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ABSTRACT 

Pablo Mauricio Rademacher: Measuring the Perceived Visual Realism of Images 

(Under the direction of Dr. Gary Bishop) 

 

One of the main goals of computer graphics research is to develop techniques for 

creating images that look real – i.e., indistinguishable from photographs.  Most existing work 

on this problem has focused on image synthesis methods, such as the simulation of the 

physics of light transport and the reprojection of photographic samples.  However, the 

existing research has been conducted without a clear understanding of how it is that people 

determine whether an image looks real or not real.  There has never been an objectively 

tested, operational definition of realism for images, in terms of the visual factors that 

comprise them.  If the perceptual cues behind the assessment of realism were understood, 

then rendering algorithms could be developed to directly target these cues.   

This work introduces an experimental method for measuring the perceived visual 

realism of images, and presents the results of a series of controlled human participant 

experiments.  These experiments investigate the following visual factors: shadow softness, 

surface smoothness, number of objects, mix of object shapes, and number of light sources.  

The experiments yield qualitative and quantitative results, confirm some common assertions 

about realism, and contradict others.  They demonstrate that participants untrained in 

computer graphics converge upon a common interpretation of the term real, with regard to 

images.  The experimental method can be performed using either photographs or computer-

generated images, which enables the future investigation of a wide range of visual factors.  
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1. INTRODUCTION 

1.1 Motivation     

Realistic rendering is one of the main areas of research in computer graphics (CG).  

In many applications, the goal of realistic rendering is to create images that are perceived by 

human observers as being real, and not synthetic.  The objective is for computer-generated 

images to evoke a similar sense of perceived visual realism as that evoked by direct 

photographic captures of existing physical scenes.  This is the aim, for example, of visual 

effects for live-action films – viewers should believe that the computer-generated elements 

are as real as the photographed elements.  While the goal of perceived visual realism is 

common, not much is known about why some images are perceived as real and others are 

not.  There is very little data in the literature of computer graphics, visual perception, art, or 

photography to indicate what about an image tells observers that it is real.   

The lack of data on what causes images to be perceived as real hinders research on 

realistic rendering.  For example, perceived visual realism is often equated with physical 

accuracy.  It is reasoned that accurate computational simulations of the physical processes of 

light transport and photography will lead directly to realistic imagery.  The fallacy of this 

reasoning lies in the presumption that photographs are always regarded as realistic.  If real-

world photographs, which are the product of real-world light transport, are not all perceived 

as realistic, then simulating these physical processes does not suffice to guarantee realistic 

imagery.  Instead, it becomes necessary to focus on those specific visual cues that suggest 

realism to observers. 

Evidence of why certain images are perceived as real would also help prioritize 

research on the different elements of an image (lighting quality, surface texture, geometric 



 

 2

structure and detail, etc).  There is no data in the literature as to which visual factors 

contribute most to realism, and which visual factors have no effect.   

 

Figure 1. Is this image real or not real?  How did you decide? 

In this dissertation I measure the perceived visual realism of images, as reported by 

human participants via an experimental task.  I obtain data on how changes along different 

visual factors affect perceived visual realism.  The modifier perceived is necessary because 

the experimental method measures participants’ regard of images as being either real or not 

real, rather than measuring an inherent property in the images themselves.   

The experimental data are used to answer broad questions about perceived visual 

realism (e.g., whether all photographs are perceived as equally realistic), as well as narrower 

questions on specific visual factors (e.g., whether perceived visual realism increases with 

shadow softness or with the number of objects in a scene).  The long-term goal of this line of 

research is to discover exactly the manner in which different factors affect perceived visual 

realism, so that new rendering algorithms can directly target the necessary visual cues.  
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1.2 Experimental method for measuring the perceived visual realism of 
images 

In the experimental method used in this dissertation, study participants are presented 

with a set of images on a CRT monitor.  Participants rate each image as being either “real” or 

“not real.”  The images are controlled and vary only along specific visual dimensions1 

(shadow softness, surface smoothness, number of objects, mix of object shapes, and number 

of light sources).  Participants are not told what the differences are between the images.  

They are told only that each image may be either a photograph or a computer-generated 

image (this establishes the context in which the term real operates).  Participants are not 

given an explicit definition of the term real, and they are free to apply any criteria they 

choose in order to evaluate the images. 

This work is based on the notion that people have an internal concept of realism that 

they cannot directly verbalize, but which can be indirectly measured via an experimental 

task.  The experimental method thus yields an operational definition of the term “real.”  An 

operational definition [Brid60] of an abstract concept is a definition in terms of a specific 

measurement procedure and an accompanying set of measurements.  In this dissertation, a 

visually realistic image is defined operationally as one that is rated as “real” by human 

observers.  

The goal of this research is not to measure people’s ability to correctly distinguish 

between photographs and computer-generated images, but rather to measure how changes 

along specific visual dimensions affect perceived visual realism.  For this reason, the images 

within each experiment must be identical except along those dimensions that are being 

directly manipulated.  This implies that within a given experiment the images must all be 

photographic or they must all be computer-generated.  The two should not be mixed, as this 

would likely introduce confounding factors.  

                                                        
1 The terms visual factors and visual dimensions will be used interchangeably throughout this dissertation. 
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1.3 Thesis statement 

The goal of this dissertation is to measure the effect different visual factors have on 

perceived visual realism.  The work investigates the following three-part thesis: 

There exist visual factors in images which have measurable, consistent 
effects on perceived visual realism, as reported by human observers.   

Not all visual factors have the same effect on perceived visual realism.   

Certain visual factors have similar effects on perceived visual realism in 
both photographs and computer-generated images. 

The thesis statement consists of three parts, which will be proven by the results of a 

set of human participant experiments.  These experiments investigated the following five 

visual factors: shadow softness, surface smoothness, number of objects, mix of object shapes, 

and number of light sources. 

The first part of the thesis states that manipulating images along certain visual 

dimensions yields differences in perceived visual realism that are consistent among different 

observers (i.e., statistically significant).  Of the five visual dimensions investigated, 

statistically significant effects were observed for shadow softness and for surface smoothness 

(Chapter 5).  

The second part of the thesis states that not all visual factors have the same effect on 

perceived visual realism.  Whereas shadow softness and surface smoothness were found to 

have statistically significant effects on reported realism, significant effects were not observed 

for number of objects, mix of object shapes, or number of light sources (Chapter 6). 

The third part of the thesis states that results are consistent for certain visual 

dimensions, between photograph-based experiments and experiments based on computer-

generated images.  In Chapter 7, CG-based experiments on shadow softness and surface 

smoothness are compared to the photograph-based shadow and surface experiments from 

Chapter 5. 
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1.4 Summary of experimental results 

For each experiment, participants were asked to rate each image in a randomly 

ordered series as either “real” or “not real.”  These responses were converted to binary scores 

by assigning the value zero for “not real,” and the value one for “real.”  Summing the binary 

scores over all participants at each level of a visual factor, and then dividing by the number 

of scores at that level, gives a mean score.  A mean score of zero for a given factor level 

indicates that none of the images at that level were rated as “real,” while a mean score of one 

indicates that all images at that level were rated as “real.”  If participants expressed no 

preference towards “real” or “not real” for a given factor level, or if they chose their 

responses at random, then the expected mean score would equal 0.5.  Furthermore, if they 

rated the same number of images at each level as “real,” then the mean scores would be equal 

across all levels, indicating that the visual factor had no effect.  However, if the visual factor 

did have a consistent effect on participants’ responses, then the mean scores will either 

increase or decrease as the visual factor is varied.  This is what the analysis tests: did 

variations within each visual dimension affect participants’ responses?  In practice, the mean 

scores will almost never be exactly the same across the factor levels.  Statistical analysis is 

therefore employed to determine whether existing differences are likely due to an actual 

effect or due only to chance. 

The raw binary data were analyzed by repeated measures logistic regression analysis 

(an analogue to repeated measures linear regression, but suitable for analysis of binary data).  

The null hypothesis was that manipulations along each visual dimension has no effect on 

participants’ responses.  This was tested using the logistic regression’s p-value, which 

indicates the statistical probability that differences in the mean scores across the factor levels 

were due to chance (i.e., that a visual factor had no measurable effect).  An α value of .05 

was selected in advance of performing the experiments, with p < α indicating statistical 

significance (i.e., that differences in the data were likely due to actual effects). 

The results of the experiments are summarized below.  For each experiment, the table 

gives the number of participants, the number of levels tested for the visual factor, the mean 

response score at each level (over all trials and all participants), the standard deviation of this 

score, the overall model Chi-square value, and the p-value test for statistical significance. 
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The experiments were conducted over four two-day sessions, spaced approximately 

three weeks apart.  Each participant completed all of his or her experiments in a single two-

hour sitting at one of these sessions.  The experiments on number of objects, mix of object 

shapes, and number of light sources were added in the later sessions, hence the reduced 

number of participants for these visual factors.  The row entitled “Experimental Session” 

shows the sessions in which each experiment was conducted.   

 

 
Shadows softness  

(photo) 

Surface 

smoothness 

(photo) 

Number of 

objects 

 (photo) 

Mix of 

object 

shapes 

 (photo) 

Number of 

light sources 

 (photo) 

Shadow softness 

 (CG) 

Surface 

smoothness 

 (CG) 

Number of 

participants 
18 18 9 9 6 7 7 

Experimental 

session 
I, II, III I, II, III II, III II, III III IV IV 

Number of 

trials per 

participant 

60 60 40 40 36 30 12 

Number of 

levels 
5 2 4 2 3 5 2 

Mean score at 

each level 
.47, .52, .55, .62, .59 .39, .71 .73, .61, .64, .53 .60, .64 .46, .39, .36 .38, .72, .67, .77, .77 .27, .77 

Std. dev. at 

each level 
.12, .11, .11, .10, .11 .10, .12 .16, .20, .18, .15  .12, .17 .16, .16, .20 .22, .13, .20, .05, .17 .10, .13 

Model chi-

square (d.f.=1) 
4.32 12.85 3.12  0.56 0.50 5.46 18.75 

p-value .0377 .0003 .0772 .4550 .4790 .0197 <.0001 

Statistically 

significant at 

αααα=.05? 

Yes Yes No No No Yes Yes 

 

Table 1. Summary of experimental results. 

The data in the table above proves the three parts of the thesis statement.  First, two of 

the visual factors, shadow softness and surface smoothness, yielded effects that were 

statistically significant – i.e., measurable and consistent across different observers.  Second, 
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not all the visual factors had the same effect on perceived visual realism – shadow softness 

and surface smoothness were statistically significant, but number of objects, mix of object 

shapes, and number of lights were not statistically significant.  Third, results were consistent 

between photograph-based experiments and experiments based on computer-generated 

images, for the two visual factors that were tested in both forms.  

1.5 Overview of dissertation 

Chapter 2 – Background  

This chapter reviews relevant previous research in computer graphics 

and visual perception.  Despite the fact that there is much crossover 

work between these two fields, the central question of this 

dissertation (“What visual factors cause an image to be perceived as 

real?”) has not been directly studied in the existing literature. 

Chapter 3 – Experimental method for investigating perceived visual realism 

in images 

This chapter discusses the many issues of experimental design that 

must be considered for the proposed experimental method. 

Chapter 4 – Overview of experiments 

This chapter summarizes the visual factors investigated in this 

dissertation, and discusses how the factors were selected. 

Chapter 5 – Photograph-based experiments on shadow softness and surface 

smoothness 

This chapter presents photograph-based experiments exploring the 

effects of shadow softness and surface smoothness on perceived 

visual realism.  Both visual factors had a statistically significant 

effect on the reported realism.   
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Chapter 6 – Photograph-based experiments on number of objects, mix of 

object shapes, and number of light sources 

This chapter presents photograph-based experiments that measure 

whether perceived visual realism varies with number of objects, mix 

of object shapes, or number of light sources.  These visual factors did 

not have a statistically significant effect on reported realism.   

Chapter 7 – Experiments using computer-generated images  

This chapter presents CG-based experiments on shadow softness and 

surface smoothness.  The findings are shown to be consistent with 

the photograph-based experiments on shadow softness and surface 

smoothness from Chapter 5. 

Chapter 8 – Discussion 

This chapter discusses the results of the experiments from Chapters 

5, 6, and 7.  

Chapter 9 – Future work 

The experiments I present in this dissertation only begin to explore 

the complex problem of perceived visual realism.  This chapter 

describes some possible directions for future work. 

 



2. BACKGROUND 

There is little previous work that investigates how different visual factors affect 

perceived visual realism.  Existing research on image synthesis has not directly asked why 

images look real, even though the answer to this question is essential for realistic rendering.  

Research on human vision has not directly investigated the question either. 

This chapter presents previous work from the following areas: realistic image 

synthesis, art, human vision and visual perception, and applications of human vision research 

to computer graphics.  The relevance of existing work to perceived visual realism – the topic 

of this dissertation – is discussed for each of these areas. 

2.1 Computer graphics research on realistic image synthesis 

This section discusses two leading approaches to realistic rendering in computer 

graphics: image-based rendering and physically-based rendering. 

2.1.1 Image-based rendering 

Image-based rendering [Leng98] is a technique in which images of a three-

dimensional scene are generated for novel viewpoints, by manipulating and reprojecting pre-

acquired images (or, more generally, samples) of the scene.  This can be a synthetic scene (a 

set of renderings is computed as a preprocess, and reprojected at run-time), or a real-world, 

physical scene (photographs are taken, and reprojected at run-time). 

Forms of image-based rendering include lumigraph/light field methods 

[Gort96][Levo96], image warping [McMi95][Shad98][McAl99], and photogrammetry 

[Faug93][Debe96][Pull97].  Each of these techniques has been shown to be capable of 

generating images that resemble photographs from novel viewpoints.  However, image-based 
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rendering sheds little light on the nature of perceived visual realism.  If the original images 

are photographs, then the resulting images will look like photographs – the realism of the 

final image is simply carried over from the original input images.  Image-based rendering 

research does not answer the question of what it is about the original images that makes them 

look real or not to begin with. 

2.1.2 Physically-based rendering  

Another method for synthesizing realistic images is to simulate the physical process 

of light transport.  This approach typically centers on global illumination and surface 

reflectance.  Global illumination describes the propagation of light throughout a three-

dimensional environment, and surface reflectance describes the distribution of light reflected 

from a surface [Cohe93][Glas95].  The success of a global illumination rendering method is 

usually gauged by its predictive ability – how similar the images it produces are to what a 

real-world image (e.g., a photograph) of the same scene would be.  Surface reflectance 

models are often expected to be predictive as well, and are compared for accuracy against 

real-world photometric measurements of sample surfaces.  Error metrics for physically-based 

rendering methods have been extensively studied [Lisc94][Lafo96][Patt97], and primarily 

consist of numerical analyses of the various approximations in the simulation models. 

A problem with physically-based approaches to rendering is that it has not been 

proven that physical accuracy is necessary or sufficient for perceived visual realism.  That is, 

there is no existing evidence to indicate that all realistic images are physically accurate, or 

that all physically accurate images are realistic.  If the two are not equivalent, then it may be 

that physical accuracy is not enough to guarantee realism, or that accuracy is not even 

required for realism.  If not all photographs are perceived as real, then merely simulating the 

physical process of photography will not guarantee realistic images.  In this case, it would be 

worthwhile to instead seek out those specific visual cues that indicate to an observer that an 

image is real or not real. 
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2.2 Artistic methods for visual realism 

The pursuit of visual realism in synthetic images is not a new endeavor.  It can be 

traced back to the Renaissance, when concepts such as perspective projection were 

discovered [Jans91].  Up until the 19th century, much of the focus in painting was on realistic 

lighting, texture, and form.  In the 1970's, the Photorealism school of painting emerged 

(exemplified by artists such as Chuck Close and Richard Estes) with the goal of creating 

paintings that look like photographs [Meis80][Meis93].  Unfortunately, the methods used by 

the Photorealist painters have never been expressed in formal terms, and they remain a purely 

artistic skill. 

More recently, visual effects studios for feature films have achieved high levels of 

realism using computer graphics.  Their images are usually generated without using 

physically-based rendering algorithms, due to the long rendering times and loss of artistic 

control associated with physically-based methods [Kahr96][Barz97][Vaz00].  Instead of 

employing accurate physical simulations to achieve realistic imagery, visual effects studios 

rely on the skills of their artists, who possess an understanding of how an image must look in 

order to be perceived as real.  This understanding, however, remains entirely in the artistic 

domain, and has not been documented in formal terms.   

It should be noted that while visual effects studios do not often employ physically-

based rendering algorithms, it is possible that the artists are manually approximating 

physically-accurate solutions in their images.  The task of determining the important features 

of such approximations remains an open problem. 

2.3 Research on the human visual system and visual perception 

While there is much existing research on the human visual system and visual 

perception (see [Bruc96] and [Gord97] for overviews), the main question of this dissertation 

has never been directly addressed by these fields, and the issue of why photographs and 

computer graphics are perceived as real or synthetic has not been a focus of study.  In this 

section we discuss research in these fields that nonetheless is relevant to this dissertation. 
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An area that has received much attention in human vision research is the role of edges 

in the visual field.  These have been found to be very important to overall visual perception.  

[Bruc96] discusses the neurological basis for the importance of edges (retinal cells form 

receptive fields1 which respond to edges) and [Marr80] provides a high-level computational 

explanation of how edges are utilized in visual perception.  Because of their importance to 

overall perception, it is possible that edges play a role in determining perceived visual 

realism of images as well.  This is an open research question. 

Another area that has been studied extensively is the perception of reflectance versus 

lightness.  When viewing a surface, or an image of a surface, there is an inherent ambiguity 

as to how much of the surface's observed brightness is due to its reflectivity, and how much 

is due to the intensity of the light.  Visual perception research has explored how the visual 

system resolves this ambiguity [Gilc94][Adel96][Sinh93].  The perception of reflectance 

versus lightness is relevant to perceived realism in the context of lighting mismatches.  For 

example, in digital compositing [Brin99], a single image is comprised of many individual 

image layers, which are merged together.  If the layers are not consistent in their lighting or 

reflectance, then the resulting image will look unrealistic.  No existing work has applied the 

findings of research on the perception of reflectance and lightness to the problem of 

perceived realism in digital compositing. 

Another area that relates to perceived visual realism is the study of statistics of natural 

images.  It has been discovered that images of natural environments (forests, lakes, rivers, 

clouds, etc.) tend to exhibit a power distribution proportional to 1/ƒ2 [Scha96], where ƒ is a 

given spatial frequency.  That is, in a Fourier decomposition of a typical natural image, low-

frequency coefficients will have greater amplitude than high-frequency coefficients, with a 

1/ƒ falloff (power is defined as amplitude-squared).  It has also been shown that certain 

neural cells along the visual pathway are tuned to this statistical distribution [Parr00].  This 

suggests that one possible requirement for a natural image to be perceived as real may be 

                                                        
1 A receptive field is a collection of cells in the visual pathway that responds maximally to a specific visual 

input pattern, such as edges or spots [Bruc96]. 
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adherence to a 1/ƒ2 power distribution.  The relationship between image statistics and 

perceived visual realism has not been explored in the existing literature. 

 

Figure 2. Natural images tend to have a power distribution of 1/ƒ2. 

2.4 Applications of human vision research to computer graphics 

Findings from research on human vision have been applied to computer graphics in 

several ways.  One is to simulate the physiological properties of the visual system, in order to 

develop rendering systems whose images approximate direct vision better.  Another 

application is to develop perceptual metrics to measure the perceived difference between 

pairs of images.  Other research efforts have investigated issues in computer graphics using 

experimental methods adapted from the study of visual perception.   

2.4.1 Rendering methods for simulating direct vision 

Findings from traditional research on visual perception have been applied to the 

creation of synthetic images that approximate direct vision.  There are many physiological 

and perceptual responses that cannot be elicited by images displayed on computer monitors, 

due to limitations in modern displays’ dynamic range, resolution, and field of view.  To 
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compensate for display limitations, the physiological and perceptual responses can be 

simulated within the images themselves.  For example, the visual system's adaptation to 

brightness was modeled in a CG rendering algorithm by Ferwerda [Ferw96].  Images created 

by this algorithm are blurry and have unsaturated colors when the image in intended to 

represent low-light conditions.  This simulates the visual system's decreased spatial and 

chromatic sensitivity in low light.  Another example of using findings from visual perception 

for realistic rendering is found in [Spen95], which simulates glare induced by bright light 

sources. 

These methods attempt to create images that are “realistic” in the sense that they 

simulate what the human visual system encounters when directly viewing physical scenes.  

However, this dissertation is not concerned with direct vision.  In this dissertation it is given 

that the visual stimulus in question is a two-dimensional image (not direct vision) and the 

issue is whether the image is regarded by observers as being a direct capture of a physical 

scene, or a synthetic rendering of a virtual one. 

2.4.2 Image quality measures based on visual perception 

One of the goals of the research in this dissertation is to take first steps towards the 

development of a metric for perceived visual realism in images.  No such metric currently 

exists.  In this section we review existing work on perception-based image-difference 

metrics, which provide insight on how to construct image metrics using findings from 

research on human visual perception. 

Non-perceptual image difference metrics, such as Root Mean Square Error, do not 

accurately predict the difference between two images that would be noticed by a human 

observer [Rush95].  Non-perceptual metrics do not take into consideration the human visual 

system’s non-linear and space-varying sensitivity to contrast, lightness, spatial frequencies, 

etc. [Bruc96].  To account for these, Daly [Daly93] developed the Visible Differences 

Predictor (VDP), which incorporates perceptual properties of the human visual system in 

order to predict the perceived difference between a pair of images.  For example, the human 

visual system’s response to sinusoidal gratings at different frequencies and amplitudes is well 

understood.  One of the tasks performed by the VDP is to apply these known response curves 
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to a frequency-based decomposition of a target image, in order to assess an observer’s ability 

to discern features within that image.  The output of the VDP is a Difference Map: a meta-

image that indicates the magnitude of perceived difference at each corresponding pixel in a 

pair of input images.  A competing model to the VDP is the Sarnoff Visual Discrimination 

Model (VDM) [Lubi95], which places more emphasis on physiology than psychophysics.   

Perception-based metrics such as the VDP and VDM have been used to optimize 

image rendering algorithms by steering computational effort towards those regions with the 

highest noticeable error (i.e., towards perceptually-important regions).  A rendering 

algorithm can then halt when the overall perceptual difference between successive rendering 

steps is below some threshold.  There are numerous examples of CG rendering algorithms 

that incorporate the VDP, the VDM, or derivatives of these models 

[Gibs97][Gadd97][Boli98] [Mysz99][Rama99].  A survey is given by [Prik99]. 

These existing works on perception-based metrics may serve as templates for future 

work on perceived visual realism.  One long-term goal that follows from this dissertation is 

the development of a Perceived Visual Realism Map, which would attempt to predict the 

magnitude of perceived visual realism at each region of an input image.  This map could be 

based in part on the findings of this dissertation.  That is, if realism response curves have 

been experimentally obtained for different visual factors, then by measuring these factors in a 

target image, one may predict the realism rating that the image would be given by observers.  

This could be incorporated into a rendering algorithm as well, in a manner similar to the 

VDP and the VDM, by guiding computational rendering effort towards those image regions 

that have low predicted realism.   

2.4.3 Perceptual experiments using computer graphics  

There have been many perceptual experiments conducted within the field of computer 

graphics.  Here we review the experiments that are relevant to visual realism.   

The fidelity of one of the early radiosity systems was evaluated with a perceptual 

experiment [Meye86].  Participants in the experiment viewed a real physical scene (the 

“Cornell Box”) and a CG rendering of the same scene.  The physical scene was captured with 

a camera and displayed on a computer monitor, and the CG scene was directly displayed on a 
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second computer monitor.  Participants were asked which of the two images was the real 

scene.  The goal of the experiment was to establish their perceptual similarity, by seeing 

whether observers could correctly differentiate between the two.  Participants chose correctly 

in fifty-five percent of the trials (data was statistically equivalent to guessing), thereby 

demonstrating that the rendering algorithm could create synthetic images that were 

perceptually similar to real images of the scene.  In contrast, the experimental method of this 

dissertation does not directly compare computer generated images to reference photographs 

in order to establish their similarity, but instead focuses on how changes along specific visual 

dimensions – in both photographs and CG images – affect perceived visual realism. 

McNamara [McNa98][McNa00] studied the fidelity of images created by different 

illumination algorithms, including ray tracing [Glas89], radiosity [Cohe93], and the 

Radiance software package [Ward94].  A rig was constructed that allowed participants to see 

either a real physical scene, a photograph of that scene, or one of several computer-generated 

images of that scene.  The scene was a box containing a few simple objects.  The CG images 

varied in their rendering method (e.g., radiosity versus ray tracing) and in their rendering 

parameters (e.g., the number of indirect light ray bounces).  The participants' task was to 

estimate the grayscale value of different regions within each image and different regions 

within the physical environment.  The task was not the assessment of real versus not real.  A 

novel perceptual metric of rendering fidelity was constructed based on the similarity between 

the perceived grayscale values of the real scene (viewed directly) and the reported grayscale 

values of the images.  This metric can predict, given a set of parameters for a given rendering 

algorithm, how similar a synthetic image created by that algorithm would be to direct 

viewing.  The metric does not, however, predict whether an image would be assessed as 

“real” by observers.  The experiment does not ask participants to report on how realistic they 

believe each image is, but only to judge the grayscale lightness values of different regions 

within the images.  

 [Thom98] and [Madi99] report on the results of an experimental evaluation of the 

effect of shadows and global illumination on the perception of surface contact.  A set of 

rendered images was presented to participants, in which the images differed only in whether 

shadows and global illumination were present or not.  The goal was to experimentally 

determine whether these visual factors had an effect on the perception of surface contact.  
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The results showed that shadows and global illumination significantly improved observers' 

ability to detect contact between surfaces.  The experimental method is similar to that of this 

dissertation: a series of images is presented, one at a time, with a single question for 

participants to answer for each image.  The method of this dissertation, however, asks “is this 

image real?” for each image, rather than “are these surfaces in contact?”  Chapters 5 and 7 of 

this dissertation present a photograph-based and CG-based experiment, respectively, which 

investigate the effect of shadows on perceived visual realism. 

2.5 Summary 

There is much existing work on realistic image synthesis, but it has mainly focused 

on how to create realistic images, not on why images as perceived as real.  There are 

artistically oriented methods for creating realistic imagery, but these have not been 

verbalized in formal terms, and remain entirely in the artistic domain.  There is much existing 

research involving the human visual system and visual perception, but it has not focused on 

perceived visual realism.  There are visual perception experiments in computer graphics, but 

they have focused on the fidelity of CG renderings, and have not directly investigated how 

different visual factors affect an observer’s assessment of an image as being either real or not 

real. 

In this dissertation I address the problem of perceived visual realism with an 

experimental method that asks participants to directly rate a series of images as either “real” 

or “not real.”  Participants are not asked to directly compare real and synthetic images to 

each other.  This dissertation is not interested in participants’ ability to correctly differentiate 

between the two, but only in how changes along specific visual dimensions influence 

observers’ assessments of visual realism.  



3. METHOD FOR INVESTIGATING THE PERCEIVED 
REALISM OF IMAGES 

This chapter describes a novel experimental method for studying the perceived visual 

realism of images.  The experimental method measures the effect that variations along 

specific visual dimensions have on realism, as reported by participants.  The method can be 

used to study both photographs and computer-generated images.  The method does not 

measure participants’ ability to correctly differentiate between photographs and computer-

generated images – it instead measures the effect of different visual factors on participants’ 

assessments of images as being either real or not real. 

Study participants are shown a randomized series of images, one at a time.  They are 

told in advance that each image will be either photographic or computer-generated.  Their 

task is to rate each as either “real” or “not real.”  The images are controlled, and differ only 

with regard to predetermined, manipulated visual factors.  The participants’ pattern of 

responses is later analyzed to determine which visual factors had a measurable effect on the 

reported realism.   

Although participants are instructed that the images are a mix of photographs and CG, 

the images within a given experiment are in fact either all photographic or all computer-

generated.  The two are not mixed, since the experimental design demands that the only 

differences between images be along the manipulated visual factors. 

The experimental method is based on standard principles from perceptual 

experimentation, and the resulting data are analyzed with standard statistical techniques.  The 

experimental method has a repeated measures two-alternative forced-choice design [Levi94].  

Each participant performs a number of trials (they view a number of images, one at a time) 

with a two-choice selection task for each trial (rating each image as either “real” or “not 



 

 19 

real”).  This chapter describes the general experimental design.  Subsequent chapters will 

describe the specific experiments that were conducted for this research. 

3.1 Selection of participants 

This section discusses whether the experimental participants should be experts in a 

visual field (such as computer graphics or photography), non-experts, or a mix of both.  Each 

approach has merits.   

One of the possible advantages of employing experts in a visual field such as 

computer graphics or photography is that experts might readily understand what is meant by 

an image looking “real.”  They might also already be familiar with the distinctions between 

graphics and photographs.  This a priori knowledge could presumably make the 

experimental setup simpler, since experts might require fewer instructions at the beginning of 

the experiment.  Also, the resulting data could provide insights into the criteria used by 

experts in their assessment of visual realism. 

The problem with experts, however, is that they are already biased by their 

experience.  Professionals in computer graphics, for example, are already familiar with 

common rendering artifacts (e.g., aliasing, sampling noise, and surface faceting) and may 

specifically look for these artifacts.  They know what can and what cannot be rendered with 

current technology, and might interpret a particular image as photographic solely because 

they know that it would be difficult to render with computer graphics.  Conversely, they 

might interpret an image as computer-generated simply because its content resembles 

common CG images (e.g., it contains cubes, spheres, or teapots).  They might respond to the 

images in an experiment based on their expectations and knowledge of the field, rather than 

on their true perceptions.  Furthermore, it may be more useful to understand what non-

professionals think looks real, rather than professionals, since the ultimate audience for CG 

images is usually the general public. 

For the reasons above, the experiments in this dissertation employ only non-experts in 

graphics or related visual fields.  This does not affect the experimental design, but it does 

affect the interpretation of the resulting data, which cannot necessarily be generalized to 

experts.  It is possible that experts have a different opinion of what looks real.  There is no 
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guarantee, therefore, that the results in this dissertation will be consistent with results 

obtained using experts. 

The experimental method does not preclude the use of both experts and non-experts.  

Performing experiments with both would permit a comparison of the two groups’ responses, 

to determine if the given visual factors have the same effect on both experts and non-experts.  

This would not change the experimental setup, but any interpretation of the resulting data 

should address the expertise of the participants. 

3.2 Experimental instructions and task 

This section discusses the written instructions given to participants, as well as the 

experimental task.  It also discusses the operational definition of realism established by the 

experimental task.  

3.2.1 Experimental instructions 

Care must be taken that the experimental instructions do not lead participants towards 

any particular response.  One common technique is to conceal the purpose of the experiment 

until after the experiment is finished [Levi94, pg. 344].  Also, the instructions should explain 

only what is essential for participants to know to be able to properly complete the 

experimental task [Cool99].  These techniques prevent the participants from forming 

expectations of how to respond. 

Below are the written instructions given to participants.  In the experiments 

conducted for this dissertation, participants could ask questions, but only those questions that 

related to the experimental procedure were answered (e.g., clarifications on how to change 

one’s response if the wrong key is pressed).  
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Experimental Instructions 

 

    Today we are interested in gathering some 

information about how people perceive images.  In the 

tasks that follow, you will see a number of images and 

we will ask you to evaluate what you see.  There is no 

“right” or “wrong” answer to any response; we just want 

to know what you think.  As you look at these images, 

try not to “think too much” about what you see.  Go with 

your first impression. 

     In this experiment we will show you a number of 

images, one shown right after the other.  Some of these 

images are photographs of real objects, and others are 

computer-generated.  For each image, we want to know 

whether you think it is real or not real.  Sometimes it 

may be a close call, but just do the best you can. 

 

Figure 3. Written instructions given to participants. 

The instructions convey the following: 

• The experiment is investigating the perception of images. 

Participants are told that this is a perceptual experiment, but they are 

not told about the exact nature or purpose of the study.   

• Not to “think too much” about the task. 

Participants are instructed to go with their instinctive feeling on each 

image, and not to worry about what the “correct” answer might be.  

This is intended to reduce any anxiety, by telling participants that 

they are not being scored on their performance. 
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• A series of images will be presented, some of which are photographs, and 

others computer-generated. 

This sets a context for the perceptual experiment, and states that each 

image will fall under one of two categories.  The instructions do not 

tell how to distinguish the photographs from the computer-generated 

images.   

There is a small amount of deception involved, as all the images 

within each experiment are of the same type, either photographic or 

computer-generated.  Photographs and computer-generated images 

are never mixed in any single experiment.  The reason for this is 

discussed in Section 3.4. 

• Their task is to label each image as either “real” or “not real.”  

Participants are instructed to choose ones of the two options for each 

image.  There is no way for participants to indicate uncertainty over 

any single image.  

3.2.2 No explicit definition of “real” or “not real” 

The experimental instructions do not explicitly define the terms “real” and “not 

real,” nor do they elaborate on the visual differences between photographs and computer 

graphics.  The instructions present the two terms with no specific guidance on how decisions 

should be made.   

“Real” and “not real” are not necessarily common ways to think about images for 

people who are not familiar with computer graphics, photography, or related visual fields.  

One might expect that non-experts would have difficulty distinguishing between the two 

types of images.  However, if the instructions gave more detailed information, they could 

bias participants’ responses. 

Furthermore, the motivation for this research is the fact that it is not known what 

makes an image look real.  Therefore, an explicit definition of realism cannot be provided for 
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participants, because no such definition yet exists.  We do not want to tell the participants 

what causes images to look real – we want them to tell us. 

3.2.3 Operational definition of realism 

Instead of providing an explicit definition, the experiments let the participants define 

realism through their responses.  This is one of the basic principles of this experimental 

method.  The terms “real” and “not real” are presented, and participants interpret these words 

– based on criteria of their choice – in response to the various visual factors in the images.  

The experimental task and subsequent participant responses give an operational definition of 

realism.   

Operational definitions [Brid60] are standard components of psychological 

experimentation.  They are axiomatic, and define a concept in terms of the method used to 

measure it and the subsequent measurements using that method.   

An example of the use of operational definitions is the concept of intelligence – we 

believe that there is such a thing, but what is it exactly?  A non-operational definition of 

intelligent might be “has high mental capacity” – but this says nothing of how to measure it 

or recognize it in a person.  In contrast, an operational definition might be “scores above 100 

on an I.Q. test.”   This provides a method of measurement and a range of measurements, 

which together define the concept in question: any person that scores above 100 on an I.Q. 

test would be considered intelligent under this definition.  It is not an exhaustive or exclusive 

definition, but it is one way to take an abstract concept and make it concrete.  

The experimental method described in this dissertation operationalizes the abstract 

concept of visual realism in a similar manner.  A task is defined (participants rate a series of 

images as either “real” or “not real”), and the pattern of responses relative to a given visual 

factor is taken to be a measure of the perceived realism of the images across that factor.  

3.2.4 Experimental task 

A randomized series of images is presented to each participant, who rates each image 

as either “real” or “not real.”  The images vary according to some manipulated visual factors.  

In this dissertation, the manipulated factors are shadow softness, surface smoothness, number 
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of objects, mix of object shapes, and number of lights.  Each factor has a number of 

predetermined levels that are tested.  For example, in the experiment on surface smoothness 

(Chapter 5) the factor can take one of two possible levels: rough and smooth – each image 

shows either objects with rough surfaces or objects with smooth surfaces.   

In this dissertation, the following three visual factors are measured along quantitative 

scales: shadow softness (measured by penumbra angle), number of objects, and number of 

lights.  The remaining two visual factors – surface smoothness and mix of object shapes – are 

not measured quantitatively.  This is discussed further in Chapter 4.   

The amount of data gathered at each factor level is increased by having participants 

perform multiple trials for each level.  For example, in the surface smoothness experiment, 

multiple rough-surface images and multiple smooth-surface images are shown, rather than 

only a single image for each of the two cases.  By increasing the number of data points that 

are measured, we increase the statistical power of the experiments.  Section 3.5 discusses in 

greater detail the creation of multiple images for each factor level. 

The proportion of “real” responses for a particular level of a factor (i.e., the number 

of images at that factor level that were rated as “real,” divided by the total number of images 

at that factor level) is the realism response rating for that factor level.  The realism response 

rating is denoted in this dissertation by the symbol ℜℜℜℜ.  Although participants give each 

individual image only a binary score (“real” versus “not real”), the ℜℜℜℜ value for each factor 

level is fractional.  If we assign the numerical value of one to “real,” and zero to “not real,” 

then ℜℜℜℜ is simply the mean of all numerical responses for a given factor level.  ℜℜℜℜ can be 

calculated for a single participant, across all participants, or for any combination of 

participants.  Also, ℜℜℜℜ is entirely independent of the origin of the image (photographic or 

computer-generated) and it is calculated in the same manner for either case.     

Here we present a fictional example to illustrate the computation of ℜℜℜℜ across all 

participants.  In the surface smoothness experiment (Chapter 5), each participant rates thirty 

rough-surface images and thirty smooth-surface images.  In this fictional example there are 

ten participants who performed the experiment.  Each participant rated 30 + 30 = 60 images, 

for a total of 600 trials across all participants.  The total numbers of “real” and “not real” 
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responses are given below, as well as the corresponding ℜℜℜℜ values for each of the two factor 

levels (rough and smooth).   

 

 

 
 

Number of trials 

rated “real” 

Number of trials 

rated “not real” 

 

 Rough 

surface 
200 100 

   ℜℜℜℜrough  =  200 / (200 + 100)  

               =  .667 

 Smooth 

surface 
80 220 

   ℜℜℜℜsmooth =  80 / (80 + 220)     

               =  .267 
   

Table 2. Example on how to calculate ℜℜℜℜ for surface smoothness experiment 
(numbers are fictitious).  ℜℜℜℜ is calculated in the same manner for data from a single 

participant and for data from all participants.  ℜℜℜℜ is entirely independent of the 
origin of image (photographic or computer-generated). 

Instead of rating images only as “real” or “not real,” a different experimental task 

would have been to rate each image along a multiple-point or continuous scale.  This 

complicates the experimental task by giving participants more than two choices for their 

responses, and it requires a linearization step in the data analysis to account for non-

linearities in each participant’s interpretation of the linear scale.  Furthermore, there is no 

existing evidence in the literature to suggest that people are even able to differentiate 

between more than two grades of visual realism (this question is discussed further in 

Chapters 5 and 7). 

3.2.5 Wording of experimental task 

The experimental task is to rate images as “real” or “not real”, and not 

“photographic” or “not photographic.”  The intent is not to focus on specific qualities of 

photography, but rather to investigate the general property of perceived visual realism.  This 

property is not exclusive to photographs – it may be possessed by a computer-generated 

image, a painting, or any type of image with the potential of being perceived as a direct 
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capture of an existing physical scene.  “Not real” is used in the experimental task instead of 

alternatives such as “fake” or “synthetic” because “not real” is the direct negation of “real.”  

Future work could study whether results would differ if the experimental question is changed 

from “real” and “not real.”  If the wording is changed, however, then the experimental 

method will no longer be establishing an operational definition of the term real.   

The experimental instructions do mention photographs and computer-generated 

images, and provide a vague, implicit association between photographs/CG and real/not real.  

This is intended to establish a context for the term real during the experiment, since real can 

have several different interpretations.  For example, a person might regard a photograph of a 

physical sculpture of an alien creature as being “not real” because the creature is imaginary – 

even though the image is of a real physical object.  By stating that the images in the 

experiment are either photographic or computer-generated, the instructions suggest that some 

images are direct captures of physical objects, whereas others are synthetic renderings of a 

virtual model.  The instructions are not explicit in this association, and the words 

“photograph” and “computer-generated image” are not mentioned elsewhere throughout the 

experiment. 

 

Figure 4. Sample screenshot from experiment on shadow softness. 
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Figure 5. Sample screenshot from experiment on number of objects. 

3.3 Active vs. passive assessments of realism 

A computer graphics professional might routinely look at images with the sole 

purpose of deciding whether they look real.  In contrast, a person untrained in graphics (such 

as the participants in these experiments) may never have set out to determine if an image is 

real or not real.  Nonetheless, even when a person does not actively evaluate the realism of an 

image, there are cases when they may passively make an assessment.   

An active assessment of visual realism is when the observer is specifically looking at 

an image in order to determine whether it looks real or not.  The observer is aware that the 

realism of the image is in question, and is looking for specific clues to determine its status.   

A passive assessment of visual realism is one that is made when the observer is not 

specifically intending to evaluate the realism of an image.  The observer is not necessarily 

aware that the realism of the image is in question, and is not specifically looking for evidence 

for or against realism.  An example of a passive assessment is someone watching a film when 

a special effect suddenly stands out as being not real.  The viewer may not have intended to 

assess the realism of the image, but nonetheless some visual element became noticeably 
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unrealistic.  One can also make a passive assessment in the opposite situation: some visual 

element that is presumed to be not real may inadvertently stand out as looking real instead. 

This experimental method only explores active assessments, since participants are told 

in advance that they will be asked to judge each image as real or not real.  The realism of any 

given image is explicitly in question.  The results of these experiments do not necessarily 

generalize to the passive case, as active and passive evaluations of realism might behave 

differently.   

Future studies could determine the relationship (if any) between active and passive 

assessments.  A study of passive assessments would require an unobtrusive or nonreactive 

form of measurement [Levi94, pg. 388], in which participants would have to be entirely 

unaware of the target domain (visual realism).   

3.4 Photographs and computer-generated images are not mixed 

The goal of this experimental method is not to measure participants’ ability to 

correctly identify photographs or computer-generated images.  Instead, it is to measure how 

participants’ responses change across the different levels of the manipulated visual factors.  

Because of this, photographs and computer-generated images cannot be mixed in a single 

experiment.  If they were mixed, then there would be uncontrolled factors between the two 

cases, unless the computer-generated images exactly matched the corresponding 

photographs.  Any uncontrolled factors would confound the analysis [Klei97].  For any 

single experiment, therefore, the images must be either all photographs or all computer-

generated.   

3.5 Object arrangement 

The images in these experiments each show a small number of simple objects.  There 

are many possible ways in which these objects could be arranged (positioned and oriented).  

The arrangement of objects affects the visibility of surfaces, the pattern of global 

illumination, the number and size of shadows, and more.  If only a single spatial arrangement 

were used, then the results would be highly dependent on that particular arrangement and the 

associated secondary factors.  This would limit the generality of the results. 



 

 29 

Furthermore, with only a single spatial arrangement, the steady repetition of similar-

looking images might cause the participants to lose interest.  If the participants believed that 

the same image was being repeatedly shown, then they might cease to evaluate each image 

on its own merits, as an independent stimulus.  They might instead rate all the images as a 

group, believing them all to be the same image.   

A solution is to use multiple spatial arrangements of objects instead of a single one.  

That is, for each factor level, show more than one image, with different object arrangements.  

This reduces the dependence of the results on any particular spatial arrangement, and it adds 

visual variety to the image set.  It also yields more data points at each factor level, which 

increases the statistical power of the experiments.  For these reasons, the experiments in this 

dissertation employ multiple spatial arrangements of objects. 

Another way to increase the number of data points would be by presenting every 

image more than once.  However, simple repetition would not reduce the results’ dependence 

on a given spatial arrangement, nor would it increase the visual variety of the image set.   

To illustrate the usage of multiple spatial arrangements, suppose that an experiment is 

investigating a visual factor with five levels, and that three spatial arrangements of objects 

(also referred to as scenes) are used.  Let the five levels of the visual factor be labeled 1, 2, 3, 

4, and 5, and let the three different spatial arrangements be labeled A, B, and C.  Then the 

experiment would consist of 5 × 3 = 15 images, labeled A1...A5, B1...B5, and C1...C5.  
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The spatial arrangement of objects is illustrated in the following figure, with images 

taken from the experiment on shadow softness (Chapter 5):   

Multiple 
spatial 

arrangements 

(scenes) 

 

Figure 6. Example of multiple spatial arrangements (scenes), taken from 
photograph-based shadow softness experiment (Chapter 5).  Each row has a 

different arrangement of objects.  For each arrangement, all five levels of shadow 
softness are represented (across columns). 

The different spatial arrangements of objects are not required to have the same 

perceived realism.  It may be the case, for example, that a given spatial arrangement rates 

significantly higher in realism, overall, than the other arrangements.  For example, ℜℜℜℜA1…A5 

might be higher than ℜℜℜℜB1…B5.  That is, the reported realism of scene A might be higher than 

that of scene B, across the five levels of the visual factor.  However, this would not confound 

the analysis.  The data across different spatial arrangements are aggregated for each factor 

level, and the statistical analysis measures response differences between factor levels, not 

between spatial arrangements.  The analysis for the visual factor in the example above would 

compare the values {ℜℜℜℜA1..C1, ℜℜℜℜA2..C2, ℜℜℜℜA3..C3, ℜℜℜℜA4..C4, ℜℜℜℜA5..C5}, and not {ℜℜℜℜA1..A5, ℜℜℜℜB1..B5, 

ℜℜℜℜC1..C5}.  Since every spatial arrangement is represented for each level of the visual factor, 

the arrangement of objects is orthogonal to the visual factor during the statistical analysis.  

Besides the possibility of scenes not rating equally on overall realism, it may also be 

the case that the spatial arrangement of objects interacts with the main visual factors under 

investigation.  For example, if one scene contains larger shadows than the other scenes, then 

its perceived visual realism might be more strongly affected by shadow softness than the 
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other scenes.  As discussed above, however, this would not affect the analysis of the main 

visual factors under investigation (here, shadow softness), since the analysis of the main 

effects considers the aggregate data across the scenes.   

The spatial arrangements in this dissertation were not constructed in the same manner 

as the main factors.  For each of the five main visual factors under investigation, a scale was 

determined along which to generate images.  This scale was continuous for shadow softness, 

discrete for number of objects and number of light sources, and binary for surface 

smoothness and mix of object types.  In contrast, the position and orientation of objects in 

each scene was randomly determined, and there was no ordinal relationship between the 

different scenes.  Because of this, the scene variable cannot be placed on a meaningful metric 

– it is a categorical, rather than numeric, variable [Klei97].  A test for statistical significance 

of the scene variable could show that there exists a difference in realism between scenes, or 

an interaction between scenes and main factors, but the test would not provide any 

meaningful insight into the manner in which different arrangements of objects affect 

perceived visual realism.   

Because the spatial arrangement of objects was not designed to be analyzed 

meaningfully like the main visual factors under investigation, and because one can validly 

analyze the main visual factors without explicitly testing for differences between spatial 

arrangements, I do not explicitly test whether spatial arrangement of objects has a statistically 

significant main effect or interaction effect.  This is left for future work, where spatial 

arrangement of objects could be studied as a main visual factor, by constructing spatial 

arrangements along some meaningful and quantifiable scale. 

3.6 Analysis method 

This experimental design is not intended to measure participants’ ability to correctly 

distinguish between photographs and computer-generated images.  It is therefore not 

important within this research to think of the responses as hits, misses, false positives, false 

negatives, etc., or to apply an analysis based on correctness of responses.    This research is 

instead designed to study how changes along various independent variables (the visual 

factors) affect the participants’ realism ratings.   
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Linear regression and analysis of variance (ANOVA) [Levi94] are common analysis 

methods for studying the change in a dependent variable as a function of a set of independent 

variables.  However, these techniques are valid only on normally distributed, continuous 

data.  In this dissertation, the response variable is binary.   

An appropriate analysis method for the experimental design in this research is logistic 

regression [Hosm00].  This is an adaptation of linear regression that is suitable for binary 

data, and makes no assumptions about the distribution of the data.  Logistic regression 

computes the correlation between a manipulated factor and a binary response variable.  For 

each experiment in this research, a logistic regression analysis is used to test whether the 

given factor (e.g., shadow softness or number of lights) has a significant effect on 

participants’ responses of “real” versus “not real.”  The null hypothesis in each test is that the 

manipulated factor has no effect. 

Logistic regression yields a p-value test statistic, whose function is identical to that of 

p-values in linear regression.  The p-value indicates the statistical probability that the data in 

question would have been observed if there was no true effect.  Low p-values are interpreted 

as representing a high probability that there were measurable differences in the data – i.e., 

statistically significant effects [Chow96].  In the experiments conducted for this dissertation, 

the level for asserting statistical significance was determined in advance to be p < .05.  A p-

value of less than .05 indicates that there is at most a one in twenty probability that the 

observed data would have resulted as such if the given factor had no true effect (i.e., if the 

participants’ responses were random).  In this research, we will also refer to p-values 

between .05 and .10 as trends (also known as borderline effects), which indicate that there 

may be an effect present, though the predetermined criteria for statistical significance was not 

reached.  Trends are often regarded as potential areas for future study. 

Because each participant in these experiments performs many trials (and the 

responses are therefore not independent), a repeated measures analysis [Wine91] is required.  

This takes into account the correlation between responses by the same participant.  The data 

in this dissertation were analyzed using the Research Triangle Institute’s commercial 

statistics package SUDAAN [Shah96][Biel97], which handles repeated measures logistic 

regression designs.  It outputs a number of statistics describing the data.  The relevant 
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statistics presented in this report are the Chi-square1 value for each statistical test, and the 

corresponding p-value test.   

3.7 Logistic regression model 

Logistic regression analysis in a single-factor experimental design is modeled as: 

y = β0 + β1 x  

where y is the dependent variable, x is the independent variable, and β0 and β1 are the 

intercept and slope of the regression line, respectively.  In logistic regression, the dependent 

variable is defined as y = logit(p) = log(odds) = log(p / (1 − p)), where p is the probability of 

an event [Hosm00].  In this research, p is the probability of an image being rated as real.  The 

independent variables are the various visual factors under investigation.  The values β0 and 

β1 are estimated by the regression analysis method.  When the reported p-value is less than 

.05, we consider the regression slope β1 to be statistically non-zero, and we say that a 

measurable effect was detected.  The regression model presented above is used to analyze the 

single-factor experiments of Chapter 6 (on photograph-based number of light sources) and 

Chapter 7 (on CG-based shadow softness and surface smoothness). 

When two factors are studied simultaneously within a single factorial experimental 

design, the model is: 

y = β0 + β1 x1 + β2 x2 + β3 x1 x2  

where y and β0 are as before, x1 and x2 are the two independent variables, β1 is the regression 

slope of the first factor, β2 is the regression slope of the second factor, and β3 is the slope of 

the interaction between the two factors.  The values β1 and β2 relate to the main effects of the 

experimental design – i.e., the effect of each factor separately, ignoring the other factor.  The 

value β3 relates to the interaction effect, which shows whether the effect of one factor was 

different based on the value of the other factor.  A statistically significant main effect for 

either of the factors indicates that participants’ responses varied measurably with that factor.  

                                                        
1 The Chi-squared test statistic indicates the dissimilarity between the observed data and the data which would 

be expected if the responses were random.  A small Chi-squared value (close to zero) indicates that the 
observed values were likely random and not correlated with the independent variable. 
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When a statistically significant interaction effect is present, the effect of one factor depends 

on the level of the other factor, and any discussion or interpretation of the factors must take 

this into account.  A two-factor experimental design does not presume that there will be an 

interaction between the two factors.   

The two-factor regression model with interaction, presented above, is used to analyze 

the two-factor experiments of Chapter 5 (on photograph-based shadow softness and surface 

smoothness) and Chapter 6 (on photograph-based number of objects and mix of object 

shapes).  Although the logistic regression analysis was performed for each case using the full 

two-factor model presented above, the results are presented in separate sections for clarity 

(first each main effect, then the interaction effect). 

 

 



4. OVERVIEW OF EXPERIMENTS 

The previous chapter discussed general design issues related to the experimental 

method.  This chapter discusses the specific experiments that were conducted for this 

dissertation.  It covers the selection of visual factors, the creation of images, the image-

presentation procedure, and the selection and compensation of participants. 

4.1 Factors under investigation 

The following criteria were used to select the visual factors to investigate in this 

dissertation: 

• Relevance to computer graphics – the visual factors should relate to current 

issues in this field.   

• Fundamental factors – the visual factors should be present in any image.  

This gives the results wider applicability. 

• Simplicity – the visual factors should be reasonably easy to manipulate, so 

that images can be created without introducing extraneous, confounding 

factors. 

Based on these criteria, I selected five visual factors for investigation: shadow 

softness, surface smoothness, number of objects, mix of object shapes, and number of light 

sources.  Photograph-based experiments were conducted for each of the five factors.  

Computer-graphics-based experiments were conducted for shadow softness and surface 

smoothness.   

Because of the differing nature of the five visual factors, each was investigated with a 

different number of levels.  Two of the factors – surface smoothness and mix of object 

shapes – did not possess a single numerical metric with which they could be measured.  
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There are many ways in which surfaces can vary in smoothness, and there are many ways to 

classify the variety of object shapes in a scene.  These two visual factors were therefore 

reduced to binary variables: the surfaces in the image were either smooth or rough, and the 

scene contained either a mixed or uniform selection of object shapes.   

The remaining three visual factors possessed clear numerical scales on which they 

could be measured.  Shadow softness was measured by penumbra angle.  Number of objects 

and number of light sources were measured in the straightforward manner.  Shadow softness 

was investigated with five different levels, number of objects with four, and number of light 

sources with three.  The latter two experiments were tested with fewer levels due to practical 

constraints in constructing the image set.  As described in Chapter 6, constructing an 

additional level for number of objects required doubling the number of physical objects in the 

scene, and for number of light sources it required doubling the number of total photographs 

to be taken. 

Here is an overview of the visual factors and experiments: 

• Shadow softness  

Does perceived visual realism vary with the softness of shadows in the 

image?  This was studied with five shadow levels, ranging from very hard 

shadows (from a spotlight) to very soft shadows (from a diffused light).  

Shadow softness was tested in a photograph-based experiment (Chapter 5) 

and in a CG-based experiment (Chapter 7).  Separate pools of participants 

performed each experiment, so there were no crossover effects between the 

photograph-based and CG-based experiments.  

• Surface smoothness 

Does perceived visual realism vary with the smoothness of surfaces in the 

image?   Two levels were tested: “smooth” and “rough” surfaces.  As with 

shadow softness, this experiment was conducted in both photograph-based 

form (Chapter 5) and CG-based form (Chapter 7). 
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The photographic smooth case showed spray-painted cubes, and the 

photographic rough case showed brush-painted cubes.  The computer-

graphics smooth and rough cases showed CG-rendered cubes, with texture 

maps created from photographs of the real, physical cubes. 

The photograph-based shadow softness and surface smoothness factors were 

combined into a single experiment to allow for a test for interaction between 

the two factors, in addition to the main effect test for each individual factor.  

The total number of images for this photograph-based experiment was: 

         5 (shadow softness) × 2 (surface smoothness) ×  

                                             6 (object arrangements) = 60 images 

The CG-based shadow softness and surface smoothness factors were studied 

in separate experiments.  I therefore only tested the main effect of each 

individual factor, and not the interaction effect.  The total number of images 

in the CG-based shadow softness experiment was: 

         5 (shadow softness) × 6 (object arrangement) = 30 images 

The total number of images in the CG-based surface smoothness experiment 

was: 

         2 (surface smoothness) × 6 (object arrangements) = 12 images 

Fewer images were created for the CG-based experiments than for the 

photograph-based experiments due to time constraints in preparing and 

rendering the CG images.  The number of data points was nonetheless 

sufficient to yield statistically significant results. 

• Number of objects 

Does perceived visual realism vary with the number of objects in the scene?  

Four levels were tested, with images displaying two objects, four objects, 

eight objects, and thirty objects.  This experiment was conducted using only 

photographs, and is described in detail in Chapter 6.  Number of objects was 

tested in conjunction with mix of object shapes, as described below. 
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• Mix of object shapes 

Does perceived visual realism differ between images that have only one type 

of object, and those that have multiple types of objects?  This was tested 

with two factor levels.  In the first, all objects were cubes.  In the second, 

half the objects were cubes, and half the objects were curved shapes (spheres 

and egg-shapes).  This experiment was conducted using only photographs, 

and is described in detail in Chapter 6. 

The two factors, number of objects and mix of object shapes, were combined 

into a single experiment to allow for a test for interaction, in addition to the 

main effect test for each individual factor.  The total number of images in 

this experiment was: 

       4 (number of objects) × 2 (mix of object shapes) × 

                                              5 (object arrangements) = 40 images 

• Number of light sources 

Does perceived visual realism vary with the number of light sources?  There 

were three levels in this experiment: images had either one, two, or four 

lights.  The softness of the shadows was also co-varied, with two levels 

(hard and soft shadows).  This experiment was conducted using only 

photographs, and is described in detail in Chapter 6. 

The total number of images in this experiment was: 

              3 (number of lights) × 2 (shadow softness) ×  

                                                  6 (object arrangements) = 36 images        

4.2 Image creation 

All five visual factors were tested using photographs, and two were also tested using 

computer-generated images.  I acquired the photographs with an Olympus 3030Z digital 

camera, at 800×600 pixel resolution.  The green channel of each image was used to create a 
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grayscale image1.  The camera was locked into place for the capture of all the images.  The 

scene objects were wooden cubes and spheres (5 centimeters tall), and wooden egg-shapes (7 

centimeters tall).  They were all painted white.  In all the photographs, the objects were set 

against a large white paper backdrop.  All the photographs were taken at the same focal 

distance, and the images were all downsampled internally by the digital camera (from its 

internal resolution of 2048×1536) using the same downsampling algorithm.  Because they 

were constant across all the photographs, focal distance and downsampling were not 

confounding factors.  The digital camera’s location was held constant for all the photographs 

within each experiment, and the shutter release was operated via remote control. 

The images in the CG-based experiments were rendered using 3D Studio Max 

[Disc02], with raytraced soft shadows.  The CG objects were cubes, with bump maps 

[Blin78] acquired by orthographically photographing the physical wooden blocks from the 

photograph-based experiments.  The intensity values of the maps were shifted to a common 

mean, to ensure the various maps shared the same average intensity.  The CG textures were 

applied as bump maps instead of reflectance maps since the surface variations on the original 

physical blocks were due to undulations in the paint layer (from the brush strokes), rather 

than differences in the paint’s reflectance. 

The CG images all had the same background, which was texture-mapped with a 

photograph of the physical stage (the white backdrop).  Indirect illumination (the reflection 

of light from surfaces onto other surfaces) was not computed for any of the images.  The 

same anti-aliasing was used for all the CG images (a quadratic filtering kernel).  Anti-

aliasing was therefore not a confounding factor.  Since the CG images were all batch-

rendered from the same geometric and textural dataset, the CG version of the experiments 

had precise experimental control. 

All the images (photographs and CG) were generated with a single light source on the 

right side (except for the experiment on number of lights, described in Chapter 6).  When 

each experiment was conducted, half the images were randomly selected at run-time to be 

                                                        
1 The green channel was chosen instead of the red channel, the blue channel, or a weighted blend of the three, 

because the green channel carried the smallest amount of sensor noise with this digital camera.  Nonetheless, 
any combination of channels could have been used, provided that the same combination was used for all the 
images (thereby ensuring experimental control). 
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shown flipped horizontally.  This was randomized for each participant.  Half the images 

therefore appeared to have their light source on the right side, and half on the left side.  This 

was intended to increase the visual variety of the image set.  Since the two image orientations 

were evenly and randomly distributed, they cancel out and do not confound the analysis. 

4.3 Image presentation 

Image presentation and data collection were automated.  Each image was displayed 

on a CRT computer monitor against a gray background, with the captions “Not Real” and 

“Real” below it in black.  The participant chose a response by pressing either the ‘f’ key or 

the ‘j’ key.  When a key was pressed, the appropriate caption was highlighted (the text 

changed color from black to white).  The highlighting gave visual feedback of the response 

that was selected.  If the participant selected a different response than what she intended, she 

could press the other key (‘f’ or ‘j’) to change the selection.  The response for each image 

was not finalized until the participant pressed the spacebar, which caused the entry to be 

recorded and the experiment to proceed to the next image.  The pace of the experiments was 

therefore controlled by the participant. 

The images were presented in groups of eight, where each group was shown in two 

consecutive passes.  In the first pass the images were only previewed, one at a time, and in 

the second pass the participants rated the images, one at a time.  The sequence of images in 

the second pass was identical to that in the first.  The preview pass showed the visual range 

of upcoming images, to help participants calibrate their judgments.  Since the total number of 

images in each experiment did not always divide by eight, the last group of each experiment 

could contain fewer than eight images. 

At the start of each experiment, sixteen practice images (selected randomly from the 

experimental set) were presented to familiarize the participant with the experiment.  These 

were presented in two groups of eight, as described above.  The responses for these practice 

trials were excluded from analysis.  The images used for the practice trials were used again 

for the main trials. 

The order of image presentation was fully randomized for each participant.  Each 

participant conducted all of his or her image trials in one sitting.  They were permitted to take 
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short breaks at any time.  The total completion time for each participant ranged from 1 to 1½ 

hours. 

The experiments were conducted in a room with controlled lighting, on PC 

workstations with 21-inch CRT monitors.  The monitors were not calibrated, but were 

manually adjusted to match in brightness and contrast.  Although these factors were not 

strictly controlled, Chapter 5 presents an analysis that demonstrates that brightness and 

contrast do not have a statistically significant effect on participants’ responses.  The monitors 

were set to a resolution of 1152×864, and each image had a resolution of 800×600.  

Participants sat approximately two feet from the screen, giving a subtended viewing angle of 

the images of approximately 30 degrees.   

4.4 Participant selection and compensation 

All participants were non-experts in computer graphics or related visual fields, aged 

20 to 50, and had normal or corrected-to-normal vision.  They all gave informed consent, and 

were naïve to the study’s purpose.  The experiments were performed at the Microsoft 

Research Usability Labs in Redmond, Washington.  Participants were chosen from a pool of 

available candidates by a Participant Coordinator in the Microsoft Usability Group.  

Participants were all non-Microsoft employees, and were each compensated with one piece 

of Microsoft software. 

4.5 Determination of outliers 

I selected criteria, a priori, to determine when a participant’s data should be classified 

as outlying.  If a participant rated either more than 90% or less than 10% of the images as 

“real” for a given visual factor, then all the data from that participant for the given visual 

factor would be disregarded in the analysis.  That is, a participant’s data would not be 

included in the analysis for a given visual factor if he or she rated nearly all the images as 

“real” or nearly all the images as “not real.” 

There was only one participant who met this criteria.  The data for this participant (as 

well as the others, who were not classified as outliers) is included in the Appendix. 



5. PHOTOGRAPH-BASED EXPERIMENTS ON SHADOW 
SOFTNESS AND SURFACE SMOOTHNESS 

5.1 Introduction 

This chapter presents experiments investigating the effect of shadow softness and 

surface smoothness on perceived visual realism.  All of the images shown to participants in 

these experiments were photographs.   

The two visual factors, shadow softness and surface smoothness, were tested within a 

single experiment.  Shadow softness was varied across five levels, from very hard shadows 

(from a spotlight) to very soft shadows (from a diffused light source).  Surface smoothness 

was varied across two levels: smooth surfaces versus rough surfaces.  The five levels of 

shadow softness were crossed with the two levels of surface smoothness, and there were six 

different spatial arrangements of objects.  The experiment therefore contained 5 × 2 × 6 = 60 

unique images.   

Having the two factors in a single experiment allows us to test for interaction between 

them.  That is, to test whether the realism response behaves differently for one of the factors 

depending on the level of the other factor.  The logistic regression model1 for this experiment 

is: 

 

                                   y = β0 + β1 ∗ SHADOW 

                                              + β2 ∗ SURFACE 

                                              + β3 ∗ SHADOW ∗ SURFACE 
 

Table 3. Logistic regression model for photograph-based experiment 
on shadow softness and surface smoothness. 

                                                        
1 See Section 3.7 for a discussion of  logistic regression models.  
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The statistics presented in this chapter result from the full model given above.  For 

clarity, the statistics for each main effect and for the interaction effect will be presented in 

separate sections.   

The order of image presentation was randomized for each participant at run-time.  As 

described in Section 4.2, half of the images (randomized per participant) were displayed 

flipped horizontally.  Each participant initially viewed and rated sixteen practice images, 

selected randomly from the experimental set.  The data from the practice trials is not included 

in the analysis.  The images used for the practice trials were used again for the main trials. 

5.2 Shadow softness 

5.2.1 Experimental setup 

This experiment tested five levels of shadow softness, ranging from very hard to very 

soft.  The lowest level (hard shadows) was created with a spotlight (a 300W incandescent 

light bulb inside a metallic housing), positioned 2.3 meters from the scene.  The next two 

levels were created with a 200W incandescent light bulb, progressively closer to the scene 

(two and one meters, respectively).  The closer distances made the shadows softer, while the 

dimmer bulb intensity compensates for the increased illumination of the objects as the light 

source moves closer.  The last (softest) two levels were created with this same 200W light 

source, diffused behind a sheet of white paper, at 1 meter and 20 centimeters, respectively.  

The light positions were co-linear relative to the scene for all the images; the illumination 

direction was therefore the same for all the photographs.  Shadow softness increased 

monotonically with each factor level. 

The five shadow levels can be placed along a physically meaningful scale according 

to the average penumbra angle of the images at each level.  The penumbra angle was 

measured from the bottom-most corner of the front-most object in each image.  All the 

objects in the photographs were cubes.  The average penumbra angle at each shadow level 

was .39°, 1.5°, 2.5°, 5.2°, and 10.3° (from hardest to softest).  There were 12 images for each 

of the five shadow softness levels.   
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Figure 7. Sample images from photograph-based shadow softness experiment.  
Shadow softness varies across columns, from hardest (left) to softest (right).  

Spatial arrangement of objects varies between rows. 

 

     

Figure 8. Detail of images from photograph-based shadow softness 
experiment.  Average penumbra angles for the five shadow levels were 

.39°, 1.5°, 2.5°, 5.2°, and 10.2°.  
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Because the different shadow levels were generated using lights at different distances 

and with different intensities, the photographs varied in brightness and contrast.  The 

photographs were manually adjusted to correct any obvious exposure differences.  The 

remaining differences in brightness and contrast could potentially affect the results.  In order 

to verify that the results were not affected, I tested whether image brightness and image 

contrast had a statistically significant effect on participants’ responses.  The brightness and 

contrast of each image was measured1, and used as independent variables in a repeated 

measures logistic regression analysis of the data from the shadow softness and surface 

smoothness experiments.  Brightness and contrast were not found to have statistically 

significant effects on participants’ responses.  The following table gives the Chi-squared 

value, the degrees of freedom2, and the p-value for brightness and contrast in this experiment: 

ℜℜℜℜ vs. brightness and contrast:   

  CONTRAST:   χ2=1.41, df=1, p=.2346   
                            (not statistically significant) 
  BRIGHTNESS: χ2=0.03, df=1, p=.8675   
                            (not statistically significant) 

Table 4. Test statistics for brightness and contrast. 

The lack of precise experimental control when using photographs was one of the 

motivations for verifying the results of this experiment using computer-generated images.  

This is discussed in Chapter 7. 

                                                        
1 The mean and standard deviation of the pixel intensities in an image were taken as that image’s brightness and 

contrast measures, respectively.  The intensity of each pixel was measured as the unweighted average of the 
red, green, and blue values (each ranging from 0 to 255) of the pixel. 

2 Since each test statistic refers to one independent variable, the degrees of freedom for each statistic is one. 



 

 46 

5.2.2 Results: ℜℜℜℜ vs. shadow softness 

 

ℜℜℜℜ 
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Figure 9. ℜℜℜℜ vs. shadow softness for photographic experiment.  Bar height 
indicates the proportion of “real” responses across all participants and images, for 
each shadow level.  Error bars indicate ±1 standard deviation from the mean.  The 

increase in ℜℜℜℜ was statistically significant.  Note: the x-axis is not evenly scaled. 

The photograph-based shadow softness experiment was performed with 18 

participants.  Table 1 shows which participants performed this experiment.  The graph above 

shows the results, presented as ℜℜℜℜ vs. shadow softness.  It shows the proportion of “real” 

responses for each shadow softness level.  The error bars show the variability in ℜℜℜℜ between 

participants at a given factor level – the standard deviation of the set of values {ℜℜℜℜ1, ℜℜℜℜ2,…, 

ℜℜℜℜN}, where each ℜℜℜℜi is the proportion of “real” responses given by participant i, at a given 

factor level.  

The ℜℜℜℜ values for the first three levels are close to 0.5.  This indicates that at those 

levels, participants were essentially guessing in their “real” / “not real” responses.  At the last 

two levels of shadow softness, ℜℜℜℜ appears to increase.  The statistical tests presented below 

attempt to determine whether this increase is likely due to an actual effect. 

I first tested for statistical significance by fitting a logistic regression model (see 

Table 3) to the data using degrees of penumbra angle (0.39, 1.5, 2.5, 5.2, and 10.2) as an 

independent variable.  The null hypothesis was that shadow softness has no effect on 

participants’ responses.  With this model, shadow softness was found to be not statistically 

significant (p=.0543, which only indicates a trend).  This indicates that ℜℜℜℜ did not increase 

linearly with degrees of penumbra angle.   
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I next tested whether a better model would offer a statistically significant fit, after 

noting that the penumbra angle values were not evenly spaced, but increased exponentially 

(0.39, 1.5, 2.5, 5.2, and 10.2).  To account for this, I transformed the independent variable 

using the log2 function1.  This is a common way of testing whether a response variable varies 

non-linearly with an independent variable.  Transformations of independent variables are 

discussed in detail in [Klei97].   

After the transformation, the independent variable took the following values: -1.36, 

0.58, 1.32, 2.38, and 3.36.  The dependent variable was not changed by the transformation.  

With this model, the regression was statistically significant, with p=.0377.  This indicates 

that ℜℜℜℜ increased measurably with log2 degrees of penumbra angle. 

 

ℜℜℜℜ vs. shadow softness, photograph-based,  

    degrees of penumbra angle as independent variable:  

   SHADOW:  χ2=3.70, df=1, p=.0543   
              (not statistically significant, but trend) 
 

ℜℜℜℜ vs. shadow softness, photograph-based,  

    log2(degrees of penumbra angle) as independent variable:  

   SHADOW:  χ2=4.32, df=1, p=.0377   
              (statistically significant) 

Table 5. Test statistics for photograph-based shadow softness experiment. 

Because there were more than two levels of shadow softness, we can perform pair-

wise tests to determine at which level, relative to the first, the effect becomes statistically 

significant.  As presented in the table below, a statistically significant difference in ℜℜℜℜ exists 

between shadow levels 1 and 4 (between the hardest shadow level and the second-softest 

                                                        
1 The sqrt and log10 functions would have also been appropriate candidates for linearizing the independent 

variable, and would yield different test statistics.  In this research we are only attempting to determine whether 
there exists a model that significantly describes the response data, and are not seeking to find the best-fit 
model.  The choice of log2 is therefore sufficient. 



 

 48 

shadow level).  That is, shadow softness first had an effect on reported realism at the fourth 

shadow level. 

ℜℜℜℜ vs. shadow softness, photograph-based, pair-wise comparisons: 

 Level 1 vs. Level 2: χ2=2.88, df=1, p=.0899  
                       (not statistically significant) 
 

 Level 1 vs. Level 3: χ2=3.09, df=1, p=.0787 
                       (not statistically significant) 
 

 Level 1 vs. Level 4: χ2=5.30, df=1, p=.0213 
                       (statistically significant) 
 

 Level 1 vs. Level 5: χ2=3.66, df=1, p=.0557 
                       (not statistically significant,  
                        but trend) 

Table 6. Test statistics for pair-wise comparisons in photograph-based shadow 
softness experiment. 

I next tested whether there existed a statistically significant difference between the 

top two shadow levels.  If so, then there would be a difference between levels 1 and 4, and 

between levels 4 and 5.  This would imply that the response ℜℜℜℜ for shadow softness can be 

partitioned into three sets, with the first set including ℜℜℜℜ at shadow level 1, the second set 

including ℜℜℜℜ at level 4, and the third set including ℜℜℜℜ at level 5.  Participants would have 

implicitly classified the images into three distinct grades of realism1.   

However, as seen below, there was no statistically significant difference between the 

last two levels.  Therefore, ℜℜℜℜ can only be partitioned into two groups, with the first set 

including ℜℜℜℜ at shadow level 1, and the second set including ℜℜℜℜ at shadow levels 4 and 5.  

Although the experiment was capable of measuring up to five distinct grades of realism, only 

two distinct grades were measured.  This is discussed further in Chapter 8. 

                                                        
1 Although the response score for each individual image is binary, the overall ℜℜℜℜ score at each level is not binary 

(it is the proportion of “real” responses for all images at that level and for all participants).  Because the 
shadow softness experiment had five levels, the experiment was capable of registering up to five distinct 
values of ℜℜℜℜ. 
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ℜℜℜℜ vs. shadow softness, photograph-based, comparison of two softest levels: 

 Level 4 vs. Level 5:  χ2=2.60, df=1, p=.1072 
                       (not statistically significant) 
 

Table 7. Test statistics for comparison of top two levels in photograph-based 
shadow softness experiment. 

5.3 Surface smoothness 

5.3.1 Experimental setup 

This photograph-based experiment investigated whether perceived visual realism 

varies with surface smoothness.  Two levels of surface smoothness were tested.  Images in 

the first level contained smooth-textured cubes, and images in the second level contained 

rough-textured cubes.  The smooth textures were created using white spray-paint, which gave 

a flat, even coat.  The rough textures were created by painting with white paint and a rough-

bristled brush, which produced uneven brush marks with paint at varying heights.  Because 

the objects were completely painted white, the visible variations on the surfaces were due 

only to shading differences from the undulating surface normals.  There were 30 images for 

each of the two surface smoothness levels.   
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Figure 10. Detail of two images from photograph-based surface 
smoothness experiment.  The smooth, spray-painted cubes (left) rated much 

lower in realism than the rough, brush-painted cubes (right). 

5.3.2 Results: ℜℜℜℜ vs. surface smoothness 

The photograph-based surface smoothness experiment was performed with eighteen 

participants.  Table 1 shows which participants performed this experiment.  The graph below 

shows the results, presented as ℜℜℜℜ vs. surface smoothness.  There was a strong difference in 

reported realism for the two types of surfaces.  The rough-painted cubes were rated much 

higher than the smooth-painted ones (ℜℜℜℜ = .71 vs. ℜℜℜℜ = .39).   

ℜℜℜℜ 
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Figure 11.  ℜℜℜℜ vs. surface smoothness for photographic experiment.  
Images with rough textures rated much higher (statistically 

significant) than images with smooth textures. 
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I tested for statistical significance using surface smoothness as an independent 

variable (with two levels, “smooth” and “rough”).  The null hypothesis was that surface 

smoothness has no effect on participants’ responses.  The full logistic regression model is 

given in Table 3. 

The effect of surface smoothness was statistically significant, as shown below.  This 

indicates that surface smoothness had a measurable effect on participants’ responses.  The 

implications of this finding with respect to visual realism are discussed in Chapter 8. 

ℜℜℜℜ vs. surface smoothness, photograph-based,  

  binary independent variable:  
  SURFACE:   χ2=12.85, df=1, p=.0003  
                            (statistically significant) 

Table 8. Test statistics for photograph-based surface smoothness experiment. 

5.4 Interaction effects between shadow softness and surface smoothness 

As described at the beginning of this chapter, shadow softness and surface 

smoothness were varied simultaneously within a single experiment.  The previous two 

sections discussed the main effects of shadow softness and surface smoothness.  That is, the 

difference in ℜℜℜℜ between the five shadow softness levels (with the two levels of surface 

smoothness taken together), and the difference in ℜℜℜℜ between the two surface smoothness 

levels (with the five levels of shadow softness taken together).  However, it is possible that 

the effect of one factor varies for different individual levels of the other factor.  For example, 

it could be the case that the effect of shadow softness is different for rough surfaces than for 

smooth surfaces.   

The presence of an interaction effect does not affect the statistical analysis of the 

main effects of the experiment, but it does affect the interpretation and discussion of results: 

for a given image, the effect of one factor cannot be predicted without considering the level 

of the other factor.  When there is no interaction, the effect of one factor can be predicted for 

a given image without consideration of the other factor. 
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The full logistic regression model is given in Table 3.  The result for interaction 

between shadow softness and surface smoothness is: 

 

ℜℜℜℜ vs. interaction between surface smoothness and shadow softness, 

  photograph-based:  
  
  SURFACE × SHADOW: χ2=0.14, df=1, p=.7102  
                      (not statistically significant) 
 

Table 9. Test statistics for interaction between surface smoothness and shadow 
softness in photograph-based experiment. 

The analysis shows that there was no statistically significant interaction between 

surface smoothness and shadow softness.  The effect on perceived visual realism of one 

factor did not depend on the level of the other factor.  That is, shadow softness had the same 

effect on perceived visual realism regardless of the smoothness of surfaces, and surface 

smoothness had the same effect on perceived visual realism regardless of the softness of 

shadows.   

 



6. PHOTOGRAPH-BASED EXPERIMENTS ON NUMBER 
OF OBJECTS, MIX OF OBJECT SHAPES, AND 

NUMBER OF LIGHT SOURCES 

This chapter reports on photograph-based experiments investigating the effect of 

number of objects, mix of object shapes, and number of light sources on perceived visual 

realism.  Number of objects and mix of object shapes were studied in a combined two-factor 

experiment.  Number of light sources was studied independently, in a single-factor 

experiment. 

6.1 Number of objects and mix of object shapes 

6.1.1 Experimental setup 

The effects of number of objects and mix of object shapes were tested simultaneously 

in a single, combined experiment.  By testing the two factors together, we are able to test for 

an interaction effect between the two.  That is, to test whether the number of objects in an 

image influences the effect of mix of object shapes, and vice versa.   

The logistic regression model for this experiment is: 

 

                       y = β0 + β1 ∗ NUM_OBJS 

                                  + β2 ∗ MIX_SHAPES 

                                  + β3 ∗ NUM_OBJS ∗ MIX_SHAPES 
 

Table 10. Logistic regression model for experiment on number of objects and mix 
of object shapes. 
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The statistics presented in this chapter result from the full model given above.  For 

clarity, the statistics for each main effect and for the interaction effect will be presented in 

separate sections.   

Nine participants performed this two-factor experiment (see Table 1).  The first factor 

was the number of objects: each image contained either two, four, eight, or thirty objects.  

The second factor was the mix of object shapes, with two levels: each image consisted either 

of only cubes, or of half cubes and half rounded objects (spheres and egg-shapes).  Crossing 

the two factors yielded 4 × 2 = 8 conditions.  For example, a given image might have eight 

objects that are all cubes, or it might have thirty objects with mixed shapes (fifteen cubes and 

fifteen rounded objects).  There were five different spatial arrangements of objects for each 

of these combinations.  The total number of images in this experimental set was therefore 4 × 

2 × 5 = 40.   

The order of image presentation was randomized for each participant at run-time.  

The light intensity and angle was identical for all the photographs, though half of the images 

were displayed flipped horizontally (randomized at run-time per participant).  Each 

participant initially viewed and rated sixteen practice images, selected randomly from the 

experimental set.  The data from the practice trials is not included in the analysis.  The 

images used for the practice trials were used again for the main trials. 
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Figure 12. Sample images from experiment on number of objects and mix of object 
shapes.  The number of objects increases across columns, and the mix of object 

shapes (cubes-only versus cubes and rounded objects) varies between rows.   

6.1.2 Results: ℜℜℜℜ vs. number of objects 

The graphs below show the data, presented as ℜℜℜℜ vs. number of objects.  It shows an 

overall decrease in ℜℜℜℜ as the number of objects was increased. 

 

                   Number of Objects 

Figure 13. Results of photograph-based experiment on number of objects.  There 
was no statistically significant effect.  Note: the x-axis is not evenly scaled. 
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I first tested for statistical significance by fitting a logistic regression model (see 

Table 10) to the data using the number of objects in each image (2, 4, 8, and 30) as an 

independent variable.  The null hypothesis was that number of objects has no effect on 

participants’ responses.  With this model, number of objects was found to be not statistically 

significant (p=.1261).  This indicates that ℜℜℜℜ did not increase linearly with the number of 

objects in the images. 

I next tested whether a better model would offer a statistically significant fit.  The 

values of the independent variable (2, 4, 8, and 30) were not evenly spaced, but increased 

nearly as powers of two.  To account for this, I transformed the independent variable using 

the log2 function, yielding the values 1, 2, 3, and 4.9.  The dependent variable was not 

changed by the transformation.  With this model, the regression analysis yielded p=.0772, 

which indicates a trend, though not statistical significance. 

 

ℜℜℜℜ vs. number of objects, photograph-based, 
    number of objects as independent variable: 

     NUM_OBJS: χ2=2.34, df=1, p=.1261 

                 (not statistically significant) 

 

ℜℜℜℜ vs. number of objects, photograph-based, 
    log2(number of objects) as independent variable: 

     NUM_OBJS: χ2=3.12, df=1, p=.0772 

                 (not statistically significant, but trend) 

Table 11. Test statistics for photograph-based experiment on number of objects. 

There was no statistically significant overall regression using either model.  Reported 

realism was therefore not a measurable function of either number of objects or log2 number 

of objects. 

I next performed pair-wise tests to see if there were measurable differences between 

the first level and each additional level.  As presented below, there was a statistically 

significant difference between levels 1 and 2, and between levels 1 and 4.  However, there 
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was no difference between levels 1 and 3.  Although there were differences between 

individual pairs, the overall regression was not statistically significant because of the value of 

ℜℜℜℜ at the third level.  Future experiments with more participants could determine whether this 

was due to low power, since more participants could potentially yield a smoother response 

curve. 

Because the overall regression for number of objects was not statistically significant, 

I did not investigate how many distinct grades of realism were evoked, as I did for the 

shadow softness experiment in Chapter 5. 

The implications of these findings with respect to visual realism are discussed in 

Chapter 8. 

ℜℜℜℜ vs. number of objects, photograph-based, pair-wise comparisons: 

 Level 1 vs. Level 2: χ2=4.25, df=1, p=.0392  
                            (statistically significant) 
 

 Level 1 vs. Level 3: χ2=1.91, df=1, p=.1674  
                            (not statistically significant) 
 

 Level 1 vs. Level 4: χ2=4.74, df=1, p=.0295  
                            (statistically significant) 
 

Table 12. Test statistics for pair-wise comparisons in photograph-based 
experiment on number of objects. 

6.1.3 Results: ℜℜℜℜ vs. mix of object shapes 

The mix of object shapes was co-varied along with the number of objects, as 

described at the beginning of this chapter.  Mix of object shapes was tested with two levels: 

each image either showed only blocks, or showed an equal mix of blocks and rounded 

objects.  The graph below shows the results, presented as ℜℜℜℜ vs. mix of object shapes. 
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                  Mix of Object Shapes 

Figure 14. Results of photograph-based experiments on mix of 
object shapes.  There was no statistically significant effect. 

 

The graph shows that there was not much difference in ℜℜℜℜ between the two levels.  I 

tested for statistical significance by fitting a logistic regression model (see Table 10) to the 

data, using mix of object shapes as an independent variable (with two levels, “mixed” and 

“not mixed”).  The null hypothesis was that mix of object shapes has no effect on 

participants’ responses.  As shown below, the regression test was not statistically significant.  

Participants’ responses did not vary based on whether an image displayed only objects of the 

same shape, or objects of mixed shapes. 

ℜℜℜℜ vs. mix of object shapes, photograph-based, binary independent variable:  

   MIX_SHAPES:  χ2=0.56, df=1, p=.4550  
                            (not statistically significant) 

Table 13. Test statistics for photograph-based experiment on mix of 
object shapes. 

6.1.4 Interaction between number of objects and mix of object shapes 

Because the two factors were tested simultaneously in a single experiment, we can 

test for interaction between them.  The analysis is given below.  The interaction term is not 

statistically significant.  This implies that the effect of each factor did not depend on the 

current level of the other factor.   
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ℜℜℜℜ vs. interaction between number of objects and mix of object shapes, 
     photograph-based:  

     NUM_OBJS × MIX_SHAPES: χ2=0.02, df=1, p=.8862  
                        (not statistically significant) 

Table 14. Test statistics for interaction between number of objects and mix of 
object shapes. 

6.2 Number of light sources 

6.2.1 Experimental setup 

This experiment investigated whether perceived visual realism varies with number of 

light sources.  There were three levels of this factor: scenes were lit with either one, two, or 

four lights.  There was an additional crossed factor, shadow softness, with two levels: hard 

and soft shadows.  The hard-shadowed images were created using the spotlight from the 

photograph-based shadow softness experiment in Chapter 5 (shadow softness level 1), and 

the soft-shadowed images were created using the diffuse light from that experiment (shadow 

softness level 5).   

The logistic regression model for this experiment is: 

 

                y = β0 + β1 ∗ NUM_LIGHTS 

           + β2  ∗ SHADOWNUM_LIGHTS_EXP 

           + β3 ∗ NUM_LIGHTS ∗ SHADOWNUM_LIGHTS_EXP 
 

Table 15. Logistic regression model for experiment on number of light sources. 

There were six possible lighting conditions in this experiment (number of lights × 

shadow softness = 3 × 2).  This experiment also used six spatial arrangements of objects.  

The total number of images in this experiment was therefore 3 × 2 × 6 = 36.  Half of these 

images (randomized per participant) were displayed flipped horizontally.  Each participant 

initially viewed and rated sixteen practice images, selected randomly from the experimental 
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set.  The data from the practice trials is not included in the analysis.  The images used for the 

practice trials were used again for the main trials. 

6.2.2 Creation of images 

The images in this experiment were generated by blending photographs containing a 

single light source each.  This section describes the creation of images with one, two, and 

four light sources, for a single shadow softness level and a single scene.  The procedure was 

repeated for the two shadow softness levels, across the six scenes. 

A single light source was placed at four evenly-spaced locations along a 120° arc 

around the given scene.  For each of the four light source locations, a photograph of the scene 

was taken.  The camera location was held constant, and operated via remote control.  The 

aperture and exposure settings were locked for all the photographs.   

The photographs, which were each lit by a single light, were blended to generate 

images that appeared to contain multiple light sources.  For example, to generate an image 

with two light sources, two light positions were randomly selected and the two corresponding 

images were blended to create a single new image that appeared to be lit by two lights.  The 

image selection and blending process was automated by a custom software utility. 

The blend operation was radiometrically correct.  I used the mkhdr software tool 

([Diuk98], based on [Debe97]) to calculate the CCD response curve of the digital camera 

used in this experiment.  Given a set of images of a fixed scene at different exposure levels, 

mkhdr calculates a scale-less response curve.  This response curve provides a mapping 

between photometric values (luminance) and camera pixels.  Based on the response curve of 

the camera used in this experiment, the formula used to compute photometric luminance 

values from camera pixel values was: 

photometric_luminance =  

.2545 − .0053 ∗ camera_pixel_value +  

.000085 ∗ camera_pixel_value ∗ camera_pixel_value  
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To blend a pair of images with different light locations, each image is first mapped 

into photometric space (mapped from camera pixel intensities to luminance).  Due to the 

additive nature of light, the luminance field from two simultaneous light sources is equivalent 

to the sum of the luminance fields from each independent light source.  To simulate two 

simultaneous light sources, the two photometric-space images (each containing a single light 

source) are summed.  The resulting image is overexposed by a factor of two relative to the 

original photographs, so the exposure is reduced by multiplying the intensity values by one-

half.  Finally, the image is mapped back to camera-pixel space using the inverse of the 

function above.  The resulting image represents what a photograph would look like had it 

been taken with the two light sources simultaneously, at one-half the exposure time of the 

original photographs. 

When multiple images are blended, the resulting image has less camera noise than the 

original images.  The camera noise can be modeled as a random variable across the image, 

with some expected value E.  As the number of images that are blended increases, the camera 

noise for each pixel of the resulting image goes to the expected value E, and the random 

variation decreases.  To prevent camera noise from decreasing as the number of blended 

images increases (which would confound the analysis) each image in the experiment was 

created by blending exactly four single-light-source photographs.   

To accomplish this, I took four photographs for each of the four light source positions 

(i.e., 4 × 4 = 16 photographs per scene).  Four photographs with the same light position were 

blended to generate an image with “one” light.  Two pairs of photographs, with the same 

light position within each pair, were blended to generate an image with “two” lights.  Four 

photographs, each with a different light position, were blended to generate an image with 

“four” lights.  Because each new image was a blend of exactly four images, they all had the 

same amount of camera noise.  Camera noise was therefore not a confounding factor. 
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Figure 15. Sample images from experiment on number of light sources.  From left 
to right, images have one, two, and four light sources.  Top row has hard 

shadows; bottom row has soft shadows.  There was no statistically significant 
effect with respect to number of light sources. 

6.2.3 Results: ℜℜℜℜ vs. number of light sources 

Six participants performed the experiment on number of light sources.  Table 1 shows 

which participants performed this experiment.  The graph below shows the resulting data, 

presented as ℜℜℜℜ vs. number of light sources.  There was a decrease in reported realism as the 

number of lights was increased.   

ℜℜℜℜ

 

Number of Light Sources 

Figure 16.  Results of photograph-based experiment on number of 
light sources.  There was no statistically significant effect 
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I first tested for statistical significance by fitting a logistic regression model (see 

Table 15) to the data using the number of lights (1, 2, and 4) and the shadow softness (binary: 

“soft” vs. “hard”) as the independent variables.  The null hypothesis was that number of 

lights and shadow softness has no effect on participants’ responses.  As shown in the table 

below, shadow softness was statistically significant (p=.0071), which is consistent with the 

shadow softness results of Chapter 5.  However, number of lights was not statistically 

significant (p=.4850). 

I next tested whether a better model would offer a statistically significant fit with 

respect to number of lights.  The values of the independent variable (1, 2, and 4) are not 

evenly spaced, but increase as powers of two.  To account for this, I transformed the 

independent variable using the log2 function, yielding the values 1, 2, and 3.  The dependent 

variable was not changed by the transformation.  With this model, the regression analysis 

yielded  p=.4790, which is still not statistically significant. 

I also tested the interaction term between number of lights and shadow softness.  This 

was not statistically significant (p=.3544).  This indicates that participants’ responses with 

respect to number of lights did not vary according to the current shadow softness level, nor 

vice versa.  The two were independent.   

Lastly, I conducted pair-wise tests between the three levels of number of lights.  The 

tests were not statistically significant, which indicates that there were no differences amongst 

the individual levels.  This, along with the lack of overall statistical significance, indicates 

that only a single grade of realism was detected with respect to number of light sources. 

The implications of these results are discussed in Chapter 8. 
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ℜℜℜℜ vs. number of light sources, photograph-based, 
   number of lights as independent variable:  

   NUM_LIGHTS:       χ2=0.49, df=1, p=.4850  

                             (not statistically significant) 

 

ℜℜℜℜ vs. number of light sources, photograph-based,  
   log2(number of lights) as independent variable:  

   NUM_LIGHTS:        χ2=0.50, df=1, p=.4790  

                              (not statistically significant) 

 

ℜℜℜℜ vs. shadow softness, binary independent variable:  

   SHADOWNUM_LIGHTS_EXP:   χ2=7.26, df=1, p=.0071  

                             (statistically significant) 

 
 

Interaction term:  

  NUM_LIGHTS × SHADOWNUM_LIGHTS_EXP:  χ2=0.86, df=1, p=.3544  

                             (not statistically significant) 

 

ℜℜℜℜ vs. number of light sources, photograph-based, pair-wise comparisons:  

 Level 1 vs. Level 2: χ2=0.28, df=1, p=.5991  

                            (not statistically significant) 
 

 Level 1 vs. Level 3: χ2=0.55, df=1, p=.4576  

                            (not statistically significant) 
 

 Level 2 vs. Level 3: χ2=0.14, df=1, p=.7046  

                            (not statistically significant) 

Table 16. Test statistics for photograph-based experiment on number of light 
sources. 

6.3 Number of participants and power 

The number of participants in the experiments of this chapter was smaller than in the 

experiments of the previous chapter.  This is because the various experiments were 
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conducted over several sessions, and the visual factors in this chapter were only studied in 

the later sessions, when fewer participants were available.   

Since the experiments in this chapter did not yield statistically significant results, 

their power is in question.  Power is an experiment’s ability to report a statistically significant 

effect when an actual effect is indeed present [Levi94].  Low power, which is often due to 

not having enough participants, can prevent an existing effect from being observed.  Power 

analysis is the statistical evaluation of the power of a study, given the number of participants 

and the desired effect size to be measured. 

Unfortunately, power analysis is not as well developed for logistic regression as it is 

for other statistical techniques such as ANOVA and linear regression.  As discussed in 

Chapter 3, logistic regression is required to handle the binary response data of these 

experiments.  Furthermore, the experiments require repeated measures logistic regression, 

since each participant performs multiple trials, and the data is therefore correlated.  I was 

unable to find any statistical software to perform power analysis for repeated measures 

logistic regression, or to find literature describing such a technique.  Standard statistics 

packages such as SAS [Sas01] and SPSS [Spss01] do not support this type of power 

analysis, nor does the logistic regression software SUDAAN [Shah96] or the dedicated 

power analysis tool PASS [Pass01].  A published survey of power analysis tools confirms the 

lack of software for repeated measures logistic regression [Thom97]. 

However, we can still gauge the relative power of the experiments in this chapter 

without a formal analysis.  This is because the participants that performed the experiments in 

this chapter also performed the shadow softness and surface smoothness experiments, which 

were already shown to be statistically significant in Chapter 5.  We can conduct an analysis 

of shadow softness and surface smoothness using only the subset of participants from the 

experiments on number of objects, mix of object shapes, and number of light sources.  The 

results of this analysis can be used to informally assess the relative power of these three 

experiments.  
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ℜℜℜℜ ℜℜℜℜ

      Penumbra Angle        Surface Type 

Figure 17. Graphs of shadow softness and surface smoothness responses, using 
data from nine participants that also performed experiments on number of objects 

and mix of object shapes. 

 

ℜℜℜℜ vs. shadow softness and surface smoothness (photograph-based), using only  
    the nine participants that performed experiments on number of objects and  
    mix of object shapes:  
 

   SHADOW:  χ2=0.82,  df=1, p=.3665  
                           (not statistically significant) 
   SURFACE: χ2=15.64, df=1, p<.0001  
                           (statistically significant) 

Table 17. Test statistics for photograph-based shadow softness and surface 
smoothness experiments, using data from nine participants that also performed 

experiments on number of objects and mix of object shapes. 

ℜℜℜℜ 

 

ℜℜℜℜ 

 
      Penumbra Angle         Surface Type 

Figure 18. Graphs of shadow softness and surface smoothness responses, using 
data from six participants that also performed experiment on number of light 

sources. 



 

 67 

 

ℜℜℜℜ vs. shadow softness and surface smoothness (photograph-based), using only 
    the six participants that performed experiment on number of light sources:  
 

   SHADOW:  χ2=3.95,  df=1, p=.0470  
                           (statistically significant) 
   SURFACE: χ2=8.12,  df=1, p=.0044 
                           (statistically significant) 

Table 18. Test statistics for photograph-based shadow softness and surface 
smoothness experiments, using data from six participants that also performed 

experiment on number of light sources. 

Table 17 shows that the surface smoothness experiment from Chapter 5 was 

statistically significant when using only the participant set that also performed the combined 

experiment on number of objects and mix of object shapes.  The participant set from the 

experiment on number of objects and mix of object shapes therefore yielded enough power 

for an effect of the magnitude of surface smoothness to be detected.  Since number of objects 

and mix of object shapes were not statistically significant with these same participants, we 

can infer that these two factors influenced perceived visual realism less than surface 

smoothness did. 

The shadow softness experiment from Chapter 5 was not statistically significant using 

the participant set that also performed the combined experiment on number of objects and 

mix of object shapes.  We therefore cannot determine whether shadow softness had more or 

less influence than number of objects or mix of object shapes. 

Table 18 shows that both the shadow softness and the surface smoothness 

experiments from Chapter 5 were statistically significant using the participant set that also 

performed the experiment on number of light sources.  The participant set from the 

experiment on number of light sources therefore yielded enough power for an effect of the 

magnitude of both shadow softness and surface smoothness to be detected.  Since number of 

light sources was not statistically significant with these same participants, we can infer that 

number of light sources had less influence than either shadow softness or surface 

smoothness.  



7. EXPERIMENTS USING COMPUTER-GENERATED 
IMAGES 

The experiments presented in the previous two chapters used only photographs.  It 

would be useful to know whether the experimental method is also valid for computer-

generated images.   

Photographs limit the kinds of visual factors that can be investigated.  Non-

physically-realistic effects cannot be studied using unmanipulated photographs.  For 

example, with photographs one cannot arbitrarily manipulate the propagation of light 

throughout a scene, as one can with computer graphics.  Computer graphics are not bound by 

physical correctness, and can be used to create images that would be impossible with 

unmanipulated photography.   

Photographs also limit the experimental control that can be achieved across images.  

This problem was noted in the experiment on shadow softness in Chapter 5, where different 

lighting conditions were required to generate the different shadow levels, and this led to 

variations in image brightness and contrast.  With computer graphics, images can be 

generated with precise experimental control across the various visual factors. 

The goal of this chapter is to determine whether CG-based experiments produce 

results that are consistent with photograph-based experiments.  In this chapter we test this by 

conducting experiments on shadow softness and surface smoothness using only computer-

generated images.  The results from these experiments will be compared to the photograph-

based shadow softness and surface smoothness experiments from Chapter 5. 
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7.1 Setup 

The computer-generated images for this experiment were rendered using 3D Studio 

Max [Disc02].  Soft shadows were generated by raycasting towards a disc light source of 

varying radius.  The radius of the light source affected only the softness of the shadow 

penumbras.  The illumination on non-penumbral regions was not affected by changes in the 

light source radius.  This is an example of the control afforded by computer graphics. 

Object textures were created using orthographic photographs of the physical cubes 

used in the photograph-based experiments.  The intensity values of the resulting textures 

were shifted to a common mean, to ensure they all had the same average intensity.  The 

textures were used as bump maps [Blin78], rather than as reflectance maps.  The same anti-

aliasing algorithm (a quadratic filtering kernel) was used for all the images; anti-aliasing was 

therefore a controlled factor.  

The images were rendered with direct lighting only, and lacked indirect illumination 

(i.e., reflectance of light from surfaces onto other surfaces was not computed).  It is possible 

that CG images without indirect illumination would be judged as less real than their 

photographic counterparts, if a side-by-side comparison were performed.  However, the 

baseline realism of the set of images is not important in this experimental design.  The only 

question is whether realism measurably increases or decreases across the levels of the 

manipulated factors.  The lack of indirect illumination does not present a problem as long as 

it does not overpower the effects of shadow softness and surface smoothness, causing a floor 

effect (i.e., as long as the images are not all rated as “not real” because of it). 

Unlike the photograph-based shadow softness experiment from Chapter 5, the lowest 

shadow level in the CG-based experiment had a penumbra angle of zero degrees – a perfect 

point light source.  Point light sources are not possible in the real world, but they are 

common in computer graphics.  Here we test their effect on perceived realism. 

Seven participants performed the CG-based shadow softness and surface smoothness 

experiments.  Table 1 shows which participants performed the CG-based experiments.  To 

eliminate the possibility of crossover effects from exposure to both CG images and 
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photographs, the participants in these CG-based experiments were different from those that 

performed the photograph-based experiments.   

Unlike the photograph-based shadow softness and surface smoothness experiments, 

the CG-based factors were tested in two independent experiments.  We therefore cannot 

perform a test for interaction between the two CG-based factors. 

Shadow softness was tested with five shadow levels (at 0, 1.5, 2.5, 5.2, and 10.3 

degrees of penumbra angle) and with six different spatial arrangements of objects.  The total 

number of images for the shadow softness experiment was therefore 5 × 6 = 30.  Surface 

smoothness was tested with two smoothness levels, and with twelve different spatial 

arrangements of objects.  The total number of images for the surface smoothness experiment 

was therefore 2 × 12 = 24.  The logistic regression models for the two experiments are 

presented below: 

 

 

y = β0 + β1 ∗ SHADOWCG 
 

Table 19. Logistic regression model for CG-based experiment on 
shadow softness. 

 

y = β0 + β1 ∗ SURFACECG 
 

Table 20. Logistic regression model for CG-based experiment on 
surface smoothness. 

 

Half of the images in the experiments (randomized per participant at run-time) were 

displayed flipped horizontally.  Each participant initially viewed and rated sixteen practice 

images, selected randomly from the experimental set.  The data from the practice trials is not 

included in the analysis.  The images used for the practice trials were used again for the main 

trials. 
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Figure 19. Sample images from computer-graphics-based shadow softness 
experiment.  Shadow softness varies across columns, from hardest (left) to softest 

(right).  Object arrangement varies between rows. 

 

               

Figure 20. Detail of images from CG-based shadow softness experiment.  Average 
penumbra angles for the five shadow levels were 0°, 1.5°, 2.5°, 5.2°, and 10.3°.  
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Figure 21. Detail of images from CG-based surface smoothness experiment.  The 
bump maps for the computer-generated objects were acquired by photographing the 
faces of the cubes used in the photograph-based surface smoothness experiment. 

 

7.2 Results: ℜℜℜℜ vs. shadow softness (computer-graphics-based 
experiment) 

The reported realism rating ℜℜℜℜ increased with shadow softness, as it did in the 

photographic experiment presented in Chapter 5.  This is shown in the graph below.  

However, the change in ℜℜℜℜ between the first and second shadow levels was more pronounced 

with computer graphics than with photographs.  This may be due to the fact that the CG 

renderings contained a true point light source, which cannot be achieved with a physical 

spotlight.  The lowest shadow softness level in the CG images was therefore less physically 

plausible than the lowest level in the photograph-based experiment.   
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                  Penumbra Angle 

Figure 22. Results of computer-graphics-based experiment on shadow softness.  
There was a statistically significant increase in ℜℜℜℜ.  The greatest increase in reported 

realism occurred between the first and second levels.   

I first tested whether ℜℜℜℜ varied linearly with shadow softness by fitting a logistic 

regression model (see Table 19) to the data, using degrees of penumbra angle as the 

independent variable.  The null hypothesis was that shadow softness has no effect on 

participants’ responses.  With this model, shadow softness was found to be not statistically 

significant (p=.0863, a trend).  As with the photographic shadow softness experiment, ℜℜℜℜ did 

not vary linearly with degrees of penumbra angle. 

I next tested whether a better model would offer a statistically significant fit, noting 

that the penumbra angle values were not evenly spaced, but rather increased exponentially (0, 

1.5, 2.5, 5.2, and 10.3).  To account for this, I transformed the independent variable using the 

function log2(α + 1.0), where α is the degrees of penumbra angle.  I used (α + 1.0) instead of 

just α (as in the photographic analysis) because log2(0) is undefined, and the lowest shadow 

level has a penumbra angle of zero.   

After the transformation, the independent variable took the following values: 0, 1.33, 

1.8, 2.6, and 3.5.  The dependent variable was not changed by the transformation.  With this 

model, the regression was statistically significant, with p=.0228.  This indicates that ℜℜℜℜ 

increased measurably with log2 degrees of penumbra angle, for CG-based shadow softness.  

This is consistent with the findings from the photograph-based experiment. 
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ℜℜℜℜ vs. shadow softness, CG-based, 

   degrees of penumbra angle as independent variable:  

   SHADOWCG:  χ2=2.94, df=1, p=.0863 

              (not statistically significant, but trend) 

 

ℜℜℜℜ vs. shadow softness, CG-based:  

   log2(degrees of penumbra angle + 1.0) as independent variable:  

   SHADOWCG:  χ2=5.18, df=1, p=.0228 

              (statistically significant) 

Table 21. Test statistics for computer-graphics-based experiment on shadow 
softness. 

Because there were more than two levels of shadow softness, we can perform pair-

wise tests for the log2 case to determine at which level, relative to the first, the effect 

becomes statistically significant.  As presented in the table below, a statistically significant 

difference in ℜℜℜℜ first appears between shadow levels 1 and 2.   

ℜℜℜℜ vs. shadow softness, CG-based, pair-wise comparisons, 

   log2(degrees of penumbra angle + 1.0) as independent variable: 

   Level 1 vs. Level 2: χ2=6.64, df=1, p=.0100  
                        (statistically significant) 
  

   Level 1 vs. Level 3: χ2=2.30, df=1, p=.1296 
                        (not statistically significant) 
  

   Level 1 vs. Level 4: χ2=7.34, df=1, p=.0068 
                        (statistically significant) 
  

   Level 1 vs. Level 5: χ2=5.14, df=1, p=.0234 
                        (statistically significant) 

Table 22. Test statistics for pair-wise comparisons in computer-graphics-based 
experiment on shadow softness. 

As with the photograph-based shadow softness experiment in Chapter 5, we can now 

test whether participants implicitly classified the images into more than two distinct grades of 
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realism.  We can explore this by testing levels 2 through 5, and if these exhibit statistical 

significance, then we proceed to test for pair-wise differences starting at level 2.   

I ran a logistic regression test including only levels 2 through 5, with log2 shadow 

softness as the independent variable.  The null hypothesis was that shadow softness has no 

effect on reported realism.   

As shown below, there was no statistically significant difference in the last four 

shadow softness levels.  We therefore do not proceed to conduct further pair-wise 

comparisons, but instead conclude that ℜℜℜℜ can only be partitioned into two groups, with the 

first set including ℜℜℜℜ at shadow level 1, and the second set including ℜℜℜℜ at shadow levels 2 

through 5.  Although the experiment was capable of measuring up to five distinct grades of 

realism, only two distinct grades were measured.  This is discussed further in Chapter 8. 

ℜℜℜℜ vs. shadow softness, CG-based, comparison of four softest levels 

   log2(degrees of penumbra angle + 1.0) as independent variable: 

 Levels 2, 3, 4, 5: χ2=0.35, df=1, p=.5562 

                   (not statistically significant) 

Table 23. Test statistics for comparison of last four levels in computer-graphics-
based shadow softness experiment. 

7.3 Results: ℜℜℜℜ vs. surface smoothness (computer-graphics-based 
experiment) 

As shown in the graph below, smooth-surfaced images rated much lower in ℜℜℜℜ than 

rough-surfaced images.  This is consistent with the results from the photograph-based surface 

smoothness experiment. 
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              Surface Type 

Figure 23. Results of computer-graphics-based experiment on surface 
smoothness.  These closely match the results from the photograph-based 

experiment.  The increase in ℜℜℜℜ was statistically significant. 

I tested for statistical significance by fitting a logistic regression model (see Table 20) 

to the data, using surface smoothness as the independent variable (with two levels, “smooth” 

and “rough”).  The null hypothesis was that surface smoothness has no effect on participants’ 

responses. 

The effect of surface smoothness was statistically significant, as shown below.  This 

indicates that surface smoothness had a measurable effect on participants’ responses.   

 

ℜℜℜℜ vs. surface smoothness, CG-based, binary independent variable:  

   SURFACECG: χ2=18.75, df=1, p<.0001  
                          (statistically significant) 

Table 24. Test statistics for computer-graphics-based experiment on surface 
smoothness. 

7.4 Comparison of photograph-based and computer-graphics-based 
shadow softness and surface smoothness experiments 

The results of the computer-graphics based shadow softness and surface smoothness 

experiments are consistent with the photograph-based experiments presented in Chapter 5.  
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There was a statistically significant increase in the realism response as shadows were 

softened and as surfaces were made less smooth.   

 Shadow softness 

(log2 degrees of penumbra angle) 
Surface smoothness 

(“smooth” vs. “rough” textures) 

Photograph-based 

experiments  
χ2=4.32, df=1, p=.0377 χ2=12.85, df=1, p=.0003 

CG-based experiments χ2=5.18, df=1, p=.0228 χ2=18.75, df=1, p<.0001 

Table 25. Test statistics for photograph-based and computer-graphics-based 
experiments on shadow softness and surface smoothness. 

In both the photograph-based and CG-based shadow softness experiments, it was 

found that the realism response did not increase linearly with penumbra angle, but instead 

increased with log2 of penumbra angle. 

Also, the realism response increased quickly with shadow softness and then leveled 

off, in both the photograph-based and CG-based experiments.  Statistical analysis determined 

that only two distinct grades of realism were reported in both of these experiments, despite 

the fact that the experiments were capable of measuring up to five distinct grades of realism 

(one per level of shadow softness). 



8. DISCUSSION 

I have presented a novel experimental method for measuring the perceived visual 

realism of images.  This method differs from existing research on visual realism in that it is 

the first to ask human participants to directly rate images as either “real” or “not real.”  The 

experimental method presents participants with a series of images that vary only along 

specific manipulated factors.  Statistical analysis is used to determine whether the 

manipulated factors had an effect on participants’ responses.  By seeing which visual factors 

had an effect on reported realism and which did not, we can learn what is visually important 

for an image to be regarded as “real.”   

8.1 Experimental results 

I conducted experiments on the following five visual factors: shadow softness, 

surface smoothness, number of objects, mix of object shapes, and number of light sources.  

8.1.1 Discussion: shadow softness and surface smoothness 

Shadow softness was tested with both photograph-based and CG-based experiments.  

Participants viewed images with very hard shadows (from a spotlight), very soft shadows 

(from a diffused light source), and three intermediate levels of shadow softness.  In both the 

photograph-based and CG-based experiments, the realism response ℜℜℜℜ was lower for hard 

shadows than for soft shadows.  The effect was statistically significant.  This indicates that 

participants consistently rated soft-shadowed images as “real” more often than they did hard-

shadowed images.  Shadow softness therefore measurably increased perceived visual realism. 

ℜℜℜℜ was defined in each experiment as the proportion of images that were rated as 

“real” at a given level of the visual factor (in this case, at a given level of shadow softness).  
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The ℜℜℜℜ curve increased quickly with shadow softness at only a few degrees of penumbra 

angle, and then leveled off.  The increase in ℜℜℜℜ was not linear with penumbra angle, but rather 

logarithmic.  The practical application of this finding is that for a given scene there may be 

an optimal degree of shadow softness that will maximize perceived visual realism, beyond 

which any increase in shadow softness will have diminishing results. 

In the CG-based experiment, the increase in ℜℜℜℜ between the first two shadow softness 

levels was greater than the increase in ℜℜℜℜ between the first two levels in the photographic 

experiment.  This may have been because the computer-generated images at the first shadow 

softness level contained a perfect point light source.  This was trivial to implement using 

computer graphics, though it cannot be accomplished in photographs using physical 

spotlights.  The first CG shadow softness level was therefore less physically plausible than 

the first photographic shadow softness level. 

In the CG-based experiment, the greatest increase in ℜℜℜℜ occurred between the first two 

shadow softness levels, and there was no statistically significant difference in ℜℜℜℜ between the 

four softer shadow levels.  Participants effectively divided the images into two groups, where 

all the images containing the point light source were rated low on realism, and all the other 

images were rated equally high (statistically) on realism.  Likewise, the responses in the 

photograph-based shadow softness level could only be partitioned into two groups.  Despite 

the fact that the experiments could measure five distinct grades of perceived visual realism 

(one for each of the five levels of shadow softness), only two distinct grades of realism were 

measured.  Neither the photograph-based nor the CG-based shadow softness experiment 

answered the open question of whether people can differentiate between more than two 

grades of perceived visual realism1. 

Surface smoothness was investigated with both photograph-based and CG-based 

experiments.  Two levels of surface smoothness were tested: images showed either rough-

surfaced objects or smooth-surfaced objects.  For both photographs and computer graphics, 

the rough-surfaced images were rated much higher on realism than the smooth-surfaced 

                                                        
1 The other experiments capable of registering more than two levels of perceived visual realism – the 

experiments on number of objects and number of light sources – did not yield statistically significant results.  
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images, with statistical significance.  This suggests that in order to maximize perceived 

visual realism, the surfaces in an image should not all be smooth.  

The photograph-based shadow softness and surface smoothness experiments were 

investigated in a single combined experiment, to allow for a test for interaction between the 

two factors.  No statistically significant interaction was found.  The effect of shadow softness 

did not depend on the current level of surface smoothness, nor vice versa.  The two had 

independent effects on perceived visual realism. 

Both the CG-based shadow softness experiment and the CG-based surface 

smoothness experiments were consistent with their photograph-based counterparts, in that 

they had similar ℜℜℜℜ response curves, with statistical significance.  This demonstrates that the 

experimental method presented here can be used with computer-generated images as well as 

photographs, which greatly expands the range of possible visual factors that can be studied. 

It is often stated within the computer graphics literature that shadow softness and 

surface smoothness affect visual realism [Stre95][Sole98][Shir00].  These studies present the 

first experimentally obtained evidence that shadow softness and surface smoothness do 

indeed have a measurable, statistically significant effect on observers’ regard of images as 

being either real or not real.   

8.1.2 Discussion: number of objects, mix of object shapes, and number of light sources  

Statistically significant effects were not observed for number of objects, mix of object 

shapes, or number of light sources.  The realism response ℜℜℜℜ did not measurably vary as a 

function of any of these three factors (i.e., the slope of the response curve was statistically 

zero for all three experiments).  This contradicts the common assertion within the computer 

graphics literature that complexity implies visual realism [Chiu94][Gree97].  Each of these 

three visual factors represented some measure of complexity (though not the only possible 

ones), yet none had a statistically significant effect on participants’ responses.  The result on 

number of objects suggests that if a given image is not realistic, then making it more complex 

by replicating the objects within it will not increase its realism.  The result on mix of object 

shapes suggests that varying the shapes of objects in an image with other objects of similar 

geometric and textural complexity will not increase the image’s realism.  The result on 
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number of light sources suggests that adding lights to a scene will not affect its perceived 

visual realism.  

These experiments did not explore the question of why it is that the visual factors did 

not have a statistically significant effect on participants’ responses.  One possibility is that 

the experiments did not have enough power – i.e., there were too few participants and/or the 

variance of responses was too large.  However, as shown in the informal analysis of power in 

Section 6.3, the set of participants for these three visual factors did yield statistical 

significance for shadow softness and surface smoothness.  It is therefore uncertain whether 

conducting these three experiments with more participants would have yielded statistically 

significant results.  Of the three visual factors, the one most likely to yield different results 

with more participants is number of objects, for which a trend was observed (0.1 > p > .05). 

8.2 Reliability, sensitivity, and validity 

Reliability, sensitivity, and validity [Suth96][Levi94] are relevant issues in the 

assessment of novel experimental methods.  Reliability is the extent to which an 

experimental method gives the same results when employed on different occasions.  

Sensitivity refers to the ability of an experimental method to accurately detect an effect, 

when one does exist.  Validity is the extent to which an experimental method genuinely 

measures what it claims to measure.   

Reliability is typically measured by performing the experimental tests repeatedly with 

the same participants, on different occasions.  The method’s reliability is given by the 

similarity between the results from different occasions, taking into account that the earlier 

exposure to the experimental method may affect the results from the later exposure.  I did not 

re-test the same participants over time, so the question of whether the experimental results 

would be the same upon re-testing remains open for future investigation.   

The experimental method exhibited sensitivity, in that it was able to register 

statistically significant effects for certain visual factors.  This indicates that the experimental 

method was able to detect patterns of response for effects of a certain size.  Another form of 

sensitivity is multi-level sensitivity: the ability to accurately measure different grades of the 

response variable.  It is not known, however, whether more than two grades of perceived 



 

 82 

visual realism actually exist.  In the two experiments that had statistically significant results 

and were capable of registering more than two distinct grades of perceived visual realism, 

only two grades of realism were actually measured.  These results do not resolve the question 

of whether observers are capable of differentiating between more than two grades of 

perceived visual realism, and whether multi-level sensitivity is achievable.  It is possible that 

there exists a single threshold of realism, above which an image is regarded as “real,” and 

below which an image is regarded as “not real.” 

The question of validity asks whether this experimental method is actually measuring 

visual realism.  Visual realism is an internal percept, however, and cannot be measured 

directly.  The only way to assess it is through some external test or observation.  The analogy 

of intelligence was presented earlier: people believe that intelligence exists, but it can only be 

assessed through concrete external means (e.g., intelligence tests) that are believed to 

correlate with the abstract internal property.  Similarly, the internal perception of visual 

realism can only be measured by external means.  The external measure in this research is the 

question “is this image real?”  Perceived visual realism is defined operationally in terms of 

this question – a “realistic image” is defined in this research as an image that is rated by 

participants as being real.  We can therefore assert that the experimental method in this 

dissertation provides a valid measure of perceived visual realism of images, where perceived 

visual realism is defined operationally as the property of being rated as “real” by human 

viewers.   

Research works in established fields of perception often address the validity of a new 

experimental method by comparing the new method’s results to the results of existing 

methods.  If the new results are consistent with the existing, accepted results, then the new 

method is deemed valid.  However, the validity of the method in this dissertation cannot be 

evaluated via comparisons with existing methods, since no previous work has attempted to 

measure the perceived visual realism of images in a comparable manner (see Chapter 2 for a 

full review of the relevant literature).   
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8.3 Results support thesis statement 

My thesis statement consisted of three claims.  The results of the experiments support 

the three claims:    

There exist visual factors in images which have measurable, consistent 

effects on perceived visual realism, as reported by human observers.   

In the photograph-based experiments of Chapter 5, and in the CG-based 

experiments of Chapter 7, it was established that shadow softness and 

surface smoothness had statistically significant effects on perceived visual 

realism, as measured by participants’ responses to the “real” / “not real” 

question.  Statistical significance indicates that the observed pattern of 

responses was not likely due to chance, but rather that a true effect was 

likely measured.  Statistical significance also indicates that the effect was 

consistent across participants: different participants responded similarly to 

the manipulated factors. 

Not all visual factors have the same effect on perceived visual realism.   

Number of objects, mix of object shapes, and number of light sources did 

not have statistically significant effects (see Chapter 6).  The participants 

who performed these three experiments also performed experiments on 

shadow softness and surface smoothness, for which their responses were 

statistically significant.  This demonstrates that not all visual factors have 

the same effect on perceived visual realism.  For any visual factor that was 

not investigated in these experiments, an explicit test will be required to 

establish its effect on perceived visual realism. 
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Certain visual factors have similar effects on perceived visual realism in both 

photographs and computer-generated images. 

Shadow softness and surface smoothness were tested in both photograph-

based and CG-based experiments (in Chapters 5 and 7).  The effects were 

statistically significant for both photographs and computer-generated 

images, and the patterns of responses were qualitatively similar between the 

two cases.  

8.4 Summary 

This research has demonstrated that perceived visual realism can be studied using 

standard principles of experimental design and analysis.  Realism was defined operationally 

in terms of an experimental task.  Rather than explicitly defining realism for participants, the 

experimental method enabled participants to tell us what they considered real, via their 

responses.  The presence of statistically significant effects in the resulting data indicated that 

the participants (all non-experts in computer graphics, photography, or related visual fields) 

did not have widely varying notions between them of what looked real.   

Not all photographs were perceived as equally realistic.  Participants regarded the 

realism of photographs differently depending on shadow softness and surface smoothness.  

Physical accuracy is therefore not equivalent to perceived visual realism, since all the 

photographs in these experiments were physically accurate images. 

This research has shown that there are certain visual cues that observers use to assess 

the realism of images.  Future work can focus on investigating further the nature of perceived 

visual realism, identifying other important visual cues than the ones studied in this research, 

and targeting these cues directly in new rendering algorithms. 



9. FUTURE WORK 

The work presented in this dissertation is an early step towards understanding what it 

is that makes images look real or not real.  This chapter discusses possible directions for 

future work. 

9.1 Other visual factors 

This dissertation explored only five visual factors.  There are many other visual 

factors that could be studied using this experimental method. 

9.1.1 Color 

The experiments in this dissertation used only grayscale images.  There is no existing 

evidence of whether color increases or decreases an image’s likelihood to be perceived as 

real.  There are also no existing studies on the way in which “proper” usage of color 

(however defined) affects perceived visual realism.  

Some questions regarding color that can be studied using the experimental method of 

this dissertation are: 

• Given a color image and a grayscale version of the same image, will the 

realism rating differ between the two?  More generally, does the realism 

rating of an image vary with color saturation? 

• How dependent is realism on the “correctness” of colors?  For example, if 

the hues in an image are shifted (or only the hues of specific scene 

elements), does perceived realism change? 
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9.1.2 Global illumination 

Global illumination – the propagation of light throughout an environment – is an 

important element of real-world imagery.  It is difficult to manipulate the propagation of light 

in photographs, but trivial to do so in computer-generated imagery.  Some questions that can 

be studied using the experimental method of this dissertation are: 

• Is full global illumination necessary for realism?  Does realism change 

significantly when an image is rendered without calculating the full 

propagation of light?   

• How sensitive are observers to the numerical accuracy of the global 

illumination solution?  What are the numerical error bounds on the solution 

within which the resulting images will be perceived as real? 

9.1.3 Geometric complexity 

All the objects in the experiments of this dissertation had simple geometry – they 

were either cubes, spheres, or egg-shapes.  Future experiments could investigate the effect of 

increasing the geometric complexity of the individual objects.  Experiments could also be 

conducted with more familiar, everyday objects than the primitive shapes used in this 

dissertation, and could explore whether the familiarity of objects interacts with other visual 

factors. 

9.1.4 Surface texture 

The experiments in this dissertation addressed surface texture only in the limited 

context of surface smoothness, by comparing smooth surfaces to rough ones.  The problem 

was reduced to a binary question along one dimension.   

There are other dimensions of surface texture that can be investigated.  Examples 

include specularity, glossiness, and anisotropy.  Experiments could be conducted to test the 

effect of each of these dimensions on perceived visual realism.  One could also test the 

relative effects of different categories of surface textures.  For example, an experiment could 

be constructed using the categorization system of the Columbia-Utrecht Reflectance and 
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Texture Database [Dana99].  This database defines several texture groups, including 

specular, diffuse, isotropic, anisotropic, natural, man-made, and more.  

9.1.5 Motion 

Motion was not studied in this dissertation.  The experimental method could be 

adapted to study motion by presenting participants with motion clips rather than static 

images.   

One possible research idea would be to study the effect of high-frequency versus low-

frequency variations in motion data.  For example, an experiment could gather motion-

capture data of people performing various actions, and investigate the amount of high-

frequency information that can be eliminated from the motion-capture signals before the 

resulting movements look unrealistic. 

9.2 Method of adjustment 

A different experimental design would be to study visual factors as continuous 

dimensions, by using a method of adjustment [Levi94].  Participants would interactively alter 

some visual factor within a given image by manipulating a dial or slider.  They would 

continue to alter the visual factor until they determined that the image looked real.  

Performed over a number of trials, this method could yield a range of values for which the 

visual factor gives realistic-looking images. 

9.3 Do viewers look for realistic or for unrealistic features in images? 

An open question is whether viewers look for realistic elements or for unrealistic 

elements in an image when assessing its realism.  It would be useful to know how much of an 

image must look real before the image as a whole is considered real, and how much must 

look not real before the image as a whole is regarded as not real. 

One way to explore this would be with a variation on the surface smoothness 

experiment.  The new experiment would have three experimental levels.  At the first level, 

the images would contain some even number of objects, all smooth-textured.  These are 
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expected to rate low on realism, according to the results of Chapters 5 and 7.  At the third 

level, the images contain the same number of objects, all rough-textured.  These are expected 

to rate high on realism.  In the middle level, the images contain the same number of objects, 

but with half the objects smooth, and the other half rough.   

At the middle level, there are an equal number of realistic, rough objects and 

unrealistic, smooth ones.  Will the participants judge the images at this level as real or not 

real?  If this level’s realism rating is close to that of the smooth (low realism) level, then this 

suggests that the participants judged the images based on the presence of unrealistic elements 

– i.e., the presence of unrealistic objects led participants to decide that the whole image was 

not real.  However, if the realism rating of the mixed-surface level is close to that of the 

rough (high realism) level, then this suggests that the participants interpreted the presence of 

realistic-looking objects as evidence of overall realism.  If the realism rating of the mixed-

surface level falls at the midpoint between the smooth and rough levels, then this would 

imply that the realistic and the unrealistic elements of the image contributed equally to 

participants’ assessments. 



 APPENDIX: DATA  

The following tables present the raw data for each experiment in this dissertation, as 

well as the data collapsed across scenes.  Outliers have been removed as described in Section 

4.5. 

A.1 Raw data: photograph-based experiment on shadow softness and 
surface smoothness  

 
  ID:   Participant ID number 
  TR:   Trial number 
  SC:   Scene = {A, B, C, D, E, F} 
  SRF:  Surface smoothness = {0:Smooth, 1:Rough} 
  SHD:  Shadow softness, in degrees of penumbra angle 
  RSP:  Participant response = {0:Not real, 1:Real} 
 
 

ID TR SC SRF SHD RSP 

10 1 A 0 10.20 0 
10 2 C 0 0.37 0 
10 3 D 1 5.21 0 
10 4 B 0 5.21 1 
10 5 E 1 2.46 1 
10 6 F 0 2.46 1 
10 7 E 0 1.51 1 
10 8 D 0 2.46 1 
10 9 A 0 0.37 1 
10 10 E 0 5.21 1 
10 11 A 1 0.37 1 
10 12 F 0 1.51 1 
10 13 D 1 1.51 1 
10 14 D 1 0.37 1 
10 15 B 1 1.51 1 
10 16 E 1 10.20 0 
10 17 E 0 10.20 0 
10 18 D 0 5.21 1 
10 19 C 1 1.51 1 
10 20 F 1 0.37 1 
10 21 B 1 5.21 1 
10 22 A 0 1.51 1 
10 23 B 0 2.46 0 
10 24 D 0 10.20 1 
10 25 B 0 0.37 0 
10 26 F 0 10.20 1 
10 27 D 1 2.46 1 
10 28 F 1 2.46 1 
10 29 E 0 2.46 1 
10 30 E 1 1.51 1 
10 31 E 1 5.21 0 
10 32 C 1 5.21 0 
10 33 C 1 10.20 1 
10 34 C 0 5.21 0 
10 35 A 1 5.21 0 
10 36 C 1 0.37 0 
10 37 F 0 5.21 1 
10 38 F 1 5.21 1 
10 39 D 1 10.20 1 
10 40 A 1 2.46 1 
10 41 B 1 0.37 0 
10 42 B 0 1.51 1 
10 43 C 0 2.46 1 
10 44 B 1 2.46 1 
10 45 C 0 1.51 0 

ID TR SC SRF SHD RSP 

10 46 E 1 0.37 0 
10 47 B 0 10.20 0 
10 48 E 0 0.37 0 
10 49 F 1 10.20 1 
10 50 C 0 10.20 1 
10 51 F 0 0.37 0 
10 52 D 0 1.51 0 
10 53 F 1 1.51 1 
10 54 A 0 2.46 0 
10 55 D 0 0.37 0 
10 56 B 1 10.20 1 
10 57 A 1 10.20 1 
10 58 C 1 2.46 1 
10 59 A 0 5.21 1 
10 60 A 1 1.51 1 
11 1 C 1 2.46 1 
11 2 F 0 10.20 0 
11 3 C 0 2.46 0 
11 4 D 0 0.37 1 
11 5 C 1 1.51 1 
11 6 E 0 2.46 0 
11 7 D 0 5.21 0 
11 8 F 0 0.37 0 
11 9 D 0 1.51 0 
11 10 A 1 2.46 1 
11 11 A 0 5.21 0 
11 12 A 1 0.37 1 
11 13 A 0 1.51 0 
11 14 E 1 5.21 1 
11 15 C 1 0.37 1 
11 16 E 1 2.46 1 
11 17 F 0 5.21 0 
11 18 D 0 2.46 0 
11 19 D 1 0.37 1 
11 20 C 0 10.20 0 
11 21 C 0 5.21 0 
11 22 F 1 10.20 1 
11 23 D 0 10.20 0 
11 24 D 1 5.21 1 
11 25 B 1 1.51 1 
11 26 F 0 1.51 0 
11 27 D 1 2.46 1 
11 28 E 0 10.20 0 
11 29 D 1 1.51 1 
11 30 F 1 2.46 1 

ID TR SC SRF SHD RSP 

11 31 A 0 0.37 0 
11 32 A 0 2.46 0 
11 33 D 1 10.20 1 
11 34 F 1 0.37 0 
11 35 C 0 1.51 0 
11 36 B 0 5.21 0 
11 37 B 0 1.51 0 
11 38 E 0 0.37 0 
11 39 E 1 10.20 1 
11 40 E 1 1.51 1 
11 41 A 1 10.20 1 
11 42 C 1 10.20 1 
11 43 A 1 5.21 1 
11 44 E 1 0.37 1 
11 45 F 0 2.46 0 
11 46 F 1 5.21 1 
11 47 C 0 0.37 0 
11 48 B 0 0.37 0 
11 49 A 1 1.51 0 
11 50 F 1 1.51 1 
11 51 B 1 5.21 0 
11 52 B 0 10.20 0 
11 53 B 0 2.46 0 
11 54 E 0 1.51 0 
11 55 C 1 5.21 1 
11 56 B 1 2.46 1 
11 57 B 1 10.20 1 
11 58 E 0 5.21 0 
11 59 A 0 10.20 0 
11 60 B 1 0.37 0 
15 1 A 1 0.37 0 
15 2 D 0 2.46 1 
15 3 E 1 5.21 1 
15 4 F 1 1.51 1 
15 5 E 1 1.51 0 
15 6 E 0 0.37 0 
15 7 E 0 1.51 0 
15 8 C 1 10.20 0 
15 9 B 1 2.46 0 
15 10 E 0 10.20 0 
15 11 B 1 5.21 0 
15 12 F 0 2.46 0 
15 13 A 0 0.37 0 
15 14 E 1 10.20 1 
15 15 D 0 5.21 1 
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ID TR SC SRF SHD RSP 

15 16 C 1 1.51 0 
15 17 F 0 1.51 0 
15 18 A 0 10.20 1 
15 19 F 1 0.37 0 
15 20 C 0 5.21 0 
15 21 F 1 5.21 0 
15 22 C 1 5.21 0 
15 23 B 0 1.51 0 
15 24 F 1 2.46 0 
15 25 B 1 0.37 0 
15 26 C 0 0.37 0 
15 27 D 0 10.20 0 
15 28 B 0 10.20 1 
15 29 D 1 5.21 0 
15 30 B 0 0.37 0 
15 31 B 1 1.51 0 
15 32 E 1 2.46 0 
15 33 A 0 1.51 0 
15 34 F 0 0.37 0 
15 35 D 0 0.37 0 
15 36 A 1 10.20 0 
15 37 E 0 2.46 0 
15 38 F 0 5.21 1 
15 39 E 1 0.37 0 
15 40 D 1 2.46 0 
15 41 A 1 5.21 1 
15 42 F 0 10.20 1 
15 43 D 1 0.37 0 
15 44 D 0 1.51 1 
15 45 C 0 2.46 0 
15 46 A 1 1.51 0 
15 47 C 1 0.37 0 
15 48 C 1 2.46 0 
15 49 B 0 2.46 1 
15 50 D 1 1.51 0 
15 51 A 0 2.46 1 
15 52 B 0 5.21 1 
15 53 B 1 10.20 1 
15 54 A 1 2.46 0 
15 55 E 0 5.21 1 
15 56 C 0 10.20 1 
15 57 D 1 10.20 1 
15 58 C 0 1.51 1 
15 59 A 0 5.21 1 
15 60 F 1 10.20 0 
16 1 B 1 1.51 0 
16 2 E 0 5.21 1 
16 3 C 1 10.20 1 
16 4 B 1 2.46 0 
16 5 D 0 5.21 1 
16 6 D 1 5.21 1 
16 7 A 0 0.37 0 
16 8 D 0 2.46 1 
16 9 C 0 1.51 1 
16 10 B 1 5.21 1 
16 11 B 0 10.20 1 
16 12 F 1 5.21 1 
16 13 F 0 2.46 0 
16 14 D 1 10.20 1 
16 15 A 0 2.46 1 
16 16 D 0 1.51 1 
16 17 C 0 10.20 1 
16 18 E 1 5.21 0 
16 19 E 0 0.37 0 
16 20 D 1 0.37 0 
16 21 F 0 10.20 1 
16 22 E 0 1.51 0 
16 23 E 1 1.51 0 
16 24 E 0 2.46 1 
16 25 F 1 2.46 1 
16 26 A 1 10.20 1 
16 27 C 1 0.37 0 
16 28 D 0 0.37 1 
16 29 B 0 2.46 1 
16 30 C 0 0.37 1 
16 31 F 1 0.37 0 
16 32 D 1 2.46 1 
16 33 F 1 10.20 0 
16 34 B 1 10.20 1 
16 35 C 0 5.21 1 
16 36 C 0 2.46 1 
16 37 B 0 0.37 0 
16 38 E 1 2.46 1 
16 39 A 1 1.51 0 
16 40 F 1 1.51 1 
16 41 D 0 10.20 1 
16 42 E 1 10.20 1 

ID TR SC SRF SHD RSP 

16 43 D 1 1.51 1 
16 44 F 0 5.21 0 
16 45 A 1 0.37 0 
16 46 C 1 2.46 1 
16 47 B 0 1.51 1 
16 48 E 0 10.20 1 
16 49 F 0 1.51 1 
16 50 A 0 1.51 1 
16 51 A 1 5.21 1 
16 52 B 0 5.21 1 
16 53 E 1 0.37 0 
16 54 A 0 5.21 0 
16 55 A 0 10.20 0 
16 56 C 1 5.21 1 
16 57 A 1 2.46 1 
16 58 C 1 1.51 1 
16 59 F 0 0.37 1 
16 60 B 1 0.37 1 
17 1 E 1 5.21 0 
17 2 F 1 10.20 0 
17 3 F 1 1.51 0 
17 4 E 1 0.37 0 
17 5 B 1 5.21 1 
17 6 B 0 2.46 1 
17 7 A 0 1.51 0 
17 8 B 0 0.37 0 
17 9 C 1 0.37 0 
17 10 A 1 10.20 1 
17 11 F 0 0.37 0 
17 12 D 0 0.37 1 
17 13 C 0 0.37 1 
17 14 D 1 2.46 0 
17 15 C 1 5.21 1 
17 16 D 1 1.51 0 
17 17 F 1 0.37 0 
17 18 C 1 10.20 1 
17 19 D 0 5.21 1 
17 20 B 1 2.46 1 
17 21 B 0 1.51 1 
17 22 E 1 1.51 1 
17 23 E 0 0.37 0 
17 24 B 1 10.20 1 
17 25 F 0 5.21 1 
17 26 F 1 2.46 0 
17 27 A 0 10.20 1 
17 28 F 0 10.20 1 
17 29 A 1 1.51 0 
17 30 D 0 1.51 0 
17 31 C 0 1.51 1 
17 32 C 1 2.46 0 
17 33 A 0 5.21 1 
17 34 A 1 0.37 0 
17 35 A 1 2.46 0 
17 36 F 0 1.51 1 
17 37 E 0 5.21 1 
17 38 D 1 10.20 1 
17 39 D 1 5.21 1 
17 40 E 1 2.46 1 
17 41 B 1 0.37 0 
17 42 C 0 2.46 1 
17 43 E 1 10.20 0 
17 44 B 0 5.21 1 
17 45 D 1 0.37 1 
17 46 A 1 5.21 1 
17 47 A 0 2.46 0 
17 48 C 0 5.21 1 
17 49 C 0 10.20 1 
17 50 E 0 10.20 0 
17 51 D 0 2.46 0 
17 52 F 0 2.46 1 
17 53 F 1 5.21 0 
17 54 B 1 1.51 1 
17 55 E 0 2.46 1 
17 56 B 0 10.20 1 
17 57 C 1 1.51 1 
17 58 A 0 0.37 0 
17 59 D 0 10.20 0 
17 60 E 0 1.51 0 
18 1 E 0 5.21 0 
18 2 F 1 0.37 1 
18 3 B 1 1.51 1 
18 4 E 1 2.46 0 
18 5 C 1 10.20 0 
18 6 B 1 10.20 1 
18 7 B 0 0.37 0 
18 8 D 1 5.21 1 
18 9 D 0 0.37 1 

ID TR SC SRF SHD RSP 

18 10 C 0 5.21 0 
18 11 D 0 1.51 0 
18 12 D 1 1.51 1 
18 13 A 0 2.46 0 
18 14 E 1 0.37 1 
18 15 E 1 1.51 1 
18 16 F 0 2.46 0 
18 17 D 0 5.21 0 
18 18 F 0 10.20 0 
18 19 A 1 0.37 1 
18 20 C 1 0.37 1 
18 21 F 1 1.51 1 
18 22 F 0 5.21 0 
18 23 C 1 1.51 1 
18 24 C 0 2.46 0 
18 25 B 0 1.51 0 
18 26 F 1 2.46 1 
18 27 D 1 0.37 1 
18 28 B 1 5.21 1 
18 29 A 1 1.51 1 
18 30 A 0 5.21 0 
18 31 C 1 2.46 1 
18 32 E 0 0.37 0 
18 33 B 1 0.37 1 
18 34 E 0 2.46 0 
18 35 A 1 2.46 1 
18 36 E 0 1.51 0 
18 37 E 1 5.21 1 
18 38 E 1 10.20 1 
18 39 C 0 10.20 0 
18 40 A 0 0.37 0 
18 41 B 1 2.46 1 
18 42 B 0 10.20 0 
18 43 C 1 5.21 1 
18 44 D 1 2.46 1 
18 45 B 0 2.46 0 
18 46 A 1 5.21 1 
18 47 A 1 10.20 1 
18 48 B 0 5.21 0 
18 49 A 0 1.51 0 
18 50 A 0 10.20 0 
18 51 D 0 10.20 0 
18 52 E 0 10.20 0 
18 53 F 1 5.21 1 
18 54 F 0 1.51 0 
18 55 D 1 10.20 1 
18 56 C 0 0.37 0 
18 57 C 0 1.51 0 
18 58 D 0 2.46 0 
18 59 F 1 10.20 1 
18 60 F 0 0.37 0 
30 1 C 0 0.37 1 
30 2 F 1 0.37 1 
30 3 B 1 5.21 1 
30 4 A 0 0.37 0 
30 5 A 1 0.37 1 
30 6 A 1 1.51 1 
30 7 D 0 0.37 0 
30 8 F 1 2.46 0 
30 9 C 1 1.51 0 
30 10 E 0 0.37 0 
30 11 B 0 2.46 1 
30 12 D 0 10.20 0 
30 13 A 0 2.46 0 
30 14 E 0 10.20 0 
30 15 E 1 10.20 1 
30 16 A 0 1.51 0 
30 17 F 0 1.51 0 
30 18 B 1 0.37 0 
30 19 C 0 2.46 0 
30 20 E 0 5.21 1 
30 21 E 1 0.37 1 
30 22 E 0 1.51 0 
30 23 E 1 2.46 1 
30 24 C 1 10.20 0 
30 25 A 1 10.20 0 
30 26 C 0 5.21 0 
30 27 D 1 10.20 1 
30 28 A 1 5.21 0 
30 29 B 0 0.37 0 
30 30 D 0 5.21 0 
30 31 C 0 10.20 0 
30 32 C 1 0.37 0 
30 33 D 0 1.51 0 
30 34 C 1 5.21 0 
30 35 E 1 1.51 1 
30 36 A 0 5.21 0 
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ID TR SC SRF SHD RSP 

30 37 F 0 2.46 1 
30 38 B 0 5.21 1 
30 39 F 1 1.51 1 
30 40 B 1 10.20 0 
30 41 B 1 1.51 0 
30 42 E 1 5.21 0 
30 43 B 0 10.20 0 
30 44 F 0 10.20 0 
30 45 C 1 2.46 0 
30 46 B 1 2.46 0 
30 47 F 0 0.37 0 
30 48 C 0 1.51 0 
30 49 D 1 2.46 0 
30 50 D 1 1.51 0 
30 51 F 1 5.21 1 
30 52 D 0 2.46 0 
30 53 B 0 1.51 0 
30 54 F 1 10.20 1 
30 55 D 1 0.37 1 
30 56 D 1 5.21 1 
30 57 E 0 2.46 0 
30 58 A 0 10.20 1 
30 59 A 1 2.46 0 
30 60 F 0 5.21 0 
31 1 B 0 5.21 0 
31 2 D 1 5.21 1 
31 3 F 0 1.51 0 
31 4 A 1 0.37 1 
31 5 A 0 0.37 0 
31 6 C 0 2.46 0 
31 7 C 1 1.51 1 
31 8 E 1 1.51 1 
31 9 F 1 2.46 1 
31 10 C 0 10.20 0 
31 11 F 0 2.46 0 
31 12 A 0 5.21 0 
31 13 D 0 5.21 1 
31 14 A 0 2.46 0 
31 15 D 1 10.20 1 
31 16 B 1 10.20 1 
31 17 B 0 1.51 1 
31 18 F 0 0.37 0 
31 19 B 0 0.37 1 
31 20 A 0 1.51 0 
31 21 B 1 2.46 1 
31 22 D 0 1.51 1 
31 23 A 0 10.20 0 
31 24 E 1 10.20 1 
31 25 F 1 0.37 1 
31 26 D 1 1.51 1 
31 27 B 1 1.51 1 
31 28 C 1 10.20 1 
31 29 A 1 2.46 1 
31 30 E 1 5.21 1 
31 31 C 0 0.37 0 
31 32 D 1 2.46 1 
31 33 D 0 2.46 1 
31 34 C 0 1.51 0 
31 35 E 0 0.37 1 
31 36 A 1 1.51 1 
31 37 E 0 2.46 1 
31 38 E 1 0.37 1 
31 39 D 1 0.37 1 
31 40 C 1 0.37 1 
31 41 F 0 5.21 0 
31 42 E 0 1.51 1 
31 43 C 1 5.21 1 
31 44 A 1 10.20 1 
31 45 A 1 5.21 1 
31 46 F 0 10.20 0 
31 47 F 1 1.51 1 
31 48 E 0 5.21 1 
31 49 B 0 2.46 0 
31 50 B 1 5.21 1 
31 51 C 1 2.46 1 
31 52 E 1 2.46 1 
31 53 D 0 0.37 0 
31 54 F 1 5.21 1 
31 55 B 1 0.37 1 
31 56 C 0 5.21 0 
31 57 D 0 10.20 1 
31 58 E 0 10.20 1 
31 59 F 1 10.20 1 
31 60 B 0 10.20 0 
40 1 B 0 2.46 0 
40 2 A 1 5.21 1 
40 3 E 0 1.51 1 

ID TR SC SRF SHD RSP 

40 4 A 0 0.37 1 
40 5 A 0 10.20 1 
40 6 B 0 1.51 1 
40 7 A 0 1.51 1 
40 8 D 0 5.21 1 
40 9 A 0 2.46 0 
40 10 B 1 2.46 1 
40 11 B 0 5.21 1 
40 12 E 1 1.51 1 
40 13 E 0 2.46 0 
40 14 E 1 10.20 1 
40 15 B 1 10.20 1 
40 16 E 1 2.46 1 
40 17 F 1 5.21 1 
40 18 D 1 5.21 1 
40 19 E 0 10.20 1 
40 20 F 0 0.37 0 
40 21 B 0 10.20 0 
40 22 C 0 2.46 1 
40 23 F 1 1.51 1 
40 24 F 0 10.20 1 
40 25 C 1 5.21 1 
40 26 F 0 1.51 0 
40 27 F 0 2.46 0 
40 28 C 1 10.20 1 
40 29 D 0 2.46 0 
40 30 C 0 0.37 1 
40 31 C 0 1.51 1 
40 32 D 1 10.20 1 
40 33 A 0 5.21 1 
40 34 D 0 0.37 0 
40 35 F 1 10.20 1 
40 36 B 1 1.51 1 
40 37 F 0 5.21 1 
40 38 A 1 0.37 1 
40 39 E 0 0.37 0 
40 40 C 1 2.46 1 
40 41 D 1 2.46 0 
40 42 B 1 0.37 1 
40 43 D 1 1.51 1 
40 44 A 1 2.46 1 
40 45 B 1 5.21 1 
40 46 C 0 5.21 1 
40 47 E 0 5.21 0 
40 48 D 1 0.37 1 
40 49 C 1 1.51 1 
40 50 D 0 1.51 0 
40 51 F 1 2.46 1 
40 52 C 0 10.20 0 
40 53 B 0 0.37 0 
40 54 A 1 1.51 1 
40 55 D 0 10.20 1 
40 56 E 1 0.37 0 
40 57 C 1 0.37 1 
40 58 F 1 0.37 1 
40 59 A 1 10.20 1 
40 60 E 1 5.21 1 
41 1 B 0 1.51 1 
41 2 C 0 10.20 0 
41 3 F 1 2.46 1 
41 4 C 0 5.21 0 
41 5 B 1 10.20 0 
41 6 A 0 5.21 0 
41 7 E 0 5.21 1 
41 8 D 0 1.51 0 
41 9 A 1 0.37 1 
41 10 F 1 1.51 0 
41 11 F 0 0.37 0 
41 12 B 0 0.37 1 
41 13 B 0 2.46 0 
41 14 E 0 0.37 0 
41 15 A 1 2.46 0 
41 16 B 1 2.46 0 
41 17 E 0 2.46 0 
41 18 D 1 10.20 1 
41 19 C 1 1.51 0 
41 20 A 0 10.20 0 
41 21 E 1 1.51 1 
41 22 D 1 0.37 0 
41 23 C 1 10.20 1 
41 24 C 0 2.46 0 
41 25 E 0 10.20 0 
41 26 F 0 1.51 1 
41 27 E 1 0.37 0 
41 28 D 0 0.37 1 
41 29 E 1 10.20 1 
41 30 D 0 5.21 0 

ID TR SC SRF SHD RSP 

41 31 C 0 1.51 0 
41 32 E 0 1.51 0 
41 33 E 1 2.46 1 
41 34 D 0 2.46 1 
41 35 F 0 10.20 0 
41 36 F 1 5.21 1 
41 37 F 1 10.20 1 
41 38 D 1 2.46 1 
41 39 C 1 0.37 1 
41 40 F 0 5.21 0 
41 41 D 1 1.51 1 
41 42 A 0 0.37 0 
41 43 E 1 5.21 1 
41 44 D 1 5.21 1 
41 45 B 1 0.37 0 
41 46 A 1 10.20 1 
41 47 A 1 1.51 1 
41 48 C 0 0.37 0 
41 49 B 1 5.21 1 
41 50 F 1 0.37 1 
41 51 A 1 5.21 1 
41 52 C 1 2.46 1 
41 53 C 1 5.21 1 
41 54 A 0 2.46 0 
41 55 B 1 1.51 1 
41 56 B 0 5.21 0 
41 57 F 0 2.46 0 
41 58 D 0 10.20 1 
41 59 A 0 1.51 0 
41 60 B 0 10.20 0 
45 1 A 0 10.20 0 
45 2 F 1 10.20 0 
45 3 D 0 5.21 0 
45 4 D 1 0.37 1 
45 5 F 1 2.46 0 
45 6 C 1 2.46 0 
45 7 A 0 2.46 0 
45 8 E 1 2.46 0 
45 9 E 0 5.21 0 
45 10 D 0 1.51 0 
45 11 B 0 1.51 0 
45 12 B 0 2.46 1 
45 13 E 0 10.20 0 
45 14 C 1 0.37 1 
45 15 A 0 5.21 0 
45 16 D 0 0.37 1 
45 17 B 1 1.51 1 
45 18 A 1 10.20 0 
45 19 D 1 2.46 0 
45 20 B 1 5.21 0 
45 21 C 0 10.20 0 
45 22 A 1 2.46 0 
45 23 C 1 5.21 0 
45 24 D 1 1.51 0 
45 25 D 1 10.20 0 
45 26 A 1 1.51 1 
45 27 B 0 0.37 0 
45 28 F 0 0.37 1 
45 29 A 0 1.51 0 
45 30 B 1 0.37 1 
45 31 E 1 5.21 0 
45 32 D 1 5.21 0 
45 33 C 1 1.51 0 
45 34 E 0 0.37 0 
45 35 B 0 5.21 0 
45 36 E 1 1.51 0 
45 37 F 1 1.51 0 
45 38 F 1 5.21 0 
45 39 E 1 0.37 1 
45 40 B 0 10.20 0 
45 41 E 0 1.51 0 
45 42 D 0 2.46 0 
45 43 F 1 0.37 1 
45 44 C 0 0.37 0 
45 45 F 0 1.51 0 
45 46 C 0 5.21 0 
45 47 F 0 2.46 0 
45 48 C 0 2.46 0 
45 49 F 0 5.21 0 
45 50 A 1 0.37 1 
45 51 D 0 10.20 0 
45 52 A 0 0.37 0 
45 53 E 0 2.46 0 
45 54 E 1 10.20 0 
45 55 B 1 10.20 0 
45 56 B 1 2.46 1 
45 57 C 1 10.20 0 
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ID TR SC SRF SHD RSP 

45 58 A 1 5.21 0 
45 59 F 0 10.20 0 
45 60 C 0 1.51 0 
48 1 A 1 1.51 1 
48 2 C 0 2.46 0 
48 3 E 1 2.46 0 
48 4 D 0 10.20 1 
48 5 A 0 0.37 0 
48 6 F 0 1.51 1 
48 7 E 0 0.37 0 
48 8 E 1 1.51 1 
48 9 B 0 5.21 0 
48 10 B 0 10.20 0 
48 11 F 0 2.46 0 
48 12 E 0 10.20 0 
48 13 D 0 0.37 0 
48 14 E 1 10.20 1 
48 15 C 1 5.21 1 
48 16 D 1 1.51 1 
48 17 F 1 10.20 1 
48 18 C 0 0.37 0 
48 19 A 1 2.46 0 
48 20 C 1 1.51 0 
48 21 F 1 2.46 1 
48 22 C 0 1.51 0 
48 23 C 1 10.20 1 
48 24 B 1 10.20 1 
48 25 D 1 2.46 1 
48 26 A 1 5.21 0 
48 27 A 0 2.46 0 
48 28 F 0 10.20 1 
48 29 F 1 5.21 1 
48 30 D 1 5.21 1 
48 31 E 0 5.21 0 
48 32 F 1 1.51 1 
48 33 F 0 5.21 0 
48 34 E 1 0.37 0 
48 35 A 0 5.21 1 
48 36 B 1 5.21 1 
48 37 D 0 5.21 0 
48 38 E 0 1.51 0 
48 39 A 1 0.37 1 
48 40 C 0 10.20 0 
48 41 C 1 2.46 0 
48 42 F 0 0.37 0 
48 43 C 1 0.37 0 
48 44 B 1 1.51 1 
48 45 D 0 2.46 0 
48 46 D 0 1.51 0 
48 47 E 1 5.21 1 
48 48 B 0 1.51 0 
48 49 B 1 0.37 0 
48 50 C 0 5.21 0 
48 51 D 1 10.20 1 
48 52 B 0 0.37 0 
48 53 B 0 2.46 1 
48 54 F 1 0.37 1 
48 55 A 0 10.20 0 
48 56 A 1 10.20 0 
48 57 D 1 0.37 1 
48 58 B 1 2.46 1 
48 59 A 0 1.51 0 
48 60 E 0 2.46 0 
49 1 D 1 10.20 1 
49 2 E 1 2.46 1 
49 3 C 1 5.21 1 
49 4 C 0 2.46 0 
49 5 B 0 5.21 0 
49 6 C 0 5.21 0 
49 7 E 1 5.21 1 
49 8 C 0 1.51 0 
49 9 B 1 2.46 1 
49 10 F 0 0.37 0 
49 11 A 0 10.20 0 
49 12 E 1 1.51 1 
49 13 E 0 10.20 0 
49 14 B 0 0.37 0 
49 15 D 0 5.21 0 
49 16 A 1 2.46 1 
49 17 C 0 0.37 0 
49 18 C 0 10.20 0 
49 19 A 1 5.21 1 
49 20 F 0 10.20 0 
49 21 A 1 0.37 1 
49 22 B 0 10.20 0 
49 23 D 1 0.37 1 
49 24 B 1 10.20 1 

ID TR SC SRF SHD RSP 

49 25 C 1 1.51 0 
49 26 B 1 1.51 0 
49 27 F 1 10.20 1 
49 28 B 0 1.51 0 
49 29 F 0 5.21 0 
49 30 C 1 2.46 1 
49 31 D 0 2.46 1 
49 32 B 1 0.37 0 
49 33 F 1 1.51 1 
49 34 A 0 2.46 1 
49 35 E 0 1.51 0 
49 36 F 1 5.21 1 
49 37 F 0 2.46 0 
49 38 F 0 1.51 1 
49 39 A 0 0.37 0 
49 40 A 0 5.21 0 
49 41 D 0 10.20 0 
49 42 A 0 1.51 1 
49 43 E 1 10.20 1 
49 44 F 1 0.37 1 
49 45 E 1 0.37 1 
49 46 A 1 1.51 0 
49 47 E 0 2.46 0 
49 48 C 1 10.20 1 
49 49 D 1 5.21 1 
49 50 D 1 1.51 0 
49 51 E 0 5.21 1 
49 52 D 0 0.37 0 
49 53 C 1 0.37 0 
49 54 A 1 10.20 1 
49 55 D 1 2.46 0 
49 56 E 0 0.37 1 
49 57 B 0 2.46 0 
49 58 B 1 5.21 1 
49 59 D 0 1.51 0 
49 60 F 1 2.46 1 
50 1 B 1 10.20 0 
50 2 E 1 0.37 1 
50 3 C 0 1.51 1 
50 4 F 0 5.21 1 
50 5 A 0 0.37 0 
50 6 C 0 0.37 0 
50 7 B 1 0.37 0 
50 8 F 1 10.20 1 
50 9 D 0 2.46 0 
50 10 D 1 0.37 1 
50 11 C 1 1.51 1 
50 12 F 0 1.51 1 
50 13 D 1 5.21 1 
50 14 F 1 1.51 1 
50 15 D 1 1.51 1 
50 16 C 1 10.20 1 
50 17 A 0 1.51 0 
50 18 E 0 10.20 0 
50 19 E 1 2.46 1 
50 20 A 0 5.21 0 
50 21 E 1 5.21 1 
50 22 F 0 10.20 1 
50 23 B 1 2.46 0 
50 24 C 1 0.37 0 
50 25 E 0 0.37 1 
50 26 C 0 5.21 1 
50 27 C 0 2.46 1 
50 28 F 0 0.37 0 
50 29 A 1 1.51 0 
50 30 A 0 2.46 1 
50 31 D 0 5.21 1 
50 32 B 0 1.51 0 
50 33 D 0 10.20 0 
50 34 A 1 5.21 1 
50 35 C 0 10.20 0 
50 36 C 1 2.46 1 
50 37 E 1 10.20 1 
50 38 F 1 5.21 1 
50 39 F 1 2.46 0 
50 40 B 0 0.37 1 
50 41 A 1 0.37 0 
50 42 D 1 2.46 1 
50 43 B 0 2.46 1 
50 44 A 0 10.20 0 
50 45 E 0 1.51 0 
50 46 A 1 2.46 1 
50 47 E 1 1.51 0 
50 48 F 1 0.37 0 
50 49 B 1 1.51 0 
50 50 B 0 10.20 1 
50 51 A 1 10.20 0 

ID TR SC SRF SHD RSP 

50 52 D 1 10.20 1 
50 53 B 1 5.21 0 
50 54 E 0 2.46 0 
50 55 D 0 0.37 1 
50 56 C 1 5.21 0 
50 57 B 0 5.21 0 
50 58 F 0 2.46 1 
50 59 E 0 5.21 0 
50 60 D 0 1.51 0 
52 1 B 0 0.37 1 
52 2 C 1 2.46 1 
52 3 A 1 5.21 1 
52 4 F 0 2.46 0 
52 5 A 0 5.21 1 
52 6 D 1 2.46 1 
52 7 C 1 1.51 1 
52 8 E 0 0.37 0 
52 9 A 1 1.51 1 
52 10 A 0 0.37 0 
52 11 C 0 2.46 0 
52 12 F 0 1.51 1 
52 13 A 0 10.20 0 
52 14 A 0 1.51 1 
52 15 D 1 10.20 1 
52 16 D 0 5.21 0 
52 17 D 1 1.51 1 
52 18 F 1 1.51 1 
52 19 A 1 2.46 1 
52 20 F 1 2.46 1 
52 21 B 1 1.51 1 
52 22 F 0 0.37 0 
52 23 D 0 0.37 0 
52 24 E 0 5.21 1 
52 25 E 0 10.20 0 
52 26 B 1 5.21 1 
52 27 F 1 5.21 1 
52 28 D 1 0.37 1 
52 29 F 0 10.20 0 
52 30 E 0 2.46 1 
52 31 C 1 0.37 1 
52 32 C 1 5.21 1 
52 33 D 0 2.46 1 
52 34 C 0 5.21 0 
52 35 E 1 1.51 1 
52 36 E 1 5.21 1 
52 37 D 0 10.20 0 
52 38 D 1 5.21 1 
52 39 B 0 2.46 0 
52 40 A 1 0.37 1 
52 41 F 0 5.21 0 
52 42 B 1 10.20 1 
52 43 E 0 1.51 0 
52 44 B 1 0.37 1 
52 45 B 0 1.51 0 
52 46 B 1 2.46 1 
52 47 C 0 10.20 0 
52 48 A 0 2.46 0 
52 49 E 1 2.46 1 
52 50 F 1 0.37 1 
52 51 B 0 5.21 0 
52 52 F 1 10.20 0 
52 53 C 1 10.20 1 
52 54 C 0 0.37 0 
52 55 E 1 10.20 1 
52 56 E 1 0.37 1 
52 57 B 0 10.20 1 
52 58 D 0 1.51 0 
52 59 C 0 1.51 0 
52 60 A 1 10.20 1 
53 1 B 1 10.20 1 
53 2 B 0 1.51 0 
53 3 A 0 5.21 0 
53 4 D 0 5.21 1 
53 5 C 0 5.21 0 
53 6 C 1 0.37 1 
53 7 E 1 1.51 1 
53 8 C 0 2.46 0 
53 9 F 0 2.46 1 
53 10 E 0 5.21 0 
53 11 D 1 10.20 1 
53 12 D 0 0.37 0 
53 13 D 0 2.46 0 
53 14 B 1 1.51 1 
53 15 F 1 10.20 1 
53 16 E 1 5.21 1 
53 17 A 1 10.20 1 
53 18 D 0 1.51 1 
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ID TR SC SRF SHD RSP 

53 19 C 1 1.51 1 
53 20 C 1 2.46 0 
53 21 C 0 0.37 0 
53 22 B 0 0.37 1 
53 23 D 1 0.37 1 
53 24 E 1 10.20 1 
53 25 A 0 0.37 0 
53 26 E 0 2.46 1 
53 27 F 1 1.51 1 
53 28 B 0 5.21 0 
53 29 A 1 1.51 1 
53 30 C 1 10.20 1 
53 31 E 1 2.46 1 
53 32 D 1 5.21 1 
53 33 A 1 5.21 1 
53 34 F 1 2.46 1 
53 35 E 0 0.37 0 
53 36 D 1 1.51 1 
53 37 A 0 10.20 0 
53 38 B 1 5.21 1 
53 39 A 0 1.51 0 
53 40 B 0 2.46 1 
53 41 F 0 1.51 1 
53 42 F 0 0.37 1 
53 43 C 0 1.51 0 
53 44 A 1 2.46 1 
53 45 C 1 5.21 0 
53 46 B 1 2.46 1 
53 47 C 0 10.20 0 
53 48 F 1 5.21 1 
53 49 F 0 10.20 1 
53 50 D 0 10.20 0 
53 51 D 1 2.46 1 
53 52 A 1 0.37 1 
53 53 E 1 0.37 1 
53 54 F 1 0.37 1 
53 55 B 0 10.20 0 
53 56 B 1 0.37 1 
53 57 E 0 10.20 1 
53 58 E 0 1.51 1 
53 59 A 0 2.46 1 
53 60 F 0 5.21 1 
56 1 B 1 0.37 0 
56 2 E 1 0.37 0 
56 3 C 1 0.37 0 
56 4 A 1 0.37 0 
56 5 A 1 1.51 1 
56 6 D 0 0.37 0 
56 7 E 1 10.20 1 
56 8 D 0 2.46 1 
56 9 E 0 5.21 1 
56 10 D 1 5.21 1 
56 11 C 0 0.37 0 
56 12 E 1 2.46 1 
56 13 F 1 5.21 1 
56 14 A 1 5.21 1 
56 15 E 0 2.46 1 
56 16 A 1 10.20 0 
56 17 E 0 1.51 0 
56 18 A 0 0.37 0 
56 19 F 1 10.20 0 
56 20 A 1 2.46 1 
56 21 D 0 5.21 1 
56 22 E 0 0.37 0 
56 23 B 1 2.46 0 
56 24 F 1 1.51 0 
56 25 B 0 2.46 0 
56 26 E 1 5.21 1 
56 27 A 0 5.21 1 
56 28 C 1 10.20 0 
56 29 D 1 10.20 1 
56 30 C 0 1.51 0 
56 31 F 0 10.20 1 
56 32 F 1 2.46 0 
56 33 C 0 10.20 1 
56 34 A 0 2.46 1 
56 35 D 1 1.51 0 
56 36 C 0 2.46 1 
56 37 A 0 10.20 1 
56 38 C 0 5.21 1 
56 39 F 0 0.37 0 
56 40 B 0 1.51 0 
56 41 F 1 0.37 0 
56 42 D 1 2.46 0 
56 43 C 1 2.46 0 
56 44 B 0 0.37 0 
56 45 D 0 1.51 1 

ID TR SC SRF SHD RSP 

56 46 B 1 5.21 0 
56 47 F 0 1.51 0 
56 48 E 1 1.51 0 
56 49 B 0 10.20 0 
56 50 E 0 10.20 1 
56 51 D 0 10.20 1 
56 52 D 1 0.37 0 
56 53 F 0 5.21 1 
56 54 B 1 10.20 1 
56 55 F 0 2.46 0 
56 56 B 0 5.21 0 
56 57 C 1 5.21 1 
56 58 B 1 1.51 0 
56 59 A 0 1.51 0 
56 60 C 1 1.51 0
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A.2 Scene-collapsed data: photograph-based experiment on shadow 
softness and surface smoothness  

 
  ID:   Participant ID number 
  SRF:  Surface smoothness = {0:Smooth, 1:Rough} 
  SHD:  Shadow softness, in degrees of penumbra angle 
  R:    Average of responses across all scenes 
 
 
ID SRF SHD R 

10 1 0.37 0.500 
10 1 1.51 1.000 
10 1 2.46 1.000 
10 1 5.21 0.333 
10 1 10.20 0.833 
10 0 0.37 0.167 
10 0 1.51 0.667 
10 0 2.46 0.667 
10 0 5.21 0.833 
10 0 10.20 0.500 
11 1 0.37 0.667 
11 1 1.51 0.833 
11 1 2.46 1.000 
11 1 5.21 0.833 
11 1 10.20 1.000 
11 0 0.37 0.167 
11 0 1.51 0.000 
11 0 2.46 0.000 
11 0 5.21 0.000 
11 0 10.20 0.000 
15 1 0.37 0.000 
15 1 1.51 0.167 
15 1 2.46 0.000 
15 1 5.21 0.333 
15 1 10.20 0.500 
15 0 0.37 0.000 
15 0 1.51 0.333 
15 0 2.46 0.500 
15 0 5.21 0.833 
15 0 10.20 0.667 
16 1 0.37 0.167 
16 1 1.51 0.500 
16 1 2.46 0.833 
16 1 5.21 0.833 
16 1 10.20 0.833 
16 0 0.37 0.500 
16 0 1.51 0.833 
16 0 2.46 0.833 
16 0 5.21 0.667 
16 0 10.20 0.833 
17 1 0.37 0.167 
17 1 1.51 0.500 
17 1 2.46 0.333 
17 1 5.21 0.667 
17 1 10.20 0.667 
17 0 0.37 0.333 
17 0 1.51 0.500 
17 0 2.46 0.667 
17 0 5.21 1.000 
17 0 10.20 0.667 
18 1 0.37 1.000 
18 1 1.51 1.000 
18 1 2.46 0.833 
18 1 5.21 1.000 
18 1 10.20 0.833 
18 0 0.37 0.167 
18 0 1.51 0.000 
18 0 2.46 0.000 
18 0 5.21 0.000 
18 0 10.20 0.000 
30 1 0.37 0.667 
30 1 1.51 0.500 
30 1 2.46 0.167 
30 1 5.21 0.500 
30 1 10.20 0.500 
30 0 0.37 0.167 

ID SRF SHD R 

30 0 1.51 0.000 
30 0 2.46 0.333 
30 0 5.21 0.333 
30 0 10.20 0.167 
31 1 0.37 1.000 
31 1 1.51 1.000 
31 1 2.46 1.000 
31 1 5.21 1.000 
31 1 10.20 1.000 
31 0 0.37 0.333 
31 0 1.51 0.500 
31 0 2.46 0.333 
31 0 5.21 0.333 
31 0 10.20 0.333 
40 1 0.37 0.833 
40 1 1.51 1.000 
40 1 2.46 0.833 
40 1 5.21 1.000 
40 1 10.20 1.000 
40 0 0.37 0.333 
40 0 1.51 0.667 
40 0 2.46 0.167 
40 0 5.21 0.833 
40 0 10.20 0.667 
41 1 0.37 0.500 
41 1 1.51 0.667 
41 1 2.46 0.667 
41 1 5.21 1.000 
41 1 10.20 0.833 
41 0 0.37 0.333 
41 0 1.51 0.333 
41 0 2.46 0.167 
41 0 5.21 0.167 
41 0 10.20 0.167 
45 1 0.37 1.000 
45 1 1.51 0.333 
45 1 2.46 0.167 
45 1 5.21 0.000 
45 1 10.20 0.000 
45 0 0.37 0.333 
45 0 1.51 0.000 
45 0 2.46 0.167 
45 0 5.21 0.000 
45 0 10.20 0.000 
48 1 0.37 0.500 
48 1 1.51 0.833 
48 1 2.46 0.500 
48 1 5.21 0.833 
48 1 10.20 0.833 
48 0 0.37 0.000 
48 0 1.51 0.167 
48 0 2.46 0.167 
48 0 5.21 0.167 
48 0 10.20 0.333 
49 1 0.37 0.667 
49 1 1.51 0.333 
49 1 2.46 0.833 
49 1 5.21 1.000 
49 1 10.20 1.000 
49 0 0.37 0.167 
49 0 1.51 0.333 
49 0 2.46 0.333 
49 0 5.21 0.167 
49 0 10.20 0.000 
50 1 0.37 0.333 
50 1 1.51 0.500 

ID SRF SHD R 

50 1 2.46 0.667 
50 1 5.21 0.667 
50 1 10.20 0.667 
50 0 0.37 0.500 
50 0 1.51 0.333 
50 0 2.46 0.667 
50 0 5.21 0.500 
50 0 10.20 0.333 
52 1 0.37 1.000 
52 1 1.51 1.000 
52 1 2.46 1.000 
52 1 5.21 1.000 
52 1 10.20 0.833 
52 0 0.37 0.167 
52 0 1.51 0.333 
52 0 2.46 0.333 
52 0 5.21 0.333 
52 0 10.20 0.167 
53 1 0.37 1.000 
53 1 1.51 1.000 
53 1 2.46 0.833 
53 1 5.21 0.833 
53 1 10.20 1.000 
53 0 0.37 0.333 
53 0 1.51 0.500 
53 0 2.46 0.667 
53 0 5.21 0.333 
53 0 10.20 0.333 
56 1 0.37 0.000 
56 1 1.51 0.167 
56 1 2.46 0.333 
56 1 5.21 0.833 
56 1 10.20 0.500 
56 0 0.37 0.000 
56 0 1.51 0.167 
56 0 2.46 0.667 
56 0 5.21 0.833 
56 0 10.20 0.833 
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A.3 Raw data: photograph-based experiment on number of objects and 
mix of object shapes 

 
  ID:  Participant ID number 
  TR:  Trial number 
  SC:  Scene = {A, B, C, D, E} 
  NUM: Number of objects = {2, 4, 8, 30} 
  MIX: Mix of object types = {0:Not mixed, 1:Mixed} 
  RSP: Participant response = {0:Not real, 1:Real} 
 
 
ID TR SC NUM MIX RSP 

40 1 B  2 1 1 
40 2 E  30 0 1 
40 3 B  8 0 0 
40 4 D  30 1 1 
40 5 A  8 0 1 
40 6 B  4 0 0 
40 7 D  30 0 1 
40 8 D  2 1 1 
40 9 B  8 1 1 
40 10 B  4 1 1 
40 11 C  4 1 1 
40 12 D  4 1 1 
40 13 C  2 1 1 
40 14 B  30 0 1 
40 15 E  2 0 1 
40 16 A  8 1 1 
40 17 C  4 0 1 
40 18 E  4 1 1 
40 19 D  8 0 0 
40 20 E  8 1 1 
40 21 A  30 0 0 
40 22 A  30 1 0 
40 23 D  2 0 1 
40 24 C  2 0 1 
40 25 E  30 1 1 
40 26 A  2 1 0 
40 27 C  8 1 1 
40 28 C  30 0 1 
40 29 A  2 0 1 
40 30 D  8 1 1 
40 31 D  4 0 1 
40 32 B  30 1 1 
40 33 A  4 1 1 
40 34 C  8 0 0 
40 35 A  4 0 1 
40 36 E  2 1 1 
40 37 E  4 0 0 
40 38 E  8 0 0 
40 39 B  2 0 1 
40 40 C  30 1 1 
41 1 C  2 0 1 
41 2 A  8 0 1 
41 3 E  4 0 1 
41 4 E  2 1 1 
41 5 B  4 0 1 
41 6 C  4 0 0 
41 7 E  4 1 1 
41 8 B  4 1 1 
41 9 A  30 0 1 
41 10 B  2 1 1 
41 11 E  30 0 0 
41 12 C  4 1 1 
41 13 C  30 1 0 
41 14 E  8 1 1 
41 15 C  8 1 1 
41 16 A  8 1 1 
41 17 A  4 1 1 
41 18 B  30 1 1 
41 19 A  4 0 1 
41 20 D  30 0 0 
41 21 B  30 0 0 
41 22 C  8 0 1 
41 23 A  2 0 1 

ID TR SC NUM MIX RSP 

41 24 E  2 0 1 
41 25 B  8 1 1 
41 26 B  2 0 1 
41 27 C  30 0 0 
41 28 D  8 0 1 
41 29 D  30 1 1 
41 30 E  8 0 1 
41 31 E  30 1 1 
41 32 D  4 1 1 
41 33 D  2 1 1 
41 34 B  8 0 1 
41 35 D  4 0 1 
41 36 A  30 1 0 
41 37 C  2 1 1 
41 38 D  8 1 1 
41 39 A  2 1 1 
41 40 D  2 0 1 
45 1 D  4 0 0 
45 2 A  8 0 1 
45 3 C  2 0 1 
45 4 A  2 0 1 
45 5 B  2 0 0 
45 6 B  4 0 1 
45 7 A  30 1 0 
45 8 C  8 1 0 
45 9 B  30 0 0 
45 10 E  4 0 1 
45 11 B  8 0 1 
45 12 E  30 0 0 
45 13 D  2 0 0 
45 14 D  30 0 1 
45 15 A  8 1 1 
45 16 A  30 0 0 
45 17 D  2 1 1 
45 18 E  2 1 1 
45 19 E  30 1 1 
45 20 C  30 0 0 
45 21 E  8 0 1 
45 22 E  2 0 1 
45 23 C  30 1 0 
45 24 B  2 1 0 
45 25 B 30 1 0 
45 26 D  4 1 1 
45 27 A  4 0 1 
45 28 C  2 1 1 
45 29 D  8 1 0 
45 30 D  30 1 0 
45 31 C  8 0 1 
45 32 C  4 1 1 
45 33 B  4 1 1 
45 34 B  8 1 0 
45 35 C  4 0 1 
45 36 E  8 1 1 
45 37 A  4 1 1 
45 38 E  4 1 1 
45 39 A  2 1 1 
45 40 D  8 0 1 
48 1 C  2 0 1 
48 2 A  4 1 1 
48 3 C  4 1 1 
48 4 B  30 0 1 
48 5 B  8 1 1 
48 6 C  30 1 0 

ID TR SC NUM MIX RSP 

48 7 E  30 0 1 
48 8 E  4 1 0 
48 9 B  2 1 1 
48 10 C  4 0 0 
48 11 B  4 1 1 
48 12 D  4 1 1 
48 13 A  30 0 0 
48 14 D  2 0 1 
48 15 D  2 1 1 
48 16 A  8 1 1 
48 17 D  30 1 1 
48 18 A  2 1 1 
48 19 A  4 0 1 
48 20 A  8 0 0 
48 21 E  8 1 1 
48 22 C  2 1 1 
48 23 E  2 1 1 
48 24 B  8 0 0 
48 25 E  8 0 1 
48 26 B  2 0 1 
48 27 C  8 1 1 
48 28 D  8 1 1 
48 29 C  30 0 0 
48 30 D  4 0 1 
48 31 D  30 0 0 
48 32 E  30 1 1 
48 33 A  30 1 1 
48 34 C  8 0 1 
48 35 B  4 0 0 
48 36 D  8 0 0 
48 37 B  30 1 1 
48 38 E  4 0 1 
48 39 E  2 0 1 
48 40 A  2 0 1 
49 1 B  30 0 0 
49 2 A  2 1 1 
49 3 C  4 1 0 
49 4 A  2 0 0 
49 5 B  4 1 1 
49 6 A  30 1 0 
49 7 D  8 1 1 
49 8 E  8 0 0 
49 9 C  4 0 1 
49 10 D  8 0 0 
49 11 C  30 0 1 
49 12 C  2 1 0 
49 13 A  8 1 0 
49 14 E  8 1 1 
49 15 A  4 0 1 
49 16 C  30 1 1 
49 17 C  2 0 1 
49 18 C  8 0 1 
49 19 B  30 1 1 
49 20 D  2 1 1 
49 21 B  2 0 1 
49 22 E  2 1 1 
49 23 E  4 1 0 
49 24 A  4 1 0 
49 25 D  4 1 0 
49 26 D  2 0 0 
49 27 E  4 0 0 
49 28 A  8 0 0 
49 29 B  2 1 1 
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ID TR SC NUM MIX RSP 

49 30 E  30 0 0 
49 31 E  30 1 0 
49 32 D  4 0 0 
49 33 B  4 0 0 
49 34 B  8 1 0 
49 35 C  8 1 0 
49 36 A  30 0 0 
49 37 B  8 0 0 
49 38 D  30 1 0 
49 39 D  30 0 0 
49 40 E  2 0 1 
50 1 D  8 0 0 
50 2 A  2 1 1 
50 3 D  2 1 1 
50 4 E  4 0 0 
50 5 C  4 1 1 
50 6 E  30 0 1 
50 7 C  8 0 0 
50 8 E  4 1 0 
50 9 C  8 1 0 
50 10 B  4 1 0 
50 11 A  4 0 0 
50 12 B  8 0 0 
50 13 D  8 1 0 
50 14 B  30 1 0 
50 15 A  8 0 0 
50 16 E  2 0 0 
50 17 D  4 0 0 
50 18 E  30 1 1 
50 19 A  4 1 1 
50 20 E  8 0 1 
50 21 B  30 0 1 
50 22 B  2 1 1 
50 23 D  2 0 0 
50 24 E  8 1 1 
50 25 B  2 0 0 
50 26 C  2 0 0 
50 27 C  4 0 1 
50 28 A  8 1 0 
50 29 D  30 0 1 
50 30 C  30 1 0 
50 31 B  4 0 0 
50 32 B  8 1 0 
50 33 A  30 1 0 
50 34 A  30 0 1 
50 35 C  2 1 0 
50 36 D  30 1 0 
50 37 C  30 0 0 
50 38 E  2 1 0 
50 39 D  4 1 0 
50 40 A  2 0 1 
52 1 A  8 1 1 
52 2 D  8 0 1 
52 3 C  30 0 1 
52 4 C  30 1 1 
52 5 C  2 1 1 
52 6 D  4 1 0 
52 7 B  2 0 1 
52 8 E  4 0 1 
52 9 D  4 0 1 
52 10 B  8 0 0 
52 11 C  8 0 1 
52 12 B  8 1 0 
52 13 E  8 0 1 
52 14 A  4 1 0 
52 15 A  4 0 1 
52 16 B  30 1 0 
52 17 E  2 1 0 
52 18 A  30 0 1 
52 19 A  2 1 0 
52 20 A  2 0 1 
52 21 D  2 0 0 
52 22 E  30 0 0 
52 23 A  30 1 1 
52 24 A  8 0 1 
52 25 C  4 0 0 
52 26 C  8 1 1 
52 27 B  2 1 0 
52 28 B  30 0 1 
52 29 E  30 1 0 
52 30 E  8 1 1 
52 31 E  4 1 0 
52 32 C  4 1 1 
52 33 D  8 1 1 
52 34 D  30 1 0 
52 35 B  4 1 1 

ID TR SC NUM MIX RSP 

52 36 C  2 0 0 
52 37 D  30 0 1 
52 38 B  4 0 0 
52 39 E  2 0 1 
52 40 D  2 1 0 
53 1 E  30 0 1 
53 2 D  4 1 0 
53 3 A  4 1 0 
53 4 E  2 0 0 
53 5 A  30 0 1 
53 6 C  4 1 0 
53 7 B  30 0 1 
53 8 A  4 0 0 
53 9 D  2 0 0 
53 10 A  8 1 0 
53 11 D  30 0 0 
53 12 A  30 1 0 
53 13 A  2 0 1 
53 14 C  2 0 1 
53 15 D  8 0 0 
53 16 C  8 1 0 
53 17 C  4 0 0 
53 18 B  4 0 0 
53 19 E  4 1 1 
53 20 E  8 1 0 
53 21 B  8 0 1 
53 22 A  8 0 1 
53 23 B  4 1 0 
53 24 C  8 0 1 
53 25 E  2 1 0 
53 26 B  2 0 1 
53 27 E  8 0 0 
53 28 C  30 1 0 
53 29 D  2 1 0 
53 30 C  30 0 0 
53 31 E  4 0 0 
53 32 A  2 1 0 
53 33 B  2 1 1 
53 34 B  8 1 0 
53 35 D  4 0 0 
53 36 D  30 1 1 
53 37 C  2 1 0 
53 38 D  8 1 1 
53 39 E  30 1 0 
53 40 B  30 1 1 
56 1 A  2 1 0 
56 2 D  30 0 1 
56 3 B  30 0 0 
56 4 B  8 1 1 
56 5 C  8 0 0 
56 6 E  2 0 1 
56 7 D  4 0 1 
56 8 E  30 1 0 
56 9 A  8 1 1 
56 10 E  30 0 1 
56 11 D  2 1 1 
56 12 B  4 0 0 
56 13 E  8 1 1 
56 14 C  2 1 0 
56 15 B  4 1 0 
56 16 A  30 1 0 
56 17 A  8 0 0 
56 18 E  4 0 0 
56 19 E  8 0 0 
56 20 B  8 0 0 
56 21 A  4 1 1 
56 22 A  2 0 1 
56 23 D  8 0 0 
56 24 B  2 1 1 
56 25 D  8 1 1 
56 26 C  2 0 0 
56 27 D  30 1 0 
56 28 C  4 1 1 
56 29 C  8 1 1 
56 30 D  4 1 0 
56 31 E  2 1 1 
56 32 B  30 1 0 
56 33 B  2 0 1 
56 34 C  30 1 0 
56 35 A  30 0 0 
56 36 E  4 1 1 
56 37 D  2 0 1 
56 38 A  4 0 1 
56 39 C  30 0 1 
56 40 C  4 0 0 
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A.4 Scene-collapsed data: photograph-based experiment on number of 
objects and mix of object shapes  

 
  ID:  Participant ID number  
  NUM: Number of objects = {2, 4, 8, 30} 
  MIX: Mix of object types = {0:Not mixed, 1:Mixed} 
  R:   Average of responses across all scenes 
 
ID NUM MIX R 

40 2 1 0.8 
40 2 0 1.0 
40 4 1 1.0 
40 4 0 0.6 
40 8 1 1.0 
40 8 0 0.2 
40 30 1 0.8 
40 30 0 0.8 
41 2 1 1.0 
41 2 0 1.0 
41 4 1 1.0 
41 4 0 0.8 
41 8 1 1.0 
41 8 0 1.0 
41 30 1 0.6 
41 30 0 0.2 
45 2 1 0.8 
45 2 0 0.6 
45 4 1 1.0 
45 4 0 0.8 
45 8 1 0.4 
45 8 0 1.0 
45 30 1 0.2 
45 30 0 0.2 
48 2 1 1.0 
48 2 0 1.0 
48 4 1 0.8 
48 4 0 0.6 
48 8 1 1.0 
48 8 0 0.4 
48 30 1 0.8 
48 30 0 0.4 
49 2 1 0.8 
49 2 0 0.6 
49 4 1 0.2 
49 4 0 0.4 
49 8 1 0.4 
49 8 0 0.2 
49 30 1 0.4 
49 30 0 0.2 
50 2 1 0.6 
50 2 0 0.2 
50 4 1 0.4 
50 4 0 0.2 
50 8 1 0.2 
50 8 0 0.2 
50 30 1 0.2 
50 30 0 0.8 
52 2 1 0.2 
52 2 0 0.6 
52 4 1 0.4 
52 4 0 0.6 
52 8 1 0.8 
52 8 0 0.8 
52 30 1 0.4 
52 30 0 0.8 
53 2 1 0.2 
53 2 0 0.6 
53 4 1 0.2 
53 4 0 0.0 
53 8 1 0.2 
53 8 0 0.6 
53 30 1 0.4 
53 30 0 0.6 
56 2 1 0.6 
56 2 0 0.8 
56 4 1 0.6 
56 4 0 0.4 

ID NUM MIX R 

56 8 1 1.0 
56 8 0 0.0 
56 30 1 0.0 
56 30 0 0.6 
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A.5 Raw data: photograph-based experiment on number of lights  

  ID:   Participant ID number 
  TR:   Trial number 
  SC:   Scene = {A, B, C, D, E, F} 
  LTS:  Number of lights = {1, 2, 4} 
  SOFT: Shadow softness = {0:Sharp shadows, 1:Soft shadows} 
  RSP:  Participant response = {0:Not real, 1:Real} 
 
 

ID TR SC LTS SOFT RSP 

48 1 F 4 0 1 
48 2 F 2 0 0 
48 3 F 4 1 1 
48 4 C 4 1 1 
48 5 D 4 1 0 
48 6 E 1 0 0 
48 7 E 4 1 1 
48 8 C 1 0 0 
48 9 C 4 0 1 
48 10 C 2 0 0 
48 11 A 1 1 1 
48 12 A 2 1 0 
48 13 D 4 0 1 
48 14 C 1 1 0 
48 15 B 4 0 0 
48 16 A 2 0 0 
48 17 E 2 0 0 
48 18 A 4 1 0 
48 19 B 4 1 1 
48 20 D 1 1 0 
48 21 E 1 1 1 
48 22 F 1 0 0 
48 23 D 1 0 1 
48 24 A 4 0 1 
48 25 E 2 1 1 
48 26 B 2 0 1 
48 27 B 1 0 1 
48 28 F 1 1 1 
48 29 C 2 1 1 
48 30 D 2 1 1 
48 31 F 2 1 0 
48 32 A 1 0 0 
48 33 B 1 1 1 
48 34 E 4 0 0 
48 35 B 2 1 0 
48 36 D 2 0 1 
49 1 A 2 1 0 
49 2 C 2 0 0 
49 3 B 1 1 1 
49 4 C 4 0 0 
49 5 A 1 0 0 
49 6 B 1 0 0 
49 7 A 1 1 0 
49 8 C 2 1 1 
49 9 B 2 0 0 
49 10 E 1 1 0 
49 11 A 4 1 0 
49 12 D 2 0 0 
49 13 F 4 1 1 
49 14 D 1 1 0 
49 15 C 1 1 1 
49 16 F 2 1 0 
49 17 E 2 0 0 
49 18 D 4 1 1 
49 19 A 4 0 0 
49 20 D 4 0 0 
49 21 F 1 0 0 
49 22 F 4 0 0 
49 23 B 2 1 1 
49 24 F 1 1 0 
49 25 B 4 1 0 
49 26 E 2 1 0 
49 27 E 1 0 0 
49 28 C 1 0 0 
49 29 E 4 0 0 
49 30 C 4 1 0 
49 31 A 2 0 0 

ID TR SC LTS SOFT RSP 

49 32 F 2 0 0 
49 33 B 4 0 0 
49 34 D 1 0 0 
49 35 E 4 1 0 
49 36 D 2 1 1 
50 1 B 1 0 1 
50 2 E 2 0 0 
50 3 C 4 0 0 
50 4 A 4 1 0 
50 5 F 2 0 1 
50 6 E 2 1 0 
50 7 E 1 0 0 
50 8 D 1 1 0 
50 9 A 4 0 0 
50 10 B 2 0 0 
50 11 F 4 1 1 
50 12 E 4 1 0 
50 13 A 2 1 1 
50 14 E 1 1 1 
50 15 C 1 0 0 
50 16 D 2 0 0 
50 17 A 2 0 0 
50 18 B 2 1 0 
50 19 B 1 1 0 
50 20 F 4 0 0 
50 21 D 2 1 1 
50 22 C 2 1 0 
50 23 D 1 0 1 
50 24 C 1 1 1 
50 25 B 4 1 0 
50 26 F 2 1 1 
50 27 A 1 1 1 
50 28 D 4 0 0 
50 29 F 1 0 1 
50 30 B 4 0 0 
50 31 C 4 1 0 
50 32 A 1 0 1 
50 33 E 4 0 0 
50 34 D 4 1 1 
50 35 C 2 0 1 
50 36 F 1 1 1 
52 1 A 2 0 1 
52 2 F 2 0 1 
52 3 B 2 0 0 
52 4 F 2 1 1 
52 5 B 1 1 1 
52 6 F 4 0 0 
52 7 E 1 1 1 
52 8 B 4 0 1 
52 9 A 4 0 0 
52 10 D 2 1 1 
52 11 E 2 0 1 
52 12 E 4 0 1 
52 13 A 2 1 0 
52 14 E 1 0 1 
52 15 F 1 0 0 
52 16 B 1 0 0 
52 17 C 2 0 0 
52 18 D 4 0 1 
52 19 F 4 1 1 
52 20 B 4 1 1 
52 21 A 1 0 0 
52 22 E 2 1 1 
52 23 F 1 1 1 
52 24 C 2 1 1 
52 25 B 2 1 1 
52 26 D 1 1 0 

ID TR SC LTS SOFT RSP 

52 27 E 4 1 1 
52 28 A 1 1 0 
52 29 C 4 0 0 
52 30 A 4 1 1 
52 31 C 1 0 0 
52 32 D 1 0 0 
52 33 C 1 1 0 
52 34 C 4 1 1 
52 35 D 2 0 1 
52 36 D 4 1 0 
53 1 E 1 1 0 
53 2 A 1 1 0 
53 3 C 2 0 1 
53 4 F 2 1 0 
53 5 B 2 1 0 
53 6 A 4 1 0 
53 7 D 1 0 1 
53 8 C 2 1 0 
53 9 D 2 0 0 
53 10 B 1 1 1 
53 11 B 4 1 0 
53 12 E 1 0 1 
53 13 C 4 1 0 
53 14 D 1 1 1 
53 15 D 4 0 0 
53 16 F 1 0 0 
53 17 E 2 0 0 
53 18 A 2 0 0 
53 19 D 2 1 1 
53 20 F 2 0 1 
53 21 B 2 0 0 
53 22 A 4 0 1 
53 23 C 1 1 1 
53 24 C 4 0 0 
53 25 F 4 1 0 
53 26 C 1 0 0 
53 27 E 4 1 0 
53 28 A 2 1 1 
53 29 D 4 1 1 
53 30 B 4 0 0 
53 31 F 1 1 1 
53 32 A 1 0 1 
53 33 F 4 0 1 
53 34 B 1 0 0 
53 35 E 4 0 0 
53 36 E 2 1 0 
56 1 E 4 1 0 
56 2 C 4 0 0 
56 3 A 4 1 1 
56 4 D 4 0 0 
56 5 A 2 1 0 
56 6 A 2 0 0 
56 7 D 1 1 1 
56 8 E 2 0 0 
56 9 E 4 0 0 
56 10 C 2 0 0 
56 11 C 1 0 0 
56 12 D 2 1 1 
56 13 C 4 1 0 
56 14 B 4 1 0 
56 15 E 1 0 0 
56 16 B 4 0 0 
56 17 E 1 1 1 
56 18 F 4 1 1 
56 19 F 2 0 0 
56 20 A 1 0 0 
56 21 D 2 0 0 
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ID TR SC LTS SOFT RSP 

56 22 F 4 0 0 
56 23 B 1 1 1 
56 24 B 1 0 0 
56 25 E 2 1 0 
56 26 F 2 1 0 
56 27 B 2 1 0 
56 28 F 1 0 0 
56 29 F 1 1 1 
56 30 D 1 0 0 
56 31 A 4 0 0 
56 32 C 2 1 1 
56 33 A 1 1 1 
56 34 C 1 1 1 
56 35 B 2 0 0 
56 36 D 4 1 1 
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A.6 Scene-collapsed data: photograph-based experiment on number of 
lights  

 
  ID:   Participant ID number 
  LTS:  Number of lights = {1, 2, 4} 
  SOFT: Shadow softness = {0:Sharp shadows, 1:Soft shadows} 
  R:    Average of responses across all scenes 
 
 

ID LTS SOFT R 

48 1 0 0.333 
48 1 1  0.667 
48 2 0 0.333 
48 2 1  0.500 
48 4 0 0.667 
48 4 1  0.667 
49 1 0 0.000 
49 1 1  0.333 
49 2 0 0.000 
49 2 1  0.500 
49 4 0 0.000 
49 4 1  0.333 
50 1 0 0.667 
50 1 1  0.667 
50 2 0 0.333 
50 2 1  0.500 
50 4 0 0.000 
50 4 1  0.333 
52 1 0 0.167 
52 1 1  0.500 
52 2 0 0.667 
52 2 1  0.833 
52 4 0 0.500 
52 4 1  0.833 
53 1 0 0.500 
53 1 1  0.667 
53 2 0 0.333 
53 2 1  0.333 
53 4 0 0.333 
53 4 1  0.167 
56 1 0 0.000 
56 1 1  1.000 
56 2 0 0.000 
56 2 1  0.333 
56 4 0 0.000 
56 4 1  0.500 
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A.7 Raw data: computer-graphics-based experiment on shadow softness  

 
  ID:   Participant identification number  
  TR:   Trial number 
  SC:   Scene = {A, B, C, D, E, F} 
  SHAD: Shadow softness, in degrees of penumbra angle 
  RSP:  Participant response = {0:Not real, 1:Real} 
 
 
 

ID TR SC SHAD RSP 

42 1 D 1.50 1 
42 2 B 0.35 1 
42 3 A 10.30 1 
42 4 E 10.30 0 
42 5 A 1.50 1 
42 6 A 5.20 1 
42 7 C 10.30 0 
42 8 E 5.20 1 
42 9 D 5.20 1 
42 10 E 0.35 0 
42 11 A 0.35 0 
42 12 E 2.50 1 
42 13 D 10.30 1 
42 14 B 10.30 1 
42 15 F 1.50 1 
42 16 C 2.50 1 
42 17 C 0.35 0 
42 18 D 2.50 1 
42 19 A 2.50 0 
42 20 B 2.50 1 
42 21 F 10.30 0 
42 22 E 1.50 1 
42 23 C 1.50 1 
42 24 B 1.50 1 
42 25 C 5.20 0 
42 26 F 2.50 1 
42 27 F 0.35 0 
42 28 F 5.20 1 
42 29 B 5.20 1 
42 30 D 0.35 0 
43 1 C 2.50 1 
43 2 C 5.20 1 
43 3 A 1.50 1 
43 4 F 10.30 1 
43 5 F 2.50 1 
43 6 A 2.50 1 
43 7 E 0.35 0 
43 8 E 1.50 1 
43 9 C 0.35 0 
43 10 A 0.35 0 
43 11 B 2.50 1 
43 12 F 0.35 0 
43 13 E 2.50 1 
43 14 B 0.35 0 
43 15 D 2.50 1 
43 16 F 5.20 1 
43 17 C 1.50 1 
43 18 F 1.50 0 
43 19 D 0.35 0 
43 20 E 5.20 1 
43 21 C 10.30 1 
43 22 B 1.50 0 
43 23 D 10.30 1 
43 24 D 5.20 0 
43 25 A 10.30 1 
43 26 B 5.20 1 
43 27 D 1.50 0 
43 28 A 5.20 1 
43 29 E 10.30 1 
43 30 B 10.30 1 
46 1 C 0.35 1 
46 2 D 10.30 1 
46 3 F 5.20 1 
46 4 F 0.35 1 
46 5 E 2.50 1 
46 6 C 10.30 1 

ID TR SC SHAD RSP 

46 7 B 10.30 1 
46 8 A 2.50 1 
46 9 D 1.50 1 
46 10 B 1.50 1 
46 11 F 1.50 0 
46 12 E 0.35 1 
46 13 D 5.20 1 
46 14 A 10.30 1 
46 15 F 2.50 1 
46 16 A 5.20 0 
46 17 E 1.50 1 
46 18 E 5.20 1 
46 19 C 5.20 1 
46 20 A 1.50 1 
46 21 C 1.50 0 
46 22 B 5.20 1 
46 23 F 10.30 0 
46 24 A 0.35 0 
46 25 D 2.50 0 
46 26 B 2.50 0 
46 27 C 2.50 1 
46 28 B 0.35 1 
46 29 E 10.30 1 
46 30 D 0.35 0 
47 1 B 5.20 1 
47 2 B 2.50 0 
47 3 A 1.50 1 
47 4 E 1.50 0 
47 5 D 5.20 1 
47 6 A 10.30 1 
47 7 E 10.30 1 
47 8 D 1.50 1 
47 9 F 2.50 0 
47 10 C 0.35 0 
47 11 B 0.35 1 
47 12 A 0.35 1 
47 13 E 0.35 0 
47 14 E 5.20 1 
47 15 C 2.50 0 
47 16 D 2.50 1 
47 17 C 1.50 0 
47 18 F 5.20 0 
47 19 C 5.20 0 
47 20 F 0.35 1 
47 21 A 2.50 0 
47 22 D 10.30 1 
47 23 C 10.30 1 
47 24 A 5.20 1 
47 25 D 0.35 0 
47 26 B 1.50 1 
47 27 F 10.30 1 
47 28 E 2.50 0 
47 29 F 1.50 1 
47 30 B 10.30 1 
51 1 E 10.30 0 
51 2 F 1.50 1 
51 3 A 5.20 1 
51 4 E 2.50 1 
51 5 A 10.30 1 
51 6 E 1.50 1 
51 7 F 10.30 1 
51 8 D 1.50 1 
51 9 A 0.35 0 
51 10 B 2.50 1 
51 11 A 2.50 1 
51 12 D 10.30 1 

ID TR SC SHAD RSP 

51 13 C 0.35 0 
51 14 C 5.20 1 
51 15 B 1.50 1 
51 16 D 0.35 0 
51 17 D 5.20 1 
51 18 B 10.30 1 
51 19 F 2.50 0 
51 20 C 10.30 1 
51 21 C 2.50 0 
51 22 B 0.35 1 
51 23 F 0.35 0 
51 24 B 5.20 0 
51 25 E 0.35 1 
51 26 F 5.20 0 
51 27 D 2.50 1 
51 28 A 1.50 1 
51 29 C 1.50 0 
51 30 E 5.20 1 
54 1 F 0.35 0 
54 2 E 0.35 0 
54 3 F 5.20 0 
54 4 B 0.35 1 
54 5 E 5.20 1 
54 6 C 10.30 1 
54 7 C 5.20 1 
54 8 B 10.30 1 
54 9 A 10.30 0 
54 10 F 10.30 0 
54 11 F 2.50 0 
54 12 A 2.50 1 
54 13 D 10.30 1 
54 14 E 2.50 1 
54 15 A 5.20 1 
54 16 F 1.50 1 
54 17 E 1.50 0 
54 18 E 10.30 1 
54 19 B 2.50 1 
54 20 D 1.50 1 
54 21 C 2.50 0 
54 22 C 1.50 0 
54 23 D 5.20 1 
54 24 B 5.20 1 
54 25 D 2.50 1 
54 26 A 1.50 0 
54 27 A 0.35 0 
54 28 D 0.35 0 
54 29 B 1.50 1 
54 30 C 0.35 0 
55 1 F 1.50 1 
55 2 C 1.50 1 
55 3 A 5.20 1 
55 4 E 0.35 1 
55 5 E 1.50 1 
55 6 E 2.50 1 
55 7 D 1.50 0 
55 8 C 10.30 0 
55 9 D 0.35 0 
55 10 D 2.50 0 
55 11 C 0.35 1 
55 12 B 0.35 1 
55 13 E 5.20 0 
55 14 C 5.20 1 
55 15 A 0.35 1 
55 16 B 1.50 1 
55 17 A 1.50 1 
55 18 E 10.30 0 
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ID TR SC SHAD RSP 

55 19 C 2.50 0 
55 20 D 10.30 0 
55 21 B 10.30 1 
55 22 F 5.20 0 
55 23 A 2.50 1 
55 24 B 2.50 1 
55 25 A 10.30 1 
55 26 F 2.50 1 
55 27 F 10.30 1 
55 28 B 5.20 1 
55 29 F 0.35 1 
55 30 D 5.20 1 
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A.8 Scene-collapsed data: computer-graphics-based experiment on 
shadow softness  

 
  ID:   Participant identification number  
  SHAD: Shadow softness, in degrees of penumbra angle 
  R:    Average of responses across all scenes 
 
 

ID SHAD R 
42 0.35 0.167 
42 1.50 1.000 
42 2.50 0.833 
42 5.20 0.833 
42 10.30 0.500 
43 0.35 0.000 
43 1.50 0.500 
43 2.50 1.000 
43 5.20 0.833 
43 10.30 1.000 
46 0.35 0.667 
46 1.50 0.667 
46 2.50 0.667 
46 5.20 0.833 
46 10.30 0.833 
47 0.35 0.500 
47 1.50 0.667 
47 2.50 0.167 
47 5.20 0.667 
47 10.30 1.000 
51 0.35 0.333 
51 1.50 0.833 
51 2.50 0.667 
51 5.20 0.667 
51 10.30 0.833 
54 0.35 0.167 
54 1.50 0.500 
54 2.50 0.667 
54 5.20 0.833 
54 10.30 0.667 
55 0.35 0.833 
55 1.50 0.833 
55 2.50 0.667 
55 5.20 0.667 
55 10.30 0.500 
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A.9 Raw data: computer-graphics-based experiment on surface 
smoothness  

 
  ID:   Participant identification number  
  TR:   Trial number 
  SC:   Scene = {A, B, C, D, E, F} 
  SRF:  Surface smoothness = {0:Smooth, 1:Rough} 
  RSP:  Participant response = {0:Not real, 1:Real} 
 
 
 

ID TR SC SRF RSP 

42 1 A 1 1 
42 2 E 1 0 
42 3 C 1 0 
42 4 D 0 1 
42 5 D 1 1 
42 6 B 1 1 
42 7 B 0 0 
42 8 F 1 0 
42 9 F 0 0 
42 10 A 0 0 
42 11 E 0 0 
42 12 C 0 0 
43 1 B 0 0 
43 2 C 0 0 
43 3 F 1 1 
43 4 E 0 0 
43 5 D 0 1 
43 6 C 1 1 
43 7 A 0 1 
43 8 D 1 1 
43 9 A 1 1 
43 10 E 1 1 
43 11 F 0 0 
43 12 B 1 1 
46 1 C 0 1 
46 2 D 1 1 
46 3 C 1 1 
46 4 B 1 1 
46 5 B 0 0 
46 6 D 0 0 
46 7 A 1 1 
46 8 F 0 0 
46 9 A 0 0 
46 10 F 1 0 
46 11 E 0 0 
46 12 E 1 1 
47 1 A 0 1 
47 2 A 1 1 
47 3 E 1 1 
47 4 B 0 1 
47 5 D 1 1 
47 6 F 0 1 
47 7 C 1 1 
47 8 E 0 0 
47 9 D 0 0 
47 10 F 1 1 
47 11 C 0 1 
47 12 B 1 1 
51 1 E 1 0 
51 2 C 0 1 
51 3 A 1 1 
51 4 F 1 1 
51 5 D 0 1 
51 6 D 1 1 
51 7 A 0 0 
51 8 F 0 0 
51 9 B 1 1 
51 10 C 1 1 
51 11 B 0 1 
51 12 E 0 0 
54 1 C 1 1 
54 2 B 1 1 
54 3 A 1 0 
54 4 F 1 0 

ID TR SC SRF RSP 

54 5 F 0 0 
54 6 B 0 0 
54 7 D 1 1 
54 8 D 0 0 
54 9 A 0 0 
54 10 E 1 1 
54 11 E 0 0 
54 12 C 0 1 
55 1 A 0 1 
55 2 E 0 0 
55 3 C 0 0 
55 4 C 1 0 
55 5 B 0 1 
55 6 D 0 1 
55 7 E 1 0 
55 8 D 1 0 
55 9 B 1 1 
55 10 F 0 1 
55 11 A 1 1 
55 12 F 1 1 
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A.10 Scene-collapsed data: computer-graphics-based experiment on 
surface smoothness  

 
  ID:   Participant identification number  
  SRF:  Surface smoothness = {0:Smooth, 1:Rough} 
  R:    Average of responses across all scenes 
 
 
 

ID SRF R 

42 1 0.500 
42 0 0.167 
43 1 1.000 
43 0 0.333 
46 1 0.833 
46 0 0.166 
47 1 1.000 
47 0 0.667 
51 1 0.833 
51 0 0.500 
54 1 0.667 
54 0 0.167 
55 1 0.500 
55 0 0.667 
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