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Abstract

Frequent subgraph mining is an active research topic
in the data mining community. A graph is a general
model to represent data and has been used in many do-
mains like cheminformatics and bioinformatics. Min-
ing patterns from graph databases is challenging since
graph related operations, such as subgraph testing, gen-
erally have higher time complexity than the correspond-
ing operations on itemsets, sequences, and trees, which
have been studied extensively. In this paper, we propose
a novel frequent subgraph mining algorithm: FFSM,
which employs a vertical search scheme within an alge-
braic graphical framework we have developed to reduce
the number of redundant candidates proposed. Our
empirical study on synthetic and real datasets demon-
strates that FFSM achieves a substantial performance
gain over the current start-of-the-art subgraph mining
algorithm gSpan.

1. Introduction

Frequent pattern mining of structured data such as
trees and graphs has attracted much research inter-
est because of its varied applications. Recurring pat-
terns in structured datasets can provide unique insight
into the underlying relations being modeled and are the
starting point for subsequent researches such as clus-
tering and classification.

A graph is a particularly generic representation that
is used in many domains. For example, the chemi-
cal structure of a given substance can be modeled by
an undirected labeled graph in which each node cor-
responds to an atom and each edge corresponds to a
chemical bond between atoms. In the Predicative Tox-
icology Evaluation Challenge (PTE) [10], the task is to
find frequently occurring substructures that are corre-

lated with toxic substances. Borgelt and Berthold [1]
demonstrated the power of the graphical representa-
tion and frequent subgraph mining technique for this
problem. Other applications of mining patterns from
graph databases include video indexing [9], improving
storage efficiency of semi-structured databases [3], ef-
ficient indexing [4] and web information management
[12, 8].

There are on-going efforts to apply the frequent sub-
graph mining techniques to large and complex datasets.
In the current popular applications such as PTE, the
graphs are relatively small (on the order of 20 nodes
and edges), have low average degree per node (≤ 4),
and have a large number of node labels (> 60) [7, 11].
However, there are applications that have more chal-
lenging characteristics. Take the task of identifying
frequently occurring residue motifs in proteins for ex-
ample. In this case each graph represents a protein.
The nodes of the graphs are residues (amino acids), of
which there are only 20 varieties, and there is an un-
labeled edge between two nodes when the associated
residues are in close proximity. Residues that occur in
a similar spatial relationship are thought to have func-
tional significance, and hence an interesting problem
is to mine graphical representations of proteins for fre-
quently occurring subgraphs. Compared with the PTE
application, the size of the individual graphs is much
larger (on the order of 100 - 1000 nodes and edges), the
degree per node can be much higher (6 - 20 in some in-
stances), the number of labels is small (20), and the
database contains a larger number of graphs.

At the core of any frequent subgraph mining algo-
rithm are two computationally challenging problems 1)
subgraph isomorphism: determining whether a given
graph occurs in another graph and 2) efficient enumer-
ation of all frequent subgraphs. Generally the number
of possible isomorphisms/subgraphs increases with the
size and number of graphs in a graph database. To
design algorithms that scale to larger databases and



complex graphs, it is imperative to focus on efficient
frequent pattern mining and isomorphism algorithms.
This is the basic motivation for this work.

1.1 Related Work

Since frequent subgraph mining is computationally
challenging, early research in this field focused either
on approximation techniques such as SUBDUE [5] or
methods applicable mainly for small database like In-
ductive Logic Programming [2].

Recent subgraph mining algorithms can be roughly
classified into two categories. Algorithms in the first
category use a level-wise search scheme like Apriori
to enumerate the recurring subgraphs. Example algo-
rithms in this category include AGM [6] proposed by
Inokuchi et al. and FSG [7] proposed by Kuramochi
and Karypis. AGM finds all frequent induced sub-
graphs in a graph database. An induced subgraph G’
of graph G has nodes V (G′) ⊆ V (G) and contains all
edges of G connecting nodes in V (G′). FSG, on the
other hand, finds all frequent connected subgraphs in
a graph database. As pointed out by [7], unconnected
frequent subgraphs can be obtained using a frequent
itemset mining algorithm once the frequent connected
subgraphs have been identified.

Algorithms in the second category use a depth-first
search for Finding candidate frequent subgraphs. Ex-
ample algorithms in this category include gSpan [11],
proposed by Yan and Han, and the algorithm of Borgelt
et al. [1]. Both algorithms find frequent connected sub-
graphs in a graph database but differ in how they enu-
merate candidate subgraphs. In gSpan, a frequent sub-
graph G is extended to a candidate frequent subgraph
G′ by choosing a node v in G and adding an edge (v, w)
where w is a node in G or not. Instead of enumerating
all the subgraph isomorphisms, the method proposed
by [1] keeps a list of all subgraph isomorphisms of a fre-
quent subgraph G. This has several advantages. First,
it avoids subgraph isomorphism testing, which gener-
ally becomes the performance limiting factor of gSpan
when dealing with large and complex (denser graphs
with less available labels) graphs. Second, given the
list of all subgraph isomorphisms, we can turn previ-
ous costly graph operations, such as graph join [7], into
much more efficient operations, as described in Section
3.3.

1.2 Our Contributions

In this paper, we present a new algorithm, FFSM
(Fast Frequent Subgraph Mining) for finding all fre-
quent connected subgraphs in a graph database. Our

method follows the approach of the depth-first search
schemes in [11, 1], but incorporates new techniques to
improve efficiency.

The key features of our method are: (i) a novel graph
canonical form and two efficient candidate proposing
operations: FFSM-Join and FFSM-Extension, (ii) an
algebraic graphical framework (suboptimal CAM tree)
to guarantee that all frequent subgraphs are enumer-
ated unambiguously and (iii) completely avoiding sub-
graph isomorphism testing by maintaining an embed-
ding set for each frequent subgraph.

In an experimental study we investigate the perfor-
mance of FFSM on two chemical benchmark datasets,
for which [11] reports performance results of gSpan,
the current state-of-the-art frequent subgraph mining
algorithm. We also assess the performance of FFSM on
synthetic graph datasets with different characteristics.

Our experimental study shows that FFSM is com-
petitive with gSpan on all inputs and outperforms
gSpan by a factor of seven on a commonly studied
chemical compound benchmark.

The remainder of this paper is organized as fol-
lows. In section 2 we provide some background for
graph isomorphism and define the frequent subgraph
mining problem. Section 3 presents the major data
structure: the canonical adjacency matrix (CAM) rep-
resentation of (sub)graphs and the canonical adjacency
matrix tree. Section 3 also describes the enumeration
strategy we developed for frequent subgraph mining.
Section 4 presents our empirical performance evalua-
tion of FFSM using both synthetic and real datasets.

2 Background

Definition 2.1 A labeled graph G is a five element
tuple G = {V, E, ΣV , ΣE, l} where V is a set of vertices
and E ⊆ V ×V is a set of undirected edges. ΣV and ΣE

are the sets of vertex labels and edge labels respectively.
The labeling function l defines the mappings V → ΣV

and E → ΣE. Without loss of generality, we assume
that there is a total order ≥ on each label set ΣV and
ΣE.

Definition 2.2 Given a pair of labeled graphs G =
(V, E, ΣV , ΣE , l) and G′ = (V ′, E′, Σ′

V , Σ′
E , l′), G is an

subgraph of G′ iff

• V ⊆ V ′,

• ∀u ∈ V, (l(u) = l′(u)),

• E ⊆ E′,

• ∀(u, v) ∈ E, (l(u, v) = l′(u, v)).
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Figure 1. Examples of two labeled graphs and a sub-
graph isomorphism. Graph P has four nodes p1, p2,
p3, and p4. Graph Q has three nodes q1, q2, and q3.
The labels of the nodes are specified within the cir-
cle and the labels of the edges are specified along the
edge. Throughout this paper, we assume the follow-
ing total order a ≥ b ≥ x ≥ y ≥ 0. The mapping
q1 → p3, q2 → p1, q3 → p2 represents a subgraph
isomorphism from graph Q to P . There are a total of
four subgraph isomorphisms from Q to P , neverthe-
less the support of Q in GD = {P} is 1.

G′ is also referred to as a supergraph of G.

Definition 2.3 A labeled graph G = (V, E, ΣV , ΣE , l)
is isomorphic to another graph G′ =
(V ′, E′, Σ′

V , Σ′
E , l′) iff there exists a bijection

f : V → V ′ such that

• ∀u ∈ V, (l(u) = l′(f(u))),

• ∀u, v ∈ V, ((u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′), and

• ∀(u, v) ∈ E, (l(u, v) = l′(f(u), f(v))).

The bijection f is an isomorphism between G and G′.
We also say that G is isomorphic to G′ and vice versa.

Definition 2.4 A labeled graph G is subgraph iso-
morphic to a labeled graph G′, denoted by G ⊆ G′, iff
there exists a subgraph G′′ of G′ such that G is isomor-
phic to G′′.

An example of labeled graphs and a subgraph iso-
morphism is presented in Figure 1.

Definition 2.5 Given a set of graphs GD (referred as
a graph database) and a threshold σ (0 < σ ≤ 1),
the support of a graph G, denoted by supG is defined
as the fraction of graphs in GD to which G is subgraph
isomorphic.

supG =
|{G′ ∈ GD | G ⊆ G′}|

|GD|
G is frequent iff supG ≥ σ.

The frequent subgraph mining problem is given
a threshold σ and a graph database GD, finding all
frequent subgraphs in GD.
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Figure 2. Top: three adjacency matrices for the
graph P in Figure 1. After applying the to-
tal ordering, we have code(M1) = “axbxyb0yyb”
≥ code(M2) = “axb0ybxyyb” ≥ code(M3) =
“bybyyb0xxa”. For adjacency matrix M1, the
edge entry set is {m2,1, m3,1, m3,2, m4,2, m4,3} where
m2,1, m4,3, and m4,2 are the first, last, second-to-last
edge entries of M , respectively. Bottom: examples
of maximal proper submatrices. Matrix 3.a is the
proper maximal submatrix of matrix 3.b, which itself
is the proper maximal submatrix of 3.c and so forth.

3 Mining Frequent Subgraphs

3.1 Canonical Adjacency Matrix

In FFSM, we represent each graph by an adjacency
matrix M such that every diagonal entry of M is filled
with the label of the corresponding node and every off-
diagonal entry is filled with the label of the correspond-
ing edge, or zero if there is no edge. This is slightly
different from the widely used adjacency matrix repre-
sentation for unlabeled graphs.

One of the critical problems in graph mining is the
graph isomorphic problem: given two graphs P and
Q, determine whether P is isomorphic to Q. We solve
this problem following a common theme such that first
transforming each graph into its unique presentation
(referred to as the canonical form of a graph) and sec-
ondly, comparing the transformed presentations. The
canonical form is specially designed s.t. if two graphs
are isomorphic to each other, their canonical forms are
the same and vice versa. We will elaborate the canon-
ical form further in the subsequent discussion.

Following convention, we use a capital letter to de-
note an adjacency matrix and use the corresponding
lower case letter (augmented with subscripts) to de-
note an individual entry of the adjacency matrix. For
instance, we use mi,j to denote the entry on the ith
row and jth column of the adjacency matrix M , where
0 < j ≤ i ≤ n. Note that the adjacency matrix is not



unique for a given graph. Since each diagonal entry
represents a vertex in the graph, each permutation of
the set of vertices corresponds to a different adjacency
matrix. There may be n! different adjacency matrices
for a graph of n vertices. Figure 2 (top) shows three
adjacency matrices for the labeled graph P in Figure
11. In order to enable a unique representation for each
graph, we define the code of adjacency matrices which
provides a total order among all adjacency matrices.

Definition 3.1 Given an n × n adjacency matrix
M of a graph G with n vertices, we define the
code of M , denoted by code(M), as the sequence
formed by concatenating lower triangular entries of
M (including entries on the diagonal) in the order:
m1,1m2,1m2,2...mn,1mn,2...mn,n−1mn,n where mi,j is
the entry at the ith row and jth column in M (0 <
j ≤ i ≤ n). We assume that the rows in M are num-
bered 1 through n from top to bottom and the columns
are numbered 1 through n from left to right.

For an adjacency matrix M , each diagonal entry of
M is referred to as a node entry and each off-diagonal
none-zero entry in the lower triangular part of M is
referred to as an edge entry. We order edge entries
according to their relative positions in the code of the
matrix and refer to the first edge entry of M as the left-
most edge entry that appears in code(M) and the last
edge entry as the one appears rightmost in code(M).

Figure 2 shows codes and edge entries for the labeled
graph P showing in Figure 1.

We use standard lexicographic order on sequences
to define a total order of two arbitrary codes p and q.
Given a graph G, its canonical form is the maximal
code among all its possible codes. The adjacency ma-
trix M which produces the canonical form is defined
as G’s canonical adjacency matrix (CAM). For exam-
ple, the adjacency matrix M1 shown in Figure 2 is the
CAM of the graph P shown in Figure 1, and code(M1)
is the canonical form of the graph.

Notice that we use maximal code rather than the
minimal code used by [7, 6] in the above canonical form
definition. This definition provides important proper-
ties for subgraph mining, as explained below.

3.2 CAM’s Suboptimal Property and the CAM
Tree

In this section, we focus on a single undirected con-
nected graph. We return to unconnected graphs and
graph databases in section 3.4.

1Only the lower triangular part of an adjacency matrix is
drawn since the upper half is a mirror of the lower half

A key property of the canonical form is that a “pre-
fix” of the canonical form is also maximal, which is
stated in the following theorem.

Theorem 3.1 Given a connected graph G and a sub-
graph H of G, let A and B be the CAMs of G and H
respectively. We have code(A) ≥ code(B).

Given a n × n matrix N and a m ×m matrix M ,
let ml,k be the last edge entry of M , and assume that
M has at least two edge entries in the last row. N is
the maximal proper submatrix of M iff:

n = m, and

ni,j =




mi,j
0 < i, j ≤ n ∧ (i 	= l ∧ j 	= k)
∧(i 	= k ∧ j 	= l)

0 otherwise

Similarly, if M has only one edge entry in the last row,
N is the maximal proper submatrix of M iff n = m−1,
and ni,j = mi,j (0 < i, j ≤ n).

Since M represents for a connected graph, it is not
necessary to consider a situation where there is no edge
entry in the last row of M .

Several examples of the maximal proper submatrices
are given at the bottom of Figure 2.

Corollary 3.2 Given a CAM M of a connected graph
G and M ’s submatrix N , N represents a connected sub-
graph of G.

Proof outline: since N must represent a subgraph of
G, it is sufficient to show the subgraph N represents is
connected. To prove this, it is sufficient to show that
in N there is no such row i (with the exception of the
first row) that i doesn’t contains any edge entry. The
detailed proof is in Appendix A.1.

Corollary 3.3 Given a connected graph G with CAM
M , M ’s submatrix N , and a graph H which N repre-
sents, N is the CAM of H.

Proof outline: Let’s first assume M has only one edge
entry in the last row. It is trivial to show that code(N)
is a prefix of code(M). According to theorem 3.1, we
can not find a subgraph (including the graph N repre-
sents) such that its code might be greater than any
equal length prefix of code(M). This suggests that
we have code(N) ≥ code(CAM(H)), where CAM(H)
stands for the canonical adjacency matrix of graph H .
Therefore N must be the CAM of the graph H .

For a CAM with at least two edge entries in the last
row, a similar proof could be used. Interested reader
might verify this result using the examples we give out
at Figure 2.
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Figure 3. The CAM Tree of the graph P in Figure
1. Every matrix obtained by a join operation is spec-
ified by a label starting with c. and then the type of
the join operation e.g. c.3a stands for join case3a. A
CAM obtained by an extension operation is labeled
with e. The join and extension operations are dis-
cussed in section 3.3.1 and 3.3.2, respectively. CAMs
(size ≥ 3) without label are explained in section 3.3.3
where suboptimal CAMs are discussed. CAMs with
one/two edges are obtained by an initial step (dis-
cussed in section 3.4) which involves directly scanning
nodes/edges in a graph database and hence no label
provided.

If we let an empty matrix be the maximal proper
submatrix of any matrix with size 1, we can organize
all the CAMs of connected subgraphs of a graph G into
a rooted tree as follows:

• The root of the tree is an empty matrix;

• Each node in the tree is a distinct connected sub-
graph of G, represented by its CAM;

• For a given none-root node (with CAM M), its
parent is the graph represented by M ’s maximal
proper submatrix;

The tree obtained in this fashion is denoted as the
CAM tree of the graph G. Figure 3 shows the CAM
tree of the graph P from Figure 1.

3.3 Exploring the CAM Tree: Join, Extension
and Suboptimal CAMs

The current methods for enumerating all the sub-
graphs might be classified into two categories: one is
the join operation adopted by FSG and AGM [6, 7].
A join operation takes two joinable frequent k-edge
graphs G1 and G2 and produces a (k + 1)-edge graph
candidate G such that both G1 and G2 are subgraphs
of G. Two k-edge graphs are joinable if they share a
common (k− 1)-edge subgraphs. The join operation is
expensive, as shown in [7], in that a single join opera-
tion might generate multiple graph candidates and one
candidate might be redundantly proposed by multiple
distinct join operations.

On the other hand, [1, 11] use an extension operation
to grow an existing frequent graph. An extension op-
eration produce a (k + 1)-edge graph candidate from a
frequent k-edge graph G by adding an additional edge
to G (with/without introducing an additional node).
This operation is also costly since for a given graph,
there are many nodes in the graph that an additional
edge might be attached to.

Keeping all the existing algorithms in mind, we list
some of the key design challenges to achieve efficient
subgraph enumeration:

(i) Can we design a join operation such that ev-
ery distinct CAM is generated only once?

(ii) Can we improve the join operation such that
only a few CAMs can be generated from a
single join operation (say at most two)?

(iii) Can we design an extension operation such
that all the edges might be attached to only
one node in a graph represented by a CAM?

In order to meet these challenges, we augment the
CAM tree with a set of suboptimal canonical adjacency
matrices, and introduce two new operations: FFSM-
Join and FFSM-Extension. These are discussed in the
following sections.

3.3.1 FFSM-Join

As discussed before, a join operation is ”superimpos-
ing” two graphs to generate a new graph candidate.
Depends on the different characteristics of the graphs,
the join operation might produce one or two graph can-
didates. Giving the details of the join operation is the
main focus in this section.

Given an adjacency matrix A of a graph G, we de-
note A as an “inner” matrix iff A has at least two
edge entries in the last row. Otherwise, we denote A



as a “outer” matrix. Given two adjacency matrices A
(m×m) and B (n×n) sharing the same maximal proper
submatrix, let A’s last edge be am,f and B’s last edge
be bn,k. We define join(A, B) by the following three
cases 2:

join case 1: both A and B are inner matrices

1: if f 	= k then
2: join(A, B) = {C} where C is a m × m matrix

and

ci,j =
{

ai,j 0 < i, j ≤ m, i 	= n ∧ j 	= k
bi,j otherwise

3: else
4: join(A, B) = Φ
5: end if

join case 2: A is an inner matrix and B is an
outer matrix

join(A, B) = {C} where C is a n× n matrix and

ci,j =
{

ai,j 0 < i, j ≤ m
bi,j otherwise

join case 3: both A and B are outer matrices

1: let matrix D be a (m + 1)× (m + 1) matrix where
(case 3b)

di,j =




ai,j 0 < i, j ≤ m
bm,j i = m + 1, 0 < j < m
0 i = m + 1, j = m
bm,m i = m + 1, j = m + 1

2: if (f 	= k ∧ am,m = bm,m) then
3: C is m×m matrix where (case 3a)

ci,j =
{

ai,j 0 < i, j ≤ m, i 	= n ∧ j 	= k
bi,j otherwise

4: join(A, B) = {C, D}
5: else
6: join(A, B) = {D}
7: end if
In join case 3, when joining two outer matrices M1

and M2 (both with size m), we might obtain a matrix
with the same size. We refer this join operation as
case3a. It is also possible that we obtain a matrix
having size (m + 1) and this case is referred as case3b.

We notice that the join operation is symmetric w.r.t.
A and B with only one exception join case 3b. In an-
other word, join(A, B) = join(B, A) in join case 1, 2 and

2we only define the lower triangular part of the matrix by the
same reason we stated before
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Figure 4. Examples of the join/extension op-
eration

3a and join(A, B) 	= join(B, A) in join case3b. In or-
der to remove the potential duplications resulting from
this symmetry, we require that code(A) ≥ code(B) in
all join cases except join case 3b. Equality is permit-
ted since self-join is a valid operation. If the inequality
is not satisfied (code(A) < code(B)), a join operation
produces an empty set.

Figure 4 shows examples for the join operation for
the four cases (case1, case2, case3a and case3b). At
the bottom of Figure 4 shows a case in which a graph
might be redundantly proposed by FSG

(
6
2

)
= 15 times

(joining of any two distinct five-edge subgraphs G1, G2

of the graph G will restore G by the join operation
proposed by FSG). As shown in the graph, FFSM-Join
completely removes the redundancy after “sorting” the
subgraphs by their canonical form.

However, the join operation is not “complete” in
the sense that it may not enumerate all the subgraphs
in the CAM tree. Interested readers might find such
examples in the CAM tree we presented in Figure 3.
Clearly we need another operation, which is discussed
below.



3.3.2 FFSM-Extension

Another basic enumeration technique is an extension
operation which involves proposing a k+1-edge graph
candidate G from a k-edge graph G1 by introducing one
additional edge. The newly introduced edge might con-
nect two existing nodes or connect an existing node and
a node introduced together with the edge. A simple
way to perform the extension operation is to introduce
every possible edge to every node in a graph G. This
method clearly has the complexity of O(ΣV ×ΣE×|G|)
where ΣV , ΣE stand for the set of available vertex and
edge labels for a graph G, respectively. It suffers from
the large size of graph candidates as well as the large
amount of available node/edge labels.

gSpan [11] developed an efficient way to reduce the
total number of nodes need to be considered. In gSpan,
the extension operation is only performed to nodes on
the “rightmost path” of a graph. Given a graph G and
one of its depth first search trees T , the rightmost path
of G with respect to T is the rightmost path of the tree
T . gSpan chooses only one depth first search tree T
which produces the canonical form of G for extension.
We refer to [11] for further details about the extension
operation.

In FFSM, we further improve the efficiency by al-
ways choosing a single fixed node in a CAM and at-
tach an newly introduced edge to it together with an
additional node. As proved by Theorem 3.4, this ex-
tension operation, combined with the join operation,
unambiguously enumerates all the nodes in the CAM
tree.

In the following pseudo code for the extension oper-
ation.

FSM-Extension 3

input: a n× n adjacency matrix A
output: a set S of adjacency matrices B (with size
(n + 1)) s.t. A is B’s maximal proper submatrix.
1: if (A is an outer adjacency matrix) then
2: for (nl, el) ∈ ΣV × ΣE do
3: create an n× n matrix B s.t.
4:

bi,j =




ai,j 0 < i, j ≤ n
0 i = n + 1, 0 < j < n
el i = n + 1, j = n
nl i = n + 1, j = n + 1

5: S ← S ∪ {B}
6: end for
7: else

3This is not fully optimized yet since we still enumerate set
ΣV × ΣE . For an optimized version of this operation, refer to
section 3.5 after we introduce embedding set

8: S ← Φ
9: end if

3.3.3 Suboptimal CAM Tree

Using the CAM tree of the graph P in Figure 3, we
can see that join and extension operations, even com-
bined together, can not enumerate all subgraphs in P .
We investigated this and found this problem can be
solved by introducing the suboptimal canonical adja-
cency matrices, as defined below.

Definition 3.2 Given a graph G, a suboptimal
Canonical Adjacency Matrix (simply, suboptimal
CAM) of G is an adjacency matrix M of G such that
its maximal proper submatrix N is the CAM of the
graph N represents.

By definition, every CAM is a suboptimal CAM
(Corollary 3.3). We denote a proper suboptimal CAM
as a suboptimal CAM that is not the CAM of the graph
it represents. Several suboptimal CAMs (the matrices
with dotted boundaries) are shown in Figure 5. Clearly,
all the suboptimal CAMs of a graph G could be orga-
nized in a tree in a similar way to the construction of
the CAM tree. One such example for the graph P in
Figure 1 is shown in Figure 5.

With the notion of suboptimal CAM, the subop-
timal CAM tree is “complete” in the sense that all
vertices in a suboptimal CAM tree can be enumerated
using join and extension operations. This is formally
stated in the following theorem.

Theorem 3.4 For a graph G, let Ck−1(Ck) be set of
the suboptimal CAMs of all the (k−1)-vertex (k-vertex)
subgraphs of G (k ≥ 3). Every member of set Ck can be
enumerated unambiguously either by joining two mem-
bers of set Ck−1 or by extending a member in Ck−1.

Proof outline: let A be a m×m suboptimal CAM in
set Ck. We consider the following five cases according
to the edge entries in A’s last row and second-to-last
row:

• TypeA M has three or more edge entries in the
last row;

• TypeB M has exactly two edge entries in the last
row;

• TypeC M has exactly one edge entry in the last
row and more than one edge entries in the second-
to-last row;

• TypeD M has exactly one edge entry em,n in the
last row and one edge entry in the second-to-last
row and n 	= m− 1;



byx

bx

a

b0y0

b0x

bx

a

c.3b c.3b

c.3ac.3a c.3bc.3b

c.2

ee

ee

c.2 c.3ac.3a

c.3a

b0x

bx

a

by0

bx

a

b0y

by

b

by0

by

b

byy

by

b

by00

b0x

bx

a

b0y0

byx

bx

a

by00

byx

bx

a

byy0

b0x

bx

a

b0y0

by0

bx

a

by00

by0

bx

a

byy0

by0

bx

a

byy0

byx

bx

a

bx

a

a

by

b

b

Figure 5. the Suboptimal CAM Tree for the
graph P showing in the Figure 1. Matrices with
solid boundary are CAMs and those with dashed line
boundary are proper suboptimal CAMs. The label
on top of an adjacency matrix M indicates the oper-
ation by which M might be proposed from its parent.
The labeling follows the same way as we present in
the Figure 3

• TypeE M has exactly one edge entry em,n in the
last row and one edge entry in the second-to-last
row and n = m− 1;

As shown in the Appendix, a TypeA suboptimal
CAM might be produced by two suboptimal CAMs
following the join case1. Similarly, a TypeB subopti-
mal CAM might be produced following the join case3a,
TypeC corresponds to join case2, TypeD corresponds
to join case3b, and TypeE corresponds to the exten-
sion operation. The formal proof of the completeness
of the suboptimal CAM tree is lengthy and is deferred
to Appendix A.2.

3.4 Frequent Subgraph Mining of a Graph
Database

In the above discussions, we present a novel data
structure (CAM tree) for organizing all (connected)
subgraphs of a single connected undirected graph.
This, however, can be easily extended to a set of graphs
(connected or not) (denoted as a graph database) and
a single CAM tree can be built for a graph database.
If we have such a tree built in advance (regardless of

the required space and computational capacity), any
traversal of the tree reveals the set of distinct subgraphs
of the graph database. For each of such subgraph, its
support can be determined by a linear scan of the graph
database and therefore frequent ones can be reported.
This method clearly suffers from the huge number of
available subgraphs in a graph database and therefore
very unlikely scale to large databases.

In the following pseudo code, we present an algo-
rithm which takes advantage of the following simple
fact: if a subgraph G is not qualified for frequent (sup-
port of G is less than a user posted threshold), none of
its supergraphs are qualified. This suggest that we can
stop building a branch of the tree as early as we find
the current node doesn’t have sufficient support.

In the pserudo code below, symbol CAM(G) de-
notes the CAM of the graph G. X.isCAM is a boolean
variable indicate whether the matrix X is the CAM of
the graph it represents or not.

FFSM

input: a graph database GD and a support threshold
f (0 < f ≤ 1)
output: set S of all G’s connected sub-
graphs.
1: S ← { the CAMs of the frequent nodes

and edges }
2: P ← { the CAMs of the frequent edges }
3: FFSM-Explore(P, S);

FFSM-Explore
input: U , a suboptimal CAM list and W , a set of
frequent connected subgraphs’ CAMs
output: set W contains CAMs of all frequent
subgraphs searched so far.

1: for X ∈ P do
2: if (X.isCAM) then
3: W ←W ∪ {X}, C ← Φ
4: for Y ∈ P do
5: C ← C∪ FFSM-Join(X, Y )
6: end for
7: C ← C∪ FFSM-Extension(X)
8: remove CAM(s) from C that is either infre-

quent or not suboptimial
9: FFSM-Explore(C, W )

10: end if
11: end for

3.5 Performance Enhancement using an Embed-
ding List

One of the key challenges for efficient subgraph enu-
meration is the scheme to efficiently count the support



of a particular subgraph G. A brute force way to do
this is to perform subgraph matching and count how
many graphs in a graph database are the supergraph of
G. This scheme involves a subgraph matching proce-
dure which is known to be NP-complete in the general
case.

From a practical point of view, the above scheme
can be significantly sped up by recording the previ-
ous matched vertices (denoted as an embedding) and
basing the subsequent search on the previous recorded
information. To further explain this point, we define
an embedding as follows:

Definition 3.3 Given an arbitrary n × n adjacency
matrix A and a labeled graph G = (V, E, ΣV , ΣE , l),
a vertex list L = u1, u2, . . . , un ⊂ V is an embedding
of A in G iff:

(i) ∀ i, (ai,i = l(ui));

(ii) ∀ i, j(ai,j 	= 0⇒ ai,j = l(ui, uj));

where 0 < j < i ≤ n.
The set of all embeddings of a matrix in a database

is defined as its embedding set. Given two suboptimal
CAMs and their embedding sets, we could modify the
join and extension operations we presented before to
let them not only propose candidates but also calculate
candidates’ embedding sets. Take the join case 1 for
example. Given two inner suboptimal CAMs P and
Q, a suboptimal CAM {A} = join(P, Q), and a list L
of nodes in a graph G which is a embedding of A in
G, clearly L is a embedding of both P and Q in G.
This is because 1) the condition (i) automatically gets
satisfied and 2) Condition(ii) must also hold since A
contains all the none-zero entries of both P and Q. On
the other hand, if we have an list of nodes L which is
an embedding of both P and Q, the same list must be
a embedding of A (noticing A contains no more none-
zero entries than those found in either P or Q).

From the above analysis, we conclude that for the
embedding set OA of a suboptimal CAM A, which is
joined by two suboptimal CAMs P and Q through join
case 1, we have OA = OP ∩ OQ, where OP and OQ

are the embedding sets of suboptimal CAM P and Q,
respectively.

Similarly, for join case 2, ({A} = join(P, Q), P is an
inner matrix and Q is an outer matrix), we have OA =
{L | L = u1, u2, . . . , un−2, un−1, un, L ∈ Oq, L

′ =
u1, u2, . . . , un−2, un−1 ∈ OP }. For join case 3a ({A}
= join(P, Q), both P and Q are outer matrices, A has
the same size as P and Q after join ), we have OA =
OP ∩OQ. For join case 3b ({A} = join(P, Q), both P
and Q are outer matrices, and A has size one greater
than that of P and Q after join), we have OA = {L |

L = u1, u2, . . . , un, L′ = u1, u2, . . . , un−3, un−2, un−1 ∈
Op, L

′′ = u1, u2, . . . , un−3, un−2, un ∈ Oq}.
For the extension operation, we present the embed-

ding set calculation as a pseudo code below:

FFSM-Extension-Embedding

input: A suboptimal n× n CAM A
output: A set S of all suboptimal CAMs extended
from A and their embedding sets
1: for embedding L = u1, u2, . . . , un ∈ OA do
2: let G be the graph contains vertices in L
3: for node v ∈ V [G] ∧ v /∈ L ∧ (v, un) ∈ E[G] do
4: create a (n + 1)× (n + 1) Matrix B where

bi,j =




ai,j 0 < i, j ≤ n
0 i = n + 1, 0 < j < n
lG(v, un) i = n + 1, j = n
lG(v) i = n + 1, j = n + 1

5: OB ← OB ∪ {(gi, Lv)}
6: S ← S ∪ {B}
7: end for
8: end for

where lG is the mapping used by G to map the vertices
and edges to their labels. Lv is the list concatenated
by list L and a single node v.

4 Experimental Study

We performed our experimental study using a single
processor of a 2GHz Pentium PC with 2GB memory,
running RedHat Linux 7.3. The FFSM algorithm is im-
plemented using the C++ programming language and
compiled using g++ with O3 optimization. The gSpan
executable, which was compiled in a similar environ-
ment, was kindly provided by X. Yan and J. Han in
University of Illinois, .

4.1 Chemical Compound Datasets

We used three chemical compound datasets to eval-
uate the performance of the FFSM algorithm. The
first dataset we used if the PTE [10] which can be
downloaded from http:://web.comlab.ox.ac.uk/oucl/

research/areas/machlearn/PTE/. This dataset contains
337 chemical compounds and each of which is mod-
eled by an undirected graph. There are a total of 66
atom types and four bond types (single, double, triple,
aromatic bond) in the dataset. The atoms and bonds
information are stored in two separated files and we
follow exactly the same procedure described in [11] for
building graphs from the dataset.
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Figure 6. Left: FFSM and gSpan performance com-
parison under different support values for DTP CM
dataset. Right: Total frequent pattern identified by
the algorithms.
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Figure 7. FFSM and gSpan performance compar-
ison under different support values for two different
datasets. Left: DTP CA dataset. Right: PTE.

The next two we used are from the DTP AIDS
Antiviral Screen dataset from National Cancer Insti-
tute. In this dataset, chemicals are classified into three
classes: confirmed active (CA), confirmed moderately
active (CM) and confirmed inactive (CI) according
to experimentally determined activities against AIDS
virus. There are total 423, 1083, and 42115 chemicals
in the three classes, respectively. For our own purposes,
we formed two datasets consisting of all CA compounds
and of all CM compounds and refer to them as DTP
CA/DTP CM thereafter. The DTP datasets can be
downloaded from http://dtp.nci.nih.gov/docs/aids/

aids_data.html.

We evaluated the performance of FFSM using var-
ious support threshold. The result is summarized by
the Figure 6 and 7. We can see for DTP CM dataset,
FFSM have a maximal 7 fold speedup over gSpan. For
DTP CA and PTE dataset, FFSM usually have a 2 to
3 fold speedup from gSpan.
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Figure 8. FFSM and gSpan performance compari-
son under different support value. Parameters used:
D10kT20I9L200E4V4.

4.2 Synthetic Datasets

We used a graph generator, kindly offered by M. Ku-
ramochi and G. Karypis in University of Minnesota, to
generate all synthetical graph databases with different
characteristics. There are six parameters to control
the set of graphs generated: (i) |D|, total graph trans-
actions generated, (ii) |T |, average graph size for the
generated graphs, in terms of number of edges, (iii) |L|,
the total number of the potentially frequent subgraphs,
(iv)|I|, the size of the potentially frequent subgraphs,
in terms of number of edges, (v)|V |, total number of
available labels for vertices, and (vi)|E|, total number
of available labels for edges.

We write a single string to describe the parame-
ter settings, e.g. “D10kT 20L200I9V 4E4” represents
a synthetic graph database which contains a total of
|D| = 10k (10000) graph transactions. Each graph av-
eragely contains |T | = 20 edges with up to |V |= 4 ver-
tex labels and |E|= 4 edge labels. There are total of
|L|= 200 potential frequent patterns in the database
with average size |I|= 9.

In Figure 8, we show how the FFSM algorithm scales
with increasing support. The total number of identified
frequent subgraphs is also given.

At the left part of the Figure 9, we show perfor-
mance comparison between FFSM and gSpan under
different average graph sizes (left) or different number
of node/edge labels (right). From almost all circum-
stances, FFSM is faster than gSpan though the value
of the speedup varies from dataset to dataset.

5 Conclusion

We presented a new algorithm FFSM for the fre-
quent subgraph mining problem. Comparing to ex-
isting algorithms, FFSM achieves substantial per-
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Figure 9. FFSM and gSpan performance compari-
son under different graph sizes (|T |) ranging from 20
to 100 (left) or different total labels (|V | + |E|) rang-
ing from 3 to 18 (right). The ratio of the |V | to |E|
is fixed to 2:1 for any given total number of labels.
For example, if there are total 15 labels, we have 10
vertices label and 5 edge label. Other parameters
setting: D10kI7L200E4V4 (left) and D10kT20I7L200
(right). The support threshold is fixed to 1% at both
cases

formance gain by efficiently handling the underly-
ing subgraph isomorphism problem, which is a time-
consuming step and by introducing two efficient sub-
graph enumeration operations, together with an alge-
braic graphical framework developed for reduce the
number of redundant candidates proposed. Perfor-
mance evaluation using various real datasets demon-
strated a wide margin performance gain of FFSM over
gSpan. The efficiency of FFSM is further confirmed
using the synthetic datasets.
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A APPENDIX

A.1 maximal proper Submatrix’s Property

In this section, we give a detailed proof of the Corol-
lary 3.2, which states that given a connected graph’s
CAM M and M ’s maximal proper submatrix N , N
represents a connected graph.

As discussed in the proof outline in Corollary 3.2, it
is sufficient to show that in N there is no such row i
(with the exception of the first row ) that i does not
contain any edge entry. We prove this by two steps.
First we show every row in M has at least one edge
entry and second, we show that this property (every
row has at least one edge entry) is an invariant as we
driving N from M .

We use a proof by contradiction to prove the first
step. Let us assume i (i > 1) is the least number such
that mi,1 = mi,2 = ... = mi,i−1=0. Since G is con-
nected, there must exist at least a j (j > i) such that
max{m1,j, m2,j, . . . , mi−1,j} > 0. Otherwise, no node
is connected to the first i − 1 nodes from the remain-
ing n − (i − 1) nodes and the graph must be uncon-
nected. Given the existence of such (i, j) pairs, if we
permute M such that i and j exchange their positions,



and keep every other node the same, we must have
a code greater than the original code we have. That
leads to the contradiction to the assumption that M
is in canonical form. Thus we can not find a i in M
satisfying mi,1 = mi,2 = . . . = mi,i−1 = 0.

Given that every row in M (except the first row)
has an edge entry, after removing the last edge, the
obtained adjacency matrix must represent a connected
graph.

A.2 Completeness of Suboptimal CAM Tree

In this section, we give a detailed proof of Theorem
3.4. We prove the theorem following the method of con-
struction. For each type( A to D) of matrix M , we con-
struct a pair of suboptimal CAMs and prove that pair
might be joined to produce M . Intuitively, one sub-
optimal CAM in such pair is the maximal proper sub-
matrix of M . This is true and another one is so-called
secondary submatrix, defined below. For a typeE sub-
optimal matrix M , it is straightforward to prove that
M can and only can be proposed by an extension op-
eration and therefore is not discussed below.

Given a graph G and its CAM A (m×m), we define
a n × n matrix B as the secondary submatrix of A by
the following three cases:
Case 1: assume M satisfy one of the following condi-
tions:

(i) A has three or more edge entries in the last
row (TypeA);

(ii) A has exactly two edge entries in the last
row (TypeB);

(iii) A has exactly one edge entry in the last row
and more than one edge entries in the second-
to-last row (TypeC);

Let the second-to-last edge of A be al,k. Now B is the
secondary submatrix of A iff:
n = m, and

bi,j =
{

ai,j 0 < i, j ≤ n, i 	= l ∧ j 	= k
0 otherwise

Case 2: assume A has exactly one edge entry in
both the last row and the second-to-last row of A. Let
the second-to-last edge entry of A is al,k, and the last
edge entry of A is ap,q(q 	= m − 1) (TypeD). B is the
secondary submatrix of M iff:
n = m-1, and

bi,j =




ai,j 0 < i, j ≤ n− 1
am,j i = n, 0 < j ≤ n− 1
am,m i = n, j = n

The rest of the proof is in two steps. First we need to
prove that both the maximal proper submatrix and the
secondary submatrix of a suboptimal CAM are subop-
timal CAMs. This is the result of the following theo-
rem A.1. Second, we need to prove relation between
the types of CAMs and the join/extension operation
they might be produce.

Theorem A.1 for any CAM M we have the following
properties:

(i) M’s maximal proper submatrix is a CAM
(and suboptimal CAM) of the connected graph
it represents (Corollary 3.2)

(ii) M’s secondary submatrix is a suboptimal
CAM of the connected graph it represents

Similarly, for any proper suboptimal CAM N we
have:

(i) N’s maximal proper submatrix is a
CAM(and suboptimal CAM) of the connected
graph it represents (by definition)

(ii) N’s secondary submatrix is a suboptimal
CAM of the connected graph it represents

Proof outline: to prove that a secondary submatrix
represents a connected graph, we take advantage of the
result of Appendix A.1 such that every row of a sub-
optimal CAM has an edge entry. This is an invariant
when we derive the secondary submatrix from a sub-
optimal CAM in all cases. Given a CAM M and its
secondary submatrix N , to prove N is a suboptimal
CAM, we notice N ’s maximal proper submatrix is the
maximal proper submatrix of L, where L is the maxi-
mal proper submatrix of M . Then the theorem could
be proved by applying Corollary 3.2 twice.

Given both the secondary submatrix and the max-
imal proper submatrix of a suboptimal CAM are sub-
optimal CAMs, it is trivial to show the connection be-
tween the types of the join and the type of the subop-
timal CAM the join produces.

Figure 4 shows all the join operations and interested
reader might verify the results there.


