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Abstract

Previous automated approaches to discovering design
patterns in source code have suffered from a need to enu-
merate static descriptions of structural and behavioural re-
lationships, resulting in a finite library of variations on pat-
tern implementation. Our approach,System for Pattern
Query and Recognition, or SPQR, differs in that we do not
seek statically to encode each pattern and each variant that
we wish to find. Our system finds patterns that were notex-
plicitly defined, but instead are inferred dynamically during
code analysis by a theorem prover, providing practical tool
support for software construction, comprehension, mainte-
nance, and refactoring. We use a logical inference system to
reveal large numbers of patterns and their variations from
a small number of definitions by encoding in a formal deno-
tational semantics a small number of fundamental OO con-
cepts (elemental design patterns), encode the rules by which
these concepts are combined to form patterns (reliance op-
erators), and encode the structural/behavioral relationships
among components of objects and classes (rho-calculus). A
chain of fully automated tools provides a path from source
code to revealed patterns. We describe our approach in this
paper with a concrete example to drive the discussion, ac-
companied by formal treatment of the foundational topics.

1 Introduction

Practical tool support consistently lags behind the devel-
opment of important abstractions and theoretical concepts
in programming languages. One current successful abstrac-
tion in widespread use is the design pattern, an approach de-
scribing portions of systems that designers can learn from,
modify, apply, and understand as a single conceptual item
[13]. Design patterns are generally, if informally, defined as

common solutions to common problems which are of sig-
nificant complexity to require an explicit discussion of the
scope of the problem and the proposed solution. Much of
the popular literature on design patterns is dedicated to these
larger, more complex patterns, providing practitioners with
increasingly powerful constructs with which to work.

Design patterns, however, are at such a level of abstrac-
tion that they have so far proven resistant to tool support.
The myriad variations with which any one design pattern
may be implemented makes them difficult to describe suc-
cinctly or find in source code. We have discovered a class
of patterns that are small enough to find easily but compos-
able in ways that can be expressed in the rules of a logical
inference system.

We term themElemental Design Patterns(EDPs)[24,
25], and they are the base concepts on which more com-
plex design patterns are built. Because they comprise the
constructs which are used repeatedly within more common
patterns to solve the same problems, such as abstraction of
interface and delegation of implementation, they exhibit in-
teresting properties for partially bridging the gap between
source code in everyday use and the higher-level abstrac-
tions of the larger patterns. Higher-level patterns are thus
described in the language of elemental patterns, which fills
an apparent missing link in the abstraction chain.

The formally expressible and informally amorphous
halves of design patterns also present an interesting set of
problems for the theorist due to their dual nature [2]. The
concepts contained in patterns are those that the profes-
sional community has deemed important and noteworthy,
and they are ultimately expressed as source code that is re-
ducible to a mathematically formal notation. The core con-
cepts themselves have evaded such formalization to date.
We show here that such a formalization is possible, and in
addition that it can meet certain essential criteria. We also
show how our formalization leads to useful and direct tool
support for the developer with a need for extracting patterns



from an existing system.
We assert that such a formal solution should be imple-

mentation language independent, much as design patterns
are, if it is truly to capture universal concepts of program-
ming methodology. We further assert that a formal denota-
tion for pattern concepts should be a larger part of the for-
mal semantics literature. Patterns are built on the theory
and concepts of object-oriented programming, as surely as
object-oriented approaches are built on procedural theory.

We begin with discussing related work in the fields of
pattern decomposition and automated pattern extraction.
We then describe our driving problem and provide a con-
crete example system. We show how to derive an instance
of the Decorator design pattern from our example scenario
using SPQR, then illustrate how this is accomplished using
automatable reduction rules that are processed by a theorem
prover. We manually illustrate the mechanism underlying
our method with a chain of pattern composition from our
EDPs to the Decorator pattern. We then show how these
EDPs can be formally expressed in a version of the sigma
(ς) calculus [1], that we have extended withreliance oper-
ators to form theρ-calculus, by which we justify the use
of an automated theorem prover. We conclude with a dis-
cussion of future research directions, and provide detailed
discussions of the formalisms involved.

2 Related work

The decomposition and analysis of patterns is an estab-
lished idea, and the concept of creating a hierarchy of re-
lated patterns has been in the literature almost as long as pat-
terns themselves [7, 14, 21, 30]. The few researchers who
have attempted to provide a formal basis for patterns have
most commonly done so from a desire to perform refactor-
ing of existing code, while others have attempted the more
pragmatic approach of identifying core components of ex-
isting patterns in use. Additionally, there is ongoing philo-
sophical interest in the very nature of coding abstractions,
such as patterns and their relationships.

2.1 Refactoring approaches

Attempts to formalize refactoring [12] exist, and have
met with fairly good success to date[8, 16, 19]. The primary
motivation is to facilitate tool support for, and validation of,
the transformation of code from one form to another while
preserving behaviour. This is an important step in the main-
tenance and alteration of existing systems, and patterns are
seen as the logical next abstraction upon which they should
operate. Such techniques include fragments, as developed
by Florijn, Meijers, and van Winsen [11], Eden’s work on
LePuS [9], andÓ Cinńeide’s work in transformation and
refactoring of patterns in code [17] through the application
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Figure 1. Objectifier

of minipatterns. These approaches have one missing piece:
appropriate flexibility of implementation.

2.2 Structural analyses

An analysis of the ‘Gang of Four’ (GoF) patterns [13]
reveals many shared structural and behavioural elements,
such as the similarities between Composite and Visitor [13].
Relationships between patterns, such as inclusion or simi-
larity, have been investigated by various practitioners, and
a number of meaningful examples of underlying structures
have been described [4, 7, 21, 28, 29, 30].

Objectifier: The Objectifier pattern [30] is one such ex-
ample of a core piece of structure and behaviour shared be-
tween many more complex patterns. Its Intent is to:

Objectify similar behaviour in additional classes,
so that clients can vary such behaviour inde-
pendently from other behaviour, thus supporting
variation-oriented design. Instances from those
classes represent behaviour or properties, but not
concrete objects from the real world (similar to
reification).

Zimmer uses Objectifier as a ‘basic pattern’ in the construc-
tion of several other GoF patterns, such as Builder, Ob-
server, Bridge, Strategy, State, Command and Iterator. It
is a simple yet elegantly powerful structural concept that is
used repeatedly in other patterns.

Object Recursion: Woolf takes Objectifier one step fur-
ther, adding a behavioural component, and naming it Object
Recursion [29]. The class diagram in Figure 2 is extremely
similar to Objectifier, with an important difference, namely
the behaviour in the leaf subclasses ofHandler. Exclusive
of this method behaviour, however, it seems to be an ap-
plication of Objectifier in a more specific use. Note that
Woolf compares Object Recursion to the relevant GoF pat-
terns and deduces that: Iterator, Composite and Decorator
can, in many instances, be seen as containing an instance of
Object Recursion; Chain of Responsibility and Interpreter
do contain Object Recursion as a primary component.
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Figure 2. Object Recursion

2.3 Conceptual relationships

Taken together, the above instances of analyzed pat-
tern findings comprise two parts of a larger chain: Ob-
ject Recursion contains an instance of Objectifier, and both
in turn are used by larger patterns. This indicates that
there are meaningful relationships between patterns, yet
past work has shown that there are more primary forces at
work. Buschmann’s variants [6], Coplien and others’ id-
ioms [3, 7, 15], and Pree’s metapatterns [20] all support
this viewpoint. Shull, Melo and Basili’s BACKDOOR’s
[23] dependency on relationships is exemplary of the nor-
mal static treatment that arises. It will become evident that
these relationships betweenconceptsare a core piece which
grant great flexibility to the practitioner implementing pat-
terns in design, through constructs we termisotopes, which
will be treated in Section 4.4. A related, but type-based ap-
proach that works instead on UML expressed class designs,
is Egyed’s UML/Analyzer system [10] which uses abstrac-
tion inferences to help guide engineers in code discovery.

3 Using SPQR

At Widgets, Inc., there are many teams working on the
next Killer Widget application. Each is responsible for a
well-defined and segmented section of the app, but they are
encouraged to share code and classes where possible. As
is often normal in such situations, teams have write access
only for their own code - they are responsible for it, and all
changes must be cleared through regular code reviews. All
other teams may inspect the code, but may not change it.
Suggestions can be made to the team in charge, to be con-
sidered at the next review, but no one likes their time wasted,
and internal changes take priority during such reviews.

Three main phases of development by three different
teams have taken place on a core library used by the ap-
plication, resulting in a conceptually unclear system, shown
in Figure 3. The first phase involved the File system having
a MeasuredFile metric gathering suite wrapped around it.

File

op1()

FilePile

op1()

MeasuredFile

op2()FileFAT

op1()

FilePileFixed

op1()

FileHFS

op1()

....... file

files

file.op1()

Measurer

op2()

.......

for each file in files
     file.op2()

FilePile::op1()
....

Figure 3. Killer Widget

class File {
virtual void op1();

};

class MeasuredFile {
File* file;
void op2() { file.op1(); };

};

class FileFAT : File {
void op1();

};

class FilePile : File {
MeasuredFile* mfile;
void op1() { foreach file in mfile:

file.op2(); };
};

class FilePileFixed : FilePile {
void op1() { FilePile::op1();

fixTheProblem(); };
};

Figure 4. Killer Widget pseudo-code snippet

Secondly, multiple file handling was added by the FilePile
abstraction, and lastly, a bug fix was added in the FilePile-
Fixed class to work around an implementation error that
become ubiquitously assumed. A review of the design is
called for the next development cycle.

What insight into the behaviour of the codebase would
help both the new engineers and the review board? Hidden
patterns exist within the architecture which encapsulate the
intent of the larger system, would facilitate the comprehen-
sion of the novice developers, and help point the architects
towards a useful refactoring of the system. We will use this
as our driving example.

We describe here our chain of tools from the viewpoint
of a practitioner using them on Killer Widget. This toolset,
the System for Pattern Query and Recognition, is comprised
of several components, shown in Figure 5. From the engi-
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Figure 5. SPQR Outline

neer’s point of view, SPQR is a single tool that performs
the analysis from source code and produces a final report.
A simple script provides the workflow, by chaining several
modular component tools, centered around tasks ofsource
code feature detection, feature-rule description, rule infer-
ence, andquery reporting.

We describe here the current set of tools in the SPQR
toolset. First, source code is analyzed for particular syntac-
tic constructs that correspond to theρ-calculus concepts we
are interested in. It turns out that the ubiquitousgcc has
the ability to emit an abstract syntax tree suitable for such
analysis. Our first tool,gcctree2oml, reads this tree file and
produces an XML description of the object structure fea-
tures. We chose an intermediary step so that various back
ends could be used to input source semantics to SPQR. A
second tool,oml2otterthen reads this Object XML file and
produces a feature-rule input file to the automated theorem
prover, in the current package we are using Argonne Na-
tional Laboratory’sOTTER. OTTER finds instances of de-
sign patterns by inference based on the rules outlined in this
paper. Finally,proof2patternanalyzes the OTTER proof
output and produces an Object XML pattern description re-
port that can be used for further analysis, such as the pro-
duction of UML diagrams.

Each stage of SPQR is independent, and was designed
to allow other languages, compilers, workflows, inference
engines, and report compilation systems to be added. Addi-
tionally, as new design patterns are described, perhaps local
to a specific institution or workgroup, they can be added to
the catalog used for query.

The Killer Widget example has been successfully an-

%%% Current environment
list(sos).
File declares op1.
FileFAT inh File.
fp : FilePile.
FilePile inh File.
(fp dot op1) relmd ((fp dot mfile) dot op2).
fp.mfile = mf.
mf : MeasuredFile.
(mf dot file) relf f.
f : File.
(mf dot op2) relf (mf dot file).
(mf dot op1) relmd (file dot op1).
(mf dot file) = f.
fpf : FilePileFixed.
FilePileFixed inh FilePile.
(fp dot op1) relms ((fp dot super) dot op1).
(fp dot op1) relf ((fp dot m) dot file).
end_of_list.

Figure 6. Killer Widget as OTTER Input

alyzed and a salientDecorator pattern was found us-
ing SPQR. The inputs to OTTER include the set of facts
of the system under consideration (shown in Figure 6, as
would be output bygcctree2omland oml2otter from the
code snippet in Figure 4), the necessary elements ofρ-
calculus encoded as OTTER rules, and the design patterns
of interest, including the EDPs, similarly encoded (both of
which are provided as part of SPQR). For example, the
RedirectInFamily pattern is shown in Figure 7.

The work required of the developer is to simply request
SPQR to perform the analysis, and the resultant found pat-
terns are reported byproof2patternas an Object XML snip-
pet, such as:

<pattern name="Decorator">
<role name="Component"> "File" </role>
<role name="Decorator"> "FilePile" </role>
<role name="ConcreteComponent">

"FileFAT" </role>
<role name="ConcreteDecorator">

"FilePileFixed" </role>
<role name="operation"> "op1" </role>

</pattern>

Such information can then be used to produce diagrams
such as Figure 8, done by hand. The intermediate pat-
terns have been left out for clarity, as have finer granular-
ity relationships. The annotations indicate which classes
fulfill which roles in the pattern descriptions, such asPat-
tern::Role. Note that a single class can fulfill more than one
role in more than one pattern.

Our preliminary speed results indicate that scaling to
larger systems in production code should be effective. Our
tolerance threshhold is whether or not the SPQR analysis is
roughly equivalent to compilation of the same source code,
and to date this has held true in informal tests.



all Redirecter FamilyHead r fh operation (
(Redirecter inh FamilyHead) &
(r : Redirecter) &
(fh : FamilyHead) &
((r dot operation) relm (fh dot operation)) &
(r relf fh) ->

(RedirectInFamily(Redirecter, FamilyHead,
operation))

).

Figure 7. RedirectInFamily as OTTER input
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Figure 8. Primary discovered pattern roles

We would like to note here that while SPQR is highly
straightforward in implementation and use, it encapsulates
a highly formalized semantics system that allows for the use
of an automated theorem prover for rule inference. It is the
formalization that, paradoxically, provides the flexibility of
describing the complex programming abstractions of design
patterns. The practitioner can avoid this level of detail, how-
ever, and SPQR can be adapted to work at multiple levels of
formal analysis, depending on the particular need.

4 Formalization

Source code is, at its root, a mathematical symbolic lan-
guage with well formed reduction rules. We strive to find
an appropriately formal analogue for the formal side of pat-
terns. A full, rigid formalization of objects, methods, and
fields would only be another form of source code, invariant
under some transformation from the actual implementation.
This defeats the purpose of patterns. We must find another
aspect of patterns to encode as well, in order to preserve
their flexibility.

4.1 Sigma calculus

Desired traits of a formalization language include that it
be mathematically sound, consist of simple reduction rules,
have enough expressive power to encode directly object-
oriented concepts, and have the ability to encode flexibly
relationships between code constructs. The sigma calculus
[1] is our choice for a formal basis, given the above require-
ments. It is a formal denotational semantics that deals with
objects as primary components of abstraction, and has been
shown to have a highly powerful expressiveness for various
language constructs.

We will only need describe a small subset ofς-calculus
for the purposes of this paper. Specifically, we will need
the concepts of type definition, object typing, and type sub-
sumption (inheritance). A typeT is defined byT ≡ [...],
where the contents of the brackets are method and field def-
initions. An objectO is shown to be of typeT by O : T .
If type T ′ is a subtype of typeT , such as it would be under
inheritance, thenT ′ <: T .

4.2 Reliance operators: the rho calculus

It is fortunate then, thatς-calculus is simple to extend.
We propose a new set of rules and operators withinς-
calculus to support directly relationships and reliances be-
tween objects, methods and fields.

Thesereliance operators, as we have termed them (the
word ‘relationship’ is already overloaded in the current lit-
erature, and only expresses part of what we are attempt-
ing to deliver; likewise the word ‘dependency’ has many
complementary definitions already in use), are direct, quan-
tifiable expressions of whether one element (an object,
method, or field), in any way relies or depends on the ex-
istence of another for its own definition or execution, and to
what extent it does so.

This approach provides more detail than the formal de-
scription provided by other notation systems such as UML
however, as the calculus comprised ofς-calculus and the
reliance operators, orrho calculusencodes entire paths of
reliances in a concise notation. All the reliances and rela-
tionships in the UML graphing system are encoded within
the element that is under scrutiny, reducing the need for ex-
tended, and generally recursive, analysis for each element
when needed.

See [27] for a formal treatment of theρ-calculus and its
definition. Informally, the reliance operator< has three
forms: a method invocation reliance (<µ), a field access
reliance (<φ), and a generalized reliance (<γ). The<µ has
an optional annotation to indicate a similarity association
(+) , or a dissimilarity association (−), as defined below.
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Redirecter

operation()

target
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Figure 9. RedirectInFamily class structure

FamilyHead ≡ [operation : A] (1)

Redirecter <: FamilyHead (2)

Redirecter ≡ [target : FamilyHead,

operation : A = ς(xi){target.operation}]
(3)

r : Redirecter (4)

fh : FamilyHead (5)

r.target = fh (6)

4.3 Example: RedirectInFamily

Consider the class diagram for the structure of the EDP
RedirectInFamily [26], in Figure 9. Taken literally, it
specifies that a class wishes to invoke a ‘similar’ method
(where similarity is evaluated based on the signature types
of the methods, as hinted at by Beck’s Intention Revealing
Message best practice pattern [3]: equivalent signature are
‘similar’, inequivalent signatures are ‘dissimilar’) to the one
currently being executed, and it wishes to do so on an object
of its parent-class’ type. This sort of open-ended structural
recursion is a part of many patterns.

If we take the Participants specification of
RedirectInFamily, we find that:

• FamilyHead defines the interface, contains a method
to be possibly overridden.

• Redirecter uses interface of FamilyHead through in-
heritance, redirects internal behaviour back to an in-
stance of FamilyHead to gain polymorphic behaviour
over an amorphous object structure.

We can express each of these requirements inς-calculus,
as in Equations 1 through 6.

This is a concrete implementation of the
RedirectInFamily structure, but it fails to capture

the reliance of the methodRedirecter.operation on the
behaviour of the called methodFamilyHead.operation.
It also has an overly restrictive requirement concerningr’s
ownership oftarget when compared to many coded uses
of this pattern. So, we introduce our reliance operators to
produce aρ-calculus definition:

r.operation <µ+ r.target.operation (7)

r <φ r.target (8)

We can reduce two areas of indirection...

r.target = fh, r.operation <µ+ r.target.operation

r.operation <µ+ fh.operation
(9)

r <φ r.target, r.target = fh

r <φ fh
(10)

...and now we can produce a set of clauses to represent
RedirectInFamily:

Redirecter <: FamilyHead,
r : Redirecter,
fh : FamilyHead,
r.operation <µ fh.operation,
r <φ fh

RedirectInFamily(Redirecter,
FamilyHead, operation)

(11)

4.4 Isotopes

Conventional wisdom holds that formalization of pat-
terns in a mathematical notation will inevitably destroy the
flexibility and elegance of patterns. An interesting side ef-
fect of expressing our EDPs in theρ-calculus, however, is an
increasedflexibility in expression of code while conform-
ing to the coreconceptof a pattern. We term variations of
code expression that conform to the concepts and roles of
an EDPisotopes.

Consider now Figure 10, which, at first glance, does not
look much like our original specification. We have intro-
duced a new class to the system, and our static criteria that
the subclass’ method invoke the superclass’ instance has
been replaced by a new calling chain. In fact, this con-
struction looks quite similar to the transitional state while
applying Martin Fowler’sMove Methodrefactoring [12].

We claim that this is precisely an example of a variation
of RedirectInFamily when viewed as a series of formal
constructs, as in Equations 12 through 20.

If we start reducing this equation set, we find that we can
perform an equality operation on Equations 15 and 17:

r.operation <µ− r.mediary.operation2,
r.mediary = m

r.operation <µ− m.operation2
(21)
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Figure 10. RedirectInFamily Isotope

We can now reduce this chain under transitivity with Equa-
tion 18:

r.operation <µ− m.operation2,
m.operation2 <µ− m.object.operation

r.operation <µ+ m.object.operation
(22)

r.operation <µ+ m.object.operation, m.object = fh

r.operation <µ+ fh.operation
(23)

Likewise, we can take Equations 15, 16, 19 and 20:

r.operation <φ r.mediary,
m.operation <φ m.object,

r.mediary = m,
m.object = fh

r <φ fh
(24)

If we now take Equations 12, 13, 14, 23, and 24 we find
that we have satisfied the clause requirements set in our
original definition of RedirectInFamily, as per Equa-
tion 11. This alternate structure is an example of anisotope

Redirecter <: FamilyHead (12)

r : Redirecter (13)

fh : FamilyHead (14)

r.mediary = m (15)

m.object = fh (16)

r.operation <µ− r.mediary.operation2 (17)

m.operation2 <µ− m.object.operation (18)

r.operation <φ r.mediary (19)

m.operation <φ m.object (20)

of theRedirectInFamily pattern and required no adap-
tation of our existing rule. Our single rule takes the place
of an enumeration of static pattern definitions. The con-
cepts ofobject relationshipsand reliance are the key. It
is worth noting that, while this may superficially seem to
be equivalent to the common definition ofvariant, as de-
fined by Buschmann [6], there is a key difference: encap-
sulation. Isotopes may differ from strict pattern structure
in their implementation, but they provide fulfillment of the
various roles required by the pattern and therelationships
between those roles are kept intact. From the view of an
external calling body, the pattern is precisely the same no
matter which isotope is used. Variants are not interchange-
able without retooling the surrounding code, but isotopes
are. This is an essential requirement of isotopes, and pre-
cisely why we chose the term. This flexibility in internal
representation grants the implementation of the system a
great degree of latitude, while still conforming to the ab-
stractions given by design patterns.

5 Reconstruct known patterns

We can now demonstrate an example of using EDPs to
express larger and well known design patterns. We begin
with AbstractInterface, a simple EDP, and build our
way up toDecorator, visiting two other established pat-
terns along the way.

AbstractInterface ensures that the method in a base
class is truly abstract, forcing subclasses to override and
provide their own implementations. Theρ-calculus defi-
nition can be given by simply using the trait construct of
ς-calculus:

A ≡ [new : [li : A → Bi
i ∈ 1...n], operation : A → B]

AbstractInterface(A, operation)
(25)

Objectifier is simply a class structure applying the Inher-
itance EDP to an instance ofAbstractInterface pattern,
where theAbstractInterface applies to all methods in
a class. This is equivalent to what Woolf calls an Abstract
Class pattern. Referring back to Figure 1 from our earlier
discussion in Section 2.2, we can see that the core concept
is to create a family of subclasses with a common abstract
ancestor. We can express this inρ-calculus as:

Objectifier : [li : Bi
i∈1...n],

AbstractInterface(Objectifier, li
i∈1...n),

ConcreteObjectifierj <: Objectiferj∈1...m,
Client : [obj : Objectifier]
Objectifier(Objectifier

ConcreteObjectifierj
j∈1...m, Client)

(26)

We briefly described Object Recursion in section 2.2, and
gave its class structure in Figure 2. We now show that this



is a melding of theObjectifier andRedirectInFamily
patterns.

Objectifier(Handler,Recurseri
i∈1...m, Initiator),

Objectifier(Handler, Terminatorj
j∈1...n,

Initiator),
init <µ obj.handleRequest,
init : Initiator,
obj : Handler,
RedirectInFamily(Recurser, Handler,

handleRequest),
!RedirectInFamily(Terminator, Handler,

handleRequest)

ObjectRecursion(Handler,Recurseri
i∈1...m,

T erminatorj
j∈1...n, Initiator)

(27)
TheExtendMethod EDP is used to extend, not replace,
the functionality of an existing method in a superclass. This
pattern illustrates the use ofsuper, formalized in Equation
28.

OriginalBehaviour : [li : Bi
i∈1...m, operation : Bm+1],

ExtendedBehaviour <: OriginalBehaviour,
eb : ExtendedBehaviour,
eb.operation <µ+ super.operation

ExtendMethod(OriginalBehaviour,
ExtendedBehaviour, operation)

(28)
Now we can produce a pattern directly from the GoF text,
theDecorator pattern. Again, we provide a formal defini-
tion in Equation 29, although only for the method extension
version (the field extension version is similar but unneces-
sary for our purposes here). The keywordany indicates that
any object of any class may take this role, as long as it con-
forms to the definition ofObjectRecursion.

ObjectRecursion(Component,Decoratori
i∈1...m,

ConcreteComponentj
j∈1...n,any),

ExtendMethod(Decorator,

ConcreteDecoratorBk
k∈1...o, operationk∈1...o

k ),

Decorator(Component,Decoratori
i∈1...m,

ConcreteComponentj
j∈1...n,

ConcreteDecoratorBk
k∈1...o,

ConcreteDecoratorAl
l∈1...p,

operationk∈1...o+p
k )

(29)
We have created a formally sound definition of a de-

scription of how to solve a problem of software architec-
ture design. This definition is now subject to formal analy-
sis, discovery, and metrics. Following our example of pat-
tern composition, this definition can be used as a building
block for larger, even more intricate patterns that areincre-
mentallycomprehensible. At the same time, we believe we

File ≡ [op1 : File → []] (30)

FileFAT <: File (31)

fp : FileP ile (32)

FileP ile <: File (33)

fp.op1 <µ− fp.mfile.op2 (34)

fp.mfile = mf (35)

mf : MeasuredF ile (36)

mf.file <φ f (37)

f : File (38)

mf.op2 <φ mf.file (39)

mf.op2 <µ− mf.file.op1 (40)

mf.file = f (41)

fpf : FileP ileF ixed (42)

FileP ileF ixed <: FileP ile (43)

fp.op1 <µ+ super.op1 (44)

fp.op1 <φ fp.mfile (45)

Figure 11. Killer Widget as ρ-calculus

have retained the flexibility of implementation that patterns
demand. Also, we believe that we have retained the concep-
tual semantics of the pattern by intelligently and diligently
making precise choices at each stage of the composition.

6 Killer Widget analysis in detail

We can now build a picture of what SPQR is doing
within OTTER’s inference system. The equations in Fig-
ure 11 are the equivalent of theoml2otteroutput we saw in
Figure 6.

We can quickly see that ourAbstractInterface rule
is fulfilled for classFile, methodop1 by Equation 30. Fur-
thermore,File andFileP ile fulfill the requirements of the
Objectifier pattern, assuming, as we will here assert, that
the remainder ofFile’s methods are likewise abstract.

File : [op1 : []],
AbstractInterface(File.op1),
F ileP ile <: File,
mfile <φ file,
file : File

Objectifier(File, F ileP ile,MeasuredF ile)
(46)

Objectifier(File, F ileFAT, MeasuredF ile) and
analogous instances ofObjectifier for the other concrete
subclasses of the File class, can be similarly derived.

Finding an instance ofRedirectInFamily is a bit
more complex and requires the use of our isotopes. Follow-



ing the example in Section 4.4, however, it becomes straight
forward to deriveRedirectInFamily:

FileP ile <: File,
fp : FileP ile,
f : File,
fp.op1 <µ− fp.mfile.op2,
fp.mfile = mf,
mf.op2 <µ− mf.file.op2,
mf.file = f,
fp.op1 <φ fp.mfile,
mf.op2 <φ mf.file

RedirectInFamily(FileP ile, F ile, op1)
(47)

It can also be shown that one simplycannotderive the
factRedirectInFamily(FileFAT, File, op1). We now see
that ObjectRecursion derives cleanly from Equations
46 and 47 and their analogues, in Equation 48.

Objectifier(File, F ileP ile,MeasuredF ile),
Objectifier(File, F ileFAT, MeasuredF ile),
mf : MeasuredF ile,
mf <µ file.op1,
file : File,
RedirectInFamily(FileP ile, F ile, op1),
!RedirectInFamily(FileFAT, F ile, op1)

ObjectRecursion(File, F ileP ile,
F ileFAT,MeasuredF ile)

(48)
ExtendMethod is a simple derivation as well:

FileP ile ≡ [op1 : any],
F ileP ileF iled <: FileP ile,
fpf : FileP ileF ixed,
fpf.op1 <µ+ super.op1

ExtendMethod(FileP ile, F ileP ileF ixed, op1)
(49)

Finally, we arrive at the uncovering of a fullDecorator
pattern:

ObjectRecursion(File, F ileP ile, F ileFAT,
MeasuredF ile),

ExtendMethod(FileP ile, F ileP ileF ixed, op1),
Decorator(File, F ileP ile, F ileFAT,

F ileP ileF ixed, op1)
(50)

7 Future Work

Several branches of future research are natural advances
to build on the foundation we have outlined here. They
cover continued source code analysis and comprehension
assistance, cued support for re-factoring, and continued
SPQR tool production.

SPQR was designed to be modular, and easily extended.
Future possibilities include further language/compiler in-
tegration, perhaps through IDE plugins for systems such
as Eclipse, .NET, or ProjectBuilder. As design patterns
continue to be discovered and described, they can be eas-
ily added to the current catalog ofρ-calculus rules. Post-
processing could include automated UML diagram produc-
tion, integrated report production, or perhaps enhancement
of IDE workflow.

Validation must continue on large codebases from indus-
try to establish correct heuristics to manage the level of de-
tail of found patterns. A report that indicated all instances of
AbstractInterface, for example, would be unwieldy and
cumbersome. We envision allowing the developer to choose
a level of complexity on the pattern dependency graph, be-
low which discovered patterns will be culled from the final
report.

Refactoring is not likely to ever be, in our opinion, a
fully automatable process. Several key pieces, however,
may benefit from the work outlined in this paper. Our iso-
tope example in Section 4.4 indicates that it may be pos-
sible to support verification of Fowler’s refactoring trans-
forms through use of theρ-calculus, as well as various other
approaches currently in use[12, 19, 16].Ó Cinńeide’s mini-
transformations likewise could be formally verified and ap-
plied not only to existing patterns, but also perhaps to code
that is not yet considered pattern-ready, as key relationships
are deduced from a formal analysis[17, 18]. Furthermore,
we believe the fragments-based systems such as LePuS can
now be integrated back into the larger domain of denota-
tional semantics.

Finally, we revisit the original motivation for this re-
search, to reduce the time and effort required for an engi-
neer to comprehend a system’s architecture well enough to
guide the maintenance and modification thereof. We be-
lieve that the approach outlined in the paper, along with
the full catalog of EDPs andρ-calculus, can form a for-
mal basis for some very powerful source code analysis tools
such asChoices[22], or KT[5], that operate on a higher
level of abstraction than just “class, object and method
interactions”[22]. Discovery of patterns in an architecture
should be become much more possible than it is today, and
we expect that the discovery ofunintendedpattern uses
should prove enlightening to engineers. In addition, the
flexibility inherent in theρ-calculus will provide some in-
teresting possibilities for the identification of new variations
of existing patterns.

8 Conclusion

We have presented a System for Pattern Query and
Recognition (SPQR), a toolset for the support of a suite of
simple design patterns, theelemental design patternsand



matching formalizations in theρ-calculusfor composition
into larger, more useful and abstract design patterns as usu-
ally found in software architecture. These EDPs were iden-
tified initially through inspection of the existing literature
on design patterns, establishing which solutions appeared
repeatedly within the same contexts, mirroring the develop-
ment of the more traditional design patterns. Further, they
are formally describable in theρ-calculus, a notation that
builds upon theς-calculus, but adds the key concept ofre-
liance to the base notation. These extensions, thereliance
operatorsprovide a large degree of flexibility to formally
stating the relationships embodied in design patterns asiso-
topes, without locking them into any one particular imple-
mentation.
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[18] M. Ó Cinńeide and P. Nixon. Program restructuring to in-
troduce design patterns. InProceedings of the Workshop
on Experiences in Object-Oriented Re-Engineering, Euro-
pean Conference on Object-Oriented Programming, Brus-
sels, July 1998.

[19] W. F. Opdyke and R. E. Johnson. Creating abstract super-
classes by refactoring. InProc. of the Conf. on 1993 ACM
Computer Science, page 66, 1993. Feb 16-18, 1993.

[20] W. Pree.Design Patterns for Object-Oriented Software De-
velopment. Addison-Wesley, 1994.

[21] D. Riehle. Composite design patterns. InProceedings of the
1997 ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages and applications, pages 218–
228. ACM Press, 1997.

[22] M. Sefika, A. Sane, and R. H. Campbell. Architecture-
oriented visualization. InProc. of the eleventh annual
conference on Object-oriented programming systems, lan-
guages, and applications, pages 389–405. ACM Press,
1996.

[23] F. Shull, W. L. Melo, and V. R. Basili. An inductive method
for discovering design patterns from object-oriented soft-
ware systems. Technical Report CS-TR-3597, University
of Maryland, 1996.

[24] J. M. Smith. An elemental design pattern catalog. Technical
Report TR-02-040, Univ. of North Carolina, 2002.

[25] J. M. Smith and D. Stotts. Elemental design patterns: A for-
mal semantics for composition of oo software architecture.
In Proc. of 27th Annual IEEE/NASA Software Engineering
Workshop, dec 2002.

[26] J. M. Smith and D. Stotts. Elemental design patterns: A
link between architecture and object semantics. Technical
Report TR-02-011, Univ. of North Carolina, 2002.

[27] J. M. Smith and D. Stotts. Spqr: Use of a first-order theorem
prover for flexibly finding design patterns in source code.
Technical Report TR-03-007, Univ. of North Carolina, 2003.

[28] B. Woolf. The abstract class pattern. In N. Harrison,
B. Foote, and H. Rohnert, editors,Pattern Languages of Pro-
gram Design 4. Addison-Wesley, 1998.

[29] B. Woolf. The object recursion pattern. In N. Harrison,
B. Foote, and H. Rohnert, editors,Pattern Languages of Pro-
gram Design 4. Addison-Wesley, 1998.

[30] W. Zimmer. Relationships between design patterns. In J. O.
Coplien and D. C. Schmidt, editors,Pattern Languages of
Program Design, pages 345–364. Addison-Wesley, 1995.


