
UNC-CS TR03-019 1

PHATextures: A Surface-Based Data Structure for Interactive
Rendering of Glossy Surfaces

Justin Hensley Josh Steinhurst Greg Coombe Anselmo Lastra

Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA

{hensley, jsteinhu, coombe, lastra}@cs.unc.edu

Abstract
A good use for the raw computation power of the next generation of graphics hardware is global illumination. Historically,
global illumination algorithms have been executed on general purpose CPUs that are able to support complex data structures
easily. The performance advantage of graphics hardware lies in its regular and independent computational structure. To retain
this advantage there is a growing need for hardware friendly data structures that support non-traditional uses of the GPU such
as global illumination. We propose a hardware friendly data structure for the interactive rendering of glossy surfaces by storing
a pre-computed, view-independent representation of the incident radiance. The data structure and rendering algorithm
approximates the Monte Carlo integration techniques commonly used in global illumination algorithms. The algorithm is
applied to photon mapping and achieves interactive results on current graphics hardware. Due to its nature, the data structure is
well suited to dynamic updates.

Keywords: Graphics Hardware; Global Illumination.

1 Introduction
Glossy surfaces are all around us. They are difficult to
render interactively because, unlike diffuse surfaces, their
reflection of the world is view dependent. To generate
realistic images, the renderer must take into consideration
light striking the surface from all directions.

The reflected radiance is determined by convolving all
the light arriving from the entire hemisphere of directions
with the BRDF. Many global illumination algorithms,
such as Monte Carlo ray tracing and photon mapping, use
a recursive Monte Carlo integration to estimate the
incident radiance [Kajiya 1986, Jensen 2001]. Non-
trivial scenes require a large number, often hundreds, of
directions to be sampled to have an acceptably low error
in the estimate of incident radiance. Unfortunately each
sample can be very costly to calculate.

We are investigating data structures for use in future
global illumination hardware, in the same spirit as [Ma
2002]. Instead of a spatial (3D) data structure, such as
the k-d tree used by photon maps, we present a surface-
based data structure. We believe that this approach is
better suited for current and future hardware
implementation.

PHATextures (Photon Accumulation Textures) are a
sparse sampling of the light arriving across a surface
from all directions. They store a per-texel, pre-computed
incident radiance sample. Each sample consists of energy
and an incident direction. During rendering, we combine
spatially close samples to approximate a Monte Carlo
integration.

Unlike other techniques for interactively rendering of
glossy surfaces under indirect lighting, PHATextures
lend themselves to easy updates. Each PHATexel can be
replaced independently. Dynamic scenes can be handled
by ensuring that all PHATexels are updated within some
amount of time similarly to frameless rendering [Bishop

1994]. This allows the light transport simulation to be
decoupled from rendering.

Indirect illumination, in the absence of strong caustics,
will have low spatial variation. The quality of the results
can be improved for most scenes by separating out the
contribution of the direct light and storing only indirect
illumination in the PHATextures.

After reviewing related work and providing
background on Monte Carlo integration, we describe
PHATexture generation and rendering. We then show
how to create PHATextures from a photon map [Jensen
2001]. A PHATexture rendering algorithm running on
current graphics hardware is described, followed by our
results and conclusion.

Figure 1: A glossy tabletop reflects a textured object
as well as the walls. This scene runs at interactive
rates on current graphics hardware.

Hensley, Steinhurst, Coombe and Lastra / PHATextures: A Surface-Based Data Structure for Interactive Rendering of Glossy Surfaces

UNC-CS TR03-019 2

2 Related Work
Surfaces are often characterized as diffuse, glossy or
specular. We first review ways to render specular and
diffuse surfaces, and then concentrate on the subject of
this paper: glossy surfaces. Finally we discuss
representations for storing radiance in a model.

Specular surfaces can be efficiently rendered
interactively with dynamically updated environment
maps, at the cost of some geometric inaccuracies. An
alternative is ray tracing, which can be computed at
interactive frame rates using parallelism and other
optimizations [Parker 1999; Wald 2001]. It is even
possible to ray trace using graphics hardware [Carr 2000;
Purcell 2002].

Diffuse surfaces can be rendered from a pre-computed
lighting solution by either storing the results as vertex
colors, or on textures [Cohen 1993]. With current
hardware it is possible to compute a radiosity solution at
near-interactive rates [Coombe 2003].

A technique for rendering glossy surfaces is the
surface light field [Wood 2000; Chen 2002]. This
method reduces a very dense set of exitant radiance
information to a small set of parameters that are defined
over a surface. For each point on the surface the
parameters are interpolated and define a two-dimensional
function that can be evaluated for a given viewing
direction to calculate the reflected radiance. The results
are very good, but require a very dense set of input data
and an expensive non-linear fit that must be applied to the
entire surface as a whole. Computation of the input is
significant, as they are usually constructed from captured
images, making construction from full global
illumination algorithms difficult. Dynamic update is
complicated by the non-linear fit over many texels.

Similar work is the eigen-texture method of [Nishino
1999]. Other parametric methods that are not image-
based and can render glossy BRDFs, with some limits on
the material properties, include those of [Heidrich 1999;
Kautz 1999; Kautz 2000; McAllister 2002]. These
methods have been employed on graphics hardware with
a fixed number of lights and direct lighting. View-
dependent texturing [Debevec 1996; Heigl 1999; Buehler
2001] is another possible approach, although may need
many texture samples to capture the directional nature of
glossy materials. This technique sees the most use in
image-based rendering of real-world scenes.

Several caching techniques have been presented
[Larson, 1998; Larson, 1999; Walter 1999; Stamminger
2000; Simmons 2000; Dmitriev 2002]. These techniques
are effective, and produce some of the best results for
interactive display of global illumination solutions.
However, it is not clear that such complicated methods
are a good way to approach a future hardware solution.

Surface-based data structures to store directional
representations of energy include those of [Immel 1986]
who discretized the hemisphere to represent the
directional contributions of light, [Sillion 1991] who used
spherical harmonics, and [Christensen 1996] who used
wavelets. An alternative approach that makes search in a
3D data structure potentially hardware-friendly is the
block hashing scheme of [Ma 2002]. This in contrast to
the surface-based approach that we present in this paper.

3 Background
3.1 Monte Carlo Integration
 Monte Carlo integration is a powerful set of techniques
for integrating functions, especially ones with sharp
discontinuities. The function is numerically evaluated at
random points over the domain of interest. These
samples are averaged and will, in the limit, approach the
value of the true integral. We are interested in integrating
the light arriving at a surface point over the entire
hemispherical domain. Figure 2 shows a set of samples
and how they are used to estimate the incoming light.

The rate of convergence for Monte Carlo methods
with truly random sampling of the function is inversely
proportional to the square root of the number of samples.
A very large number of samples may be required in order
to reduce the variance to acceptable levels so that the
estimate will converge with a reasonable amount of
samples. The two most popular strategies for lowering
the variance of the samples are stratification and
importance sampling. These techniques try to
intelligently focus the sampling. Stratification will insure
that the entire domain is examined at a minimum
frequency. This will prevent a large spike in the function
from dominating the final result.

A more powerful strategy for improving the
convergence of Monte Carlo integration is importance
sampling. Instead of a random or stratified random
sampling of the hemisphere, the function is sampled in
those directions that will have the most significant impact
on the final result. With prior knowledge of the function
being integrated in Figure 2 it is possible to sample the
strong lobe more closely. The low power portions of the
function contribute little to the integral so more error can
be tolerated. Two things define how important a sample
at a point x will be: 1) how greatly the local BRDF at x
will weight samples from a particular direction ω; and 2)
the magnitude of the light arriving from that direction.
For a glossy surface, the BRDF is unable to provide
much guidance unless we know where the camera is. This
makes pre-processing of glossy surfaces difficult.

4 PHATextures
A PHATexture is a sparse sampling of the light arriving
at a surface from all directions. Each PHATexel on
surface i at point x, Pi(x)={L(x, ω),ω), is an estimate of
the radiance L received at point x from the single

Figure 2: Monte Carlo integration of a hemisphere at
a point. The function is sampled in many directions.
Convergence is improved by concentrating the
samples in areas of high value.

Hensley, Steinhurst, Coombe and Lastra / PHATextures: A Surface-Based Data Structure for Interactive Rendering of Glossy Surfaces

UNC-CS TR03-019 3

direction ω. There are five components to a PHATexel,
the incoming angle (θ, φ) and three color channels
(RGB). Figure 3 shows a diagram of PHATexels on a
surface. The left half of Figure 4 shows the RGB
components of the PHATexture used to render that
image.

The key to the efficient use of PHATextures is the
selection of the sampling directions at the texels. They
must sample the entire incoming radiance function well
in order to provide the basis for a good Monte Carlo
estimate.

4.1 Generating PHATextures
PHATextures are initialized during a pre-process and can
be incrementally updated. This enables the system to use
a relatively expensive function to compute the sample of
estimated incident radiance. The locations of the
PHATexels on the surface being sampled are fixed by the
scene geometry and the PHATexture resolution. For
each PHATexel a single sampling direction is chosen and
the incident radiance from that direction is calculated
using a global illumination algorithm. The choice of
algorithm is independent of our method; in the next
section we present a system using photon mapping.

PHATexels that are spatially close must sample
radiance from different directions so that the
neighborhood around each PHATexel will contain a
diverse set of directions. This constraint is equivalent to
ensuring that the samples used in a Monte Carlo
integration are representative of the domain of interest.
Stratification and importance sampling are both effective
ways of handling this. Importance sampling is expected
to give higher quality results for the same number of
samples.

We have found that it is better to store only indirect
illumination in a PHATexture and add the direct lighting
back in. There are three reasons for this: 1) direct
illumination usually has significantly more spatial
variation than indirect lighting; 2) there are many more
computationally efficient methods for calculating it; and
3) by removing the direct illumination from consideration
we are able to store more indirect information per
PHATexture.

4.2 Evaluating PHATextures
To render the scene, we need to estimate the radiance
reflected towards the eye at each visible point, x. The
reflected radiance is a convolution of the incident
radiance with the local BRDF. In some scenes this is a

very simple process. When there is only direct
illumination from a single point source for example, just
one sample of irradiance is needed and it can be easily
computed for each surface point from the power and
position of the light source. A single sample of
irradiance is sufficient because that is the only light that
can possibly arrive on the surface. However, in the
presence of indirect light a single estimate of irradiance1
will be insufficient to accurately calculate the reflected
radiance for all but trivial scenes. Jensen [Jensen 2001]
found that a large number of directions are needed to
calculate the reflected radiance with low error, which is
essential for high quality images.

By collecting data from the neighborhood of
PHATexels around x (see Figure 3) a large number of
diverse radiance samples are obtained. When these
samples have had the BRDF applied and are averaged
together they form an estimate of the exitant radiance at
x. The BRDF may contain texture information or be
otherwise spatially varying. If direct light was excluded
during the processing it can be added back now using any
of the techniques available.

The radiance samples computed close to x are more
likely to be reasonable then those that are further away.
The contributions of each sample are weighted by
distance. The size of the neighborhood gathered must be
large enough so that it contains samples from a diverse

1 Each PHATexel is specified to contain a single estimate of
incident radiance. The standard formulation of the BRDF
requires an estimate of irradiance arriving along a single angular
direction. The sample of the radiance field may be converted into
irradiance using the formula Eω=2πL(n•ω) where n is the
surface normal. This conversion could be computed during
preprocessing and stored in the PHATexture instead of the
incident radiance, or alternatively the BRDF can be modified to
take it into account.

Figure 4: Each PHATexel stores the incident radiance
in a specific direction; the RGB values are shown. A
diversity of directions in all neighborhoods of this
surface allows for the interactive rendering of glossy
reflections on the right.

Figure 3: A neighborhood of PHATexels provides
an approximation of the incident radiance at any
point on a PHATexture suitable for use in Monte
Carlo integration.

Hensley, Steinhurst, Coombe and Lastra / PHATextures: A Surface-Based Data Structure for Interactive Rendering of Glossy Surfaces

UNC-CS TR03-019 4

set of directions, but small enough to prevent excessive
blurring. Since too small a neighborhood was used in
Figure 5, it exhibits a large amount of noise. If a
compromise cannot be reached between noise and blur,
then a higher resolution PHATexture is required in that
area.

Gathering a neighborhood of PHATexels presents a
problem when you reach the edge of the PHATexture. To
ensure a stable support of the filter, the PHATexture is
extended past the edge of the geometry. The extra
PHATexels are used when the filter would otherwise be
unsupported.

5 Photon Mapping Example
Photon mapping, described in [Jensen 2001], is a
powerful technique for computing global illumination
solutions of complex scenes. However, it is very costly to
generate each image even with the addition of such
techniques as irradiance caching [Ward 1992]. The
computationally expensive operation is the recursive
Monte Carlo integration of irradiance. We use
PHATextures to accelerate this operation, and enable the
interactive rendering of photon maps containing glossy
surfaces. A ray tracing front end would be required for
highly specular objects. After a quick overview of the
fundamentals of photon mapping we describe the
procedure for processing the computed photon map into
PHATextures.

The photon map is generated by shooting photons,
carrying flux, from light sources into the scene. The
photons are probabilistically absorbed by partial or totally
diffuse surfaces as they are traced through multiple
surface interactions. The photons are stored in a 3D data
structure for lookup during the rendering phase.

For each desired pixel during rendering, a ray is cast
from the camera onto the scene, and the reflected
radiance at that point is calculated. A scene with highly
specular objects should utilize ray tracing since the
reflected radiance function on a highly specular surface
has very high frequencies. There are two basic algorithms
for determining the reflected radiance at a surface point
from a photon map.

The approximate solution is to gather a local
neighborhood of photons on surface. The flux carried by
the photons within a gather radius is summed, with
appropriate weighting, to determine the irradiance. This
irradiance is combined with the BRDF to determine the
reflected radiance. This is a direct application of the
Monte Carlo integration.

A more correct answer, referred to by Jensen as the
exact solution, uses Monte Carlo recursively. Many
individual rays {x, ω} for every surface position x are
traced in to the scene. At the first intersection along each
ray the k-nearest photons are gathered and combined with
the BRDF to compute the reflected radiance back along ω
towards x. This is the same operation that is performed at
the original surface point by the approximate solution.
The Monte Carlo integration at x proceeds as before but
using these higher quality samples as estimates of
incident radiance. Computing each sample is now a
costly operation that must be performed for many
directions at x. Typically hundreds of rays per point x are
required to generate low-noise images.

5.1 Creating PHATextures from a Photon Map
During the pre-process stage a photon map is used to
construct a PHATexture for each glossy surface. Each
photon has a position on a surface, a flux, and an incident
direction.
5.1.1 The approximate solution analogue

The analogue to the approximate solution is to store
photons directly in a PHATexture. If each texel
represented a photon, then collecting a neighborhood of
PHATexels would be equivalent to gathering photons.
Unfortunately photons are deposited on surfaces neither
uniformly nor directly at PHATexel locations, making it
difficult to choose exactly one photon per PHATexel.

We have to make a choice between all of the photons
that are deposited near to each PHATexel. We must not

Figure 5: A neighborhood of PHATexels provides an
approximation of the incident radiance at any point
on a PHATexture. This image was rendered using a
small neighborhood, effectively using too few
samples in the Monte Carlo integration, which
results in noise.

Approximate Gather Site

Exact gather site

Figure 6: The two photon map rendering solutions
differ by where photons are gathered to compute
reflected radiance, the first bounce or the second.

Hensley, Steinhurst, Coombe and Lastra / PHATextures: A Surface-Based Data Structure for Interactive Rendering of Glossy Surfaces

UNC-CS TR03-019 5

consider photons that are arbitrarily far away from x or
the spatial coherence assumption will no longer hold.
Using a similar maximum gather radius to that used by
the photon map gathering routine, we can establish a list
of candidate photons for each PHATexel. If the list is
empty then there is no irradiance stored at the PHATexel.
If not empty, then only one photon can be chosen from
the list of candidates.

The naïve strategy is to choose the nearest photon.
However this will fail to generate PHATexels with
sufficient diversity of angles in a given neighborhood
unless there is a very high photon density. If photons are
sparse around x then always choosing the nearest photon
for each PHATexel will result in a very poor sampling of
the hemisphere in the neighborhood of x. In fact the
directions would all be identical. Increasing the number
of photons traced through the scene is expensive because
it is hard to fairly concentrate photons to land near a
specific location.

 A better solution is to consider all the photons within
a gather radius and choose one of them probabilistically.
We compute a given photon’s weight at x using a cone
filter. Photons that land exactly at x receive a weight of
one, and contribution falls off linearly to zero. The
probability that a photon will be chosen by a PHATexel
is that photon’s weight divided by the sum of the weights
of all photons. This strategy intermingles the photons in
areas of low density and will gradually reduce the
influence of distant photons in areas with high density.
Therefore sufficient diversity in angular sampling will be
achieved.

Rather than explicitly constructing a list of candidate
photons for each PHATexel, we splat [Westover 1990]
each photon one at a time into the PHATexture. Only a
single photon at a time may be stored in a PHATexel.
Each photon has a chance to force out the currently stored
photon. This chance is proportional to its weight divided
by the sum of the weights of all photons that have already
been splatted to this PHATexel. This method is invariant
to the order of the photons. The last photon splatted has
the same chance of being chosen as the first photon,
assuming equal weights. The winning photon’s flux is
converted to incident radiance and stored along with the
direction from which the photon came as the value of
Pi(x).

Unfortunately, the method just described does not
generate satisfactory images due to the poor quality of the
incident radiance estimate along the splatted direction.
Also, it is unable to correctly handle areas of high photon
density. If the number of photons in a portion of the
surface exceeds the number of PHATexels available then
some are left out, and the flux that they represent is lost.

Although this is not a good way to generate final
images, we find that it is useful for importance sampling
the directions. The photons that are chosen by the
splatting technique are by definition likely to originate at
the surfaces that reflect light onto the surface of interest.
Objects that reflect a great deal of light to a surface will
have a greater number of photons that point towards it.

5.1.2 The exact solution analogue
The estimates of incident radiance stored in the
PHATextures by the method described in the previous

section were easy to compute but were of low quality.
The photon map exact solution produces very good
results, but requires a very expensive ray casting and
photon gathering for every direction at each point
evaluated. The more work that is required to calculate the
estimated value of incident radiance for each direction,
the more striking the advantages of the PHATextures
become.

To improve the convergence rate of the Monte Carlo
integration we use importance sampling. The method of
the previous section gives us information about the
distribution of light arriving at x. Instead of directly using
the winning photon’s flux, we cast a ray in the direction
from which the photon arrived. At the intersection of this
ray with the scene we perform a photon gather, just like
the exact photon map solution. The resulting reflected
radiance is converted into incident irradiance and stored
along with ω at Pi(x). We use this method exclusively.

5.2 Implementation details
For many of the stages of our pre-process we use a
modified open source photon mapping program [Jarosz].
Photons are traced out into the scene, reflecting and being
absorbed by surfaces in the model. The position, energy,
direction, and object ID of each photon is recorded in a
list as they are deposited into the photon map. These
collected photons are then splatted into the PHATextures
to determine the importance-sampled direction. For each
PHATexel a single ray is cast. At the intersection, a k-
nearest neighbor search is performed and the gathered
photons are used to calculate the radiance received at the
PHATexel. During the splatting, but not the gathering,
first-hit photons are excluded if direct illumination will
be computed separately during rendering (using any of
the standard methods).
6 Hardware Implementation
There are five components to each PHATexel, the
incoming angle (θ, φ) and three color channels (RGB).
The PHATextures are currently implemented as a
floating-point texture with four channels. The two angles
are packed into half-precision (16-bit) floating point
values. Before storage we convert the incident radiance
into irradiance.

Floating-point storage is necessary even when direct
illumination is removed because there is a high dynamic
range in the value of radiance. It is critical to maintain
this range due to the glossy BRDF. Objects can have
bright contributions from one direction and very dim
contributions from another. The smaller value cannot be
discarded on a glossy surface because for some viewing
angles they may be more important then the high valued
samples.

Once per frame, after the camera has been positioned,
we apply the BRDF to each PHATexel to create an
intermediate texture. This texture will be used to
construct a mipmap as described below. The BRDF only
has to be computed once per PHATexel per frame.

6.1 A mipmap cone filter
The naïve rendering algorithm described before collects
the results from all texels within a gather radius around
point x in the intermediate texture and sums them using a
cone filter. As mentioned, many directional samples are
required to acquire a good estimate, even with

Hensley, Steinhurst, Coombe and Lastra / PHATextures: A Surface-Based Data Structure for Interactive Rendering of Glossy Surfaces

UNC-CS TR03-019 6

importance sampling. Although the intensive global
illumination calculations have already been performed,
reading several dozen values out of texture memory
applying the BRDF for every displayed pixel is
prohibitively expensive on current hardware. Since our
goal is real-time display, we can approximate these
texture reads using mipmaps.

We construct a floating point mipmap from the
intermediate texture. For each displayed pixel, bilinear
samples are taken from several different levels of the
mipmap. Each texel of the intermediate texture
contributes to multiple levels of the mipmap. As Figure 7
shows, sampling different levels of the mipmap at the
point of interest approximates a cone filter. This filter
does add a few artifacts, however. The most noticeable
are the crosshairs that arise from any use of a linear filter.
Bi-cubic texture sampling would alleviate this, although
at the expense of extra memory bandwidth that could be
better spent on higher resolution PHATextures. The most
serious error though is that the filter has a variety of
square supports that are not centered at the pixel being
shaded.

6.2 Direct illumination and textures
If the scene only consists of point light sources and

objects that cast no shadows, then the standard direct
lighting can be easily implemented in graphics hardware.
It is important to be sure that each light’s energy is
calculated correctly in the proper units so that the
reflected radiance is compatible with the contents of the
mipmap filter. Scenes with area lights or shadows can be
computed using ray casting and pre-computed shadow
maps. Once the total illumination is computed, standard
shading algorithms can be used.

7 Results & Performance
The renderer was implemented on an Nvidia GeForce FX
using three fragment programs. The first is used to create
the intermediate texture, the second generates the
floating-point mipmap levels and the third interpolates
the floating-point mipmap, computes direct illumination
from a point source and applies texturing. The first two
programs must run on every polygon that has a
PHATexture at the full resolution of the PHATexture.
The final program, which involves many floating-point
texture reads, is executed in proportion to the number of
projected pixels.

The images presented through this paper were all
generated at interactive rates after a view-independent
pre-process. For the scenes in this paper the entire pre-
process took under an hour.

8 Conclusions and Future Work
PHATextures allow for the interactive display of glossy
surfaces with indirect illumination that has been
previously calculated by a global illumination algorithm.
The structure of the PHATextures allows for each
PHATexel to be computed independently and updated as
objects move or the lighting solution is enhanced

PHATextures are amenable to current graphics
hardware, although they would benefit from greater
texture bandwidth and larger memory sizes. As a surface
based rather then a three-dimensional data structure the
memory accesses are simple, conforming to traditional
texture map address patterns, which would allow for
relatively simple prediction and caching schemes.

The next step in this work is to implement a system
that updates the PHATextures from a global illumination
solution as objects move or the solution improves. The
global illumination calculation can be decoupled from
rendering. We plan to divide the work between the CPU
and the GPU. The CPU will process the scene updates
and perform the random access memory reads necessary
for gather photons out of the photon maps. When results
are calculated small updates will be rendered into the
PHATextures that remain resident on the graphics
hardware. The graphics system will be able to
continuously render while the CPU is busy. An
interesting alternative would be to do both calculation
and rendering on the graphics hardware as [Coombe
2003] does.

We also plan to investigate architectures that compute
the global illumination solution on the graphics hardware.
We believe that, initially, the hardware will be too slow
to compute a full solution at high frame rates. The
PHATextures will act as a buffer to decouple the global-
illumination update from the rendering.

9 Acknowledgements
The authors would like to thank the UNC Global
Illumination reading group for their assistance and many
discussions. This work was supported in part by NSF
grant ACI-0205425 and a NSF Graduate Research
Fellowship. Additional equipment was provided by
NVIDIA.

Figure 7: A neighborhood of PHATexels provides
an approximation of the incident radiance at any
point on a PHATexture.

x

Hensley, Steinhurst, Coombe and Lastra / PHATextures: A Surface-Based Data Structure for Interactive Rendering of Glossy Surfaces

UNC-CS TR03-019 7

References
Bishop, G., H. Fuchs, L. McMillan and E. J. S. Zagier
(1994). Frameless Rendering: Double Buffering Considered
Harmful. Proceedings of SIGGRAPH 94.
Buehler, C., M. Bosse, L. McMillan, S. J. Gortler and M. F.
Cohen (2001). Unstructured Lumigraph Rendering.
Proceedings of SIGGRAPH 2001, ACM.
Carr, N. A., J. D. Hall and J. C. Hart (2002). The Ray
Engine. Graphics Hardware 2002, Saarbrucken, Germany.
Chen, W.-C., J.-Y. Bouguet, M. Chu and R. Grzeszczuk
(2002). "Light Field Mapping: Efficient Representation and
Hardware Rendering of Surface Light Fields." ACM
Transactions on Graphics (Proceedings of SIGGRAPH
2002) 21(3): 447--456.
Christensen, P. H., E. J. Stollnitz, D. H. Salesin and T. D.
DeRose (1996). "Global Illumination of Glossy
Environments Using Wavelets and Importance." ACM
Transactions on Graphics 15(1): 37-71.
Cohen, M. F. and J. R. Wallace (1993). Radiosity and
Realistic Image Synthesis. Cambridge, MA, Academic Press.
Coombe, G., M. Harris, and A. Lastra (2003) Radiosity on
Graphics Hardware. Submitted to Graphics Hardware 2003.
Debevec, P. E., C. J. Taylor and J. Malik (1996). Modeling
and Rendering Architecture from Photographs: A Hybrid
Geometry- and Image-Based Approach. SIGGRAPH 96
Conference Proceedings. H. Rushmeier, ACM SIGGRAPH,
Addison Wesley: 11--20.
Dmitriev, K., S. Brabec, K. Myszkowski and H.-P. Seidel
(2002). Interactive Global Illumination using Selective
Photon Tracing. 13th Eurographics Workshop on Rendering.
Immel, D., M. Cohen and D. Greenberg (1986). A Radiosity
Method for Non-Diffuse Environments. Proceedings of
SIGGRAPH 86.
Heidrich, W. and H.-P. Seidel (1999). Realistic, Hardware-
Accelerated Shading and Lighting. Proceedings of
SIGGRAPH 99.
Heigl, B., R.Koch, M. Pollefeys, J. Denzler and L. V. Gool
(1999). Plenoptic modeling and rendering from image
sequences taken by hand-held camera. Proc. DAGM 99.
Jarosz, W. http://www.renderedrealities.net/
Jensen, H. W. (2001). Realistic Image Synthesis using
Photon Mapping, AK Peters.
Kajiya, J. T. (1986). The Rendering Equation. Proceedings
of SIGGRAPH 86.
Kautz, J. and M. D. McCool (1999). Interactive Rendering
with Arbitrary BRDFs using Separable Approximations.
Eurographics RenderingWorkshop 1999.
Kautz, J. and H.-P. Seidel (2000). Towards Interactive Bump
Mapping with Anisotropic Shift-Variant BRDFs.
SIGGRAPH / Eurographics Workshop on Graphics
Hardware.
Larson, G. W. (1998). The holodeck: A parallel ray-caching
rendering system. Second Eurographics Workshop on
Parallel Graphics and Visualisation, Rennes, France.
Larson, G. W. and M. Simmons (1999). "The Holodeck Ray
Cache: An Interactive Rendering System for Global
Illumination in Nondiffuse Environments." ACM
Transactions on Graphics 18(4): 361-98.

Ma, V. C. H. and M. D. McCool (2002). Low Latency
Photon Mapping Using Block Hashing. Graphics Hardware
2002.
McAllister, D. K., A. A. Lastra and W. Heidrich (2002).
Efficient Rendering of Spatial Bi-directional Reflectance
Distribution Functions. Graphics Hardware 2002,
Saarbruecken, Germany.
Nishino, K., Y. Sato and K. Ikeuchi (1999). Eigen-Texture
Method: Appearance Compression Based on 3D Model.
Proceedings of the IEEE Computer Science Conference on
Computer Vision and Pattern Recognition (CVPR-99).
Parker, S., P. Shirley, Y. Livnat, C. Hansen and P.-P. Sloan
(1998). Interactive Ray Tracing for Isosurface Rendering.
IEEE Visualization 98.
Purcell, T. J., I. Buck, W. R. Mark and P. Hanrahan (2002).
"Ray Tracing on Programmable Graphics Hardware." ACM
Transactions on Graphics (Proceedings of SIGGRAPH
2002) 21(3): 703-712.
Sillion, F. X., J. R. Arvo, S. H. Westin and D. P. Greenberg
(1991). A Global Illumination Solution for General
Reflectance Distributions. Proceedings of SIGGRAPH 91.
M.Simmons and C. H. Sequin (2000). Tapestry: A Dynamic
Mesh-Based Display Representation for Interactive
Rendering. Rendering Techniques 2000: 11th Eurographics
Workshop on Rendering.
Stamminger, M., J. Haber, H. Schirmacher and H.-P. Seidel
(2000). Walkthroughs with corrective texturing. Rendering
Techniques 2000: 11th Eurographics Workshop on
Rendering.
Wald, I., C. Benthin, M. Wagner and P. Slusallek (2001).
Interactive Rendering with Coherent Ray-Tracing.
Proceedings of EUROGRAPHICS 2001.
Walter, B., G. Drettakis and S. Parker (1999). Interactive
Rendering using the Render Cache. Rendering techniques '99
(Proceedings of the 10th Eurographics Workshop on
Rendering).
Ward, G. J. and P. Heckbert (1992). Irradiance Gradients.
Third Eurographics Workshop on Rendering.
Westover, L. (1990). Footprint evaluation for volume
rendering. Proceedings of SIGGRAPH 90.
Wood, D., D. Azuma, W. Aldinger, B. Curless, T. Duchamp,
D. Salesin and W. Stuetzle (2000). Surface Light Fields for
3D Photography. Proceedings of SIGGRAPH 2000.

