
Coombe – UNC TR03-020

Radiosity on Graphics Hardware

Greg Coombe Mark J. Harris Anselmo Lastra

Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA
{coombe, harrism, lastra}@cs.unc.edu

Abstract

Radiosity is a widely used technique for global illumination. The computation is typically done offline, but the
result is a model suitable for real-time display. We present a technique for computing radiosity, including an
adaptive subdivision of the model, using graphics hardware. Since our goal is to make the solution run at
interactive rates, we exploit the computational power and programmable functionality of recent graphics
hardware. Using our system on current hardware, we have been able to compute a full radiosity solution for a
small scene in less than one second.

Keywords: Graphics Hardware, Global Illumination.

1 Introduction
Progressive refinement radiosity [Cohen et al. 1988] is a
common technique for computing a global illumination
solution of a diffuse environment. We have selected this
technique for a graphics-hardware implementation for the
same reasons that it is popular on the CPU: it requires no
explicit storage of the radiosity matrix and the model can
be displayed as the solution progresses. We first present
an implementation equivalent to a uniform subdivision of
the model, and then describe an extension that uses
adaptive subdivision.
Almost all of the computation is done on the graphics
hardware; there is minimal readback (only one pixel per
shooting pass). The host CPU only handles bookkeeping
and data structure management. There are several reasons
for performing all of the computation on the GPU
(Graphics Processing Unit). One reason is that the GPU
can compute the radiosity values directly in textures and
use them immediately for fast rendering. This is useful in
many real-time systems because it frees up the CPU for
other computationally intensive tasks such as collision
detection or physics. Another reason is that the
performance of graphics hardware is increasing faster
than that of the main CPU, so our goal of radiosity at
interactive rates is easier to achieve.

Previous generations of GPUs are not suitable for
radiosity computations because radiosity requires high
precision computation. As we show in Section 3,
computations on the GPUs using integers result in visual
artifacts. The floating-point capability of newer GPUs
provides the high dynamic range computation required by
radiosity.

After reviewing previous work, we describe the basic
progressive refinement implementation. For ease of
explanation, we first describe the uniform subdivision

method. Since uniform subdivision has several
drawbacks, we have also implemented an adaptive
subdivision method. We then present results, conclusions
and future work.

2 Previous Work
The most relevant previous work is that on the hemicube
method [Cohen and Greenberg 1985] and the progressive
refinement approach for solving the radiosity equations
[Cohen et al. 1988]. It would be difficult to cover all of
the relevant areas of radiosity in this short paper; a lucid
explanation of many aspects of radiosity can be found in
[Cohen and Wallace 1993].

Several researchers, including [Baum and Winget 1990;
Varshney and Prins 1992; Funkhouser 1996], have made
use of parallel processing to speed up radiosity
computation. The visibility portion of the hemicube
approach maps well to graphics hardware [Cohen and
Greenberg 1985]. [Nielsen and Christensen 2002] use
textures to uniformly subdivide polygons and compute
form factors. Other authors, such as [Keller 1997], have
made use of older (non-programmable) graphics

Figure 1. Radiosity solution computed on graphics hardware.

Coombe, Harris, Lastra / Radiosity on Graphics Hardware

hardware to accelerate portions of the radiosity
computation.

Programmability has opened up a new area of research in
hardware-accelerated global illumination algorithms.
[Purcell et al. 2002] demonstrated a ray-tracer running
entirely on graphics hardware. This technique bypassed
the traditional graphics pipeline in favor of the powerful
programmable fragment processor. [Carr et al. 2002] used
the hardware as a ray-triangle intersector and used the
CPU to generate rays.

3 Progressive Radiosity on Graphics Hardware
In this section we describe a hardware radiosity
implementation that is equivalent to conventional patch-
oriented radiosity on a uniformly subdivided domain.
Our system stores the radiosity and the residual as
textures on the modeling polygons. Each texel represents
an element of the radiosity solution and is also used for
rendering as described by [Bastos et al. 1997]. The
algorithm is as follows.

Here, E is the initial energy of emitters, B is radiosity, r is
the residual, and ρ is the reflectance of the material.

3.1 Shooting
In conventional progressive radiosity, the element with
the highest residual energy is chosen as the next shooter.
We choose the scene polygon with the highest total
residual energy. The process for selecting this polygon on
hardware is described later in this section. All of the
elements (texels) on the polygon shoot their energy in
turn. As Heckbert [Heckbert 1990] suggested, shooting
at a lower resolution can increase performance. We do so
by creating a mipmap of the residual texture and using the
desired level. For example, by using the first mipmap
level above the base texture we can combine 4 texels into
a single shot. In our system we typically shoot from two
levels above the base resolution.

3.2 Visibility
We use the hemicube method to sample visibility from
the current shooter. GPUs support reads from arbitrary
texture memory locations, but allow only very restricted
writes. This means that it is not feasible to implement a
feed-forward radiosity solution that traverses the pixels of
the hemicube and directly updates the radiosity textures.
Feed-backward techniques are more amenable to
hardware implementation, so we invert the shooting
computation and iterate over the receiving elements.

In the first step (the visibility pass), the scene is rendered
with polygon ID as color onto the faces of a hemicube
and stored as five textures, which are used as item
buffers. For the second step (the reconstruction pass),
each polygon that is potentially visible (not back-facing)
from the shooter is rendered to a frame buffer at the
resolution of the radiosity texture. This places the texels
of the radiosity texture and the fragments of the frame
buffer in a one-to-one correspondence, enabling us to test
the visibility of each radiosity texel using a fragment
program.

The visibility of the texel from the shooter is tested by
back-projecting the texel onto the shooter’s hemicube
faces. The point of projection onto the hemicube is used
to index the hemicube item buffers. If the ID found in the
item buffer matches the ID of this texel's polygon, then
this texel is declared visible from the shooter. This
process closely resembles shadow mapping.

3.3 Form factor
If the element is visible from the shooter, then the next
step is to compute the intensity that it receives. We use
the disc approximation to a differential area-to-area form
factor equation [Wallace et al. 1989]

�
=

→ +
=

m

i j

ij
jAjdAi mAr

AF
1

2 /

coscos

π
θθ , (2)

 between two elements i and j (shown in Figure 2). This
equation divides the shooter into m subsections and
approximates their areas with oriented discs.

Figure 2. The differential area-to-area form

factor computation.

foreach(i)
Bi = ri = Ei;
while (not converged) {
 // Choose highest energy element as shooter
 i = element with max(ri * areai);

 // Build item buffer on hemicube
 RenderHemicube(i);
 // traverse all other elements in scene
 foreach(texel j ∉ i) {
 if (j is visible from i) {
 // Update radiosity(j) and residual(j)
 ∆B = ri * ρj * Fji; (1)
 rj += ∆B;
 Bj += ∆B;
 }
 }
 // zero shooter’s residual
 ri = 0;
}

Coombe – UNC TR03-020

An assumption implicit in this equation is that the area of
the differential element is small compared to r2. In a
system using uniform subdivision, this must be enforced
during the selection of the static texture sizes, which can
be difficult to ensure. Violating this assumption results in
artifacts, particularly at places such as the corners of
rooms. Using the disc approximation instead of the
standard differential area-to-area form factor greatly
reduces these artifacts.

Equation (2) is computed at every texel in a fragment
program, which also computes the delta radiosity term
using equation (1). The energy, E, of the emitter and its
reflectance, ρ, are parameters to the program.

One of the advantages of texel-based computation is that
it allows us to determine the intensity at the resolution of
the receiving textures rather than at the resolution of the
hemicube. This eliminates blocky hemicube aliasing
artifacts [Wallace et al. 1989], but there are still other
hemicube aliasing problems such as missing small
features.

3.4 Next shooter selection
Progressive refinement techniques achieve fast
convergence by always shooting from the scene element
with the highest residual power. To find the next shooter,
we use a simple z-buffer maximum algorithm. First, we
set up a one-pixel frame buffer. A fragment program
reads the top (1x1) mipmap level of the residual texture,
which contains the average of all texels. The sum of the
radiosity is this average radiosity multiplied by the base
texture resolution. Since progressive refinement uses the
total residual power, the total radiosity is multiplied by
the area of the polygon. The reciprocal of this value is
rendered as depth into the frame buffer and the polygon
ID is rendered as color. In this way (with the z-buffer set
to “nearest”) we can select the polygon with the highest

residual power. By reading back the single pixel frame
buffer we can get the ID of the next shooter. In addition,
convergence can be tested by setting the far clipping
plane distance to the reciprocal of the convergence
threshold. If no fragments pass, then the solution has
converged.

4 Adaptive Subdivision
As previous researchers have demonstrated, uniform
subdivision is not the best approach for radiosity. Too
many elements are used on areas of the model with little
or smooth variation, while areas with high detail are
undersampled. In this section we extend our system to use
adaptive subdivision. We use the same hemicube and
form factor computations as the uniform approach
described in Section 3 .

4.1 Texture quadtrees
In place of the uniform textures described in the previous
section, this method subdivides the scene geometry
hierarchically into a quadtree with the radiosity data
stored at the leaf nodes. Each of the leaf nodes stores two
textures, one for residual energy and one for accumulated
energy. These leaf textures are small (16x16) textures.

The radiosity is computed on the GPU at the texels of the
leaf texture as described in Section 3. Using a fragment
program, the gradient of this radiosity texture is
computed and evaluated for smoothness. [Vedel and
Puech 1992] suggest using the gradient (instead of the
value) because it avoids over-subdividing in areas where
linear interpolation will adequately represent the function.
Evaluating the subdivision criteria on the GPU avoids the
penalty of readback.

Fragments with gradient discontinuities are discarded,
and a hardware occlusion query1 is used to count
discarded fragments. If any fragments were discarded,
we subdivide the node. This process is repeated
recursively. The recursion terminates when either the
radiosity is found to be smooth, or a user-specified
maximum depth is reached.

1 Occlusion queries simply return a count of pixels rendered.
They are supported on most current GPUs.

Figure 3. Radiosity solution using adaptive
subdivision. The subdivided texture quadtrees are
shown on the left.

Figure 4. Detail of shadow resolution with an
adaptive subdivision (left) and a uniform
subdivision (right).

Coombe, Harris, Lastra / Radiosity on Graphics Hardware

To reconstruct radiosity from subsequent shooters, we do
not rebuild the quadtree from scratch. Instead, we
traverse the tree until we reach an existing leaf node. At
this node, we compute the radiosity and evaluate the
subdivision criteria as before. If the radiosity solution is
smooth, the node is not subdivided. If it is not smooth,
we subdivide and recur. In this situation, we must “push”
the existing radiosity at the former leaf node down to the
four children.

4.2 Next shooter selection
Adaptive subdivision with texture quadtrees allows us to
easily choose shooters at a higher granularity than the
polygons used with uniform textures. We use the z-
buffer maximum algorithm described in section 3 , but
instead of using the power of the entire polygon, we use
the power of each node.

Since each node consists of two small textures, we can
gain efficiency by packing node textures into larger node
set textures. If both the leaf node resolution, R, and the
resolution of the node set are a power of two, we can
compute mipmaps for every node in the set by computing
the first log2(R) mipmap levels of the node set.

4.3 Display
To render a texture quadtree, we traverse it recursively,
subdividing the geometry at each level. When a leaf node
is reached, a quadrilateral is rendered with the node’s
radiosity texture. By rendering all leaf nodes, we display
all scene polygons textured with the adaptive radiosity
solution, as shown in figure 3.

Because the leaf nodes in the tree represent different
levels of detail, the quadtree subdivision introduces “t-
vertices.” This causes linear interpolation artifacts
between neighboring quadtree nodes, as shown in Figure
5. In our system, we can post-process the quadtree by
collapsing it to a flat texture for rendering. This allows us
to filter the texture, but consequently increases memory
usage. In addition, bilinear filtering is not able to
eliminate all of the artifacts, and can introduce Mach
bands. [Bastos et al. 1997] present a better solution that
used hardware bicubic filtering (available on SGI’s) to
render their adaptive radiosity solution.

4.4 Implementation
Like most mesh-based subdivision schemes, there are
several user-specified variables in the quadtree
implementation. In our implementation, we have a
gradient subdivision threshold, a maximum quadtree
depth, and a residual convergence condition. We
typically set the maximum quadtree depth to 4, which
would be equivalent to the resolution of a 256x256
texture (assuming a 16x16 node texture resolution). By
adjusting this parameter, quality vs. speed can be
balanced.

5 Results

We have implemented both the uniform and adaptive
radiosity algorithms described in this paper. Using
texture quadtrees for adaptive radiosity substantially
reduces the number of texels processed, while preserving
the quality of the solution. Our system allows the use of
both uniform textures and texture quadtrees together in a
scene. Typically, uniform textures are used for the light
sources and small scene polygons, and texture quadtrees
are used for the rest of the scene.
Our system was implemented using Cg[cite] on an
NVIDIA GeForce FX GPU. Performance numbers for
several scenes are shown in Table 1. Somewhat
unexpectedly, the adaptive solution is slower than the
uniform solution for all but the smallest scenes. There are
several possible reasons for this. Copying the node
textures may require a context switch, which occurs
multiple times per quadtree evaluation (instead of just
once for the uniform case). Also, since the subdivision
has to test the current node before it can calculate the
children nodes, we may be causing pipeline stalls.
In the uniform case, the limiting factor on performance is
the number of texels processed. Reducing the number of
texels will increase performance. In this paper, we use
conservative back face culling, and consequently much of
our time is spent processing texels that are not visible.
There are a number of visibility pre-processing
techniques that we could use.
All computation in our system is done using the floating-
point vertex and fragment processors of the GPU. The
radiosity values, however, can be stored in either integer
or floating-point textures. There is a performance/quality
tradeoff between the two. Fixed-point values are cheaper
to store and faster to process, but cannot represent the
high dynamic range of radiosity solutions. As a result of
truncation of very small intensities, fixed-point solutions

Texels Secs per shot
Uniform Adaptive Uniform Adaptive

Cornell 31K 18K 0.25 0.17
Museum 172K 25K 1.1 1.41

Grotto 1.6M 225K 6.45 10.27
Table 1. Performance of several test scenes.

Figure 5. Blocky artifacts in the quadtree are caused
by t-vertices.

Coombe – UNC TR03-020

tend to lose energy and converge too quickly. This causes
unrealistically dark images. We use floating-point
textures for all of the images in this paper.

6 Conclusions and Future Work
We have presented a progressive refinement radiosity
algorithm running on graphics hardware. The adaptive
approach is especially promising because it is well suited
to dynamic environments, subdividing appropriately as
the objects move.

Our next steps are performance optimizations. As we
learn more about the capabilities and limitations of the
newest generation of graphics hardware, we will find
ways to achieve higher raw performance. Another
optimization we have explored is the use of vertex
programs to perform visibility computations in a single
pass by using a true hemispherical projection rather than
a hemicube, which requires five rendering passes. The
difficulty with this technique is that while straight edges
project to curves on a hemisphere, rasterization produces
straight edges on screen regardless of how the vertices are
projected. One way to reduce this rasterization error is to
highly tessellate the surfaces. It may be possible to
perform this compensating tessellation on the fly using a
GPU that supports curved PN triangles [Vlachos et al.
2001].

Since the visibility process resembles shadow-mapping,
we could take advantage of existing research in shadow-
mapping, particularly percentage-closer filtering. This
technique improves shadow boundaries by filtering after
the texture lookup instead of before.
For interactive scenes, importance based methods, such
as the one presented by Smits et al. [Smits et al. 1992]
will be useful because they attempt to focus the solution
on areas of importance to the viewer. Based on our
adaptive subdivision results, we think it will be beneficial
to explore hierarchical radiosity [Hanrahan et al. 1991] on
graphics hardware.
One of the disadvantages of radiosity is its inability to
handle view-dependent effects. We are investigating
extensions to our technique to handle glossy surfaces,
perhaps using a method such as those of [Sillion et al.
1991] or [Immel et al. 1986], but the computations and
storage may be prohibitive for current hardware. We are
also exploring future graphics hardware architectures that
directly support non-diffuse global illumination.

6.1 Adaptive Subdivision on Graphics Hardware
Adaptive hierarchies appear in many areas of computer
graphics, and the ability to build and use them on
graphics hardware may prove useful in a number of
applications. Possibilities include terrain rendering,
hierarchical visibility processing, subdivision surfaces,
and level of detail techniques. Any application that
computes and stores data in textures can perform adaptive
subdivision on the GPU.

6.2 Hardware Extensions
New features on graphics hardware would increase
performance. Mipmap filtering of floating-point textures

would help with the computation of the maximum energy
to find the next shooter. The addition of min, max, and
sum operations to the mipmap generation hardware
would be even better.

The pipelined hardware occlusion query is very useful,
but could be improved by making it more general. This
query could be set to perform a particular action, such as
comparison or summation. A register would hold the
results of this operation and return the value when
queried. This would allow us to sum the values of all of
the elements in a texture, which we currently have to do
in multiple passes using the mipmap hardware. There are
several other applications, such as stochastic iterative
searches and conjugate gradient computation that need a
single value computed over an entire texture. This would
also allow accumulation of fragment statistics while still
allowing the fragments to be written.

The visibility test, which projects texels into the
hemicube, closely resembles shadow mapping. The
difference is that instead of comparing depth, we are
comparing the polygon ID. If the shadow-mapping
hardware included an “equals” comparison, our visibility
operation could exploit this dedicated hardware.
Currently, this computation is done in a fragment
program.

The radiosity computation uses about twice the amount of
memory to compute a solution as to display. The fixed
amount of memory on most graphics cards is a problem
for large scenes. However, 3DLabs already has a card
that supports virtual memory[cite], and we expect more
manufacturers will follow suit.

7 Acknowledgements
The authors would like to thank Jeff Juliano, Stephen
Ehmann, Paul Keller and David Kirk of NVIDIA for
providing engineering boards and technical help. We
would also like to thank the UNC Global Illumination
Group for numerous detailed discussions. This work was
supported in part by NVIDIA Corporation, US NIH
National Center for Research Resources Grant Number
P41 RR 02170, US Office of Naval Research N00014-01-
1-0061, US Department of Energy ASCI program, and
National Science Foundation grants ACR-9876914 and
IIS-0121293.

Bibliography
BASTOS, R., GOSLIN, M. AND ZHANG, H. 1997.
Efficient Radiosity Rendering using Textures and Bicubic
Reconstruction. ACM-SIGGRAPH Symposium on Interactive
3D Graphics.

BAUM, D. R. AND WINGET, J. M. 1990. Real Time
Radiosity Through Parallel Processing and Hardware
Acceleration. Proceedings of 1990 Symposium on Interactive
3D Graphics.

CARR, N. A., HALL, J. D. AND HART, J. C. 2002. The
Ray Engine. Graphics Hardware 2002, Saarbrucken,
Germany.

COHEN, M. F., CHEN, S. E., WALLACE, J. R. AND
GREENBERG, D. P. 1988. A Progressive Refinement

Coombe, Harris, Lastra / Radiosity on Graphics Hardware

Approach to Fast Radiosity Image Generation. Proceedings
of SIGGRAPH 88.

COHEN, M. F. AND GREENBERG, D. P. 1985. The Hemi-
Cube: A Radiosity Solution for Complex Environments.
Proceedings of SIGGRAPH 85.

COHEN, M. F. AND WALLACE, J. R. (1993). Radiosity
and Realistic Image Synthesis. Cambridge, MA, Academic
Press.

FUNKHOUSER, T. A. 1996. Coarse-Grained Parallelism for
Hierarchical Radiosity Using Group Iterative Methods.
Proceedings of SIGGRAPH 96.

HANRAHAN, P., SALZMAN, D. AND AUPPERLE, L.
1991. A Rapid Hierarchical Radiosity Algorithm.
Proceedings of SIGGRAPH 91.

HECKBERT, P. S. 1990. Adaptive Radiosity Textures for
Bidirectional Ray Tracing. Proceedings of SIGGRAPH 90.

IMMEL, D., COHEN, M. AND GREENBERG, D. 1986. A
Radiosity Method for Non-Diffuse Environments.
Proceedings of SIGGRAPH 86.

KELLER, A. 1997. Instant Radiosity. Proceedings of
SIGGRAPH 97.

NIELSEN, K. H. AND CHRISTENSEN, N. J. 2002. Fast
Texture Based Form Factor Calculations for Radiosity using
Graphics Hardware. Journal of Graphics Tools 6(4).

PURCELL, T. J., BUCK, I., MARK, W. R. AND
HANRAHAN, P. 2002. Ray Tracing on Programmable
Graphics Hardware. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2002) 21(3): 703-712.

SILLION, F. X., ARVO, J. R., WESTIN, S. H. AND
GREENBERG, D. P. 1991. A Global Illumination Solution
for General Reflectance Distributions. Proceedings of
SIGGRAPH 91.

SMITS, B. E., ARVO, J. R. AND SALESIN, D. H. 1992. An
Importance-Driven Radiosity Algorithm. Proceedings of
SIGGRAPH 92.

VARSHNEY, A. AND PRINS, J. F. 1992. An Environment-
Projection Approach to Radiosity for Mesh-Connected
Computers. Proceedings of the Third Eurographics
Workshop on Rendering.

VEDEL, C. AND PUECH, C. 1992. A Testbed for Adaptive
Subvidision in Progressive Radiosity. Second Eurographics
Workshop on Rendering.

VLACHOS, A., PETERS, J., BOYD, C. AND MITCHELL,
J. L. 2001. Curved PN Triangles. 2001 ACM Symposium on
Interactive 3D Graphics.

WALLACE, J. R., ELMQUIST, K. A. AND HAINES, E. A.
1989. A Ray Tracing Algorithm for Progressive Radiosity.
Proceedings of SIGGRAPH 89.

Appendix : Implementation Details
The majority of the computation described in this paper is
implemented in fragment programs, which run on the
powerful fragment processor. In addition, we can exploit
several specialized capabilities of graphics hardware that
make it more useful than simply another CPU.

In order to determine the projection of each texel onto
each of the five hemicube faces, we need to bind all five
hemicube textures and all five projection matrices at
once. Instead of computing each of these projections per

fragment, we can compute them per vertex and use
homogeneous coordinates and hardware interpolation to
get the value at each texel. The fragment program only
has to compute the perspective division at each texel,
which uses the projective texture functionality.

Texture Packing
While the high dynamic range of floating-point textures is
necessary for radiosity computation, the high precision is
not as necessary. The Cg programming language allows
two half-precision (16-bit) textures to be packed into one
full-precision (32-bit) floating-point texture. This feature
is particularly useful for radiosity, since it allows both the
residual and the radiosity textures to be stored (and
operated on) together. Our previous implementation
created a “delta” texture, which then had to be added to
the residual and radiosity textures. This addition required
2 more passes. The trade-off with texture packing is that
every step that needs the radiosity or residual values
(such as the sort or the mipmap steps) must unpack the
values before computation. In architectures that support
multiple render targets, this texture packing is not
necessary.

Occlusion Queries
One of the ways that we can get better hardware
efficiency is by aggregating occlusion queries. This is
because the occlusion query must stall the pipeline until
the results are ready, so starting a query and then waiting
for the result is inefficient. We try to start as many
queries as possible, then wait until they are all finished
until querying the result of the first one. This complicates
the quadtree traversal: The first pass down the tree
calculates the new radiosity values, and adds this node to
a queue. After we pass over the entire quadtree, we test
every node in the queue and determine whether it needs
to be subdivided. If a node needs to be subdivided, then
we traverse down the tree and subdivide the node. While
this sounds inefficient, it is about 20% faster than
querying the nodes individually.

