Intention Revealing

essage best practice pattern [3], it becomes obvious that
his is an important concept we dgbmilarity.




Ownership| Obj Type | Method Type| Abstract| Used In

N/A self diff Y Template Method, Factory Method

N/A super diff Adapter (class)

N/A super same Decorator

held parent same Y Decorator

held parent same Composite, Interpreter, Chain of Responsibility
ptr sibling same Proxy

ptr/held none none Y Builder, Abstract Factory, Strategy, Visitor
held none none Y State

held none none Bridge

ptr none none Adapter (object), Observer, Command, Memento
N/A Mediator, Flyweight

Table 1. Method calling styles in Gang of Four patterns

4.2.1 Initial list

11

Obj Type | Method Type| Used In
1| self diff Template Method, Factory Method
2 | super diff Adapter (class)
3 | super same Decorator
4 | parent same Composite, Interpreter, Chain of Responsibility, Decorator
5 | sibling same Proxy
6 | none none Builder, Abstract Factory, Strategy, Visitor, State, Bridg
Adapter (object), Observer, Command, Memento

Table 2. Final method calling styles in Gang of Four patterns

We start by filling in the invocation styles from our final list

(d) Sibling(A <: C,B <: C,A £: B)
i. Same ¢ = G) RedirectInLimitedFamily[5]

from the GoF patterns, mapping them to our six categories ii. Different (F #G).............ooooinns.
in Table 2:
Each of these captures a concept as much as a syntax,
1. Self @ =1b) as we originally intended. Each expresses a direct and ex-
) plicit way to solve a common problem, providing a struc-
(@) Self( = B, ora = this) tural guide as well as a conceptual abstraction. In this way
LSameF =G) ..o they fulfill the requirements of a pattern, as generally de-
ii. Different(F #G)..... Conglomeration[1] ~ fined, and more importantly, given a broad enough context
(b) Super @ <: B, ora = super) anq minimalist constraints, fulfill Alexander’s original defi-
) nition as well as any decomposable pattern language can[2].
i. Same " =G).......... ExtendMethod[3]  \we will treat these as meeting the definition of design pat-
ii. Different(FF #£G)....... RevertMethod[2] terns, and present them as such.

2. Other ¢ # b)

(a) Unrelated
i. Same ¢ =G)
ii. Different(F £ G)............
(b) Same 4 = B)
i. Same ¢ = G)

ii. Different (F' # G)

(c) Parentd <: B)
i. Same ¢ =G)

ii. Different (F' # G)

Redirect[6]
Delegate[6]

The nomenclature we have selected is a reflection of the
intended uses of the various constructs, but requires some
defining:

Conglomeration Aggregating behaviour from methods of
Self. Used to encapsulate complex behaviours into
reusable portions within an object.

ExtendMethod A subclass wishes to extend the behaviour
of a superclass’ method instead of strictly replacing it.

RevertMethod A subclass wantsotto use its own version
of a method for some reason, such as namespace clash
in the case of Adapter (class).



Redirect A method wishes to redirect some portion of its
functionality to an extremely similar method in another
object. We choose the term ‘redirect’ due to the usual
use of such a call, such as in the Adapter (object) pat-
tern.

Delegate A method simply delegates part of its behaviour
to another method in another object.

RedirectinFamily Redirection to a similar method, but
within one’s own inheritance family, including the
possibility of polymorphically messaging an object of
one’s own type.

RedirectinLimitedFamily A special case of the above,
but limiting to a subset of the family tree, excluding
possibly messaging an object of one’s own type.

4.2.2 The full list

RedirectedRecursion A form of object level iteration.

DelegatedConglomerationGathers behaviours from ex-
ternal instances of the current class.

DelegatelnFamily Gathers related behaviours from the lo-
cal class structure.

DelegatelnLimitedFamily Limits the behaviours selected
to a particular base definition.

4.3 Object Element EDR

At this point we have a fairly comprehensive array of
method/ object invocation relations, and can revisit our orig-
inal list of concepts culled from the GoF patterns. Of the
original eight, three are absorbed within our method invo-
cations list: Delegatedimplementation, ExtendMethod, and
AggregateAlgorithm. Of the remaining five, two are some
of the more problematic EDPs to consider: Iteration, and

We can now begin to see where the remainder of the methodariance. These can be considered sufficiently difficult

call EDPs will take us. Again, we will present the listing,
and briefly discuss each new item in turn.

1. Self @ = b)

(a) Self @ = this)
................ Recursion
Conglomeration

(b) Super ¢ = super)

i. SameF=G)............ ExtendMethod
ii. Different(F#G)......... RevertMethod
2. Other @ #£b)
(&) Unrelated
i.SameF=G)...........iit. Redirect
ii. Different(F#G).............. Delegate

(b) Same 4 = B)
i. Same ¢ = G) RedirectedRecursion
ii. Diff( F' # G)...DelegatedConglomeration
(c) Parentfd <: B)
i. Same ¢ = G) RedirectinFamily
ii. Different (F' # G) DelegatelnFamily
(d) Sibling A <: C,B <:C, A £: B)
i. Same ¢ = G)...RedirectinLimitedFamily
ii. Diff( F' # G)....DelegatelnLimitedFamily

Recursion Quite obvious on examination, this is a con-

concepts at this stage of the research that they are beyond
the scope of this paper.

Our remaining three EDPs, CreateObject, Abstractinter-
face, and Retrieve, deal with object creation, method imple-
mentation, and object referencing, respectively. These are
core concepts of what objects and classes are and how they
are defined. CreateObject creates instances of classes, Ab-
stractinterface determines whether or not that instance con-
tains an implementation of a method, and Retrieve is the
mechanism by which external references to other objects
are placed in data fields. These are the elemental creational
patterns and they provide the construction of objects, meth-
ods, and fields. Since these are the three basic physical ele-
ments of object oriented programming[1], we feel that these
are a complete base core of EDPs for this classificdtion.

CreateObject Constructs an object of a particular type.

Abstractinterface Indicates that a method hamt been
implemented by a class.

Retrieve Fetches objects from outside the current object,
initiating external references.

The method invocation EDPs from the previous sec-
tion are descriptions of how these object elements interact,
defining the relationships between them. One further re-
lationship is missing, however: that between types. Sub-
typing is a core relationship in OO languages, usually ex-
pressed through an inheritance relation between classes.
Subclassing, however, ®tequivalent to subtyping[1], and

4Classes, prototypes, traits, selectors, and other aspects of various ob-

crete link between primitive language features and our ject oriented languages are expressible using only the three constructs

EDPs.

identified.[1]



should be noted as a language construct extension to thgorms of coupling theory.)s is an operator trait indicator,
core concepts C_Jf objectjorlented theory. Because of this, weallowing for the three types of reliance specialization ¢,
introduce a typing relation EDP, Inheritance, that creates ao) to be abstracted in the following rules. The appearance of

structural subtyping relationship between two classes. Notthis symbol indicates that any of the three may exist there.
all languages directly support inheritance, it may be pointed

out, instead relying on dynamic subtyping analysis to deter- A={0,0.u}
mine appropriate typing relations.

A/ — {O/, O/'/i/}
Inheritance Enforces a structural subtyping relationship.
yping P = {p, ¢}
5 Rho Calculus o= {+,—,0}

The basic reliance operator symbel, was selected to
Our EDPs are useful in many areas as they stand, bulye an analogue to the inheritance/subsumption of types in-
for formal analysis of source code, we needed to create aryicator in sigma calculuss:, which can be interpreted to
approach that would provide a semantic basis for logical in- mean a reliance of type. Since the typing symbal ihis
ferences. Rho-calculus is the formal foundation of the EDP |eaves< as a natural for the concept of ‘reliance on’. This,
catalog. It allows us to encode facts about a codebase into gompined with our three symbols fromabove, gives rise
simple yet powerful notation that can be directly input to au- 4 gur three reliance operators;,, <, <~
tomated theorem provers, such as the OTTER system used
in SPQR. Without this, the EDPs would be conceptually 52 Creation
useful but impractical to use in an automated tool system.
This section defines the rho fragmemnk ) of the p-
calculus which results when this fragment is added tathe
calculus. By defining this as a calculus fragment, we allow
researchers to add it to the proper mix of other fragments
defined in [1] to create the particular formal language they
need to achieve their goals.

We have three rules that create instances of our reliance
operators. First, we have the Method Invocation Relop rule,
which states that given a methadnvoked on object), if
that method contains a method invocation call to metod
of another objectY’, we have a method reliance between
the two, indicated by thg form reliance operator,,):

5.1 Definitions Ou=p=c)0" 1]

1
O.u<, O @)

Let us defineO as the set of all objects instantiated
within a given system. The® < O is some object in the We have a similar rule for deriving an instance of a field
system. Similary, lefi/ be the set of all method signatures reliance operator. This one states that if an object's method
within the system. Thep € M is some method signature  O.u contains a reference to another obj€Xt then there is
in the system.O.. is then the selection of some method a reliance between the two based on reference access of the
signature imposed on some object. We make no claim herdield, indicated by the) form reliance operator<{y). This
that this is a well-formed selection, and in fact we have no is the Method Field Relop rule:
need to - the underlying-calculus imposes that construct ,
for us. 7 is some type in the set of all typ&sdefined in the O.p=p=<00] o)
system such that iP is of typer, then© : 7. Op<e 0

Similarly, if an object®’ is referenced as an instance vari-

able data field of an objec®, then we can use the Object
Let A be either an objead or a method selectio®. .. Field Relop rule:

Let A’ be another such set for distinct object and method .,

selections. (By convention, the base forms of the symbols O:7,7=[0":7]

will appear on the left side of the reliance operator (relop), 0 <O

and the prime forms will appear on the right hand side to

indicate distinct items.) is a signifier that a particular re- 5.3 Similarity Specializations

liance operator may be one of our three variafiis:®, v }.

1 is a method selection reliance,is a field reliance, and We can pin down further details of the relationships be-

v is a ‘generalized’ reliance where a reliance is known, but tween the operands of the reliance operators by inspecting

the exact details are not. (It is analogous to more traditionalthe method signatures or the object types/f@and¢ form

OeO,peM,TteT

®3)



relops, respectively, reflecting themilarity trait found in Note that this is the only point at whichform relops are

the EDP catalog. created.
If the method signatures on both sides qf orm relop

match, then we have a similarity invocation, and append a

+ to the relop symbol to indicate this trait:

A<, AVA <0 A
A<, A

iff v#a 9)

Ou<, Oy ,p=y @) 5.4.1 Isotopes

O.p <,y O . . . .
Hosus 201 This is the key element of ousotopeswhich allow design

If, on the other hand, we know for a fact that the two method patterns to be inferred in ffexible manner. We do not re-
signatures do not match, then we have a dissimilarity invo- quire each and every variation of a pattern to be statically

cation, and we append-ato the relop: encoded, instead the transitivity in thecalculus allows us
. , to simply encode the relationships between elements of the
Op<,0'sp#p -
t (5) pattern, and an automated theorem prover can infer as many
Op <p- O possible situations as the facts of the system provide. In this

p. way a massive search space can be created automatically

We follow a similar approach with the inspection of the o ) o
from a small number of design pattern definitions.

ject types of the operands inggform relop. If the two types

are equal, then we have a similarity reference: L
5.5 Generalizations

A<, O,0:7,0 7, 7=1 ©)

A< O These are generalizations of relops, the opposite of the
specialization rules earlier. Each of them generalizes out
some piece of information from the system that may be un-
necessary for clear definition of certain rules and situations.

A< O,0:7,0 7747 Information is not lost to the system, however, as the origi-
A<, O (") nal statements remain.
The first two generalize the right hand side and left hand
In both thep and ¢ form relops, if the above information  sides of the relop, respectively, removing the method selec-
is not known with certainty, then the relop remains unap- tion but retaining the object under consideration. They are

And if the two types are known to be unequal, then we have
a dissimilarity reference:

pended in a more general form. RHS Generalization and LHS Generalization.
!/ !/
5.4 Transitivity A< O (10)
A <z% o’
Transitivity is the process by which large chains of re- ,
liance can be reduced to simple facts regarding the reliance O.p< s A (11)

of widely separated objects in the system. The three forms O< + A
of relop all work in the same manner in these rules. The
specialization trait of the relopH) is not taken into con-
sideration, and in fact can be discarded during the applica-
tion of these rules - appropriate traits can be re-derived as
needed. A<, A

Given two relop facts, such that the same object or m (12)
method invocation appears on thes of the first and the
Ihs of the second, then tHhs of the first andhs of the sec-  Similarly, the Similarity Generalization states that any spe-
ond are involved in a reliance relationship as well. If the two cialized similarity trait form of a relop implies that the more
relops are of the same form, then the resultant relop will be general form is also valid.
the same as well.

A A A A (.Z‘ — ¢) AL:':A/
S iff e = ®) a A <o A

If, however, the two relops are of different forms, then the 6 Conclusion

resultant relop is our most general form, This indicates

that while a relationship exists, we can make no hard con- We have presented the foundations for the System for
nection according to our definitions of theor ¢ forms. Pattern Query and Recognition (SPQR), comprised of the

This is a Relop Generalization. It indicates that the most
general form of reliancey can always be derived from a
more specialized formyd ¢).

(13)




Elemental Design Patterrend matching formalizations in
the p-calculusfor composition into larger, more useful and
abstract design patterns as usually found in software archi-[11]
tecture. These EDPs were identified initially through in-

spection of the existing literature on design patterns, es-

tablishing which solutions appeared repeatedly within the

same contexts, mirroring the development of the more tra-

(10]

(12]

ditional design patterns. Further, they are formally describ- 13

able in thep-calculus, a notation that builds upon the
calculus, but adds the key conceptrefianceto the base
notation. These extensions, tfeiance operatorgprovide

a large degree of flexibility to formally stating the relation-
ships embodied in design patternssatopeswithout lock-
ing them into any one particular implementation.

These contributions will allow for new approaches to an-

alyzing software systems, education regarding design pat-

(14]

(15]

terns and best practices in object-oriented architecture, and{1
may help guide future language design by indicating which [17]

design elements are most commonly used by software ar-

chitects.
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