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Abstract— Our goal is to explore characteristics of
the wireless environment that provide opportunities for
caching, prefetching, coverage planning, and resource
reservation. We conducted a one-month measurement
study of locality phenomena among wireless web users and
their association patterns on a major university campus us-
ing the IEEE 802.11 wireless infrastructure.

We evaluate the performance of different caching
paradigms, such as single user cache, cache attached to an
access point (AP), and peer-to-peer caching. In several set-
tings such caching mechanisms could be beneficial. Unlike
other measurement studies in wired networks in which 25%
to 40% of documents draw 70% of web access, our traces
indicate that 13% of unique URLs draws this number of web
accesses. In addition, the overall potential ideal hit ratios
of the user cache, cache attached to an access point, and
peer-to-peer caching paradigms (where peers are coresident
within an AP) are 51%, 55%, and 25%, respectively.

We distinguish wireless clients based on their inter-
building mobility, their visits to APs, their continuous walks
in the wireless infrastructure, and their wireless informa-
tion access during these periods. We model the associations
as a Markov chain using as state information the most re-
cent AP visits. We can predict with high probability (86%)
the next AP with which a wireless client will associate. Also,
there are APs with a high percentage of user revisits. Such
measurements can benefit protocols and algorithms that
aim to improve the performance of the wireless infrastruc-
tures by load balancing, admission control, and resource
reservation across APs.

I. INTRODUCTION

Recently IEEE 802.11 networks became widely avail-
able in universities and corporations to provide wireless
Internet access. There are very few studies investigating
the information access via the wireless infrastructure, the
performance of the wireless infrastructure, and the user
access and mobility pattern. Research on these issues can
impact several areas, such as simulation studies on wire-
less networks, deployment and administration of wireless
infrastructures, protocol design for intelligent and robust
wireless infrastructures, and user access and traffic char-
acterization. Currently, most of the simulation studies on

wireless networks and protocols consider simplistic com-
munication and association patterns for the wireless users.
There is a need for more realistic models of the user com-
munication and association patterns to drive simulations
on wireless networks. The wireless clients associated with
an access point (AP) share the buffer, cache, and band-
width at that AP. Insights from traffic characteristics at
each AP and the wireless users transitions from one AP
to another can assist in deploying the content distribution
network, capacity planning and wireless network deploy-
ment, and development of admission control and reserva-
tion allocation mechanisms. This is important not only for
preventing and resolving user congestion, but also for the
provision of quality of service guarantees for the support
of real-time streaming, voice over IP, location-dependent,
augmented-reality, and other applications with strict re-
sponse delay requirements.

Mobile users experience frequent loss of connectivity
and high end-to-end delays when they access the wire-
less Internet. In an earlier work [7], we investigated a
peer-to-peer approach that introduced a new paradigm of
information sharing and cooperating caching among mo-
bile devices not necessarily connected to the Internet. This
paradigm exploits the spatial locality of queries and infor-
mation of mobile users. An environment is characterized
by spatial locality of queries and information when users
in close geographic proximity are likely to query for the
same data. In such environment, we considered the role of
stationary caches in wireless LANs and also thin cooper-
ative caches of mobile devices (i.e., peers). When a wire-
less device is unable to access the data via the Internet, it
can acquire the data from these caches. We showed via
simulation that in settings with high spatial locality of in-
formation and frequent disconnections from the Internet,
these peer-to-peer systems can enhance the information
access by reducing the average delay to receive the data.

We want to explore characteristics of the wireless
infrastructure that provide opportunities for caching,
prefetching, coverage planning of wireless infrastructure,
and resource reservation. The web provides a ready
testbed to study the prevalence of information locality



2

and access. Since wireless association and user mobil-
ity are two new characteristics of the environment, we
would like also to investigate their impact on the infor-
mation access. The main goal is to provide more robust
and intelligent wireless infrastructures by understanding
the wireless web access and user association patterns.

The UNC wireless infrastructure provides coverage
for nearly every building in the 729-acre campus and
includes a diverse academic environment of univer-
sity departments, programs, administrative, activities,
and residential buildings. In these buildings, there
are 26,000 students, 3,000 faculty members, and 9,000
staff/administrative personnel. Of the 26,000 students,
61% are undergraduates, and more than 75% of these own
a wireless laptop.

The three key issues that drive this study are:
Temporal and spatial locality of information. The tem-
poral locality identifies the frequency and temporal as-
pects of repeated requests for some information. The spa-
tial locality focuses on the AP and building in which a
repeated request occurs and indicates if the repeated re-
quest originated from a nearby client, a client within the
same AP, or a client in the same building.
Caching paradigms: user cache, cache attached to an
AP or a building, and peer-to-peer caching. The user
cache is considered to be the web browser cache. The
cache attached to an AP or a building will serve the wire-
less clients associated to that AP or to APs of that build-
ing, respectively. In the peer-to-peer caching clients in
wireless range act as cooperative thin caches for each
other.
User association and mobility patterns. We distinguish
wireless clients based on their inter-building mobility,
their visits to APs, their continuous walks in the wireless
infrastructure, and their wireless information access dur-
ing these periods.

We differ from previous studies on the wireless in-
frastructure ([5], [1], and [8]) by focusing on the wire-
less information locality. To our knowledge, this is
the first empirical study on the information locality via
the wireless infrastructure. Unlike previous studies of
wireless networks, we explore the impact of the wire-
less information locality and feasibility of three main
caching paradigms. This research also extends the stud-
ies by Kotz and Essien [5], Balachandran et al. [1], and
Tang and Baker [8] by focusing more closely on the as-
sociation and mobility patterns of individual clients rather
than on the entire population of mobile clients and in a
finer time granularity. Unlike the Dartmouth wireless in-
frastructure [5], the UNC wireless clients maintain one
single IP address throughout their roaming in the wireless
infrastructure and keep the same ID (based on its MAC

address) throughout the entire trace. This allows us to cor-
relate the wireless users with their web access and asso-
ciation patterns and carry out user-behavior analysis more
accurately.

A. Summary of main contributions

Several studies on web caching over the wired network
(such as [3]) report that the distribution of web requests
from a fixed group of users follows a Zipf-like distribu-
tion. Overall, the URL and web-server popularity distribu-
tion in our traces are modeled well as a Zipf-like function
(with ��������� equal to 0.85 and 1, respectively) [6]. of web
accesses. In a previous study, 25% to 40% of documents
draw 70% of web access [3]. However, our traces indicate
that only 13% of unique URLs draws this percentage of
web accesses.

This can be defined as our ideal hit ratio that can be
achieved assuming an infinite cache and that shared docu-
ments are cacheable. Another empirical study in the wired
infrastructure in a university campus reports a 45%-59%
ideal hit ratio for a similar user population size [9].

The overall ideal hit ratios of the user cache, cache
attached to an AP, and peer-to-peer caching paradigms
(where peers are coresident within an AP) are 51%, 55%,
and 25%, respectively. By overall ideal hit ratio, we mean
the percentage of the total repeated requests that have oc-
curred throughout the HTTP tracing period. As in several
wired traces studies, the single-client locality is the pri-
mary factor in our wireless traces. We show that there
is opportunity for improving the wireless access by more
actively caching data in the user cache. The high tempo-
ral locality of data can enable prefetching systems and re-
placement algorithms that maximize the data availability
over short time periods and minimize the extended storage
of data when it has not been recently requested. Similarly,
the probability that a client will revisit an AP can provide
some guidelines for the expiration of objects related to
that client in the AP cache. More specifically, each AP ob-
serves a number of revisits from wireless clients that had
associated with it during the last hour. We computed the
fraction of visits that are revisits for each AP and client
and observed that some APs and clients have a high re-
visit probability. There are APs with a 95% percentage
of revisits out of all visits to that AP. However, the revisit
probability varies drastically among both APs and clients.

We model the associations as a Markov chain using as
state information the most recent AP visits. We are able
to predict with high probability (86%) the next AP with
which a wireless client will associate. This type of pre-
dictions can benefit several protocols and algorithms that
aim to improve the performance of the wireless infrastruc-
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tures by load balancing, admission control, and resource
reservation at APs.

Section II of this paper describes previous related re-
search; Section III explains our techniques for acquiring
the data for this study; Section IV describes our analy-
sis on the locality of the web URLs via the wireless in-
frastructure and presents different caching paradigms and
their performance. Section V provides insight about the
associations and movement of users on the campus and
discusses their access pattern. In Section VI, we summa-
rize our main results and discuss future work.

II. RELATED WORK

Collaborative caching among conventional clients in
the wired network has been analyzed by Duska et al. [4].
They find the benefit of such caching to be limited by the
diversity of clients’ requests and the non-cacheability of
many objects.

We examine the collaborative caching among wireless
clients by focusing on clients within the range of an AP as
well as other caching paradigms. We compare our results
on caching with other measurement studies on the wired
network [9], [3] in Sections IV and I-A.

There have been other studies of client mobility and
access patterns [5], [1], [8]. Bhattacharya and Sajal [2]
performed a study of client mobility patterns using a PCS

network, and propose a prediction mechanism based on
Markov states. Balachandran et al. [1] performed similar
measurements in a three-day conference setting, also fo-
cusing on the offered network load, and global AP utiliza-
tion. They characterized wireless users and their work-
load and addressed the network capacity planning prob-
lem. Both [1] and [8] analyze a setting and data traces
that are different from ours. The study closest to ours is
the one done by Kotz and Essien [5] that characterized
Dartmouth’s wireless network, examining global traffic
and AP utilization. We contrast our results with the Dart-
mouth study in detail in Section V. Moreover, we build on
the work in these papers by directing our attention to web
traffic. Instead of looking at global patterns of mobility,
we focus efforts on modeling an individual user. Unlike
any of these studies, we also examine the locality of infor-
mation and caching.

III. DATA ACQUISITION

Two sets of data were used in this study: traces of wire-
less clients’ web requests and logs of 802.11 MAC events
generated by wireless APs in the campus. These sets were
correlated using their timestamp information and thereby
allowing us to determine the AP from which each web
request was made.

A. Definitions

The campus is populated by people who have devices
that communicate with the campus wireless network; each
such device is called a client. Each client has a unique
MAC address, and is assigned a (positive) unique client
ID number based on its MAC address (see Section III-D
for details on the techniques used to ensure privacy).

The campus has many APs, each of which is a non-
moving bridge between the conventional campus network
and the wireless network. Since each AP has a unique
IP address, we use an AP’s IP address to determine its
(positive) unique AP ID number. Each AP has a coverage
area determined by radio propagation properties around
the AP. A client communicates via the network by asso-
ciating itself with an AP; we say synonymously that such
a client visits the AP. For a more detailed description on
how a client associates with an AP, see Section III-E.

B. Campus wireless network

The University of North Carolina at Chapel Hill began
deployment of an IEEE 802.11 network in 1999. Wire-
less access is available in many residence halls, academic
buildings, the medical school, and in some off-campus ad-
ministrative buildings. The campus uses primarily Cisco
Aironet 350 802.11 APs, although some areas on campus
are serviced by older APs from other manufacturers. We
observed 7,681 distinct wireless clients during the tracing
period February 10 through April 27, 2003, and observed
2,879 wireless clients making one or more HTTP requests
during the tracing period February 26 through March 24,
2003.

C. HTTP traces

The bulk of the campus wireless network has a single
aggregation point that connects to a gateway router. This
router provides connectivity between the wireless network
and the wired links, including all of the campus comput-
ing infrastructure and the Internet. We connected to a
monitor port on the gateway router, letting us monitor all
of the traffic that passed between the wireless network and
conventional wired networks. This tap link was connected
to a FreeBSD monitoring system. We used the tracing tool
tcpdump to collect all TCP packets that have payloads that
begin with the ASCII string “ GET” followed by a space.
The full frame was collected as a potential HTTP request.
We did not restrict our collection to the standard HTTP
port, allowing us to record HTTP requests sent to servers
on non-standard ports, which include many common peer-
to-peer file-sharing applications. The packet trace was
then processed to extract the HTTP GET requests con-
tained therein. From each packet, we kept these items:
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the time of the packet’s receipt (with one-second resolu-
tion), the hostname specified in the request’s Host header,
the Request-URI, and the hardware MAC address of the
wireless 802.11 client.

If all of these items were not available in a packet, then
we did not include the recorded packet in our recorded
requests. Using these criteria, 8,358,048 requests for
2,437,736 unique URLs were traced and included in the
analysis. By recording the traffic before it had passed
through an IP router, we were able to capture the orig-
inal MAC header as generated by the 802.11 clients for
transmission to the gateway router. To avoid violating our
users’ expectations of privacy, we do not store the host-
name, path, and client MAC address directly.

D. Privacy assurances

To avoid disclosure of the identity of individual users
and of the sites that a user is visiting, we store and use
SHA1 hashes of the client’s MAC address, the request
hostname, and the requested path. The MAC address
uniquely identifies an 802.11 network device; we assume
it to be coupled to a specific computer. Two requests are
considered to be from the same client if they were gener-
ated by clients that have the same hashed MAC address,
and two requests are considered to be for the same URL
if they have the same hashed hostname and request path.

E. Access point logs

The majority (232) of the APs on campus were config-
ured to send syslog events to a server in our department
between 12:00:00 am on February 10, 2003 and 11:59:59
pm April 27, 2003. During this trace period we recorded
8,158,341 syslog events for 7,694 clients, and 222 APs
distributed among 79 buildings. The following definitions
and rules closely follow those in Section 3 of the Dart-
mouth study [5].

1) Syslog events: There are seven types of events that
trigger an AP to transmit a syslog message. These mes-
sages and their corresponding events are interpreted as
follows:
Authenticated: A card must authenticate itself before us-
ing the network. Since a card still has to associate with
an AP before sending and receiving data, we ignore any
authenticated messages.
Associated: After it authenticates itself, a card associates
with an AP. Any data transmitted to and from the network
is transmitted by the AP.
Reassociated: A card may reassociate itself with a dif-
ferent AP (usually due to higher signal strength). After a
reassociation with an AP, any data transmitted to and from
the network is transmitted by the AP.

Roamed: After reassociation occurs, the old AP sends a
roamed message as well as the AP with which the card
has just reassociated. Since we still receive the reassoci-
ated message, we can ignore this message as well.
Reset: When a card’s connection is reset, a reset message
is sent. In our trace, cards with a reset message are only in-
volved in reset messages. We believe this to be an artifact
of us not having logs from all of the APs, and therefore
ignore any reset messages.
Dissasociated: When a card wishes to disconnect from
the AP it disassociates itself. We ignore any disassociated
messages for a card if the previous message for that card
was a disassociated or a deauthenticated message.
Deauthenticated: When a card is no longer part of the
network a deauthenticated message is sent. It is not un-
usual to see repeated deauthenticated messages for the
same card, with no other type of events for that card in be-
tween. We ignore any deauthenticated messages for a card
if the previous message for that card was a disassociated
or a deauthenticated message. A disconnection message
describes either a disassociated or deauthenticated mes-
sage.

2) Visits and sessions: Using the events as described
above, we need to define what visits and sessions are, as
well as some of their properties such as duration time. We
assume that each event occurs at the time of the timestamp
in the corresponding syslog entry. The exception is that if
a client is deauthenticated due to an inactivity period of 30
minutes (or more), we consider the disconnection to have
occurred 30 minutes before the timestamp that appears in
the corresponding deauthenticated syslog entry.
Events: Only the associated, reassociated, deauthenti-
cated, and disassociated events as mentioned above are
considered.
State: A state represents the AP with which client is cur-
rently associated with. When a client is connected to the
network, its state is the numeric ID of the AP it is cur-
rently associated with (via an association or a reassocia-
tion). When the client is disconnected from the network,
then its state is defined to be “0”. Since we do not know
where the clients are before the trace begins, each client is
considered to be in state 0 at the beginning of the trace.
State history: The state history of a client is the ordered
sequence of states that the client has visited.
Reconnection threshold: Sometimes a client will disas-
sociate or deauthenticate for a single second and then as-
sociate or reassociate. Whenever a client is disconnected
for one second or less, we do not consider the client to
have disconnected from or left the network, but instead
consider this to be part of the reconnection procedure. We
believe this to more accurately represent the user’s inten-
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tions.
These rules leave us with 2,389,066 useful syslog events

for 6,186 clients and allow us to define the following
terms:
Visit: A client begins a visit to AP when a (re)association
message is received from that AP for that client and ends
when any message from any AP is received for that same
client. The difference in the timestamp of these two mes-
sages defines the duration of the visit.
Session: A session is a sequence of visits to APs. A ses-
sion begins when a currently disconnected client receives
a (re)association message and ends when the next discon-
nection message is received. The difference in the times-
tamps between the disconnection message and the first
(re)association message defines the duration of the ses-
sion. A session can be mobile, roaming, or a visit.
Inter-AP transition: If a client is currently associated to
an AP, an inter-AP transition is defined as a (re)association
to a different AP. The two APs may or may not be in the
same building.
Inter-building transition: If a client is currently associ-
ated to an AP at a certain building, an inter-building tran-
sition is defined as a (re)association to an AP located in a
different building.
Roaming session: A roaming session is a sequence of
consecutive visits (with no disconnections) that includes
two or more distinct APs. A roaming session begins when
a currently disconnected client receives a (re)association
message and ends when the next disconnection message
is received. The difference in the timestamps between the
disconnection message and the first connection message
defines the duration of the roaming session.
Mobile session: A mobile session is a special type of
roaming session that comprises of a sequence of consecu-
tive visits (with no disconnections) to two or more differ-
ent buildings. A mobile session begins when a currently
disconnected client receives a (re)association message and
ends when the next disconnection message is received.
The difference in the timestamps between the disconnec-
tion message and the first (re)association message define
the duration of the mobile session.
Roaming client: A client with a roaming session is called
a roaming client.
Mobile client: A client with a mobile session is called a
mobile client.
Drop-in client: A drop-in client is a card that visits two or
more buildings in the period of time in question. Drop-in
clients may have disconnections in between the visits to
these buildings.

Event type Events Clients APs Buildings
Total syslog 8,158,341 7,694 222 79
Useful syslog 2,389,066 6,186 222 79

TABLE I
SUMMARY OF SYSLOG STATISTICS

F. HTTP requests model

We use a post-processing phase that conceptually ex-
amines every request in the HTTP trace and identifies the
AP via which it was made using the syslog trace. We cor-
relate the HTTP requests in the HTTP trace with the mes-
sages of syslog trace as follows: Let us assume that in the
HTTP trace an HTTP request appears as ( ��� � ��� ), where �
is the request URL,

�
is the time of the packet’s receipt at

the sniffer, and � the wireless client id. For each HTTP

request, we parse the syslog entries to find the last associ-
ation or reassociation message for the client with a times-
tamp earlier than the HTTP request time. If we find such
a message, we assume that this is the AP � from which
the client requested this data and generate a request of the
form ���	� � ���
���
� . For the next sections, we assume that we
have a stream of these requests in increasing order using
their timestamp. The URL identifies the request object.

IV. LOCALITY OF WEB OBJECTS

Web requests may exhibit different locality character-
istics. We will classify them into same-client, same-AP,
AP-coresident client, same-building, and campus-wide re-
peated requests. The above classification of the locality is
hybrid, in that it exhibits both temporal and spatial char-
acteristics. In the following sections, we discuss them and
present the locality that our client requests have.

A. Same-client repeated requests

A same-client repeated request occurs when a single
client requests an object that it has requested in the past.
The cause could be any of these:
Subsequent request. A client intentionally requests an ob-
ject that it has requested in the past, but could not be satis-
fied by the browser cache. Such a request would represent
genuine ongoing interest by some client.
Client reloads. A client reloads a page. This may occur
when the page has not been transmitted properly.
Automatic reloads. Many popular pages (such as
headline-news and weather sites) cause the browser to re-
load the page periodically. While the page is displayed,
the browser will periodically re-request it. Some of these
requests could also be considered indicative of continued
interest by the client.
Packet retransmissions. If the first packet containing the
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Symbol Description
Request representation r � �������	�
�����
��� � ���� �

time when request was received from sniffer���
URL or the request �� �
client sent request �� �
AP via which request � was sent�
total number of clients in the http trace�
the stream of requests in the entire HTTP trace�
set of buildings���
set of distinct clients that have requested URL

�� �� set of buildings from which client
�

requested
�� � ���	� state of client

�
at time

�
(AP id or “0”)

TABLE II
NOTATION FOR LOCALITY OF INFORMATION.

request was not known by the client to have reached its
destination, TCP specifies that the client retransmit the
packet. We record both requests as distinct requests.
However, we expect that such retransmissions are rare [6].

This study is subject to the effects of browser caching;
if the requested object is in the browser’s cache, then
no HTTP request will be generated. Some, but not all,
browsers follow HTTP’s specification for determining the
freshness of a cached object. Also, we speculate that a
percentage of the repeated requests are conditional HTTP

GET requests. This measure does not account for the lo-
cation of the client and therefore reveals temporal but not
spatial locality. We compute the temporal locality of these
requests as follows: For each request in the trace (such as� ���	� � ���
���
� for a URL � made at time

�
by client � via AP

� ), we check backwards in time for previous references to
the same URL � made by the same client � . If such request��� ����� � � ���
��� � � is found, we record the time that has elapsed
since this request occurred,

��� � � . The set of same-client
repeated requests for an time interval � is � � �!� � , where"$#&%('*)$+-,/.10�%(243�5638783(9:)<;>=@?BA�0DCE%(243!5�C
38783
9�CF)<;>=HGI5�JK5�C:LM'MN

.

B. Same-AP repeated requests

When an object is requested multiple times within the
same AP’s range, those are called same-AP repeated re-
quests. This measure does not account for the client that
makes the request; i.e., the repetition can occur due to a
single client or several clients requesting the same object
within a single AP’s range.

We compute the same-AP repeated requests as follows:
For each request in the trace, � ���	���
� � ��� � , we check back-
wards in time for previous references to the same ob-
ject � accessed from the same AP � . If such request��� ����� � � ��� � ���
� is found, we record the time that has elapsed
since that request occurred,

�<� � � . The set of same-AP re-
peated requests within a time interval � , ��O �!� � , is given
by

"$P1%('*)$+-,/.*0Q%(2R3�5B38783(9S)T;T=U?6AV0DCE%(243!5�C
387
CE3(9:)W;H=UGX5�JY5�C4LM'*N
.

C. AP-coresident-client repeated requests

At the heart of measuring spatial locality effects among
mobile web users is this: How often are users who are
interested in the same things near one another? We an-
swer this question by examining object and client-AP as
well as object and client-building correlations. These spa-
tial locality properties of wireless web access can impact
caching.

An AP-coresident client repeated request is said to oc-
cur when a client in an AP’s area requests an object that
has been requested at some time in the past by another
client who is in the same AP’s area at the time that the
new request is made. Note that this other client that re-
quested the object in the past, may have requested the ob-
ject while at a different location. This indicates that two
different clients have requested the same object and were
near one another at time of the second request.

For each request in the trace � ���	���
� � ���
� , we check
backwards in time for previous references to the same ob-
ject � made by a client � � that is currently at the same AP
� . If such request � � ����� � � ��� � ��� � � is found, we record the
time that has elapsed since this request occurred,

�Z� � � .
We compute the set of such requests O[� �!� � that occur
within the time interval � asP*#&%('Y)\+],B.K0�%(243�5638783(9:)^;_=-?`A*0 C %(243�5 C 387 C 3F9 C )^;W=aGH5\J^5 C L'bG_" �dc %F58)\+I9XN .
Figure 1 displays the fraction of same-client ( e �R� ), same-
AP ( e �:f ), and AP-coresident ( e f<� ) client repeated re-
quests g hjilknm:oEg

p>q(rDsut q 3
g hwv\kxm:oEg
pyq(rDszt q 3 and

g v{i\knm:o	g
pyq(rDszt q 3

respectively, for an interval � equal to one hour. More
specifically, the fraction of repeated requests at each
minute

�
in Figure 1 are the additional repeated requests
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Fig. 1. Fraction of repeated requests within a one-hour interval.
The number of requests considered is at least 7.6 million. Over 2,800
clients are represented.
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that occur in that minute of the first hour. For example,
within the first minute the fraction of repeated requests are
at least 0.19 for same-client (i.e., e �{� (1 min)) and same-
AP (i.e., e �:f (1 min)) and 0.01 for AP-coresident client
(i.e., e f�� (1 min)). In the second minute, an additional
0.04 fraction of requests are same-client (i.e., e �R� (2 min)-e �{� (1 min)) and same AP (i.e., e �:f (2 min)- e �{f (1 min)) re-
peated requests, and the fraction of additional repeated re-
quests is 0.005 for AP-coresident client repeated requests
(i.e., e f<� (2 min)- e f�� (1 min)). The plot shows that there is
periodicity in same-client and same-AP repeated requests
after 5, 10, 15, and 30 minutes. In AP-coresident client
repeated requests, however, there is no such correlation
in the web access patterns of clients. We find that the
fraction of repeated requests for same-client and same-
AP are similar and higher than that of AP-coresident re-
peated requests. As many as 37% of all requests would
be unnecessary if every object on the web had a cache
lifetime of at least an hour. This indicates the impact of
the client’s web browser cache, assuming that all browsers
observe the HTTP standard for caching. The repeated re-
quests follow a power law with exponent coefficients of
-1.31, -1.27, and -0.76 for same-client, same-AP, and AP-
coresident client, respectively. The coefficient of determi-
nation ( ��� ) is at least 0.94 for all of them. These coef-
ficients indicate that the temporal locality is more appar-
ent in the same-client but not in the AP-coresident client
caches.

We also computed the same-user repeated requests con-
sidering only the clients with high and low number of
inter-building transitions. Of the top five percent (309
clients), 240 request at least one web object and reach
52% same-client repeated requests with a mean and me-
dian of 40% and 41%, respectively. We also selected the
309 wireless clients that stayed within one building dur-
ing the entire trace period and had the highest number of
associations. Only 45 of these clients requested at least
one web object, and these reach 55% repeated requests
with a 42% mean and 40% median. Figure 2 shows the
fraction of repeated requests for an interval � equal to the
entire trace. For example, within a day the percentage of
repeated requests is 44% for same-client, 48% for same-
AP repeated requests, and only 15% for AP-coresidential
client repeated requests. In the second day, an additional
fraction 0.02 of requests are same-client and same AP re-
peated requests, and the fraction of repeated requests is
0.03 for AP-coresident client repeated requests.

Our results are conservative because they include com-
pulsory (cold start) misses. We minimize this effect by
taking measurement traces over 26 days. On the other
hand, we assume infinite cache and that shared documents

are cacheable. Therefore, the following hit ratios are ideal
hit ratios. A cache at each AP would achieve an ideal
hit ratio of 55% for the whole trace, whereas a cache that
serves the entire campus would achieve an ideal hit ratio
of 71%. There are APs with higher ideal hit ratios; for
example, an AP in an auditorium had an ideal hit ratio of
73% that corresponds to the 40,064 requests made by six
distinct users. We observe that 7% of all requests are for
objects that have been requested by a nearby client within
the last hour. Furthermore, this proportion varies widely;
at some locations on the campus, 15% of all requests were
for such objects. Also, lower number of HTTP requests
and fraction of repeated requests are made on weekends
than on weekdays [6], and several repeated requests ex-
hibit 24-hour periodicity.

Assuming web objects remain in a client’s web browser
cache for the entire trace period (26 days), the AP-
coresidential client cache would attain an ideal hit ratio of
25%, which is less than the ideal hit ratio for same-client
and same-AP caches within three minutes.

D. Same-building and campus-wide repeated requests

Same-building repeated requests are all the requests for
which at sometime in the past there was another request
for the same URL by a client from an AP in the same build-
ing as the one of the first request. We find that the fraction
of repeated requests (i.e., hit ratio) varies from 75% to
15%.

We investigated how the number of HTTP requests and
client population of a building may affect this hit ratio.
For each building, the total number of unique clients that
have sent at least one request from an AP in that building
represents the client population at the building and the to-
tal number of requests sent from an AP in that building the
request demand. The client population varies from 1,172
to 1 unique clients and the request demand ranges from
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Fig. 2. Fraction of repeated requests within the entire trace. The num-
ber of requests considered is at least 7.6 million. Over 2,800 clients are
represented.
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1,929,399 to 5 requests. We sorted the buildings in de-
creasing order with respect to their client population and
request demand. In both cases, there is a trend of declin-
ing hit ratio. However, the hit ratios across the buildings
exhibit high variance and we cannot draw any strong con-
clusions. It is part of future work to investigate possible
correlations of the hit ratios with building type (such as
educational, administrative, residential), session type, and
information access pattern.

We notice higher hit ratios than the ones reported in
similar studies over the wired infrastructure. For example,
in [9] the reported hits ratio for user populations of 200-
1000 are between 45% and 52%, whereas our results for
similar user population are in the range of 52% to 65%.
This range corresponds to the six most populated build-
ings (191 to 1,172 clients). For the campus-wide repeated
requests we count all the requests for which at sometime
in the past there was another request for the same URL

in our HTTP traces. Unlike these studies in which 25% to
40% of documents draw 70% of web access [3], our traces
indicate that a 13% of unique URLs draws this number of
web accesses. The UW study [9] reports a 59% ideal hit
ratio for a similar user population size in the wired infras-
tructure in a university campus.

E. Distinct-client location-dependent URLs

The same-AP repeated requests and AP-coresident-
client repeated requests give an indication of the spatial
locality of a URL but do not capture entirely the depen-
dency of repeated requests with a certain location. To bet-
ter describe the dependency of a URL access to a location,
we defined the distinct-client location-dependent property
(DCLD) as follows: A URL exhibits DCLD in a building
if a significant number of its repeated requests made by
different wireless clients or in different buildings (or both)
are made from that building.

Let us define the popularity � of a URL � to bep ��� � ��� � �� � , where � � is the set of distinct clients that
have requested URL � and � �� the set of buildings from
which client � has requested � . A URL � exhibits DCLD if
there exists a building ��� � , such that:p q
rDs
	���
 k�� � � 	q o� ��������� � ,

where � is its popularity, ��� �! � a certain threshold, �
the set of all buildings, and "�# �$� � O � a binary function that
indicates if �%�-O . The higher the threshold is, the higher
degree of spatial locality dependency a URL exhibits.

This definition disregards repeated requests from the
same client made from the same building because we want
to emphasize the sharing across different clients in a build-
ing. However, we do consider the requests issued by the

same client across different buildings, since this indicates
the client’s continuous interest in the information.

Let us define the following terms: & � �  � � � is the num-
ber of unique URLs with popularity great or equal to � .& � �  � �� � � � � is the number of unique URLs that exhibit spa-
tial locality dependency conditioned that their popularity
is greater or equal to � . & �('�) � � � is the number of re-
peated requests in which we only count once the requests
for the same URL by the same client and building, and
conditioned to have popularity greater or equal to � . Sim-
ilarly, we define the & �*'+)� �� � � � � for requests for URLs with
DCLD. We selected the DCLD threshold �,� �� � to be .50.
We computed the percentage of URLs & � �  � �� � that exhibit
DCLD with a popularity � in the range of 2 to 100. In
our HTTP trace, 2,365,197 unique URLs occur for a total
of 7,654,523 requests1. Out of the 7,654,523 there are& �('�) �*- � equal to 3,981,182 requests (i.e., sent by one or
more clients or in different buildings or both in the HTTP
trace).

Figure 3 shows the fraction of DCLD URLs as a function
of the URL popularity � . It also displays the percentage of
requests for these URLs. There are 290,130 unique URLs
for which at least two clients or the same client from two
different buildings tried to access them. Of these 290,130
URLs, 19% of them exhibit DCLD. As � increases, the
fraction of DCLD URLs decreases logarithmically. Fur-
thermore, DCLD URLs with high � truly exhibit spatial
locality.

V. CLIENT ASSOCIATION PATTERNS

Although there are 6,186 active clients in our trace,
we find that only 1,146 are active in an average day.
Similarly, only 185 APs were active in an average day..

Although there were 8,358,048 requests in the trace period, we
were only able to establish the client and the AP involved in the re-
quest 7,654,523 times.
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Fig. 3. Fraction of DCLD URLs and their respective requests. These
measurements correspond to our entire HTTP trace of more than 7.6
million requests for over 2,800 clients.
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Overall, APs in student residence buildings received more
(re)associations than APs in academic and office build-
ings. In terms of busiest time of day, APs in academic
and office buildings received more (re)associations during
the day, with the peak around 1pm, whereas APs in stu-
dent residence buildings received more (re)associations at
night. These results are in agreement with those in [5].
We investigate the association patterns by examining how
many and what type of clients, transitions, and sessions
there are.

A. Client classification

We are interested in comparing the number of clients
that there are each day, as well as finding out if they are
roaming, mobile, or drop-in clients. We find that on an
average day, there are 436 roaming, 231 drop-in, and 111
mobile clients. The number of daily roaming clients is
about twice as much as those reported in [5], but the num-
ber of daily clients that visit two or more buildings is about
the same.

We investigated and think that this could be due to the
fact that the number of APs in our trace is about half the
number of APs in [5], even though our user population
is more than three and a half times larger. Our campus
is larger than Dartmouth’s, and therefore it is more likely
that in Dartmouth two APs in two different buildings share
a coverage area. This would explain the larger percentage
of drop-in cards seen in [5].

A client’s number of inter-building transitions is an in-
dicator of its mobility. We obtain a relative measurement
of its mobility by comparing this number to the total num-
ber of visits and inter-AP transitions. In our trace, we
found the average of all clients to be 363 visits, 164 inter-
AP transitions, and 32 inter-building transitions. The me-
dian of all clients is 57 visits, 40 inter-AP transitions and 6
inter-building transitions in the entire trace. If the average
client visits an AP, the AP will be a different AP than the

Fig. 4. Statistics for the path length of all 6,186 clients.

one it is currently connected to 28.8% of the time, and it
will be in a different building 7.8% of the time. If the visit
is to a different AP, then the likelihood that this AP is in a
different building is 20.2%.

To model the mobility pattern of a wireless client, we
would like to compute the characteristics of its movement
while connected. For that we define the AP path to be the
sequence of continuous inter-AP transitions. For exam-
ple, if an wireless client that was originally disconnected,
connects to APs 1, 2, 1, 1, and 10, before disconnecting,
its path is “1 2 1 10”. The length of this AP path is three.
The building path is similarly defined. Figure 4 shows
the mean and median for the maximum and mean AP and
building path length of all users.

B. Session duration

We are also interested in investigating how long each
client remains connected to the network. Our results show
that most of the sessions, 55.1%, last less than 30 min-
utes, and 67.2% last less than one hour. We found that
only 15.8% of our sessions lasted less than one minute (as
opposed to 27% reported in [5]). We believe that since
all of the incoming undergraduate students are required to
buy a wireless laptop, there are more wireless clients that
remain stationary in user’s dorm. These stationary clients
increase the number of long sessions, which could explain
why our numbers are lower than those in [5] .

C. Next-state prediction

We measured the overhead for associating with an AP
and found that the delay from the time the first association
request was captured until the association is successfully
completed has a 95% confidence interval for the mean of
(136 ms, 157 ms). Such overhead in addition to end-to-
end delays can be prohibitive for several real-time multi-
media applications. The prediction of the next association
can be used to mask this delay by buffering and prefetch-
ing data. APs can use it to predict their traffic and co-
ordinate with their neighbor APs for load balancing and
better utilization of their buffer and wireless bandwidth.
In addition, the association protocol could be enhanced
by advising the client to avoid hot spots.

We use a client’s state history to develop a model that
predicts the # th state of the client, given its most re-
cent state history. Our prediction model is based on a
Markov chain and uses the current state to predict the
next. For each client, we construct the first order Markov
chain based on the client’s state history. Each state of the
Markov chain corresponds to a state as defined in Sec-
tion III. The transition probability from state � to state �
is the relative frequency of the sequence of states ������� in
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the client’s state history. This corresponds to the � � � en-
try of the transitional probability matrix

� ���6�
. We extend

our prediction model by using the previous as well as the
current state to predict the next. In this prediction model,
we compute the relative frequencies of � � � ��� � . This corre-
sponds to the ��� � � � entry in the three-dimensional matrix� � � � . 2

We describe three variations on our prediction algo-
rithms depending on the amount of history considered in
building our two prediction models:
One-state history: This model is the one-state history as
discussed above. The first # � - states are used to build� ���6�

. We predict the next state to be the state � � such
that � maximizes

� ���6� � � � � � . The error making this sin-
gle prediction of the next state # is ���	� - � � ���6� � � � � �
One-state window: If the # � - th state occurs at time

�
,

this model uses the sequence of states that occur between�1��

�
hours and

�
to build its probability matrix. It then

predicts the # th state in the same way the one-state history
model predicts the next state.
Max of one-state window and history: This model com-
putes the probabilities with which the one-state history
model and the one-state window model predict the next
state to be. It then selects the state that has the highest
probability and predicts that state to be the next state with
the same probability as that of the model chosen.
Two-state history : This model is the two-state history
model discussed above. The first # � - states are used to
build

� � � � . Let the # ��

th state be � � and the # � - th state

be � � . We predict the next state to be the state � � such that
� maximizes

� � � � ����� � � � � . The error in the single predic-
tion of the next state # is ����� - � � � � � ��� � � � � � .
Two-state window: If the # � - th state occurs at time

�
,

this model uses the sequence of states that occur between�1��

�
hours and

�
. It then predicts # th state in the same

way the two-state history model predicts the next state.
Max of two-state window and history: This model com-
pares the probabilities with which the two-state history
model and the two-state window model predict the next
state. It then chooses the state that has the highest prob-
ability and predicts that state to be the next state with the
same probability as that of the model chosen.

We allow our models to “warm up” before making a
prediction. Let � � ��� � � � ��� be the collection of states used
in the warm-up process, and � � �(' � � �
� be the collection of
states for which the models make a prediction. After ob-
taining all ��� � � ��� � � � �
� , each model predicts what the
�
There are some storage considerations. For example, a very mo-

bile client can visit half of the total number of APs. Storing a sin-
gle client’s three-dimensional � matrix for 128 APs for a single day
requires about 8MB of memory. Storing a four dimensional matrix
would require about 1GB of memory.

next state will be and then reads in the actual next state
from � � �*' � � �8� . The prediction is then marked as correct or
incorrect, and ��� is computed. The model is then updated,
and a new prediction is made. This cycle continues until
there are no more states in � � �*' � � �8� to be read in.

To obtain an overall idea of how well the model is per-
forming after a given number of predictions, we compute
the correct prediction percentage and the prediction error
�
� thus far. For each model, the correct prediction percent-
age is the fraction of times that the next state was pre-
dicted correctly. The prediction error after predicting #
states is defined as the mean of the error of all predictions
made.

Only 3,984 (or 64% of) the 6,186 active clients have
more than 25 syslog entries; the following results are for
these clients only. A good rule of thumb is that if there
are more than 30 samples, the central limit theorem can
be applied. We find that there are only 31 clients with
at least 8,012 states. The mean correct prediction per-
centages for predicting state 8,012 were 81.36%, 82.16%,
and 84.85% for the one-state history, one-state window,
and max of one-state window and history models, re-
spectively. For the two-state history, two-state window,
and max of both two-state window and history model,
the mean correct prediction percentages were 83.68%,
83.19%, and 85.59%, respectively.

Figure 5 illustrates the percentage of correct predictions
after each entry. The one-state history and the one-state
window history model have similar correct prediction per-
centages, and that the two-state models perform slightly
better than their one-state counterparts. The one-state his-
tory, one-state window, and max of one-state history and
window had a prediction error of 0.26, 0.23, and 0.21,
respectively, and their two-state counterparts had a pre-
diction error of 0.23, 0.22, and 0.20, respectively. The
standard deviations for the correct prediction percentages
are all less than 0.19 for the one-state models and less than
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0.18 for the two-state models. The standard deviations for
the prediction error are all less than 0.23 for the one-state
models and less than 0.21 for the two-state models. Note
that by maintaining information about the last 2,000 en-
tries the max of two-state history and window achieves a
correct prediction percentage of at least 82.17%. This sug-
gests that if storage space is a concern, the model can be
implemented in a slightly different manner that uses only
a certain number of entries such that it is space efficient
and still has a high correct prediction percentage.

We find that the top five percent of clients in terms of
total number of inter-building transitions who also have
8,012 events have a correct prediction percentage of 79%
for predicting state 8,012. Figure 6 illustrates the correct
prediction percentage after 80,000 entries instead of 8,000
entries and Figure 7 shows the error in making each of
those predictions.

We also incorporated a time component into the se-
quence of states as described in [2]. This method pro-
duces additional states by polling for a client’s state at
regular time intervals and thereby creates a state history
based on both movement and time. Some clients are dis-
connected for long intervals of time, and during this time
polling introduces long sequences of 0. This in turn tends
to overestimate the performance of the predictor, since it
will have an extremely high correct prediction percentage
during periods of disconnection. We therefore decided to
use this movement and time model, but only predicted the
next state if the client’s current state is a connected state.
The mean correct prediction percentage using the max of
two-state window and history model was 87% at the last
entry for which there were more than 30 clients.

D. Revisits

We want to find how likely it is for a client to visit an
AP that it has visited within a certain time interval. We
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may be able to improve the caching at an AP if we use
information about the frequency that clients revisit that
AP after visiting a different AP. This can provide some
guidelines for how long a user’s information (e.g., profile,
cache) should be stored in an AP.

For a given client, we use its state history with a times-
tamp that indicates when the client visited each state. For
a time interval � , we define its revisit probability at each
state � � as the fraction of times this client is visiting � �
within a time period � since its last visit to � � , and also
has at least one visit to any other state � � in between the
two visits to � � . For a given AP, we compute the fraction
of all visits made by all users that were revisits.

We found that the mean revisit probability for an one-
hour interval � is 20% for clients and 40% for APs.
However, the revisit probability varies drastically among
APs and clients, varying between 0 and 95% among APs
and 0 and 99% among clients. Figure 8 shows for each
AP the probability that a visit at that AP was a revisit and
Figure 9 shows the probability that a visit was a revisit
for each client. In both figures the id of the APs and the
clients were sorted in increasing order of revisit probabil-
ity to improve readability. The median revisit probability
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was 40% and 6% for APs and clients, respectively. There-
fore, a cache with a lifetime of one hour at each AP would
be beneficial.

E. Requests during transition periods

In this section, we identify the wireless information ac-
cess that occurs during a transition from one AP to an-
other. We define the transition period as the time interval
that starts five seconds before a (re)association to a new
AP and ends five seconds after that (re)association occurs.
For example, if the client is associated with an AP O � �
and there is a (re)association with O � � (where ���� � ) at
time

�
, then the transition interval is � �V��� � �����	� . A tran-

sition is an inter-building transition when the two APs are
in different buildings. Tables III and IV show the access
pattern during such transitions.

VI. CONCLUSIONS AND FUTURE WORK

To support wireless mobile users, it is crucial to provide
robust and intelligent wireless infrastructures. This moti-
vated us to explore characteristics of the wireless infras-
tructure that provide opportunities for caching, prefetch-
ing, wireless coverage planning, and resource reservation.
We conducted a one-month measurement study of locality
phenomena among mobile wireless users and their asso-
ciation patterns on a major university campus using the
wireless infrastructure. This infrastructure provides cov-
erage for nearly every building in the 729-acre campus.

We found that each client frequently requests objects
that it has requested within the past hour, and occasionally
requests objects that had been requested by other nearby
users within the past hour. The overall ideal hit ratios
of the user cache, cache attached to an AP, and peer-to-
peer caching (where peers are coresident within an AP)
paradigms are 51%, 55%, and 25%, respectively. A cache
at each AP would achieve an ideal hit ratio of 55% for the
whole trace, whereas a cache that serves the entire cam-
pus would achieve an ideal hit ratio of 71%. There are

Access pattern (before and/or
after AP transition)

Clients Requests Requests per user
(mean, std dev)

any URL before or after 603 35,409 58.72, 162.82
any URL before and any after 289 1,144 3.95, 6.53
same URL before and after 100 1,039 10.39, 34.91

TABLE III
WEB ACCESS DURING WIRELESS TRANSITIONS BETWEEN APS.

Access pattern (before and/or
after building transition)

Clients Requests Requests per user
(mean, std dev)

any URL before or after 146 3,139 212.50, 43.45
any URL before and any URL

after
40 90 2.25, 2.30

same URL before and after 9 12 1.33, 0.50

TABLE IV
WEB ACCESS DURING WIRELESS TRANSITIONS BETWEEN APS OF

DIFFERENT BUILDINGS.

APs with higher ideal hit ratios; for example, one AP in
an auditorium had an ideal hit ratio of 73% that corre-
sponds to 40,064 requests (which is the total number of
requests made by six distinct users). Same-AP caching is
beneficial for these APs.

Unlike previous studies on the wired network in which
25% to 40% of documents draw 70% of web access [3],
our traces indicate that 13% of unique URLs draws this
number of web accesses. We plan to extend this study by
comparing traffic characteristics (applications and content
type) of the wired vs. wireless infrastructures at UNC for
the same period. We are considering applying clustering
techniques to detect user traffic and association patterns.

The peer-to-peer caching system demonstrates a 25%
ideal hit ratio for web requests. However, the web is not
primarily a location-dependent or collaborative applica-
tion and as such we also observed a low percentage of
URLs with the DCLD property. URLs accessed by high
mobile users exhibit a DCLD percentage that is more than
three and a half times that of the URLs accessed by low
mobile users when � equals 25. The peer-to-peer caching
systems that initially motivated this study, such as 7DS [7],
require the objects to be cacheable. Stale objects should
not be distributed, but many popular objects on the web
are not cacheable by the HTTP standard [4]. It appears
that content providers use cacheability to force reloads
of their pages for reasons other than document freshness
(such as distributing new advertisements). This use of the
cacheability mechanisms works well enough in fully con-
nected environments, but is a limiting factor for weakly
connected systems as we describe here. We intend to mea-
sure cacheability of objects in wireless traffic and address
this issue; ideally, an object should be cached only for its
true useful lifetime, while content providers receive the
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feedback they need.
We are interested in learning how different traffic types

correlate with buildings, user devices, and their locality
properties, especially in the arena of location-dependent
and collaborative applications for mobile users. For that,
we are implementing several collaborative and location
dependent systems, including a note-sharing system for
use in presentations and also a location-sensing interactive
map tool. We plan to perform measurements of the local-
ity effects in settings with these applications deployed as
well as corporate ones.

For the support of applications with strict real-time re-
quirements, APs need to monitor user traffic and associ-
ations and apply efficient load balancing, admission con-
trol, and resource allocation mechanisms. Prediction al-
gorithms for the traffic demand and visits per AP and
client would assist the development of intelligent and ro-
bust wireless infrastructures. The Markov chain based
predictions of the next state can achieve an 86% cor-
rect prediction percentage. We plan to expand the next-
association prediction by incorporating additional infor-
mation such as weekday, duration at an AP, different time-
scale associations patterns of each user, and campus net-
working and physical topology.

We found that the median of revisits within one hour
for all APs is 40%. The prediction of the client revisits
to an AP within an interval of time and next association
can be used to mask the end-to-end delay and association
overhead. This can be done by buffering, prefetching, and
maintaining data related to client interests, profile, or web
access. APs can use similar techniques to predict their
traffic, not only the number of associations, but also data
transferred. They can use their predictions to coordinate
with neighboring APs for load balancing and better uti-
lization of their buffer and wireless bandwidth. In addi-
tion, the association protocol could be enhanced by advis-
ing the client to avoid hot spots and suggesting alternative
APs.

We found the average of all clients to be about 363 vis-
its, 164 inter-AP transitions, and 32 inter-building transi-
tions during our trace period. If the average client visits
an AP, the AP will be a different AP than the one it is cur-
rently connected to 28.8% of the time, and it will be in
a different building 7.8% of the time. If the visit is to a
different AP, then the likelihood that this AP is in a differ-
ent building is 20.2%. We plan to extend this study and
model the inter-building transitions and visit durations at
an AP and in a building. Administrators can also use sim-
ilar statistics as the ones performed in Section V to deploy
efficient wireless infrastructures.

There are many challenges on how to provide effi-
cient caching and prefetching mechanisms and content

networks that enhance the information access of mobile
users. To our knowledge, this is the first empirical study
that analyzes spatial locality properties of the wireless
web access. We believe that spatial locality can have a
dominant impact on the mobile information access and
this study sets the directions for exploring further such is-
sues.
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