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Abstract
We present techniques to efficiently compute the distance under max-norm between a point and a wide class of
geometric primitives. We reduce the distance computation to an optimization problem and use our framework to
design efficient algorithms for convex polytopes, quadrics and triangulated models. We extend them to handle
large models using bounding volume hierarchies, and use rasterization hardware followed by local refinement
for higher-order primitives. We use the max-norm distance computation algorithm to design a reliable voxel
intersection test to determine whether the surface of a primitive intersects a voxel. We use this test to perform
reliable voxelization of solids and generate adaptive distance fields that provide a Hausdorff distance guarantee
between the boundary of the original primitives and the reconstructed surface.

1. Introduction

The notion of adistance functionbetween two elements of
a set (or metric space) is fundamental in various branches of
mathematics and applied sciencese.g.,approximation the-
ory and numerical analysis. It is considered a fundamental
problem in geometric computation and related areas includ-
ing robot motion planning22, implicit and volume modeling
11, 26, 38, surface reconstruction8, 17, physically-based model-
ing 3, computer-aided design10, etc. This problem has been
actively studied in different fields and most of the algorithms
have been proposed for efficient computation of Euclidean
distance between two sets.

In this paper, we mainly focus on the max-norm (orl∞)
distance computation. Under this norm, the distance be-
tween two pointsx andy (in d dimensions) is represented
asD∞(x,y) and is defined as

D∞(x,y) = max
i
|xi − yi |, i = 1,2, . . . ,d (1)

We can extend this definition for distance between a point
p and a setS ⊆ Rd†. Computing distances under the max-
norm has an important difference from the Euclidean case
: l∞ is not induced by an inner product space, so notions
of orthogonality for distance computation cannot be used.
The max-norm distance problem arises in different applica-
tion including planning under uncertainty using Markov de-
cision processes in machine learning15, 36, image analysis24,
dynamics and control systems13, tolerance analysis and NC
machining10, 33 and volume graphics11, 38. Unlike Euclidean
distance computation, no efficient and practical algorithms
are known for max-norm computation.

† D∞(p,S) = mins∈S D∞(p,s)

One of our motivations for max-norm computation arises
from voxelizationof geometric primitives inR3. Given a
geometric scene description, voxelization deals with tech-
niques that generate a discrete set of voxels to approximate
the continuous scene as faithfully as possible. Voxelization
is used in ray tracing37 and volume rendering26, 38, implicit
modeling18, 20, shape representation11 and model repair29.
In order to produce an accurate voxelization and guarantee
Hausdorff-distance approximation, it is essential to know
whether or not some part of the geometric model passes
through a voxel. We refer to this test as thevoxel-intersection
test. It is not difficult to show that an exact voxel-intersection
test can be reduced to a max norm distance computation be-
tween the center of the voxel and the primitive.

Main Contributions In this paper, we present algorithms
for efficient max-norm distance computations between a
point and a wide class of geometric primitives. We ana-
lyze the problem of max-norm computation and reduce it to
an optimization problem. Based on our optimization frame-
work, we present efficient and specialized algorithms for
convex polytopes, quadrics and polygonal models. We also
present efficient techniques based on bounding volume hi-
erarchies and rasterization hardware to extend these algo-
rithms to large models. Overall, we show that max-norm
computation is no more expensive than the Euclidean case.
On the contrary, in many cases it is cheaper to compute be-
cause the corresponding distance functions are linear rather
than quadratic and we utilize this property to develop effi-
cient algorithms.

We demonstrate the application of max-norm distance
computation to perform the voxel-intersection test. It is used
to generate an adaptive distance field (ADF) of complex
models defined using Boolean operations where the under-
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lying models consist of polyhedra, quadrics and tori. The
efficient voxel-intersection tests takes a small percentage of
additional time in terms of ADF generation and guarantees
no missed components and a bounded Hausdorff-error on the
approximated samples as well as the reconstructed surface.

Some of our new results include:

• An optimization-based framework for max-norm compu-
tation

• Specialized algorithms for convex polytopes, quadric and
triangulated models.

• An efficient graphics hardware-based approximate solu-
tion for general models.

• An efficient and exact voxel-intersection test for voxeliza-
tion and ADF computation.

Organization The rest of the paper is organized as follows.
We briefly survey related work on distance computation and
voxelization in Section 2. We reduce the max-norm compu-
tation problem to an optimization problem in Section 3 and
present specialized algorithms for convex polytopes, quadric
and triangulated models. We extend these algorithms using
bounding volume hierarchies and graphics hardware to han-
dle large models and non-convex primitives. We use our al-
gorithm to perform voxel-intersection tests and ADF gener-
ation in Section 5 and highlights its performance on different
benchmarks in Section 6.

2. Prior Work

In this section, we give a brief overview of prior work on
distance computation, voxelization and adaptive sampling.

2.1. Distance Computation

The problem of distance computation between various prim-
itives under Euclidean norm is well studied in computational
geometry, robotics, and simulated environments. Check out
a survey23.

The distance computation under max-norm in itself has
not been extensively studied in the literature. However, there
is considerable amount of work for various geometric or
proximity computations underl∞ norm. These include the
study ofl∞ Voronoi diagram and its combinatorial and com-
plexity 4, 6, 12, 21, 30, 31, and l∞ skeletoncomputations2. In
particular, Papadopoulouet al. 31 have presentedO(nlogn)
algorithms to compute the 2Dl∞ Voronoi diagram of poly-
gons and highlighted its application to VLSI layout and man-
ufacturing. However, no practical algorithms or implementa-
tions are known for 3Dl∞ Voronoi diagrams of point sets or
higher order primitives.

2.2. Distance Fields and Voxelization

Many efficient algorithms are known to compute the dis-
tance fields and their gradients at any point in space. A good
overview of these algorithms has been given in Cuisenaire’s
dissertation7. A key issue in generating discrete samples
is the underlying sampling rate. Some of the common al-
gorithms use an adaptive refinement strategy based on an

octree, and only split those cells that contain a piece of
the final surface in a top-down manner. However, the cri-
terion for performing the containment test, i.e., whether the
surface passes through a voxel, may not be robust. Many
authors have used curvature information in generating the
distance samples14, 35. Moreover, Friskenet al. 11, 32 have
presented bottom-up and top-down methods for generating
ADFs based on piecewise tri-linear interpolation.

3. Distance Computation underl∞ Norm

The problem of computing the distance under any norm from
a point to a set is by definition an optimization problem. Our
goal is to utilize the special structure of the distance function
and the underlying spaceS to formulate efficient algorithms.
Computing the max norm distance of a point from a set is
substantially different from the Euclidean case in several re-
spects. First, the distance metric is not smooth with respect
to its variables. Secondly, thel∞ space is not an inner prod-
uct space, unlike thel2 space. The relationship between or-
thogonality and minimum distances in inner product spaces
can be very powerful in formulating these problems without
using optimization. In the minimum distance problem, these
differences translate to changes in both the algorithmic ap-
proach and the characteristics of the solution. In the rest of
this section, we first present an optimization based frame-
work to compute the max-norm and later present specialized
algorithms for convex polytopes, quadrics and triangulated
models.

3.1. Optimization Framework

Let us assume that the setS to which we need to find the
closest distance consists of points satisfying allfi(x)≤ 0, i =
1,2, . . . ,n, where eachfi is a non-linear analytic function.
Without loss of generality, we can assume that the pointp
from which we are computing the closest distance is the ori-
gin.

We explain our algorithm for the 2D case first. Con-
sider partitioning the plane into regions such that the dis-
tance from any point in a region to the origin is determined
by the same coordinate. This partition exists because of
the definition of the norm. As shown in Fig. 1(b), the re-
gions where thex1-coordinate determines thel∞ distance
is given by the setsRx11 = {x1− x2 ≥ 0 ∧ x1 + x2 ≥ 0}
andRx12 = {x1− x2 ≤ 0 ∧ x1 + x2 ≤ 0}. Each region,Rx11

andRx12, is bounded by two linear constraints. The regions
wherex2 determines the distance,Rx21 andRx22, are obtained
by similar linear constraints. The four regions for the two-
dimensional case is shown in Fig. 1(b).

Now let us assume that we are restricted to one such re-
gion, sayRx11. By adding the additional constraint forx to
belong toS, our constraint space is restricted to a portion
of the primitive lying insideRx11. We can find the shortest
distance from the origin to this part of the surface by mini-
mizingx1. Note that if our constraint space was contained in
Rx12, our objective function would be to minimize−x1. This
is a simple linear function.

Extending this formulation to thed-dimensional case, we
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see that the underlying space is partitioned into 2d regions
(each region formed by 2(d−1) linear constraints) and each
coordinate determines the distance in two regions. For ex-
ample, the regions where theith coordinate determines the
distance areRxi1 =

⋂
j 6=i, j=1,...,d(xi −x j ≥ 0 ∧ xi +x j ≥ 0)

andRxi2 =
⋂

j 6=i, j=1,...,d(xi−x j ≤ 0 ∧ xi +x j ≤ 0). We have
now reduced our minimum distance computation problem to
solving 2d non-linear optimization programs. Each program
has the form

minimize cTx,

subject to fi(x)≤ 0, i = 1,2, . . . ,n, (2)

and gT
j x≥ 0, j = 1,2, . . . ,2(d−1).

We use the above formulation to develop efficient algo-
rithms for the the case of convex primitives. For the case of
non-convex implicit functions, we develop a strategy based
on the graphics hardware to compute a good initial guess.
This is presented in section 4.2.

3.1.1. Distance Computation for Convex Primitives

In this section, we present an exact algorithm to compute
the distance underl∞ norm from a point to a convex primi-
tive. The interior of a convex primitive satisfiesfi(x)≤ 0, i =
1,2, . . . ,n, where eachfi is a convex function. We solve the
problem by dividing it into two cases depending on whether
the pointp lies insideor outsidethe primitive.

Point inside the primitive Consider the convex primitive
and the pointp in 2D as shown in Fig. 1(a). All points that
are equidistant fromp lie on the surface of an axis-aligned
square centered atp. This relation is shown by the square
in the Fig. 1(a). Consider growing such a square from the
point p. The shortest distance fromp to the surface of the
object is realized by a point on the surface that first touches
the growing square (pointq in the figure). However, it is
easy to see that for convex primitives only the vertices of
the square are potential candidates to touch the surface first.
This property reduces the task of finding the distance to that
of finding the minimum from four directed distance queries.
The directions in 2D are all possible combinations of the
vectors

(
±1/

√
2, ±1/

√
2
)
.

This technique is easily extendible to thed−dimensional
case. We can write the max-norm distance as

D∞(p,S) =
1√
d

min
i

D~vi
(p,S), i = 1,2, . . . ,2d,

where~vi is chosen from the set{−1/
√

d,1/
√

d}d andD~v
is the directed distance along vector~v. Algorithms to com-
pute the directed distance between a point and a surface are
efficient and well-known.

Point outside the primitive Consider the case whenp lies
outside the object as shown in Fig. 1(b). In this case, we use
the optimization formulation presented in section 3.1. How-
ever in this case, the constraints described in Eq. 2 are all
convex. This reduces the more general optimization formu-
lation to a special convex programming problem. Many con-
vex programming problems can be solved exactly using inte-
rior point methods28. However, the restricted class of convex

p
q

Object

(a)

p
q1

q2

Object

Rx12
(x – x  § 0) ⁄1 2  
(x + x  § 0)1 2  

Rx22
(x – x  ¥ 0) ⁄1 2  
(x + x  § 0)1 2

Rx11
(x – x  ¥ 0) ⁄1 2  
(x + x  ¥ 0)1 2  

Rx21
(x – x  § 0) ⁄1 2  
(x + x  ¥ 0)1 2  

(b)
Figure 1: Computing distance from a point to a convex primitive
underl∞ metric. (a) point inside primitive (b) point outside primi-
tiveprimitives that are composed of linear and quadric surfaces
can be solved very efficiently. This class is rich enough to be
of interest in applications like geometric modeling.

3.1.2. Distance Computation for Convex Polytopes and
Quadrics

For quadrics, we can write the interior of the primitive using
quadric constraintsxTAx + bTx + c≤ 0, whereA is a sym-
metric positive definite matrix,b is a fixed vector, andc is a
constant scalar. The corresponding convex program is con-
verted to a special case calledsecond-order cone program
for which a number of efficient and implementable interior-
point algorithms are known25. These algorithms are iterative
in nature, and each iteration takes time that is linear in the
number of constraints. The second-order cone program that
we solve has the form

minimize hTx,

subject to ‖ A ix+bi ‖2≤ cT
i x+di , i = 1,2, . . . ,n,

and gT
j x≥ 0, j = 1,2, . . . ,2(d−1).

The constraints listed above also include the special case
of convex polytopes (by makingA = 0), where the second-
order cone program reduces to the more familiar linear pro-
gram. Many simple and practical linear-time algorithms for
solving linear programming problems in a fixed dimension
are known34. Given a quadric primitive in 3D, we solve six
cone programs (each with four linear and one quadratic con-
straint) and choose the minimum value among them to find
the true distance.

3.2. Triangulated Models

In case of a non-convex polyhedron or triangulated models,
we compute thel∞ distance by finding distance for each
polyhedral element in the primitive (i.e., polygon or triangle)
and minimizing it overall. We explain how we computel∞
distance between a point and a triangle efficiently and also
propose a hierarchical method to extend this triangle-based
computation to a polyhedral primitive.

3.2.1. Distance Computation for a Triangle

In section 3.1.2, we presented a procedure to computel∞
distance to a convex polytope based on a linear programming
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(a) 12 Partitioning
Triangles

p1

p2
p3

t1
t2

o

(b) l∞ Computation
for a Triangle

Figure 2: Computing distance from a point to a triangle underl∞
metric.

technique. The distance computation for a triangle4T is a
simple variation of the same technique. In case of a triangle,
we reduce the problem to computing intersections between
the target triangle4T and 12 auxiliarypartitioning triangles
4B. In fact, these 124B’s represent the linear constraintsgj
highlighted in Section 3.1.2; these 12 constraints are illus-
trated in Fig. 2(a). Notice that even though thesegj ’s form
unbounded partitions of 3D space, in practice, we bound the
partitions by using an axis-aligned bounding box of4T such
that the boundary of each partition becomes a triangle4B.

Once we have the4B’s, the next step is to compute all pos-
sible intersecting lines between4T and4B’s, and to extract
their end points. Then, thel∞ distance from a query point to
4T is the minimum ofl∞ distances from the query point to
all the end points as well as to the vertices comprising4T .
For example, as illustrated in the left figure of Fig. 2(b), the
distance fromo to a triangle4T

p1p2p3 is the minimum of the
distances fromo to the verticesp1,p2,p3 as well as tot1, t2,
which are the end points of the intersections between 12 par-
titioning triangles and4T

p1p2p3. and we take the minimum of
the distance values fromo to p1,p2,p3, t1 andt2.

4. Complex Models

In the previous section, we have presented efficient algo-
rithms for max-norm distance computation to convex poly-
topes, quadrics and triangles. In this section, we present two
algorithms to extend them to large, complex models. These
are based on bounding volume hierarchies and use of graph-
ics hardware.

4.1. Bounding Volume Hierarchy

A simple way to computel∞ distance for a non-convex
polyhedronP is to compute the distance for every triangle
4i ∈Pand take its minimum. However, we can speed up this
naive method by constructing a hierarchical bounding vol-
ume (BVH) ofP and culling away unnecessary triangles by
traversing the hierarchy. For the hierarchical representation,
we employ a surface convex decomposition scheme similar
to Ehmannet al. 9. Here, a leaf node in the BVH is cre-
ated by decomposingP into a collection of convex surface
patchesPi and computing its convex hull. Notice that, due to
the convex hull computation, the node creates some extrane-
ous triangles that do not belong toP. Let us call these types

of trianglesvirtual, and otherwise call themreal. Then, the
entire BVH is recursively built by merging children nodes in
the hierarchy and computing their convex hull.

Once we have precomputed the BVH, at query-time, we
traverse the BVH in a top-down manner starting from a root
node. During the traversal, we maintain three types of dis-
tance values:

• UB : Upper bound to the distance value from a given query
pointo to the polyhedronP.

• Ub : Upper bound to the distance value fromo to the cur-
rently visited nodeN in the BVH.Ub is obtained by com-
puting minimum distance only to the real triangles con-
tained inN.

• Lb : Lower bound to the distance value fromo to N. Lb is
obtained by computing minimum distance to all the real
and virtual triangles contained inN.

While we traverse the BVH,Ub is compared toUB, and if
Ub is smaller thanUB, thenUB is updated toUb. As a result,
as we go down to the deeper level of the BVH,UB decreases
and it finally computes the actual distance toP. UsingUB

andLb of a currently visited nodeN, we perform culling as
follows: whenever we encounterN in the BVH whoseLb is
greater thanUB, we can immediately reject all the triangles
contained inN.

The problem of computingD∞() gets much harder when
dealing with non-convex curved or implicit primitives. To
avoid solving a general non-linear optimization problem as
described in section 3.1, we tessellate the primitives within
some Hausdorff distance error boundε and obtain an esti-
mate forD∞() using the graphics hardware. This is followed
by a refinement step using local optimization. We describe
the hardware algorithm next.

4.2. Distance computation using graphics hardware

Our approach is based on the algorithm presented by Hoffet
al. 16 for constructing generalized Voronoi diagrams using
graphics hardware for 3D polygonal objects. The distance
field is computed by rendering the 3D polygonal mesh ap-
proximations to the distance function where the depth of the
rendered mesh at a particular pixel location corresponds to
the distance to the nearest polygon feature. The resulting dis-
tance field can be obtained by reading back the depth buffer.
The 3D distance field is computed one slice at a time.

We compute a distance field under thel∞ metric. For
each site, we define a distance function, which gives, for
any point, the distance to that site with respect tol∞ met-
ric. In contrast tol2, the l∞ distance functions for the case
of a point, line segment and a polygon are linear. They can
be represented exactly by a collection of polygons.

4.2.1. Distance functions

We present the max-norm distance functions associated with
different primitives.

Points: The distance function for a point sitep is shown in
Fig. 3. Its graph is a frustum of a square pyramid. The region
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of influence for a point is the entire slice. The bottom square
base of the pyramid corresponds to a region of constant dis-
tance. The four slanting faces of the pyramid correspond to
the planesx = z, x = −z, y = z, y = −z. The distance at
a point on the region of influence is half the length of the
smallest isothetic cube centered at the point and touchingp
at one of the cube faces.

(a) (b)
Figure 3: Distance function for a point (shown in blue) is a frustum
of a square pyramid. Figs (a) & (b) show the region of influence
and distance function respectively. The region of influence (shaded
region on the slice) is the entire slice.

Line Segments:The distance function for a line segmentl is
composed of three parts: one for the segment itself and one
for each endpoint. The endpoints are treated the same way
as points. The distance function and region of influence for
the line segment is shown in Fig. 4. The distance function
is composed of four planar regions. The distance at a point
on the region of influence is half the length of the smallest
isothetic cube centered at the point and touchingl along one
of the cube edges.

(a) (b)
Figure 4: Distance function of a line segment (shown in blue):
Figs (a) & (b) show the region of influence and distance function
respectively. The region of influence is the shaded region on the
slice. The distance function is composed of four planar regions.

Polygons:The distance function for a polygon is composed
of a distance function for the polygon itself and one for each
vertex and edge. The distance function for a triangle4 is
a plane as shown in Fig. 5. The region of influence is a tri-
angle. The distance at a point on the region of influence is
half the length of the smallest isothetic cube centered at the
point and touching4 at one of the cube vertices. The region
of influence is obtained by projecting the vertices of the tri-
angle onto the slice along one of four directions:(1,1,1),
(−1,1,1), (1,−1,1) and(−1,−1,1). If n̂ = (n1,n2,n3) de-
notes the normal of triangle4 , we choose the direction vec-
tor (s1,s2,1) wheresi (i = 1,2) is 1 or−1 depending on
whetherni is greater than zero or not. If the polygon inter-
sects the slice, the intersection is computed and the polygon
is decomposed into two sub-polygons. Each sub-polygon is
treated as above.

(a) (b)
Figure 5: Distance function of a triangle (shown in blue) is a plane.
Figs (a) & (b) show the region of influence and distance function
respectively. The region of influence is a triangle (shaded region on
the slice).

4.2.2. Sources of Error

There are two sources of error in the distance computation:

• Tessellation Error: It arises from approximating a non-
convex implicit or curved primitive by a polygonal mesh.

• Hardware Precision Error: This error is introduced by
the limited precision of the graphics hardware.

The total error is the sum of the above two errors. We bound
the tessellation error by performing a bounded-error tessel-
lation of the non-convex or curved primitive. In this manner,
we obtain a bound on the total error. We obtain conservative
estimates on the distance by offsetting the distance functions
of the primitives by an amount equal to the error bound.

4.3. Non-convex Implicit Primitives

We refine the estimate obtained from the graphics hardware
by performing non-linear optimization as a post-processing
step. Since the estimate obtained from the hardware proce-
dure is usually close to the right answer, this can be refined
quite efficiently using a local optimization tool.

Let the implicit function surface be given by the equation
f (x) = 0. Without loss of generality, let the point from which
we are computing this distance be the origino and letf (o) >
0. Under these assumptions, the constraint set that we will be
using in the optimization process isG(x) : f (x)≤ 0.

We use the hardware not only to compute the distances
but also to find which triangle realized the minimum dis-
tance at every point. We then use the point-triangle distance
test described in section 3.2.1 to determine the exact pointq
that minimizes the distance. Now ifq satisfies the constraint
G(x), then we use this as the starting point in the optimiza-
tion. If it does not, we perturbq so that it does. We use the
fact that the original tessellation is within a Hausdorff er-
ror of ε. If n̂ is the unit normal to the triangle containing
q, then one of the pointsq±2εn̂ is expected to satisfy our
constraint. We use this point as our initial estimate and then
refine it using a non-linear optimization solver like LOQO1.

5. Reliable Voxelization Algorithm

A number of iso-surface extraction algorithms have been
proposed for conversion from a volume representation of
an object to a polygonal mesh representation of the sur-
face. Many of these are grid-based and use the Marching
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(a) (b) (c)

Figure 6: Voxel-Intersection Test: Figs (a) & (b) show a surface (in
green) that passes through a voxel without intersecting any edges.
The presence of such voxels can result in missed components and
unwanted handles in the reconstructed surface as shown in Fig. (c).
We use thel∞ distance (indicated by the red dotted cube) to perform
a voxel-intersection test. The surface intersects the voxel if and only
if l∞ distance between the center of the voxel (black dot) and the
surface is less than half the voxel size.

Cubes algorithm or its variants26, 20, 18. These algorithms de-
tect whether a surface intersects a voxel by checking for sign
change in the implicit function across the edges of the voxel.
The accuracy of these algorithms is mainly dependent on
the resolution of the underlying grid. Insufficient grid res-
olution can cause components to be missed or create un-
wanted handles as shown in Fig. 6. As a result, these algo-
rithms cannot provide Hausdorff distance guarantees on the
output of the reconstruction. In case of adaptive grids, it is
possible that a surface passes through a coarse voxel with-
out intersecting any edges, while it intersects the edges of a
neighboring voxel that is at a finer resolution (see Fig. 7).
This can result in cracks in the reconstructed surface. These
problems occur because the surface intersects the voxel al-
though the voxel doesn’t exhibit a sign change. We present
a voxel-intersection test and use this test to perform reliable
voxelization and adaptive grid generation in order to provide
Hausdorff guarantees.

5.1. Voxel-Intersection Test

The surface can pass through a cell without intersecting any
of the edges. We use an exact test based on computing the
l∞() distance between the center of a voxel and the primi-
tive. Our test is based on the fact that a voxel is intersected by
the surface if thel∞() distance at the center of the voxel is
less than half the voxel size (see Fig 6). The above statement
is valid even when the voxels are not regular-sized cubes.
Given a voxel with dimensionsa, b, c along the three co-
ordinate axes, a weighted norm defined as maxi wi |xi − yi |,
wherewi = 1/a, 1/b, and 1/c, for i = 1, 2, and 3 respec-
tively, preserves the exactness of the voxel-intersection test.

5.2. Adaptive Grid Generation for Hausdorff Guarantee

Given a surfaceS, the goal of grid generation is to compute a
set of discrete samples to approximateS. Suppose the recon-
struction algorithm applied to the set of samples generates
Ŝ. A Hausdorff guarantee on̂Srequires that given anyε > 0,
it is possible to bound the Hausdorff distance betweenSand
Ŝ to be less thanε. We noted earlier that we cannot pro-
vide such a guarantee if the grid hascomplexvoxels, i.e, the

(a) (b)

Figure 7: Cracks: Fig. (a) shows a surface passing through a coarse
voxel (left voxel) without intersecting any of the edges, while it in-
tersects the edges of a neighboring voxel (right voxel) that is at a
finer resolution. This can result in cracks in the reconstructed sur-
face as shown in the right figure.

surface intersects the voxel boundary even though the voxel
does not exhibit sign change across any edge. Our algorithm
generates an adaptive grid without any complex voxels. Sup-
pose we are given an error boundε. Note that this bound can
be under any distance metric.

1. Check if the voxel is intersecting using the voxel-
intersection test.

2. if no intersection,STOP.
3. if complex voxel or voxel size is greater than theε,

SUBDIVIDE elseSTOP.

We apply the Marching Cubes algorithm to each voxel of
the resulting grid. The Hausdorff distance between the re-
constructed surface and the actual surface is guaranteed to
be thanε. Note that the voxel-intersection test provides us
with an early termination condition (Step 2). This makes the
adaptive grid generation algorithm very efficient.

6. Implementation and Performance

In this section, we describe the implementation of ourl∞
distance computation algorithms and highlight its perfor-
mance.

6.1. Implementation

We implemented our algorithms using C++ programming
language on a 1.6 GHz Pentium IV PC with a GeForce 3
graphics card and 500 MB main memory.

6.1.1. Polyhedral Models

Our algorithm for non-convex polyhedra requires convex
surface decomposition. In order to meet this requirement, we
modified a public collision detection library, SWIFT++9, to
take advantage of its decomposition scheme. We also used
a public triangle-triangle intersection routine developed by
Möllwer et al. 27 for fast intersection computations between
target and partitioning triangles.

In our experiment, an average query time for a triangle
takes 10µsec. The benchmarking results for polyhedra are
also presented in Table 1. Depending on the location of a
query point with respect to the polyhedron, the query time
takes from 0.6msecto 6.14msec. When the query point is
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(a) (b)
Figure 8: This figure highlights our reliable voxelization algorithm
applied to an object in the shape of a dumbbell shown in Fig. (a).
Fig. (b) shows its voxelization. The colors (white, blue and green in
that order) represent increasing levels of subdivision. It took 11 secs
to generate a voxelization based onl∞ distance computation.

located inside the polyhedron, the query takes longer, and
this query corresponds to the notion ofpenetration depth5

for a point.

Model Tri Convex Pcs In Query Out Query

Wrinkled Torus 2000 412 2.46 6.14

Cup 500 190 0.6 3

Spoon 1344 275 1.34 4.89

Table 1: Benchmark Results for Non-Convex Polyhedra. Each
column, respectively from left to right, denotes a benchmarking
model, triangle counts of the model, a number of decomposed con-
vex pieces in the model, average query time inmsecfor a point
outside the model, average query time inmsecfor a point inside the
model.

The advantage of using graphics hardware is its SIMD-
like capability that enables us to perform queries at a num-
ber of points in parallel. It took 8 secs, 2.7 sec and 5.6 secs
to computel∞ distance on a uniform 128x128x128 grid
for the wrinkled torus, cup and spoon benchmarks respec-
tively. Most of this time was spent in framebuffer readback.
In many applications, it suffices to have accurate distance
values only within a small neighborhood of a point. Given
a distance boundB, we can further improve performance by
employing simple culling techniques. In case ofl∞ metric,
we are interested only in distance values within a cube of
length 2∗B centered at a point. We cull away a primitive if
its axis-aligned bounding box does not intersect the cube.

6.2. Adaptive Grid Generation

We applied our grid generation algorithm to different bench-
marks. Fig. 8 shows the voxelization of a dumbbell. It
took 11 secs to generate a voxelization using our voxel-
intersection test. Fig. 9 shows the reconstruction of CAD
benchmarks consisting of 1-5 solids each defined using 3-
5 Boolean operations on non-convex and curved primitives
including tori and ellipsoids. On an average, it took 15 secs
to generate a voxelization per solid. In order to reconstruct a
boundary representation, we computed signed directed dis-
tance at each of the grid points of the voxelization20 and
performed iso-surface extraction using the dual contouring

(a) (b)

Figure 9: Non-convex and curved primitives: This figure shows the
reconstruction of CAD benchmarks consisting of 1-5 solids each de-
fined using 3-5 Boolean operations on non-convex and curved prim-
itives including tori and ellipsoids. On an average, it took 15 secs to
generate a voxelization of each solid based onl∞ distance compu-
tation.

algorithm 18. We computed directed distances in software
which took 80-90 secs. Note that the directed distance is
used only for reconstruction and is different froml∞ dis-
tance that we compute during voxelization. The reconstruc-
tion from the adaptive grid took less than a second. On an
average, less than 10 % of the total time was spent inside
voxel-intersection test routine. Hence it is practical to use
the voxel-intersection test for adaptive grid generation.

When performing iso-surface extraction on an adaptive
grid, the reconstruction algorithm often needs to perform
crack patching35. Our grid generation algorithm generates
an adaptive grid that does not require any crack patching.

6.3. Comparison with Prior Voxel-Intersection Tests

There has been prior work on determining whether an im-
plicit surface intersects a voxel. These algorithms are based
on Lipschitz condition and interval arithmetic19. However,
these algorithms are rather slow and conservative in practice.
Friskenet al. 32 check whether the surface passes through a
voxel by comparing the Euclidean distance to the surface
with half diagonal length. This is equivalent to testing if the
surface passes through a bounding sphere of the voxel. This
is a conservative test and can cause too much subdivision.
Voxels that lie completely outside but close to the surface
may intersect the bounding sphere and be unnecessarily sub-
divided. In contrast, we use an exact test based on thel∞()
distance which can be computed efficiently using the tech-
niques described above.

7. Conclusion and Future Work

We have presented algorithms to efficiently perform max-
norm distance computations between a point and a wide
class of geometric primitives. We have demonstrated its ap-
plication to perform a reliable voxel-intersection test for
ADF generation of complex models. The efficient voxel-
intersection test has low additional overhead, guarantees no
missed components, and a bounded Hausdorff-error on the
approximated samples as well as the reconstructed surface.

In the future, we would like to apply our techniques to
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compute thel∞ distance between objects. Many of the algo-
rithms presented in this paper can be generalized to distance
computation between two objects. We would also like to in-
vestigate other applications of max-norm distance.
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