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Abstract

We present a robust location-sensing system that enables devices to estimate their position in a self-organizing

manner without the need for an extensive infrastructure or training. The algorithm uses a grid representation that

allows the system to easily incorporate external information (such as GPS, application-dependent semantics,

geographic and signal strength maps) to improve the accuracy of the position estimation. Depending on the

capabilities of the devices, the system can operate in a distributed, centralized, or hybrid fashion. In the case

of devices with limited capabilities, a centralized or hybrid approach can be computationally inexpensive and

therefore more appropriate. Also, hosts may cooperate and share positioning information. By allowing the

cooperation among hosts, the system can improve its accuracy and provide more flexibility. We designed and

implemented the system and analyzed its performance via simulations and actual measurements. For example,

we used it in an indoors area of 45x38 ��� with two IEEE 802.11 access points (APs) in the Department of

Computer Science. By using a small training set the algorithm can predict the location of 50% of hosts with an

error of at most 0.9 m and 85% of the hosts with at most 2.5 m accuracy. Furthermore, we investigated the impact

of the density of landmarks, degree of connectivity, range, error in the distance measurements, and grid resolution

on the accuracy of the location sensing via simulations. With an error of 5% of the transmission range, 20% of the

hosts landmarks, and average network connectivity above 7, the average error is less than 2% of the transmission

range.

1 Introduction

The effect of Moore’s law is transforming a niche technology into a ubiquitous one, expanding the innovations in

an increasingly networked world. There is growing interest in the transportation industry to equip vehicles with

navigation tools and location-based services; in the medical community with patient monitoring and assistive tech-

nology; in the entertainment industry and in emergency situations for disaster relief. To support location-dependent

services, a mobile device needs to estimate its position. For example, the Hertz NeverLost GPS-enabled system

allows the user to compute a route that will then guide him/her. However, GPS does not work everywhere. In par-

ticular, the technology typically breaks down near obstacles such as trees and buildings and does not work indoors.

Even ground-based cellular systems’ radio signals can be occluded, or they might bounce off nearby objects, making

localization difficult or impossible.

Location-sensing systems can be classified according to their dependency and use of an infrastructure, signal

modalities, and methodology for estimating distance [7]. Several location sensing systems use radio, infrared, sonar,

or vision to infer the position of a mobile device. Recently IEEE 802.11 networks have become widely available
�
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in universities and corporations providing wireless Internet access. More and more such networks are becoming

available in airports, hospitals, shopping centers, and other public areas [16, 2]. Its low cost and the complexity

advantages of using it for both communication and positioning makes IEEE 802.11 an attractive choice. There are

location sensing systems [3, 9] that use an infrastructure of IEEE 802.11 APs. They apply probabilistic inference

of position mechanism using the RF emission from APs measured by the IEEE 802.11 cards to track the device

position. They build a map of the environment by sampling the space and gathering data at various predefined

checkpoints of the indoor environment. Other works [14] combine different signal modalities, such as ultrasound

from deployed sensors and radio from the IEEE 802.11 infrastructure for location estimation.

There are some recent research efforts on location-sensing systems that operate in an ad hoc network [15, 12,

8, 4]. These systems assume an ad hoc network and cooperation among hosts in the network. Hosts cooperate

and exchange positioning information to estimate their location. Like these approaches, our system also enables

devices in a self-organizing manner to cooperate with each other. Hosts gather positioning information period-

ically from other cooperative devices and estimate their distance from their neighboring peers. They can refine

their measurements iteratively as they incorporate new information from their neighbors. The main differences of

our work from [15, 12] is the grid-based representation of the environment and positioning estimation algorithm.

More specifically, the grid representation allows the system to easily incorporate external information (such as GPS,

application-dependent semantics, floor plan, signal strength maps) to improve the location estimation. In addition,

depending on the characteristics of the environment, it can operate in a distributed, centralized, or hybrid fashion.

In many situations due to environmental, cost, and regulatory barriers the deployment of a wireless infrastructure

(for communication or location sensing) is not feasible. In addition, the dynamic characteristics of the environment

and the nature of the signal propagation impose important challenges for the design of a scalable, easily deployable,

and computationally inexpensive location-sensing system. Our goal is the design a location-sensing mechanism that

is

1. robust enough to tolerate multiple network failures (such as device failures or disconnections) and changes in

the environment due to host mobility,

2. easily extensible to incorporate application-dependent semantics or external (location-related measurements)

information,

3. computationally inexpensive so that devices with limited capabilities (such as PDAs or sensors) can participate

in the network,

4. suitable for indoor and outdoor environments,

5. scalable, inexpensive, and easily deployable without the need for extensive training and specialized infrastruc-

ture.

We build a system that can operate in a very diverse range of applications. It is easy and cost effective to deploy and

maintain, yet it remains competitive in its accuracy compared to the best published results on location-sensing in

mobile computing. Section 2 presents the location-sensing algorithm and the different architecture designs. Section

3 discusses the performance results via simulations and actual measurements. Section 4 discusses related work

on location-sensing using an infrastructure or in an ad hoc network. Finally, in Section 5 we discuss our main

conclusions and future work plans.
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2 Voting algorithm

The objective of the proposed system is to enable devices to determine their location in a self-organizing manner

and without the need of an extensive infrastructure or training. It can be used with a broad range of location-

dependent applications and devices with different computing capabilities. For a broad range of location-dependent

applications, the characteristics described in Section 1 are desirable and shape our vision for this system. In the

following paragraphs we describe the main location-sensing algorithm and the communication among hosts. Then,

we discuss several adaptations of this algorithm for environments with different characteristics or requirements (such

as sensor networks with stationary constrained devices, environments with an infrastructure of APs and mobile

wireless-enabled laptops and PDAs, cars in a highway enabled with location-dependent applications).

Some devices in the network may have apriori knowledge of their location. We will refer to them as landmarks.

Landmarks can be stationary devices configured with their position or can be devices capable of estimating their

position via another location-sensing mechanism such as GPS. Instead of attempting to solve this system analytically,

we use a grid-based representation of the terrain. Each cell in the grid is associated with a value that indicates the

likelihood that the host is in that cell. We denote as
���

the grid of the host � and as �����
	��� the probability that

the cell ����	����� ���
is the position of host � . A host tries to position itself (on its local grid). We use the signal

strength of wireless transmissions to estimate the distance ����� � between two hosts � and � with grid coordinates

������	 �!�" and ���#��	 �!�$ , respectively. We define
� ��� � as the set of cells equal to %&���'	 ��)(*���+	 �,�� � � �-�.� �0/�1�2435 �����6/7�8:9<;=���!�>/?�,:9�3@�A��� �B;?1
C�D . We will refer to

� �.� � as the distance estimation of the two hosts � and �
in the grid

� � , where 1�2 and 1
C indicate the accuracy of the estimation and in general depend on distance ����� � . The

precision of the distance estimations depends heavily on the wireless networking technology used. We will discuss

this issue further in Section 3.

The positioning information of a node includes its id, maximum wireless range, position (if known or computed).

We refer to this broadcast update message as positioning message. Hosts disseminate their positioning information to

the network. The communication protocol depends on the architecture approach that is used (centralized, distributed,

and hybrid). In order to determine its location, each host E will have to gather distance estimations and then attempt

to compute its own location using the following algorithm:

1. Initialize the values of the grid
�GF

with all cells containing zeros.

2. For each distance estimation to a host � with known location, perform the following steps:
3. (a) Transform the coordinates of host � and numbers � � � F /H1
2 and � � � F ;I1
C to the coordinate system of the

grid.
(b) Determine the region of the grid, i.e., set of cells that satisfy the distance estimation of E and � ,

�JF � � .
(c) Increase the value of the cells in

��F � � by � � .

4. Assess the values of the cells in the grid and accept or reject the attempt for location sensing.

This algorithm is essentially a “voting” process. Host E casts ”votes” into the cells of the grid on behalf of other

hosts with known location. Votes have different weights based on the host from which the distance is estimated. For

example, host � depending on the confidence of its positioning estimation, has a voting weight � � . At the end of

the second step of the above algorithm, the more voting weight (value) a cell has acquired, the more hosts think that

it is a likely location for host E . The set of cells in the grid with a maximal value defines a possible region where

the host E is located. If this set of cells satisfies certain conditions, the centroid of the area defined by these cells
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Figure 1: Accumulation of votes on the grid cells of a host at different time steps.

corresponds to the estimated position. Figure 1 shows a snapshot of the grid as three landmarks vote on the location

of an unsolved host. The brighter an area, the more voting weight has been accumulated on the corresponding grid

cells. The brightest area corresponds to a potential solution.

Landmarks or nodes that computed their own location first determine to some extent the location of other hosts.

Therefore, their positioning errors will be propagated in the network, affecting the positioning estimations of hosts

that use their votes. To minimize the impact of these errors, a potential solution has to satisfy the following two

conditions in order to be accepted as a valid location:
� The number of votes in each cell of the potential solution must be above a threshold. We refer to this threshold

as the Solution Threshold (ST).
� The size of the grid region (i.e., number of cells with maximal value) that contains the potential solution must

be below a threshold denoted as the Local Error Control Threshold (LECT).

In effect, ST controls how many hosts with known location must “agree” with the proposed solution. Setting a high

ST value reduces the error propagation throughout the network, but delays the positioning estimation. On the other

hand, LECT determines the precision of each step of the proposed location sensing algorithm. Note that the diameter

of the grid region (i.e., maximum Euclidean distance of cells with a maximal value) can be another metric for filtering

the local error. Once a potential solution has been accepted, the algorithm computes the centroid of the grid area

that corresponds to this solution. This centroid is the estimated location of the newly solved host. By selecting the

centroid, we minimize the maximum possible error (given that the correct solution lies somewhere in that grid).

Nevertheless, by narrowing down an area to one point, the algorithm potentially introduces an error. If the area

of the potential solution is above the LECT, its corresponding centroid will potentially introduce an unacceptable

error. In that case, the potential solution will be rejected. The fundamental idea behind both thresholds is that it is

likely that other hosts in the network will have higher precision in their position estimates. Therefore, more distance

estimations of hosts with known location will be available to increase the voting weight or narrow down the area of

the potential solution within acceptable standards. The system can adaptively relax both thresholds after a number

of rejected solutions. The values for both the ST and LECT depend on network characteristics such as the density

of hosts, the ratio of landmarks and hosts with unknown location and the accuracy of the distance estimations. Next

we present the centralized, distributed, and hybrid approaches for the deployment of the voting algorithm.

Centralized architecture

The centralized approach is very easy to implement, has minimal communication overhead, and does not require
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the nodes to perform any computations. However, it requires the infrastructure of a computational server that will

solve the locations of hosts on their behalf. Thus, this approach can only scale as much as the available computational

power of that central server for a given region. The centralized location sensing is composed of the following steps:

1. Each node broadcasts a positioning message when it joins the network. This step also takes place periodically

to ensure that mobile or new hosts can join the system smoothly. The period is a parameter that depends on

the frequency at which the central server can afford to solve and update the locations of the network nodes,

frequency at which nodes join the network, and traveling speed of mobile hosts.

2. Hosts listen for broadcasts from other nodes. For each received positioning message, a host creates a distance

estimation from that host based on perceived signal strength. Then, it forwards its distance estimations to the

centralized server.

3. The server runs the voting algorithm as described earlier on behalf of every host from which it received

distance estimations. Then, it informs each host of its estimated location.

Distributed architecture

Although the centralized approach has several advantages, it has two significant drawbacks. It requires an

infrastructure and does not scale as the number of nodes in the network or the size of the terrain/grid increases.

For applications where nodes do not have strict power conservation restrictions and are capable of carrying out

more complex computations, a distributed algorithm can be used. In the distributed approach, each host maintains

a database that contains the id, maximum transmission range, estimated location and confidence (if available), and

distance estimation for all hosts it has received broadcasts from. This database is broadcasted whenever it is updated

and periodically to make sure new nodes can be added to the network while the algorithm is running. Each host tries

to solve only its own location using the voting algorithm as described earlier. If successful, it updates its database

with its own location and continues to broadcast it periodically. These broadcasts are single-hop broadcasts and not

flooding. In the centralized architecture the communication overhead of each node is the total number of forwarding

messages to the server,
� � �$ , where � is the diameter of the network. On the other hand, the distributed approach

requires hosts to broadcast their databases periodically and whenever there is a database update.

Hybrid architecture

In the hybrid architecture, some nodes estimate their own location using the distributed approach, while others

“elect” a server, and use the centralized approach. Hosts using the centralized approach need to perform the following

additional tasks:

1. Broadcast their position when they receive it from the server. In that way, hosts using the distributed architec-

ture or that are beyond the transmission range of the centralized server can get this information.

2. Each node forwards information received from hosts that operate using the distributed architecture to its cen-

tralized server.

A smart space with sensors, laptops, and PDAs can use the hybrid approach for its location sensing. PDAs and

sensors can use a server to estimate their location (i.e. centralized approach), while laptops can compute their own

location in a distributed manner. Furthermore, laptops can volunteer to act as server hosts for their neighboring

PDAs, thus eliminating the need of any infrastructure.

Incorporating external information in the voting algorithm
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As mentioned earlier, one useful characteristics of the proposed algorithm is that it is not application-dependent.

However, the system can incorporate application-dependent or external information in the algorithm to further refine

the accuracy of the measurements. This can take place in the form of virtual landmarks casting additional votes

of their own. In our example of the voting process in Figure 1, we used a disk-shaped model for the wireless

transmission range. However, the shape of the regions being accumulated on the grid through voting does not need

to be disk-shaped. Actually, in an indoor environment, the placement of obstructions usually causes a degradation is

the signal strength. Hence, a more irregularly shaped signal propagation model is more realistic.

Figure 2: Example of the usage

of an outdoors map to filter out

the regions where a host cannot

be located.

The algorithm can also easily incorporate map information to filter out re-

gions where a device cannot be located. The map information can be spatial or

dependent on application semantics. For example, in the case of a floor plan, ar-

eas within walls are not likely positions for nodes. In the case of devices equipped

with some external location-sensing mechanisms (such as GPS, accelerometer,

acoustic sensors), the proposed system can acquire their positioning information

and precision to further refine its measurements. For that, the proposed system

needs to transform their positioning information into grid coordinates, and incor-

porate them as “votes” with different weight based on their precision.

The above algorithm can be easily extended to handle mobility. Depending

on its speed, a host can tune the frequency it runs the algorithm. In addition

to the positioning information it collects from other hosts, it can also “vote” for

a region based on its mobility pattern and speed. For example, it can compute

an upper bound of the traveled distance and filter out all of the cells in the grid

located outside of that range. In a different setting, such as a freeway, a car may

not be allowed to make a U-turn. This can impose an application-dependent constraint in the system. Thus, if a car

is located in the lanes traveling south, grid cells lying in the lanes traveling north can be filtered out, if there is no

overpass nearby on the map.

If no landmarks or other external information is available to provide the first votes, three hosts can be elected to

establish a relative coordinate system using the same approach as in [4]. The elected hosts will subsequently acquire

a location in their coordinate system and start acting as legitimate landmarks broadcasting those coordinates and

providing positioning information and votes.

The privacy requirement is a major issue in location-sensing. In the centralized architecture, a trustee server

can provide location-sensing to authenticated devices. Similarly, the distributed architecture assumes cooperative

devices that can authenticate each other before participating in the location-sensing mechanism. Due to the space

limitations, we refer the reader to [6] for a discussion on the privacy issues and architecture design.

3 Performance analysis

We run both simulations and actual measurements to evaluate the performance of the system. The accuracy level is

the main metric used in the performance analysis of our system. We define the accuracy level to be ���<	�1  if the �

percentage of hosts can estimate their location with an error of at most 1 units. We are interested in investigating the

impact of the density of landmarks in the area, maximum transmission range, grid resolution (i.e., total number of
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cells), degree of connectivity of the network, and range error (i.e., the error in the estimation of the distance between

two hosts) on the performance of the system. In all measurements that assume a percentage of landmarks (such as

� %) we performed 100 runs of the algorithm. In each run, � % of all hosts were randomly selected to be landmarks.

Sections 3.1 and 3.2 discuss the performance results via simulations and actual measurements, respectively.

3.1 Measurements via simulations

We consider a terrain of 100x100 square units in size with 100 nodes randomly placed in the terrain. The degree

of connectivity, error in determining the distance between hosts, and percentage of landmarks among the hosts are

some of the parameters whose affect on our algorithm we will present in this section. In the following figures, we

measure the “location error” as a fraction of the maximum transmission range. Also, we use a range error of 5%

unless otherwise noted.
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Figure 3: Accuracy level as a func-

tion of the range error.

Figure 3 shows the percentage of nodes whose location was computed

with at most some error, for range errors of 10%, 20%, and 30% of the maxi-

mum transmission range. Figure 4 (b) illustrates the impact of the range error

on the accuracy of location sensing. It presents the average error in location

sensing when the ranging information has a maximum error ranging from 5%

to 50% of the maximum transmission range. Figure 4 also includes the re-

sults of the algorithm presented in [15], both with (i.e., “with Refinement”)

and without the second phase of refinement (i.e., “Hop-TERRAIN”).

Figure 4 (a) shows the average location error for different average degrees

of connectivity and number of landmarks. Figure 4 (a) also includes the re-

sults of [15] after their “refinement” step. Though our results are worse for

networks with low degree of connectivity, or very few landmarks, we believe that 10% landmarks is a fair estimate of

a widely deployed IEEE 802.11 network. We used the traces from an extensive empirical study of the UNC campus

wireless infrastructure that includes over 230 APs [5]. Using this trace we computed the maximum number of hosts

that were associated with each AP at any given time and then computer the average of those maximums. Our results

show a worst case AP to mobile host average ratio of approximately 1:10.

3.2 Performance using actual measurements

We also perform actual measurements to evaluate the performance of the system 1 in both indoor and outdoor

environments. Another team in our group [10] performed an empirical study on signal strength using the wireless

infrastructure in the third floor of the Department of Computer Science at UNC. We used their results in our actual

measurements to provide a more realistic estimation of the distance information between two (non-AP) hosts. For

the part of our experiments that involved actual measurements of signal strength, we used the existing infrastructure

in the third floor of the Computer Science department of UNC which is composed of two APs placed as shown in

Figure 5 (a). The APs participated in the location-sensing system and acted as landmarks. We took measurements in

two sessions several days apart to avoid time scale dependencies that would result in optimistic accuracy estimates

1We have implemented the system in C++ on Windows. More information about the measurements and the implementation of the location

sensing algorithm can be found in [6].
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Figure 4: Performance comparison of our system (
�

%) vs. “Hop-TERRAIN” and “with Refinement” (
�

%) from

[15] regarding the impact of the average degree of connectivity, landmark percentage (
�

%), and range error on the

location error. The location error percentage and range error are with respect to the maximum transmission range

(R).

as suggested by [1].

In the first session, we created signal strength maps. The signal map is a map in the form of a grid in which

each cell contains the signal strength information for each AP in the corresponding location. In the first session we

took signal strength measurements for both APs at 36 different locations marked on Figure 5 (a). Each measurement

consists of the minimum, maximum, and average measured signal strength. To compute the average, we recorded

the beacon messages broadcasted by the AP until our average became stable with almost 6 bits of accuracy. The

sampling at each location lasted a few seconds. We artificially populated the rest of the signal strength map by

using cubic interpolation of the actual samples. For the second session we consider 28 positions different from the

ones of the first session. For each position, we computed the average signal strength with a smaller accuracy of

approximately 5 bits. Each of these 28 positions represents the position of a host that runs our algorithm during

the second session. Each of these hosts has a copy of the signal maps computed during the first session. At the

second session (of the measurements), each of these hosts collects signal strength information from the IEEE802.11

beacon packets of each AP. It compares this signal strength information against its signal maps. More specifically, if

a cell’s corresponding area in the signal map had a value different from the measured value by less than 10% of the

difference of the corresponding maximum and minimum measured values in the signal map, the cell accumulated a

vote on behalf of the given AP.

In Figure 5 (b) the step-like line shows the accuracy level in a setting with no landmarks. More specifically, the

first host computes its position based only on information from the AP signal strength map; the second host derives

its position based on the information from the AP signal strength map and the distance estimation between the local

host and the first solved host and so on. The curvy line corresponds to a setting with three landmarks in addition to

the two APs. The step-like line corresponds to a deterministic setting, because hosts are selected in a deterministic

order. Therefore, its results are based on one test run. For the curvy line, we run 100 tests and average the results.

The three landmarks are not included in the percentage of hosts that estimate their location in Figure 5. That is, the

percentage corresponds to the remaining 25 hosts in the terrain.
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Figure 5: Impact of the number of landmarks and grid resolution on the accuracy level in the actual measurements.

Figure (a) flooplan of third floor of the Department of Computer Science at UNC. It includes the locations of the

two APs. It shows the distribution of the positions at which the signal strength was measured for the two sessions

(solid disk and diamond-shape). Figure (b) compares a setting with two APs and no other landmarks vs. one with

two APs and three additional landmarks. Figure (c) shows the impact of grid resolution.

We compare the results from using different grid resolutions, namely 50x50, 100x100, and 200x200. In these

experiments we consider an AP and three landmarks. These three landmarks have been excluded from the results in

Figure 5 (c). The area of the map is 44.9 x 38.3 � 9 , so the 50x50 grid can introduce an error of around one meter

due to its resolution. The results correspond to an average of 100 tests.

The grid size of the voting algorithm affects the accuracy level. Specifically, the finer the grid, the higher

the accuracy, but also higher the memory and CPU power requirements are. In general, in the distributed ap-

proach, nodes do not need to choose the same grid size. For example, a PDA with limited capabilities can trade

the location-sensing accuracy for the computational complexity, whereas a laptop computer can use a finer reso-

lution grid. Figure 5 (c) illustrates the accuracy level for a grid resolution of 50x50, 100x100, and 200x200 cells.
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Figure 6: Accuracy level as a func-

tion of the range error in an actual

outdoor experiment using the sys-

tem.

Our oudoor experiments used a similar methodology as the indoors. Six APs
were measured at 24 locations and 16 hosts participated in the experiment.

4 Related work

Significant work has been published in recent years in the area of location

sensing using RF signals. RADAR [3] uses maps of signal strength simi-

lar to the ones we exploit is Section 3. RADAR maintains a database of

���'	 ��	���	������ ���	� 	 
�
�
 	 �  values, where �+	 � , and � are the phys-

ical coordinates of the training sample and ���� is the signal strength mea-

surements from the � -th AP. Each measured signal strength vector is then

compared against the database and the coordinates of the best matches are

averaged to give the solution. The authors report that 90% of the time their

hosts can be located with at most 6 meters of error with a sampling density

of 1 sample every 13.9 and 19.1 square meters of their testbed areas using
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the signal from three and five APs respectively. Though our work can take advantage of signal map information,

as demonstrated is Section 3, the fundamental algorithm is significantly different and emphasizes on cooperation

between the hosts, rather than individual host effort. Our results show that with a sampling density of 1 sample every

47.5 square meters and using only two APs we can predict the location of a host 90% of the time with at most 3

meters of error.

Ladd et al. [9] propose a substantially different algorithm than RADAR or our solution based on a two step

process. In the first step a host uses a probabilistic model to compute the conditional probability of its location in a

number of different locations based on the received signal strength from 9 APs. The second step of their algorithm

exploits the limited maximum speed of mobile users to refine the results (of the first step) and reject solutions

with significant change in the location of the mobile host. Our system does not consider host mobility explicitly.

However, our algorithm can be easily extended to incorporate a limit of the location distance of a host between two

consecutive runs of the algorithm (as discussed in Section 3.2). Ladd et al. report that 83% and 77% of the time,

hosts can predict their location within 1.5 meters assuming an infrastructure of nine APs, when the second step is

used and not, respectively. Figure 5 (b) shows that our system can predict the location with the same error 70% of

the time, but with two APs and cooperation among hosts.

Cricket [13] is another location sensing system that works using quite a different methodology and primarily

targets a different kind of applications than our system. The basic idea behind cricket is mounting RF and ultra-

sound beacons on the walls and ceiling, and using the fact that the two types of signals have different propagation

speeds. Our work is significantly different from theirs in that Cricket requires investing in extensive infrastructure of

specialized hardware used only for this purpose. Our system on the other hand can operate with limited or no infras-

tructure. Furthermore, the 802.11 APs that we consider infrastructure are already widely deployed and they do not

exhaust their usefulness in providing service to our system. On the other hand, Cricket provides a location sensing

granularity of just 4x4 feet. Though our system can only provide significantly worse location sensing accuracy, it

is very easy and inexpensive to deploy and maintain. For example, if Cricket sensors were to cover the area of our

testbed, it would require deploying and maintaining more that 260 Cricket sensors.

Niculescu and Badri Nath [12] designed and evaluated a cooperative location-sensing system that operates in

an ad hoc network. It uses primarily angle estimations and assumes specialized hardware that allows a host to

calculate the angle between two hosts. This can be done through antenna arrays or ultrasound receivers. Like

in our system, hosts gather data, compute their solutions, and propagate them throughout the network. It is not

easy to compare their results with ours due to the different metric used, namely distances vs. angles. Niculescu’s

previous work [11] also shares the same cooperative spirit among hosts with our work. They introduce an algorithm

on location sensing that works on simple geometric principles of Eucledian geometry concerning triangles and

quadrilaterals. Like in our algorithm, the information of the landmark locations is slowly propagated towards the

nodes that are further away while at the same time closer nodes enrich this information by determining their own

location. Three variations of this algorithm are presented: “DV-hop”, “DV-distance”, and “Eucledian”. Though our

system is closer to “DV-distance” in that it uses signal strength information to estimate the distance between hosts,

its performance more closely resembles the performance of the “Eucledian” scheme, but with always 100% solved

hosts. More specifically, we outperform all variations of Niculescu’s algorithm for 20% or more landmarks, average

degree of connectivity 7.5 and distance approximation error of 5%. However, Niculescu’s “DV-hop” and “DV-

distance” variations outperform our algorithm when the number of landmarks becomes 5% and the “DC-distance”
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produces equaly good results at such low percentage of landmarks. For 10% landmarks, our results are almost

equally matched. For example, using 5% landmarks Niculescu’s algorithms have an error of approximately 25%,

45% and 55% of the transmission range (for the “DV-hop”, “DV-distance” and “Eucledian” algorithms) compared

to our error of 85%. However, when the number of landmarks increases to 20%, our error falls to 1.8%, while

Niculescu’s algorithms perform at approximately 12%, 25% and 12%. Another related work is the one by Capkun

et al. [4]. They presented an algorithm for location sensing in ad hoc networks without any information available

from landmarks or GPS. However, we cannot compare Capkun’s results with ours, because they only evaluate the

tradeoffs among internal parameters of their system without any measurements on the location error.

The research done by Saverese et al. [15] is the closest to our work. They describe a distributed algorithm that

determines the position of nodes in an ad hoc network in two phases, namely the startup and refinement phase. In the

startup phase, landmarks broadcast their location among all nodes in the network and hosts estimate their position by

triangulation. These estimations are rough approximations and are improved in the second phase of their algorithm.

The refinement phase proceeds in iterations. At each iteration, each host broadcasts its position estimate, receives the

positions and corresponding range estimates from its neighbors, and computes a least square triangulation solution

to determine its new position. After a number of iterations, when the position update becomes small the refinement

phase stops and reports the final position. Though this work presents many similarities to ours, there are alse several

very distinct differences. First, we use a grid to solve the location problem instead of a numerical method. Second,

our communication overhead is smaller since we avoid the flooding done in the first phase of Saverese’s system

by relaying landmark position through the regular exchange of information regarding host information (i.e. the

corresponding messages that Sevarese’s system exchanges during the second phase). As shown in Figure 5 (b) our

algorithm can tolerate initial distance measurement errors significantly better than Sevarese’s and performs better

in networks with 10% or more landmarks and a connectivity degree of at least 8. However, Saverese’s method can

cope better with networks of very small connectivity (such as 4) or fewer landmarks (less than 5%).

5 Conclusion and future work

We presented a robust scalable location-sensing system. Wireless devices running this system can cooperate and

share positioning information to improve their position estimations. It uses a novel voting algorithm and grid-based

representation of the environment to determine the location of a given host. The main advantages of the system is

that it can provide a reasonable accuracy level without the need of additional hardware, training, and infrastructure.

It can work in both indoor and outdoor environments and can be easily extended to incorporate external information

(such as GPS, application-dependent semantics, floor plan, signal strength maps) to improve the location estimation.

In addition, depending on the characteristics of the environment, it can operate in a distributed, centralized, or hybrid

fashion.
We plan to model this cooperative location-sensing algorithm. We would like to investigate analytically the

dynamics among the topological properties of the network, wireless range, density of devices and infrastructure,
cooperation paradigms, and movement pattern and their impact on the accuracy level. This will also allow us to
more systematically evaluate the communication overhead, convergence issues, and the role of backtracking for
improving the accuracy. The algorithm exhibits nice scaling properties. In the case of large regions or high density
of devices and landmarks, several groups of devices can create a separate network and apply the location-sensing
algorithm independently. The above analytical study can provide further insight on how this grouping can take place.
In addition, we would like to provide further guidelines for how the system can automatically tune the ST and LECT
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thresholds for increased accuracy. We are also interested in experimenting with mobile hosts. We plan to extend
the system so that data collected during the system operation (potentially from different peers) can dynamically
refine the initial training. In this self-learning process, there would be cooperation among peers but limited user
intervention. Advances in the mobile robotics area may provide useful insight towards this goal.
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