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ABSTRACT

The magnetic force experienced by a soft magnetic bead is proportional to the strength
of the field at the location of the bead. It is also proportional to the gradient of the field
at that location. In general the analytical calculation of this force is intractable. However
if the generation of the field can be abstractly modeled by a small number of magnetic
monopoles, an analytical solution is straightforward. This model is arguably a reason-
able approximation for some magnetic pole tip configurations of a three dimensional force
microscope (3DFM) [Cumm]. This research note presents a derivation of the analytical
solution.

1 The monopole model of the 3DFM

To be sure, there are pole geometries for which the monopole approximation is inap-
propriate. However the symmetric tetrahedral and hexapolar geometries are of particular
interest for this instrument, and the monopole approximation is entirely reasonable in these
cases. I will not provide any proof or error estimates here, but will give intuitive reasons
why the approximation is “pretty good” for the tetrahedral and hexapole geometries of
existing designs. First let us look at the tetrahedral design.

Figure 1

Here we have the magnetic bead located in the
center of a regular tetrahedron. Four cylindrical mag-
netic iron cores converge towards it from the centers
of the four faces of the tetrahedron (Figure 1). The
inner ends of the cores are tapered to a fine point with
spherical ends, forming four pole tips. The poles are
excited such that the sum of the fluxes leaving their
tips vanishes (because magnetic monopoles cannot ac-
tually exist). The high permeability of the iron pro-
vides that the magnetic potential is essentially con-
stant over the extent of each pole tip. Therefore, in a
substantial solid angle in the direction of the bead, a
spherical magnetomotive isopotential surface is estab-
lished identical to that of a monopole located at the
center of curvature of the pole tip.

In the face centered cubic (FCC) hexapole geom-
etry (Figure 2), the physical correspondence is not as
neat because the pole tips are not themselves hemispherical. In this case we have six pole
tips located at the centers of the six faces of a cube. The bead is located in the volumet-
ric center of the cube. Magnetic flux is conducted to the tips through cores comprising
tapered foil or thin magnetic films arranged in two closely spaced parallel planes. The
tapers terminate in circular pole tips which present cylindrical profiles in the direction of
the bead. Thus, the isopotential shape is cylindrical rather than spherical at a pole tip
surface. However field simulations (Figure 3) show that in a solid angle in the direction
of the bead, the isopotential shape quickly becomes spherical as one approaches the bead.
The center of the quasi spherical isopotential surface patch touching the bead is approx-
imately at the center of curvature of the pole tip. Therefore, a magnetic monopole at
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this location provides a reasonable approximation of the field from this pole at the bead
location. Again, the pole excitations must provide that the sum of the pole fluxes vanishes.

Optical axis (dashed line) is
perpendicular to two planes,
each containing three face-
centered-cubic (FCC) points.

These points form a pair of
parallel equilateral triangles
with a cylindrical working
volume between them.

 
Magnetic flux is conducted by
thin film cores in two parallel
planes to the pole tips having
centers at the FCC locations

Figure 2: The face centered cubic hexapole geometry

Figure 3: Field simulation results of the FCC geometry

To the extent that these monopole approximations are sufficiently accurate, the prob-
lem remains to calculate the field and its gradient at the bead location from an n-monopole
model.

2 Notation

We use both 3-space vectors and matrices here, including a 1 × n “vector” of pole
excitations (strengths). To minimize confusion, it is useful to employ a notation which
clearly distinguishes between spatial and matrix vectors. Accordingly, let us represent
spatial vectors in italic bold face, e.g., “B ”, and all matrices in roman type, e.g. “q”,
while scalars will be in the conventional italic type face, e.g., “r”. A matrix of spatial
vectors will be represented by bold roman typeface, e.g. “f ”. Finally, unit vectors will be
represented by the letter “u”.
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3 Magnetic field at the origin

The bead is located at the origin, so we calculate the field there generated by n
monopoles of excitation strength qj at locations rj , j = 1 . . . n.

B =
n∑

j=1

qjuj

r2
j

, (1)

where rj is the distance to the jth monopole, and uj is the unit vector towards that
monopole.

4 Magnetic force on the bead

To within a constant depending on bead parameters, the force on the bead is [Vicc],

F = ∇(B · B)
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The gradient is calculated as follows:
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For convenience above, I used vectors pointing from the field point towards the n
source points. Conventional field formulas use vectors pointing from the source point to
the field point (cf. [Jack]). Therefore, the directions of the unit vectors in equation(3)
should be reversed which we accomplish by a change of sign. Substituting equation(3) into
equation(2) with this change of sign gives,

F =
∑
j,k

2qjqkuj · uk

r2
j r

2
k

(
uj

rj
+

uk

rk

)
. (4)

It is useful to separate the summand of equation(4) into a purely geometrical factor
fj,k and a purely excitational factor (qjqk). Thus for one term of the summand we write,

Fj,k = qj fj,k qk, where (5)

fj,k =
2uj · uk

r2
j r2

k

(
uj

rj
+

uk

rk

)
. (6)
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5 Matrix formulation

Let us now represent the geometry dependent factors fj,k as an n × n matrix f of
spatial vectors. Also let the n pole excitations be represented by the 1×n matrix q. Then
we may rewrite equation (4) in a matrix form,,

F = q f q̃, (7)

where q̃ is the transpose of q. It is to be understood that the element-wise operations of
equation(7) are taken as scalar-vector-scalar products.

6 Examples

Consider a tetrahedral geometry with pole tips located at [±x, 0,−z] and [0,±y, z]. If
x = y =

√
2/3 and z =

√
1/3, this will be a regular tetrahedron with unit distance from

each pole to the bead. In this case we have,

f =

⎛
⎜⎝

[3.27, 0.00,−2.31] [0.00, 0.00, 0.77] [−0.54,−0.54, 0.00] [−0.54, 0.54, 0.00]
[0.00, 0.00, 0.77] [−3.27, 0.00,−2.31] [0.54,−0.54, 0.00] [0.54, 0.54, 0.00]

[−0.54,−0.54, 0.00] [0.54,−0.54, 0.00] [0.00, 3.27, 2.31] [0.00, 0.00,−0.77]
[−0.54, 0.54, 0.00] [0.54, 0.54, 0.00] [0.00, 0.00,−0.77] [0.00,−3.27, 2.31]

⎞
⎟⎠ ,

where each matrix element is a spatial vector of the form [x, y, z].
In the FCC hexapole geometry, with xyz-axis-aligned pole tip locations and all pole

tips being the same distance r from the origin, many of the off-diagonal dot products
vanish, and the remaining off diagonal vector terms also cancel, leaving a particularly tidy

f =
1
r5

⎛
⎜⎜⎜⎜⎜⎝

[−4, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]
[0, 0, 0] [4, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]
[0, 0, 0] [0, 0, 0] [0,−4, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]
[0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 4, 0] [0, 0, 0] [0, 0, 0]
[0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0,−4] [0, 0, 0]
[0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 4]

⎞
⎟⎟⎟⎟⎟⎠

.
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Appendix A: Matlab codes

This appendix contains Matlab codes for generating the f matrix and for using it to
calculate bead forces. Also included are two specific geometry generators for the regular
tetraheral and FCC geometries.

A.1 tetra(r)

This function returns the face center positions of a regular tetrahedron oriented in
the manner of the 3DFM DC prototype [Vicc] with distances r from the origin, which is
located at the geometric center of the tetrahedron.

function p = tetra(r)
% tetra(r) -- Returns pole locations of xy-axis aligned tetrahedral pole
% geometry with pole distances r from the field point at the origin.

rt13 = sqrt(1/3);
rt23 = sqrt(2/3);
p = r.*[rt23,0,-rt13; -rt23,0,-rt13; 0,rt23,rt13; 0,-rt23,rt13];

A.2 hexa(r)

This function returns the FCC positions of an axis-aligned cubic hexapole geometry
with tip distances r from the origin, which is located in the geometric center of the cube.

function p = hexa(r)
% hexa(r) -- returns pole locations for axis aligned cubic geometry
% with pole distance r from the field point at the origin.

p = r.*[-1,0,0;1,0,0;0,-1,0;0,1,0;0,0,-1;0,0,1];

A.3 fmatrix(p, d)

This function generates the f matrix. It is quite general in that it accepts a list p of
spatial vectors representing the arbitrary positions of an arbitrary number of monopoles.

function f = fmatrix(p, d)
% f = fmatrix(p) -- returns the f matrix for a list
% of n pole position vectors p, one vector per row.
% If d is given, a TeX matrix-formatted string with
% d digits of fractional precision is returned instead
% of the matrix itself. The symmetric f matrix is
% structured as an (n x 3 x n) array where the middle
% index refers to the spatial axes, [x,y,z].
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size(p);
n = ans(1);
for i = 1:n

r(i) = norm(p(i,:));
u(i,:) = p(i,:)/r(i);

end

for j = 1:n
for k = 1:n

2*u(j,:)*u(k,:)’/(r(j)*r(k))^2;
f(j,:,k) = ans*(u(j,:)/r(j) + u(k,:)/r(k));

end
end

if nargin == 2
% construct the TeX formatting strings
fmt1 = sprintf(’%%s[%%.%1df,%%.%1df,%%.%1df]&’, d, d, d);
fmt2 = sprintf(’%%s[%%.%1df,%%.%1df,%%.%1df]\\\\cr\\n ’, d, d, d);
s = sprintf (’%s\n ’, ’\left(\matrix{’);
% fill in the matrix elements
for j = 1:n

for k = 1:n
if k < n

s = sprintf(fmt1, s, f(j,1,k), f(j,2,k), f(j,3,k));
else

s = sprintf(fmt2, s, f(j,1,k), f(j,2,k), f(j,3,k));
end

end
end
s = sprintf(’%s}\\right)\n’, s);
f = s;

end

return
% Examples:
fmatrix(tetra(1)) % unit tetrahedron
fmatrix(tetra(1),2) % ... in TeX format
fmatrix(hexa(1)) % unit FCC
fmatrix(hexa(1),0) % ... in TeX format
fmatrix(hexa(1.3195)) % 1.3195^5 = 4 => unit diagonals
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A.4 Bforce(f, Q)

Given an f matrix and a list Q of excitations, this function returns a list of forces
calculated for a “unit” bead, i.e., one in which the bead force coefficient [Vicc]

πd3

2µ0

(
µr − 1
µr + 2

)
= 1,

where d is the bead diameter, µr = µ/µ0 is its relative permeability, and µ0 = 4π × 10−7

[H/m] is the permeability of free space.

function F = Bforce(f, Q)
% F = Bforce(f, Q) -- Returns a list F of force vectors from a
% list Q of excitations for an n-pole geometry matrix f, which
% is structured as an (n x 3 x n) array where the middle index
% refers to the spatial axes, [x,y,z].

size(f);
n = ans(1); % the number of poles specified in f
size(Q);
if ans(2) ~= n

error(’number of poles: incompatibility between f and Q.’);
end
m = ans(1); % the number of listed excitations

for i = 1:m % process the excitation list
q = Q(i,:);
for h = 1:3, F(i,h) = q*squeeze(f(:,h,:))*q’; end

end

return
% Example
Bforce(fmatrix(tetra(1)), [[-1,1/3,1/3,1/3] % towards one pole

[-1, 1, 0, 0] % halfway between two poles
[-1,1/2,1/2, 0]]) % three poles excited
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