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Abstract 
A good use for the raw computation power of the next generation of graphics hardware is global illumination. Historically, 
global illumination algorithms have been executed on general purpose CPUs that are able to support complex data structures 
easily. The performance advantage of graphics hardware lies in its regular and independent computational structure. To retain 
this advantage there is a growing need for hardware friendly data structures that support non-traditional uses of the GPU such 
as global illumination. We propose a hardware friendly data structure for the interactive rendering of glossy surfaces by storing 
a pre-computed, view-independent representation of the incident radiance.  The data structure and rendering algorithm 
approximates the Monte Carlo integration techniques commonly used in global illumination algorithms. The algorithm is 
applied to photon mapping and achieves interactive results on current graphics hardware. Due to its nature, the data structure is 
well suited to dynamic updates. 
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1  Introduction 
Glossy surfaces are all around us.  They are difficult to 
render interactively because, unlike diffuse surfaces, their 
reflection of the world is view dependent.  To generate 
realistic images, the renderer must take into consideration 
light striking the surface from all directions. 

The reflected radiance is determined by convolving all 
the light arriving from the entire hemisphere of directions 
with the BRDF.  Many global illumination algorithms, 
such as Monte Carlo ray tracing and photon mapping, use 
a recursive Monte Carlo integration to estimate the 
incident radiance [Kajiya 1986, Jensen 2001].  Non-
trivial scenes require a large number, often hundreds, of 
directions to be sampled to have an acceptably low error 
in the estimate of incident radiance.  Unfortunately each 
sample can be very costly to calculate. 

We are investigating data structures for use in future 
global illumination hardware, in the same spirit as [Ma 
2002].  Instead of a spatial (3D) data structure, such as 
the k-d tree used by photon maps, we present a surface-
based data structure.  We believe that this approach is 
better suited for current and future hardware 
implementation. 

PHATextures (Photon Accumulation Textures) are a 
sparse sampling of the light arriving across a surface 
from all directions. They store a per-texel, pre-computed 
incident radiance sample. Each sample consists of energy 
and an incident direction. During rendering, we combine 
spatially close samples to approximate a Monte Carlo 
integration.  

Unlike other techniques for interactively rendering of 
glossy surfaces under indirect lighting, PHATextures 
lend themselves to easy updates.  Each PHATexel can be 
replaced independently.  Dynamic scenes can be handled 
by ensuring that all PHATexels are updated within some 
amount of time similarly to frameless rendering [Bishop 

1994].  This allows the light transport simulation to be 
decoupled from rendering. 

Indirect illumination, in the absence of strong caustics, 
will have low spatial variation.  The quality of the results 
can be improved for most scenes by separating out the 
contribution of the direct light and storing only indirect 
illumination in the PHATextures.  

After reviewing related work and providing 
background on Monte Carlo integration, we describe 
PHATexture generation and rendering.  We then show 
how to create PHATextures from a photon map [Jensen 
2001].  A PHATexture rendering algorithm running on 
current graphics hardware is described, followed by our 
results and conclusion. 

Figure 1: A glossy tabletop reflects a textured object 
as well as the walls. This scene runs at interactive 
rates on current graphics hardware.  
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2  Related Work 
Surfaces are often characterized as diffuse, glossy or 
specular. We first review ways to render specular and 
diffuse surfaces, and then concentrate on the subject of 
this paper: glossy surfaces. Finally we discuss 
representations for storing radiance in a model. 

Specular surfaces can be efficiently rendered 
interactively with dynamically updated environment 
maps, at the cost of some geometric inaccuracies.  An 
alternative is ray tracing, which can be computed at 
interactive frame rates using parallelism and other 
optimizations [Parker 1999; Wald 2001]. It is even 
possible to ray trace using graphics hardware [Carr 2000; 
Purcell 2002]. 

Diffuse surfaces can be rendered from a pre-computed 
lighting solution by either storing the results as vertex 
colors, or on textures [Cohen 1993].  With current 
hardware it is possible to compute a radiosity solution at 
near-interactive rates [Coombe 2003]. 

A technique for rendering glossy surfaces is the 
surface light field [Wood 2000; Chen 2002].  This 
method reduces a very dense set of exitant radiance 
information to a small set of parameters that are defined 
over a surface.  For each point on the surface the 
parameters are interpolated and define a two-dimensional 
function that can be evaluated for a given viewing 
direction to calculate the reflected radiance.  The results 
are very good, but require a very dense set of input data 
and an expensive non-linear fit that must be applied to the 
entire surface as a whole.  Computation of the input is 
significant, as they are usually constructed from captured 
images, making construction from full global 
illumination algorithms difficult.  Dynamic update is 
complicated by the non-linear fit over many texels. 

Similar work is the eigen-texture method of [Nishino 
1999].  Other parametric methods that are not image-
based and can render glossy BRDFs, with some limits on 
the material properties, include those of [Heidrich 1999; 
Kautz 1999; Kautz 2000; McAllister 2002].  These 
methods have been employed on graphics hardware with 
a fixed number of lights and direct lighting.  View-
dependent texturing [Debevec 1996; Heigl 1999; Buehler 
2001] is another possible approach, although may need 
many texture samples to capture the directional nature of 
glossy materials.  This technique sees the most use in 
image-based rendering of real-world scenes. 

Several caching techniques have been presented 
[Larson, 1998; Larson, 1999; Walter 1999; Stamminger 
2000; Simmons 2000; Dmitriev 2002].  These techniques 
are effective, and produce some of the best results for 
interactive display of global illumination solutions. 
However, it is not clear that such complicated methods 
are a good way to approach a future hardware solution. 

Surface-based data structures to store directional 
representations of energy include those of [Immel 1986] 
who discretized the hemisphere to represent the 
directional contributions of light, [Sillion 1991] who used 
spherical harmonics, and [Christensen 1996] who used 
wavelets.  An alternative approach that makes search in a 
3D data structure potentially hardware-friendly is the 
block hashing scheme of [Ma 2002].  This in contrast to 
the surface-based approach that we present in this paper. 

3  Background 
3.1 Monte Carlo Integration 
 Monte Carlo integration is a powerful set of techniques 
for integrating functions, especially ones with sharp 
discontinuities.  The function is numerically evaluated at 
random points over the domain of interest.  These 
samples are averaged and will, in the limit, approach the 
value of the true integral.  We are interested in integrating 
the light arriving at a surface point over the entire 
hemispherical domain.  Figure 2 shows a set of samples 
and how they are used to estimate the incoming light. 

The rate of convergence for Monte Carlo methods 
with truly random sampling of the function is inversely 
proportional to the square root of the number of samples.  
A very large number of samples may be required in order 
to reduce the variance to acceptable levels so that the 
estimate will converge with a reasonable amount of 
samples.  The two most popular strategies for lowering 
the variance of the samples are stratification and 
importance sampling.  These techniques try to 
intelligently focus the sampling.  Stratification will insure 
that the entire domain is examined at a minimum 
frequency.  This will prevent a large spike in the function 
from dominating the final result. 

A more powerful strategy for improving the 
convergence of Monte Carlo integration is importance 
sampling.  Instead of a random or stratified random 
sampling of the hemisphere, the function is sampled in 
those directions that will have the most significant impact 
on the final result.  With prior knowledge of the function 
being integrated in Figure 2 it is possible to sample the 
strong lobe more closely. The low power portions of the 
function contribute little to the integral so more error can 
be tolerated. Two things define how important a sample 
at a point x will be: 1) how greatly the local BRDF at x 
will weight samples from a particular direction ω; and 2) 
the magnitude of the light arriving from that direction.  
For a glossy surface, the BRDF is unable to provide 
much guidance unless we know where the camera is. This 
makes pre-processing of glossy surfaces difficult. 

4  PHATextures 
A PHATexture is a sparse sampling of the light arriving 
at a surface from all directions.  Each PHATexel on 
surface i at point x, Pi(x)={L(x, ω),ω), is an estimate of 
the radiance L received at point x from the single 

Figure 2: Monte Carlo integration of a hemisphere at 
a point. The function is sampled in many directions. 
Convergence is improved by concentrating the 
samples in areas of high value. 
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direction ω.  There are five components to a PHATexel, 
the incoming angle (θ, φ) and three color channels 
(RGB). Figure 3 shows a diagram of PHATexels on a 
surface. The left half of Figure 4 shows the RGB 
components of the PHATexture used to render that 
image. 

The key to the efficient use of PHATextures is the 
selection of the sampling directions at the texels.  They 
must sample the entire incoming radiance function well 
in order to provide the basis for a good Monte Carlo 
estimate. 

4.1 Generating PHATextures 
PHATextures are initialized during a pre-process and can 
be incrementally updated.  This enables the system to use 
a relatively expensive function to compute the sample of 
estimated incident radiance.  The locations of the 
PHATexels on the surface being sampled are fixed by the 
scene geometry and the PHATexture resolution.  For 
each PHATexel a single sampling direction is chosen and 
the incident radiance from that direction is calculated 
using a global illumination algorithm. The choice of 
algorithm is independent of our method; in the next 
section we present a system using photon mapping. 

PHATexels that are spatially close must sample 
radiance from different directions so that the 
neighborhood around each PHATexel will contain a 
diverse set of directions.  This constraint is equivalent to 
ensuring that the samples used in a Monte Carlo 
integration are representative of the domain of interest.  
Stratification and importance sampling are both effective 
ways of handling this.  Importance sampling is expected 
to give higher quality results for the same number of 
samples. 

We have found that it is better to store only indirect 
illumination in a PHATexture and add the direct lighting 
back in.  There are three reasons for this: 1) direct 
illumination usually has significantly more spatial 
variation than indirect lighting; 2) there are many more 
computationally efficient methods for calculating it; and 
3) by removing the direct illumination from consideration 
we are able to store more indirect information per 
PHATexture. 

4.2 Evaluating PHATextures 
To render the scene, we need to estimate the radiance 
reflected towards the eye at each visible point, x.  The 
reflected radiance is a convolution of the incident 
radiance with the local BRDF.  In some scenes this is a 

very simple process.  When there is only direct 
illumination from a single point source for example, just 
one sample of irradiance is needed and it can be easily 
computed for each surface point from the power and 
position of the light source.  A single sample of 
irradiance is sufficient because that is the only light that 
can possibly arrive on the surface.  However, in the 
presence of indirect light a single estimate of irradiance1 
will be insufficient to accurately calculate the reflected 
radiance for all but trivial scenes.  Jensen [Jensen 2001] 
found that a large number of directions are needed to 
calculate the reflected radiance with low error, which is 
essential for high quality images. 

By collecting data from the neighborhood of 
PHATexels around x (see Figure 3) a large number of 
diverse radiance samples are obtained. When these 
samples have had the BRDF applied and are averaged 
together they form an estimate of the exitant radiance at 
x. The BRDF may contain texture information or be 
otherwise spatially varying. If direct light was excluded 
during the processing it can be added back now using any 
of the techniques available. 

The radiance samples computed close to x are more 
likely to be reasonable then those that are further away. 
The contributions of each sample are weighted by 
distance.  The size of the neighborhood gathered must be 
large enough so that it contains samples from a diverse 

                                                 
1 Each PHATexel is specified to contain a single estimate of 
incident radiance. The standard formulation of the BRDF 
requires an estimate of irradiance arriving along a single angular 
direction. The sample of the radiance field may be converted into 
irradiance using the formula Eω=2πL(n•ω) where n is the 
surface normal. This conversion could be computed during 
preprocessing and stored in the PHATexture instead of the 
incident radiance, or alternatively the BRDF can be modified to 
take it into account. 

Figure 4: Each PHATexel stores the incident radiance 
in a specific direction; the RGB values are shown. A 
diversity of directions in all neighborhoods of this 
surface allows for the interactive rendering of glossy 
reflections on the right. 

Figure 3: A neighborhood of PHATexels provides 
an approximation of the incident radiance at any 
point on a PHATexture suitable for use in Monte 
Carlo integration. 
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set of directions, but small enough to prevent excessive 
blurring. Since too small a neighborhood was used in 
Figure 5, it exhibits a large amount of noise.  If a 
compromise cannot be reached between noise and blur, 
then a higher resolution PHATexture is required in that 
area. 

Gathering a neighborhood of PHATexels presents a 
problem when you reach the edge of the PHATexture. To 
ensure a stable support of the filter, the PHATexture is 
extended past the edge of the geometry. The extra 
PHATexels are used when the filter would otherwise be 
unsupported. 

5  Photon Mapping Example 
Photon mapping, described in [Jensen 2001], is a 
powerful technique for computing global illumination 
solutions of complex scenes. However, it is very costly to 
generate each image even with the addition of such 
techniques as irradiance caching [Ward 1992]. The 
computationally expensive operation is the recursive 
Monte Carlo integration of irradiance. We use 
PHATextures to accelerate this operation, and enable the 
interactive rendering of photon maps containing glossy 
surfaces. A ray tracing front end would be required for 
highly specular objects. After a quick overview of the 
fundamentals of photon mapping we describe the 
procedure for processing the computed photon map into 
PHATextures. 

The photon map is generated by shooting photons, 
carrying flux, from light sources into the scene. The 
photons are probabilistically absorbed by partial or totally 
diffuse surfaces as they are traced through multiple 
surface interactions.  The photons are stored in a 3D data 
structure for lookup during the rendering phase. 

For each desired pixel during rendering, a ray is cast 
from the camera onto the scene, and the reflected 
radiance at that point is calculated. A scene with highly 
specular objects should utilize ray tracing since the 
reflected radiance function on a highly specular surface 
has very high frequencies. There are two basic algorithms 
for determining the reflected radiance at a surface point 
from a photon map. 

The approximate solution is to gather a local 
neighborhood of photons on surface. The flux carried by 
the photons within a gather radius is summed, with 
appropriate weighting, to determine the irradiance. This 
irradiance is combined with the BRDF to determine the 
reflected radiance. This is a direct application of the 
Monte Carlo integration. 

A more correct answer, referred to by Jensen as the 
exact solution, uses Monte Carlo recursively. Many 
individual rays {x, ω} for every surface position x are 
traced in to the scene. At the first intersection along each 
ray the k-nearest photons are gathered and combined with 
the BRDF to compute the reflected radiance back along ω 
towards x. This is the same operation that is performed at 
the original surface point by the approximate solution. 
The Monte Carlo integration at x proceeds as before but 
using these higher quality samples as estimates of 
incident radiance. Computing each sample is now a 
costly operation that must be performed for many 
directions at x. Typically hundreds of rays per point x are 
required to generate low-noise images.  

5.1 Creating PHATextures from a Photon Map 
During the pre-process stage a photon map is used to 
construct a PHATexture for each glossy surface. Each 
photon has a position on a surface, a flux, and an incident 
direction. 
5.1.1 The approximate solution analogue 

The analogue to the approximate solution is to store 
photons directly in a PHATexture. If each texel 
represented a photon, then collecting a neighborhood of 
PHATexels would be equivalent to gathering photons. 
Unfortunately photons are deposited on surfaces neither 
uniformly nor directly at PHATexel locations, making it 
difficult to choose exactly one photon per PHATexel. 

We have to make a choice between all of the photons 
that are deposited near to each PHATexel. We must not 

Figure 5: A neighborhood of PHATexels provides an 
approximation of the incident radiance at any point 
on a PHATexture. This image was rendered using a 
small neighborhood, effectively using too few 
samples in the Monte Carlo integration, which 
results in noise. 

Approximate Gather Site 

Exact gather site 

Figure 6: The two photon map rendering solutions 
differ by where photons are gathered to compute 
reflected radiance, the first bounce or the second. 
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consider photons that are arbitrarily far away from x or 
the spatial coherence assumption will no longer hold. 
Using a similar maximum gather radius to that used by 
the photon map gathering routine, we can establish a list 
of candidate photons for each PHATexel. If the list is 
empty then there is no irradiance stored at the PHATexel. 
If not empty, then only one photon can be chosen from 
the list of candidates. 

The naïve strategy is to choose the nearest photon. 
However this will fail to generate PHATexels with 
sufficient diversity of angles in a given neighborhood 
unless there is a very high photon density. If photons are 
sparse around x then always choosing the nearest photon 
for each PHATexel will result in a very poor sampling of 
the hemisphere in the neighborhood of x. In fact the 
directions would all be identical. Increasing the number 
of photons traced through the scene is expensive because 
it is hard to fairly concentrate photons to land near a 
specific location. 

 A better solution is to consider all the photons within 
a gather radius and choose one of them probabilistically. 
We compute a given photon’s weight at x using a cone 
filter. Photons that land exactly at x receive a weight of 
one, and contribution falls off linearly to zero.  The 
probability that a photon will be chosen by a PHATexel 
is that photon’s weight divided by the sum of the weights 
of all photons. This strategy intermingles the photons in 
areas of low density and will gradually reduce the 
influence of distant photons in areas with high density. 
Therefore sufficient diversity in angular sampling will be 
achieved.  

Rather than explicitly constructing a list of candidate 
photons for each PHATexel, we splat [Westover 1990] 
each photon one at a time into the PHATexture. Only a 
single photon at a time may be stored in a PHATexel. 
Each photon has a chance to force out the currently stored 
photon. This chance is proportional to its weight divided 
by the sum of the weights of all photons that have already 
been splatted to this PHATexel. This method is invariant 
to the order of the photons. The last photon splatted has 
the same chance of being chosen as the first photon, 
assuming equal weights. The winning photon’s flux is 
converted to incident radiance and stored along with the 
direction from which the photon came as the value of 
Pi(x). 

Unfortunately, the method just described does not 
generate satisfactory images due to the poor quality of the 
incident radiance estimate along the splatted direction. 
Also, it is unable to correctly handle areas of high photon 
density. If the number of photons in a portion of the 
surface exceeds the number of PHATexels available then 
some are left out, and the flux that they represent is lost.  

Although this is not a good way to generate final 
images, we find that it is useful for importance sampling 
the directions. The photons that are chosen by the 
splatting technique are by definition likely to originate at 
the surfaces that reflect light onto the surface of interest. 
Objects that reflect a great deal of light to a surface will 
have a greater number of photons that point towards it. 

5.1.2 The exact solution analogue 
The estimates of incident radiance stored in the 
PHATextures by the method described in the previous 

section were easy to compute but were of low quality. 
The photon map exact solution produces very good 
results, but requires a very expensive ray casting and 
photon gathering for every direction at each point 
evaluated. The more work that is required to calculate the 
estimated value of incident radiance for each direction, 
the more striking the advantages of the PHATextures 
become.  

To improve the convergence rate of the Monte Carlo 
integration we use importance sampling. The method of 
the previous section gives us information about the 
distribution of light arriving at x. Instead of directly using 
the winning photon’s flux, we cast a ray in the direction 
from which the photon arrived. At the intersection of this 
ray with the scene we perform a photon gather, just like 
the exact photon map solution. The resulting reflected 
radiance is converted into incident irradiance and stored 
along with ω at Pi(x). We use this method exclusively. 

5.2 Implementation details 
For many of the stages of our pre-process we use a 
modified open source photon mapping program [Jarosz]. 
Photons are traced out into the scene, reflecting and being 
absorbed by surfaces in the model. The position, energy, 
direction, and object ID of each photon is recorded in a 
list as they are deposited into the photon map. These 
collected photons are then splatted into the PHATextures 
to determine the importance-sampled direction. For each 
PHATexel a single ray is cast. At the intersection, a k-
nearest neighbor search is performed and the gathered 
photons are used to calculate the radiance received at the 
PHATexel. During the splatting, but not the gathering, 
first-hit photons are excluded if direct illumination will 
be computed separately during rendering (using any of 
the standard methods).  
6  Hardware Implementation 
There are five components to each PHATexel, the 
incoming angle (θ, φ) and three color channels (RGB). 
The PHATextures are currently implemented as a 
floating-point texture with four channels. The two angles 
are packed into half-precision (16-bit) floating point 
values. Before storage we convert the incident radiance 
into irradiance.  

Floating-point storage is necessary even when direct 
illumination is removed because there is a high dynamic 
range in the value of radiance. It is critical to maintain 
this range due to the glossy BRDF. Objects can have 
bright contributions from one direction and very dim 
contributions from another. The smaller value cannot be 
discarded on a glossy surface because for some viewing 
angles they may be more important then the high valued 
samples.  

Once per frame, after the camera has been positioned, 
we apply the BRDF to each PHATexel to create an 
intermediate texture. This texture will be used to 
construct a mipmap as described below.  The BRDF only 
has to be computed once per PHATexel per frame. 

6.1 A mipmap cone filter 
The naïve rendering algorithm described before collects 
the results from all texels within a gather radius around 
point x in the intermediate texture and sums them using a 
cone filter. As mentioned, many directional samples are 
required to acquire a good estimate, even with 
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importance sampling. Although the intensive global 
illumination calculations have already been performed, 
reading several dozen values out of texture memory 
applying the BRDF for every displayed pixel is 
prohibitively expensive on current hardware. Since our 
goal is real-time display, we can approximate these 
texture reads using mipmaps. 

We construct a floating point mipmap from the 
intermediate texture. For each displayed pixel, bilinear 
samples are taken from several different levels of the 
mipmap. Each texel of the intermediate texture 
contributes to multiple levels of the mipmap. As Figure 7 
shows, sampling different levels of the mipmap at the 
point of interest approximates a cone filter. This filter 
does add a few artifacts, however. The most noticeable 
are the crosshairs that arise from any use of a linear filter. 
Bi-cubic texture sampling would alleviate this, although 
at the expense of extra memory bandwidth that could be 
better spent on higher resolution PHATextures. The most 
serious error though is that the filter has a variety of 
square supports that are not centered at the pixel being 
shaded. 

6.2 Direct illumination and textures 
If the scene only consists of point light sources and 

objects that cast no shadows, then the standard direct 
lighting can be easily implemented in graphics hardware. 
It is important to be sure that each light’s energy is 
calculated correctly in the proper units so that the 
reflected radiance is compatible with the contents of the 
mipmap filter. Scenes with area lights or shadows can be 
computed using ray casting and pre-computed shadow 
maps. Once the total illumination is computed, standard 
shading algorithms can be used.  

7  Results & Performance 
The renderer was implemented on an Nvidia GeForce FX 
using three fragment programs. The first is used to create 
the intermediate texture, the second generates the 
floating-point mipmap levels and the third interpolates 
the floating-point mipmap, computes direct illumination 
from a point source and applies texturing. The first two 
programs must run on every polygon that has a 
PHATexture at the full resolution of the PHATexture. 
The final program, which involves many floating-point 
texture reads, is executed in proportion to the number of 
projected pixels. 

The images presented through this paper were all 
generated at interactive rates after a view-independent 
pre-process. For the scenes in this paper the entire pre-
process took under an hour.  

8  Conclusions and Future Work 
PHATextures allow for the interactive display of glossy 
surfaces with indirect illumination that has been 
previously calculated by a global illumination algorithm. 
The structure of the PHATextures allows for each 
PHATexel to be computed independently and updated as 
objects move or the lighting solution is enhanced 

PHATextures are amenable to current graphics 
hardware, although they would benefit from greater 
texture bandwidth and larger memory sizes. As a surface 
based rather then a three-dimensional data structure the 
memory accesses are simple, conforming to traditional 
texture map address patterns, which would allow for 
relatively simple prediction and caching schemes. 

The next step in this work is to implement a system 
that updates the PHATextures from a global illumination 
solution as objects move or the solution improves.  The 
global illumination calculation can be decoupled from 
rendering. We plan to divide the work between the CPU 
and the GPU.  The CPU will process the scene updates 
and perform the random access memory reads necessary 
for gather photons out of the photon maps. When results 
are calculated small updates will be rendered into the 
PHATextures that remain resident on the graphics 
hardware. The graphics system will be able to 
continuously render while the CPU is busy. An 
interesting alternative would be to do both calculation 
and rendering on the graphics hardware as [Coombe 
2003] does. 

We also plan to investigate architectures that compute 
the global illumination solution on the graphics hardware.  
We believe that, initially, the hardware will be too slow 
to compute a full solution at high frame rates.  The 
PHATextures will act as a buffer to decouple the global-
illumination update from the rendering. 

9  Acknowledgements 
The authors would like to thank the UNC Global 
Illumination reading group for their assistance and many 
discussions. This work was supported in part by NSF 
grant ACI-0205425 and a NSF Graduate Research 
Fellowship. Additional equipment was provided by 
NVIDIA. 

Figure 7: A neighborhood of PHATexels provides 
an approximation of the incident radiance at any 
point on a PHATexture. 
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