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Abstract 

Radiosity is a widely used technique for global illumination.  The computation is typically done offline, but the 
result is a model suitable for real-time display.  We present a technique for computing radiosity, including an 
adaptive subdivision of the model, using graphics hardware. Since our goal is to make the solution run at 
interactive rates, we exploit the computational power and programmable functionality of recent graphics 
hardware. Using our system on current hardware, we have been able to compute a full radiosity solution for a 
small scene in less than one second. 
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1  Introduction 
Progressive refinement radiosity [Cohen et al. 1988] is a 
common technique for computing a global illumination 
solution of a diffuse environment.  We have selected this 
technique for a graphics-hardware implementation for the 
same reasons that it is popular on the CPU: it requires no 
explicit storage of the radiosity matrix and the model can 
be displayed as the solution progresses.  We first present 
an implementation equivalent to a uniform subdivision of 
the model, and then describe an extension that uses 
adaptive subdivision. 
Almost all of the computation is done on the graphics 
hardware; there is minimal readback (only one pixel per 
shooting pass).  The host CPU only handles bookkeeping 
and data structure management. There are several reasons 
for performing all of the computation on the GPU 
(Graphics Processing Unit).  One reason is that the GPU 
can compute the radiosity values directly in textures and 
use them immediately for fast rendering.  This is useful in 
many real-time systems because it frees up the CPU for 
other computationally intensive tasks such as collision 
detection or physics. Another reason is that the 
performance of graphics hardware is increasing faster 
than that of the main CPU, so our goal of radiosity at 
interactive rates is easier to achieve. 

Previous generations of GPUs are not suitable for 
radiosity computations because radiosity requires high 
precision computation.  As we show in Section 3, 
computations on the GPUs using integers result in visual 
artifacts.  The floating-point capability of newer GPUs 
provides the high dynamic range computation required by 
radiosity. 

After reviewing previous work, we describe the basic 
progressive refinement implementation. For ease of 
explanation, we first describe the uniform subdivision 

method. Since uniform subdivision has several 
drawbacks, we have also implemented an adaptive 
subdivision method. We then present results, conclusions 
and future work. 

2  Previous Work 
The most relevant previous work is that on the hemicube 
method [Cohen and Greenberg 1985] and the progressive 
refinement approach for solving the radiosity equations 
[Cohen et al. 1988].  It would be difficult to cover all of 
the relevant areas of radiosity in this short paper; a lucid 
explanation of many aspects of radiosity can be found in 
[Cohen and Wallace 1993]. 

Several researchers, including [Baum and Winget 1990; 
Varshney and Prins 1992; Funkhouser 1996], have made 
use of parallel processing to speed up radiosity 
computation.  The visibility portion of the hemicube 
approach maps well to graphics hardware [Cohen and 
Greenberg 1985]. [Nielsen and Christensen 2002] use 
textures to uniformly subdivide polygons and compute 
form factors.  Other authors, such as [Keller 1997], have 
made use of older (non-programmable) graphics 

 
Figure 1.  Radiosity solution computed on graphics hardware. 
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hardware to accelerate portions of the radiosity 
computation. 

Programmability has opened up a new area of research in 
hardware-accelerated global illumination algorithms.  
[Purcell et al. 2002] demonstrated a ray-tracer running 
entirely on graphics hardware. This technique bypassed 
the traditional graphics pipeline in favor of the powerful 
programmable fragment processor. [Carr et al. 2002] used 
the hardware as a ray-triangle intersector and used the 
CPU to generate rays. 

3  Progressive Radiosity on Graphics Hardware 
In this section we describe a hardware radiosity 
implementation that is equivalent to conventional patch-
oriented radiosity on a uniformly subdivided domain.  
Our system stores the radiosity and the residual as 
textures on the modeling polygons.  Each texel represents 
an element of the radiosity solution and is also used for 
rendering as described by [Bastos et al. 1997].  The 
algorithm is as follows. 

 
Here, E is the initial energy of emitters, B is radiosity, r is 
the residual, and ρ is the reflectance of the material.  

 

3.1 Shooting   
In conventional progressive radiosity, the element with 
the highest residual energy is chosen as the next shooter.  
We choose the scene polygon with the highest total 
residual energy. The process for selecting this polygon on 
hardware is described later in this section.  All of the 
elements (texels) on the polygon shoot their energy in 
turn.  As Heckbert [Heckbert 1990] suggested, shooting 
at a lower resolution can increase performance.  We do so 
by creating a mipmap of the residual texture and using the 
desired level.  For example, by using the first mipmap 
level above the base texture we can combine 4 texels into 
a single shot. In our system we typically shoot from two 
levels above the base resolution. 

 

3.2 Visibility 
We use the hemicube method to sample visibility from 
the current shooter.  GPUs support reads from arbitrary 
texture memory locations, but allow only very restricted 
writes.  This means that it is not feasible to implement a 
feed-forward radiosity solution that traverses the pixels of 
the hemicube and directly updates the radiosity textures.  
Feed-backward techniques are more amenable to 
hardware implementation, so we invert the shooting 
computation and iterate over the receiving elements. 

In the first step (the visibility pass), the scene is rendered 
with polygon ID as color onto the faces of a hemicube 
and stored as five textures, which are used as item 
buffers.  For the second step (the reconstruction pass), 
each polygon that is potentially visible (not back-facing) 
from the shooter is rendered to a frame buffer at the 
resolution of the radiosity texture.  This places the texels 
of the radiosity texture and the fragments of the frame 
buffer in a one-to-one correspondence, enabling us to test 
the visibility of each radiosity texel using a fragment 
program. 

The visibility of the texel from the shooter is tested by 
back-projecting the texel onto the shooter’s hemicube 
faces.  The point of projection onto the hemicube is used 
to index the hemicube item buffers.  If the ID found in the 
item buffer matches the ID of this texel's polygon, then 
this texel is declared visible from the shooter. This 
process closely resembles shadow mapping. 

 

3.3 Form factor   
If the element is visible from the shooter, then the next 
step is to compute the intensity that it receives. We use 
the disc approximation to a differential area-to-area form 
factor equation [Wallace et al. 1989] 
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  between two elements i and j (shown in Figure 2). This 
equation divides the shooter into m subsections and 
approximates their areas with oriented discs. 

    
Figure 2. The differential area-to-area form 

factor computation.  

 

foreach(i) 
Bi = ri = Ei; 
while (not converged) { 
 // Choose highest energy element as shooter 
 i = element with max(ri * areai); 

 // Build item buffer on hemicube 
 RenderHemicube(i); 
 // traverse all other elements in scene 
 foreach(texel j ∉ i) { 
  if (j is visible from i) { 
   // Update radiosity(j) and residual(j) 
   ∆B = ri * ρj * Fji;      (1) 
   rj += ∆B; 
   Bj += ∆B; 
  } 
 }  
 // zero shooter’s residual 
 ri = 0;  
} 
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An assumption implicit in this equation is that the area of 
the differential element is small compared to r2.  In a 
system using uniform subdivision, this must be enforced 
during the selection of the static texture sizes, which can 
be difficult to ensure. Violating this assumption results in 
artifacts, particularly at places such as the corners of 
rooms.  Using the disc approximation instead of the 
standard differential area-to-area form factor greatly 
reduces these artifacts. 

Equation (2) is computed at every texel in a fragment 
program, which also computes the delta radiosity term 
using equation (1).  The energy, E, of the emitter and its 
reflectance, ρ, are parameters to the program. 

One of the advantages of texel-based computation is that 
it allows us to determine the intensity at the resolution of 
the receiving textures rather than at the resolution of the 
hemicube.  This eliminates blocky hemicube aliasing 
artifacts [Wallace et al. 1989], but there are still other 
hemicube aliasing problems such as missing small 
features. 

  

3.4 Next shooter selection   
Progressive refinement techniques achieve fast 
convergence by always shooting from the scene element 
with the highest residual power.  To find the next shooter, 
we use a simple z-buffer maximum algorithm. First, we 
set up a one-pixel frame buffer.  A fragment program 
reads the top (1x1) mipmap level of the residual texture, 
which contains the average of all texels.  The sum of the 
radiosity is this average radiosity multiplied by the base 
texture resolution. Since progressive refinement uses the 
total residual power, the total radiosity is multiplied by 
the area of the polygon.  The reciprocal of this value is 
rendered as depth into the frame buffer and the polygon 
ID is rendered as color.  In this way (with the z-buffer set 
to “nearest”) we can select the polygon with the highest 

residual power. By reading back the single pixel frame 
buffer we can get the ID of the next shooter.  In addition, 
convergence can be tested by setting the far clipping 
plane distance to the reciprocal of the convergence 
threshold. If no fragments pass, then the solution has 
converged.  

 

4  Adaptive Subdivision 
As previous researchers have demonstrated, uniform 
subdivision is not the best approach for radiosity.  Too 
many elements are used on areas of the model with little 
or smooth variation, while areas with high detail are 
undersampled. In this section we extend our system to use 
adaptive subdivision.  We use the same hemicube and 
form factor computations as the uniform approach 
described in Section 3 . 

 

4.1 Texture quadtrees   
In place of the uniform textures described in the previous 
section, this method subdivides the scene geometry 
hierarchically into a quadtree with the radiosity data  
stored at the leaf nodes. Each of the leaf nodes stores two 
textures, one for residual energy and one for accumulated 
energy.   These leaf textures are small (16x16) textures. 

The radiosity is computed on the GPU at the texels of the 
leaf texture as described in Section 3.  Using a fragment 
program, the gradient of this radiosity texture is 
computed and evaluated for smoothness. [Vedel and 
Puech 1992] suggest using the gradient (instead of the 
value) because it avoids over-subdividing in areas where 
linear interpolation will adequately represent the function. 
Evaluating the subdivision criteria on the GPU avoids the 
penalty of readback. 

Fragments with gradient discontinuities are discarded, 
and a hardware occlusion query1 is used to count 
discarded fragments.  If any fragments were discarded, 
we subdivide the node.  This process is repeated 
recursively.  The recursion terminates when either the 
radiosity is found to be smooth, or a user-specified 
maximum depth is reached. 

                                                 
1 Occlusion queries simply return a count of pixels rendered.  
They are supported on most current GPUs. 

Figure 3.  Radiosity solution using adaptive 
subdivision.  The subdivided texture quadtrees are 
shown on the left. 

Figure 4. Detail of shadow resolution with an 
adaptive subdivision (left) and a uniform 
subdivision (right). 
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To reconstruct radiosity from subsequent shooters, we do 
not rebuild the quadtree from scratch.  Instead, we 
traverse the tree until we reach an existing leaf node.  At 
this node, we compute the radiosity and evaluate the 
subdivision criteria as before.  If the radiosity solution is 
smooth, the node is not subdivided.  If it is not smooth, 
we subdivide and recur.  In this situation, we must “push” 
the existing radiosity at the former leaf node down to the 
four children.  

 

4.2 Next shooter selection   
Adaptive subdivision with texture quadtrees allows us to 
easily choose shooters at a higher granularity than the 
polygons used with uniform textures.  We use the z-
buffer maximum algorithm described in section 3 , but 
instead of using the power of the entire polygon, we use 
the power of each node.  

Since each node consists of two small textures, we can 
gain efficiency by packing node textures into larger node 
set textures.  If both the leaf node resolution, R, and the 
resolution of the node set are a power of two, we can 
compute mipmaps for every node in the set by computing 
the first log2(R) mipmap levels of the node set. 

 

4.3 Display   
To render a texture quadtree, we traverse it recursively, 
subdividing the geometry at each level.  When a leaf node 
is reached, a quadrilateral is rendered with the node’s 
radiosity texture.  By rendering all leaf nodes, we display 
all scene polygons textured with the adaptive radiosity 
solution, as shown in figure 3.   

Because the leaf nodes in the tree represent different 
levels of detail, the quadtree subdivision introduces “t-
vertices.” This causes linear interpolation artifacts 
between neighboring quadtree nodes, as shown in Figure 
5. In our system, we can post-process the quadtree by 
collapsing it to a flat texture for rendering. This allows us 
to filter the texture, but consequently increases memory 
usage. In addition, bilinear filtering is not able to 
eliminate all of the artifacts, and can introduce Mach 
bands. [Bastos et al. 1997] present a better solution that 
used hardware bicubic filtering (available on SGI’s) to 
render their adaptive radiosity solution.  

 

4.4 Implementation  
Like most mesh-based subdivision schemes, there are 
several user-specified variables in the quadtree 
implementation. In our implementation, we have a 
gradient subdivision threshold, a maximum quadtree 
depth, and a residual convergence condition. We 
typically set the maximum quadtree depth to 4, which 
would be equivalent to the resolution of a 256x256 
texture (assuming a 16x16 node texture resolution). By 
adjusting this parameter, quality vs. speed can be 
balanced.  

 

5  Results 

We have implemented both the uniform and adaptive 
radiosity algorithms described in this paper.  Using 
texture quadtrees for adaptive radiosity substantially 
reduces the number of texels processed, while preserving 
the quality of the solution.  Our system allows the use of 
both uniform textures and texture quadtrees together in a 
scene.  Typically, uniform textures are used for the light 
sources and small scene polygons, and texture quadtrees 
are used for the rest of the scene.   
Our system was implemented using Cg[cite] on an 
NVIDIA GeForce FX GPU.  Performance numbers for 
several scenes are shown in Table 1. Somewhat 
unexpectedly, the adaptive solution is slower than the 
uniform solution for all but the smallest scenes. There are 
several possible reasons for this. Copying the node 
textures may require a context switch, which occurs 
multiple times per quadtree evaluation (instead of just 
once for the uniform case). Also, since the subdivision 
has to test the current node before it can calculate the 
children nodes, we may be causing pipeline stalls. 
In the uniform case, the limiting factor on performance is 
the number of texels processed. Reducing the number of 
texels will increase performance. In this paper, we use  
conservative back face culling, and consequently much of 
our time is spent processing texels that are not visible. 
There are a number of visibility pre-processing 
techniques that we could use. 
All computation in our system is done using the floating-
point vertex and fragment processors of the GPU.  The 
radiosity values, however, can be stored in either integer 
or floating-point textures.  There is a performance/quality 
tradeoff between the two.  Fixed-point values are cheaper 
to store and faster to process, but cannot represent the 
high dynamic range of radiosity solutions.  As a result of 
truncation of very small intensities, fixed-point solutions 

Texels Secs per shot  
Uniform Adaptive Uniform Adaptive 

Cornell 31K 18K 0.25 0.17 
Museum 172K 25K 1.1 1.41 

Grotto 1.6M 225K 6.45 10.27 
Table 1. Performance of several test scenes. 

 
Figure 5. Blocky artifacts in the quadtree are caused 
by t-vertices. 
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tend to lose energy and converge too quickly. This causes 
unrealistically dark images. We use floating-point 
textures for all of the images in this paper. 

6  Conclusions and Future Work 
We have presented a progressive refinement radiosity 
algorithm running on graphics hardware. The adaptive 
approach is especially promising because it is well suited 
to dynamic environments, subdividing appropriately as 
the objects move.  

Our next steps are performance optimizations.  As we 
learn more about the capabilities and limitations of the 
newest generation of graphics hardware, we will find 
ways to achieve higher raw performance. Another 
optimization we have explored is the use of vertex 
programs to perform visibility computations in a single 
pass by using a true hemispherical projection rather than 
a hemicube, which requires five rendering passes.  The 
difficulty with this technique is that while straight edges 
project to curves on a hemisphere, rasterization produces 
straight edges on screen regardless of how the vertices are 
projected.  One way to reduce this rasterization error is to 
highly tessellate the surfaces.  It may be possible to 
perform this compensating tessellation on the fly using a 
GPU that supports curved PN triangles [Vlachos et al. 
2001]. 

Since the visibility process resembles shadow-mapping, 
we could take advantage of existing research in shadow-
mapping, particularly percentage-closer filtering. This 
technique improves shadow boundaries by filtering after 
the texture lookup instead of before. 
For interactive scenes, importance based methods, such 
as the one presented by Smits et al. [Smits et al. 1992] 
will be useful because they attempt to focus the solution 
on areas of importance to the viewer.  Based on our 
adaptive subdivision results, we think it will be beneficial 
to explore hierarchical radiosity [Hanrahan et al. 1991] on 
graphics hardware. 
One of the disadvantages of radiosity is its inability to 
handle view-dependent effects.  We are investigating 
extensions to our technique to handle glossy surfaces, 
perhaps using a method such as those of  [Sillion et al. 
1991] or [Immel et al. 1986], but the computations and 
storage may be prohibitive for current hardware.  We are 
also exploring future graphics hardware architectures that 
directly support non-diffuse global illumination. 

 

6.1 Adaptive Subdivision on Graphics Hardware  
Adaptive hierarchies appear in many areas of computer 
graphics, and the ability to build and use them on 
graphics hardware may prove useful in a number of 
applications.  Possibilities include terrain rendering, 
hierarchical visibility processing, subdivision surfaces, 
and level of detail techniques.  Any application that 
computes and stores data in textures can perform adaptive 
subdivision on the GPU. 
 

6.2 Hardware Extensions  
New features on graphics hardware would increase 
performance.  Mipmap filtering of floating-point textures 

would help with the computation of the maximum energy 
to find the next shooter.  The addition of min, max, and 
sum operations to the mipmap generation hardware 
would be even better. 

The pipelined hardware occlusion query is very useful, 
but could be improved by making it more general. This 
query could be set to perform a particular action, such as 
comparison or summation. A register would hold the 
results of this operation and return the value when 
queried. This would allow us to sum the values of all of 
the elements in a texture, which we currently have to do 
in multiple passes using the mipmap hardware. There are 
several other applications, such as stochastic iterative 
searches and conjugate gradient computation that need a 
single value computed over an entire texture. This would 
also allow accumulation of fragment statistics while still 
allowing the fragments to be written.  

The visibility test, which projects texels into the 
hemicube, closely resembles shadow mapping. The 
difference is that instead of comparing depth, we are 
comparing the polygon ID. If the shadow-mapping 
hardware included an “equals” comparison, our visibility 
operation could exploit this dedicated hardware. 
Currently, this computation is done in a fragment 
program. 

The radiosity computation uses about twice the amount of 
memory to compute a solution as to display.  The fixed 
amount of memory on most graphics cards is a problem 
for large scenes.  However, 3DLabs already has a card 
that supports virtual memory[cite], and we expect more 
manufacturers will follow suit. 
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Appendix : Implementation Details 
The majority of the computation described in this paper is 
implemented in fragment programs, which run on the 
powerful fragment processor. In addition, we can exploit 
several specialized capabilities of graphics hardware that 
make it more useful than simply another CPU.  

In order to determine the projection of each texel onto 
each of the five hemicube faces, we need to bind all five 
hemicube textures and all five projection matrices at 
once.  Instead of computing each of these projections per 

fragment, we can compute them per vertex and use 
homogeneous coordinates and hardware interpolation to 
get the value at each texel. The fragment program only 
has to compute the perspective division at each texel, 
which uses the projective texture functionality. 

 

Texture Packing 
While the high dynamic range of floating-point textures is 
necessary for radiosity computation, the high precision is 
not as necessary. The Cg programming language allows 
two half-precision (16-bit) textures to be packed into one 
full-precision (32-bit) floating-point texture. This feature 
is particularly useful for radiosity, since it allows both the 
residual and the radiosity textures to be stored (and 
operated on) together. Our previous implementation 
created a “delta” texture, which then had to be added to 
the residual and radiosity textures. This addition required 
2 more passes. The trade-off with texture packing is that 
every step that needs the radiosity or residual values 
(such as the sort or the mipmap steps) must unpack the 
values before computation. In architectures that support 
multiple render targets, this texture packing is not 
necessary. 

 

Occlusion Queries 
One of the ways that we can get better hardware 
efficiency is by aggregating occlusion queries. This is 
because the occlusion query must stall the pipeline until 
the results are ready, so starting a query and then waiting 
for the result is inefficient. We try to start as many 
queries as possible, then wait until they are all finished 
until querying the result of the first one. This complicates 
the quadtree traversal: The first pass down the tree 
calculates the new radiosity values, and adds this node to 
a queue. After we pass over the entire quadtree, we test 
every node in the queue and determine whether it needs 
to be subdivided. If a node needs to be subdivided, then 
we traverse down the tree and subdivide the node. While 
this sounds inefficient, it is about 20% faster than 
querying the nodes individually.  


