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ABSTRACT
Clustering is the process of grouping a set of objects into classes of
similar objects. Until recently, the concept of similarity is based on dis-
tances, e.g Euclidean distance and cosine distance. Our previous work
onδ-cluster andδ-pCluster designed new similarity models to capture
subspace coherency exhibited in data and focused on shifting patterns
or scaling patterns. Along the same general direction, we propose a
more flexible yet powerful clustering model, namely u-Cluster (Up-
pattern Cluster). Under this model, two objects are similar in a subset
of dimensions if there exist a permutation of these dimensions, along
which both objects exhibit a consistent ’up’ pattern. For instance, in
DNA microarray analysis, the expression levels of two genes can rise
synchronously in response to a sequence of environment stimuli. Al-
though the magnitude of their expression levels might not be close and
the amount by which they rise might not be equivalent, the ’up’ pat-
terns that they exhibit can be consistent. Discovery of such clusters of
genes is essential in revealing significant connections in gene regula-
tory networks. In addition, E-Commerce applications such as collabo-
rative filtering and stock analysis can also benefit from this model for
identifying customer groups that have consistent trends in interests or
activities (purchasing, browsing, etc). We also devise an efficient algo-
rithm that takes advantage of fast sequential pattern mining to detect
such clusters. Its efficiency and effectiveness have been demonstrated
through experiments on several real data sets.

1. INTRODUCTION
Modern technology provides efficient methods for data collection.

However, raw data is rarely of direct benefit for higher level analy-
sis. As a method to aim the analysis of large databases, clustering has
been studied extensively in many areas including statistics, machine
learning and pattern recognition.

Recent efforts in data mining have focused on methods for efficient
and effective cluster analysis in large databases. Much active research
has been devoted to improve the scalability of clustering methods and
especially to attack the curse of dimensionality. Clustering in high di-
mensional spaces is often problematic as theoretical results questioned
the meaning of closest matching in high dimensional spaces. Recent
work has focused on discovering clusters embedded in some subspace
of the high-dimensional space. This problem is known assubspace
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clustering.
Most clustering models, including those proposed for subspace clus-

tering, define similarities among objects via some distance functions.
Some well-known distance functions include Euclidean distance, Man-
hattan distance, and cosine distance. However, distance functions are
not always adequate in capturing correlations among objects. In fact,
strong correlations may still exist among a set of objects even if they
are far apart from each other if measured by some distance function.
In light of this observation, theδ-pCluster model [22] was introduced
to discover clusters by pattern similarity (rather than distance) from
raw data sets. A major limitation of theδ-pCluster model is that it
only considers either strict shifting patterns or strict scaling patterns1,
which is still insufficient in many cases. In this paper, we investigate
a more flexible clustering model, u-Cluster, which is able to capture
the general tendency of objects across a subset of dimensions in a high
dimensional space.

a b c d e f g h l j
0

10

20

30

40

50

60

70

80

90

100

Column Number

V
al

ue

raw data 1
raw data 2
raw data 3

Figure 1: Raw data: 3 objects and 10 columns

Figure 1 shows a set of 3 objects with 10 columns (attributes). No
obvious pattern is visible. If we pick the set of columns{b, c, e, g, l} as
in Figure 2, we can observe the following tendency:the values of these
columns obey the same relative order. This tendency can be observed
clearly if we rearrange the columns in ascending order of their values:
g, c, l, e, b. All three objects exhibit consistent ’up’ pattern as showed
in Figure 3. However, this type of patterns may be revealed neither by
any traditional distance-based clustering model nor by theδ-pCluster
model, because of the restricted definition of similarity employed by
this model. In theδ-pCluster model, object 3 might be identified as an
outlier to the cluster containing objects 1 and 2 because it cannot be
represented via shifting patterns (or scaling patterns).

1.1 Applications

1The scaling patterns can be transformed into shifting patterns by ap-
plying a logarithmic function on the raw data.
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Figure 2: A shifting pattern and an outlier by δ-pCluster
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Figure 3: The “outlier” shows consistent “up” pattern

Discovery of clusters in data sets based on tendencies is of great
importance because of its potential for actionable insights.

• DNA microarray analysis. Micro-array is one of the latest break-
throughs in experimental molecular biology. It provides a pow-
erful tool by which the expression patterns of thousands of genes
can be monitored simultaneously and is already producing huge
amount of valuable data. Analysis of such data is becoming
one of the major bottlenecks in the utilization of the technol-
ogy. The gene expression data are organized as matrixes–tables
where rows represent genes, columns represent various samples
such as tissues or experimental conditions, and numbers in each
cell characterize the expression level of the particular gene in the
particular sample. Investigators show that more often than not,
if several genes contribute to a disease, it is possible to identify
a subset of conditions, under which these genes show a coherent
tendency. Since a gene’s expression level may vary substan-
tially due to its sensitivity to systematic settings, the direction
of movement (up or down) in response to condition change is
often considered more important than its actual value. Discov-
ering clusters of genes sharing coherent tendency is essential
in revealing the significant connections in gene regulatory net-
works[8]

• E-commerce. Recommendation systems and target marketing
are important applications in the E-commerce area. In these ap-
plications, sets of customers/clients with similar behavior need
to be identified so that we can predict customers’ interest and
make proper recommendation for future marketing. The follow-
ing is an example. Three viewers rate four movies (”DareDevil”,
”The hours”, ”Chicago”, ”Lord of rings, the two towers”) as
(1,4,7,10), (5,6,7,8) and (3,4,9,10), where 1 is the lowest and 10
is the highest. Although the rates given by each viewer differ in
both their values and their scales it is clear that they have coher-

ent affinities. Therefore, the relative order of the ratings play a
more important role than the absolute value of each rating. In the
future, if the first and second viewers rate two movies as (2,6)
and (4,5), respectively, we may have certain confidence that the
third viewer may also favor the second movie over the first one.

1.2 Challenges
This observation motivated us to propose a more flexible model to

characterize the general tendency and to discover clusters of objects
that preserve coherent tendencies. To achieve this goal, we need to
tackle two major challenges.

• Huge number of potential tendencies.If we haveN attributes,
there areN ! different permutations of (subsets of) attributes,
each of which may exhibit some tendency. Data sets used in
DNA array analysis or collaborative filtering can have hundreds
of attributes. This results in a huge number of candidates of var-
ious lengths, which poses a significant challenge to the pattern
discovery.

• Massive Cluster Size.Compared withδ-pCluster, which has a
more restrictive similarity function, the clusters under our model
tend to have a much larger size along the directions of both at-
tributes and objects. As a result, scalability with respect to the
size of cluster (rather than the volume of the data) becomes more
important than ever.

1.3 Our Contributions
Our objective is to cluster objects that exhibit same tendency along a

subset of dimensions, which includes theδ-pCluster model as a special
case. Our contributions include that:

• We propose a new clustering model, namely u-Cluster, to cap-
ture general tendencies exhibited by the objects.

• The u-Cluster model is a generalization of existing subspace
clustering models. It has a wide variety of applications, includ-
ing DNA array analysis and collaborative filtering, where ten-
dency along a set of attributes carries significant meaning.

• In addition to utilizing the techniques of sequential pattern min-
ing, we also design an efficient and effective tree structure UPC-
Tree to mine u-Cluster. Compared with one of fastest sequen-
tial pattern mining algorithms, prefixSpan, the UPC-Tree based
algorithm delivers a shorter response time in most cases, espe-
cially when the data is pattern-rich.

1.4 Paper Layout
The remainder of the paper is organized as follows. Section 2 dis-

cusses some related work. Section 3 defines the model proposed in the
paper. Section 4 presents the two algorithms in detail. An extensive
performance study is reported in Section 5. Section 6 concludes the
paper.

2. RELATED WORK

2.1 Subspace Clustering
Clustering in high dimensional space is often problematic as theo-

retical results [7] questioned the meaning of closest matching in high
dimensional spaces. Recent research work [23, 24, 3, 4, 6, 8, 14] has
focused on discovering clusters embedded in the subspaces of a high
dimensional data set. This problem is known as subspace clustering.
Based on the measure of similarity, there are two categories of cluster-
ing model.



• Distance based clustering. In this category, one of the well
known subspace clustering algorithms is CLIQUE [6]. CLIQUE
is a density and grid based clustering method. It discretizes the
data space into non-overlapping rectangular cells by partition-
ing each dimension to a fixed number of bins of equal length.
A bin is dense if the fraction of total data points contained in
the bin is greater than a threshold. The algorithm finds dense
cells in lower dimensional spaces and merge them to form clus-
ters in higher dimensional spaces. The PROCLUS [3] and the
ORCLUS [4] algorithms find projected clusters based on repre-
sentative cluster centers in a set of cluster dimensions. Another
interesting approach, Fascicles [14], finds subsets of data that
share similar values in a subset of dimensions.

• Pattern similarity based clustering. The first algorithm proposed
in this category is bicluster model [9] by Cheng et al. The algo-
rithm tries to measure the coherence of the genes and the condi-
tions in a sub-matrix of a DNA array. Yang et al [23] proposed a
move-based algorithm to find biclusters in a more efficient way.
However, as pointed out in [22], the bicluster model has two
drawbacks: (1) A bicluster may contain some true outliers. (2) It
requires the number of clusters as an input parameter. Recently,
δ-pCluster is introduced by Wang et al [22] to cluster objects
exhibiting shifting patterns in a data set in a very efficient way.
LetO be a subset of objects in the database (O ⊆ D), and letT
be a subset of attributes (T ⊆ A). The pair(O, T ) specifies a
sub-matrix. Givenx, y ∈ O, anda, b ∈ T , pScore of the2× 2
matrix is defined as:

pScore

([
dxa dxb

dya dyb

])
= |(dxa−dxb)− (dya−dyb)| (1)

(O, T ) forms a pCluster if, for any2×2 submatrixX in (O, T ),
pScore is less than some thresholdδp.

x y z s t
0

50

100

150

200

250

300

Attributes

A
ttr

ib
ut

e 
V

al
ue

O
1

O
2

0
3

O
4

(a) Original Data
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(b) Applying a logarithmic transformation to the original data

Figure 4: Shifting and scaling patterns
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Figure 5: Four movie ratings for movies A, B, C, D

There are several limitations of theδ-pCluster model. In many
applications, only allowing shifting or scaling patterns is too restric-
tive. Figure 4 (a) shows four objectsO1, O2, O3 andO4. Clustering
by shifting patterns,O1 andO2 can form aδ-pCluster andO3 and
O4 forms another. However, if we consider the scaling pattern, Fig-
ure 4 (b) shows thatO2 andO3 will be in a cluster withoutO1 and
O3. Obviously, by restricting itself to simple shifting or scaling pat-
terns,δ-pCluster may miss many more valuable clusters. This limi-
tation is inherent to the model ofδ-pCluster, which cannot be solved
through relaxing the thresholdδp. For example, in Figure 5, three
dotted lines represent ratings given by three individuals for four differ-
ent movies{A, B, C, D}. They areR1:[5, 6, 7, 8], R2:[3, 4, 5, 6] and
R3:[1, 4, 5, 10]. According to the definition ofpScore, whenδp = 1,
R1 andR2 form a shifting pattern withpScore = 0. But R3 is not
part of the pattern (pScore > 1) even thoughR3 shares the same ten-
dency (with a sharper slope). Most interestingly, they share consistent
opinions by ranking the movies in the order[D, B, C, A]. This sug-
gests that, even though people may provide different rates to a movie,
the order or tendency of the rates plays a more important role than the
actual rates. In this example, if we want to groupR1, R2 andR3 as
a cluster, we need to increase the threshold to 6. However, this may
includeR4:[10, 9, 8, 7] (pScore = 6) in the δ-pCluster, even ifR4
shows a tendency completely opposite to the other three.

2.2 Sequential Pattern Mining
Since it was first introduced in [5], sequential pattern mining has

been studied extensively. Conventional sequential pattern mining finds
frequent subsequences in the database based on exact match. There are
two classes of algorithms. On one hand, the breadth-first search meth-
ods (e.g., GSP [20] and SPADE [26]) are based on the Apriori princi-
ple [5] and conduct level-by-level candidate-generation-and-tests. On
the other hand, the depth-first search methods (e.g., PrefixSpan [19]
and SPAM [1]) grow long patterns from short ones by constructing
projected databases. Some variations of the depth-first search meth-
ods mine sequential patterns with vertical format [27]. However,there
is some non-trivial cost of projecting databases. Every subsequence
in the projected database has be scanned once again even when they
share the same prefix.

In this paper, a compact tree structure UPC-Tree for sequential pat-
tern mining will be constructed. The UPC-Tree is a prefix-tree struc-
ture storing crucial information about frequent subsequences. It cor-
responds to “UP Pattern Clusters” under the u-Cluster model. In ad-
dition, the structure can become more light-weighted by collapsing
adjacent nodes under certain circumstances A depth-first traversal of
the tree is sufficient to generate frequent subsequences by recursively
concatenating legible suffixes with the existing frequent prefixes and
by grouping sequences sharing the same prefix.



3. MODEL
In this section, we define the u-Cluster model for mining objects that

exhibit tendency on a set of attributes.

3.1 Notations
D A set of objects
A Attributes of objects inD

(O, T ) A sub-matrix of the data set, whereO ⊆ D, T ⊆ A
x, y, ... Objects inD
a, b, ... Attributes inA
dxa Value of objectx on attributea
δ User-specified similarity group threshold
δp User-specified shifting threshold

nc, nr User-specified minimum # of column and
minimum # of rows of a model

3.2 Definitions and Problem Statement
LetD be a set of objects, where each object is associated with a set

of attributesA. We are interested in subsets of objects that exhibit a
coherent tendency on a subset of attributes ofA.

DEFINITION 3.1. Let o be an object in the database,〈do1, do2,
..., don〉 be the attribute values in a non-decreasing order, n be the
number of attributes andδ be the user specified threshold. We say that
o is similar on attributesi, i + 1, ...,i + j, (n ≥ i > 0, n ≥ j > 0), if

(do(i+j) − doi) < G(δ, doi) (2)

we call the set of attributes〈i, i + 1, ..., i + j〉 a similar group . At-
tributedoi is called apivot point .

The intuition behind this definition is that, if the difference between
the values of two attributes is not significant, we regard them to be
“equivalent” in value and group them together. There are multiple
ways to define the grouping functionG(δ, doi). One way is to define it
as the average difference between every pair of attributes whose values
are closest.

G(δ) = δ ×
(do2 − do1) + (do3 − do2) + · · ·+ (don − do(n−1))

n− 1
(3)

This definition is independent ofdoi and is usually used when each
attribute has a finite domain and its value is evenly distributed within
its domain. The previous example on movie rating belongs to this case.
When the value of each attribute may follow a skew distribution, Equa-
tion 4 is a better choice. The gene expression data often belongs to this
scenario. For the sake of simplicity in explanation, we use Equation 4
in the remainder of this paper, unless otherwise specified.

G(δ, doi) = δ × doi. (4)

For example, suppose we have the rating of five movies(A, B, C, D,
E) from someone, which is (1, 4, 4.5, 8, 10). Ifδ = 0.2, 4 and 4.5 are
considered equivalent to each other. The rating are divided into four
groups{{1}, {4, 4.5}, {8}, {10}}.

DEFINITION 3.2. Let o be an object in the database, and(go1)
(go2)...(gok) be a sequence of similar groups ofo by Equation 2 and
in non-descending order of their values.o shows an ’UP’ pattern on an
ordered list of attributesa1, a2, ..., aj if a1, a2, ..., aj is a subsequence
of (go1)(go2)...(gok)

In the above example,(1, 4, 4.5, 8, 10) is the rating for movies(A, B,
C, D, E). After we apply the group similarity, we are able to trans-
form the original rating to the sequenceA(BC)DE. ABDE, AE,
and(BC)E show ’UP’ patterns.

DEFINITION 3.3. letO be a subset of objects in the database,O ⊆
D. LetT be a subset of attributesA. (O, T ) forms a u-Cluster if there
exists a permutation of attributes inT , on which every object inO
shows the “UP” pattern.

Suppose we have two movie ratingso1 ando2 for movies(A, B, C,
D, E). The ratings are (1, 4, 4.5, 8, 10) and (2, 5, 7, 4.5, 9), respec-
tively. According to Definition 3.3, the corresponding sequence of
groups foro1 is A(BC)DE, and foro2 is A(DB)CE. SinceABCE
is a common subsequence of them, we say thato1 ando2 form a u-
Cluster on the attributes sets ofABCE.

LEMMA 3.1. Let (Op, T p) be aδ-pCluster, whereδp is the user
defined threshold forδ-pCluster. (Op, T p) is also identified as a u-
Cluster if the value difference between any two attributes of an object
is at leastδ

p

2
.

PROOF. Given any two objectsx andy (x, y ⊆ O), we first sort
attribute values ofx for all attributes inT in non-descending order.
Without loss of generality, assume that we have two attributesa andb
(a, b ⊆ T ) wheredxa < dxb. If dya > dyb and any two attributes of
an object differ in value by at leastδp

2
, we have

(dxa − dxb) < −δp

2
; (dya − dyb) ≥

δp

2
; (5)

The absolute difference between them, which ispScore defined inδ-
pCluster, is

|(dxa − dxb)− (dya − dyb)| > δp. (6)

However, becausex, y ⊆ O and a, b ⊆ T , (Op, T p) forms aδ-
pCluster. We should have

|(dxa − dxb)− (dya − dyb)| < δp. (7)

Now, we get a contradiction between Equations 6 and 7. Therefore,
our hypothesis ofdya > dyb is incorrect. So, we havedya ≤ dyb

whendxa < dxb, and hence ({x, y}, {a, b}) forms a u-Cluster.
Similarly, we can prove that any two objects⊆ O and any two at-

tributes⊆ T can form a u-Cluster. Thus, for any two objects, they
form a u-Cluster on all attributes⊆ T . Since there is only one unique
order of attributes⊆ T such that all objects⊆ O show the “UP” pat-
tern. We conclude that(O, T ) is also a u-Cluster.

In above discussion, we assume that the threshold of group similar-
ity is set to 0. In this case, if the difference between any two attributes
of an object is smaller than the thresholdδp

2
, it will be included in

δ-pCluster, but it will not be able to present in u-Cluster. To accom-
modate this in u-Cluster, we can setδ = δp

2
. Then, anyδ-pCluster

will be included in a u-Cluster.
In the following sections, since the input data is a matrix, we refer

to objects as rows and attributes as columns.

Problem Statement.Given a cluster thresholdδ, a minimal num-
ber of columnsnc, and a minimal number of rowsnr, the goal is to
find all (maximum) submatrices(O, T ) such that(O, T ) is a u-Cluster
according to Definition 3.3, and|O| ≥ nr, |T | ≥ nc.

4. ALGORITHM
In this section, we present our algorithm to generate u-Clusters,

which consists of three steps: (1) preprocess the data into sequences
of similarity groups; (2) find sequential patterns; and (3) generate a
u-Cluster for each sequential pattern. Since the second step is the most
time consuming portion of the algorithm, we propose and evaluate two
alternative methods. The first method is to utilize the prefixSpan algo-
rithm and introduce several optimization strategies; whereas the sec-
ond ( and a more efficient) method is to use a novel compact structure
UPC-Tree to organize the sequences and to guide the pattern gener-
ation. Compared with prefixSpan, UPC-Tree is more compact and
sequences can be projected simultaneously instead of always scanned



sequentially as in prefixSpan. In addition, single path subtrees in UPC-
Tree will not be examined further to detect embedded subsequences.
However,the prefixSpan algorithm is not able to look forward and takes
advantage of this special case.

4.1 Preprocessing
The first step in our algorithm is preprocessing. First, for each row,

we sort all the entry values in the non-decreasing order. Secondly, we
organize each sorted row into a sequence of similarity groups. The
resulted sequences for all rows will be taken as the input of the second
step — sequential pattern generation. Let’s look at the raw data in
Table 1.

a b c d
1 4392 284 4108 228
2 401 281 120 298
3 401 292 109 238
4 280 318 37 215
5 2857 285 2576 226
6 48 290 224 228

Table 1: Raw Data Set

If we set the thresholdδ for group similarity to be 0.1, the sequences
are shown in Table 2. Attributes in each “()” are in the same similarity
group. Since order does not matter for these attributes, we use the
alphabetical order. For example, for the object1, the sorted order of
attributes is[228 : d, 284 : b, 4108 : c, 4392 : a]. a andc can be
grouped together since4392− 4108 < 4108× 0.1 (Equation 4).

sequence
1 db(ac)
2 c(bd)a
3 cdba
4 cdab
5 dbca
6 a(cd)b

Table 2: Sequences after Preprocessing

In this way, we turn a clustering problem into sequential pattern
mining problem. Our task in the next step is to find all the frequent
subsequences embedded in these sequences.

4.2 Optimization of PrefixSpan
PrefixSpan [19] and SPAM [1] are among the fastest sequential

pattern mining algorithms proposed recently. SPAM uses a vertical
bitmap representation of the database. Because of the size limitation
of the sequence that a bitmap(64 bits) can store, we cannot use this
approach for our purpose.

The general idea of prefixSpan is to project the sequence database
based on the frequent prefixes because any frequent subsequence can
always be found by growing a frequent prefix. The following is an
example.

EXAMPLE 4.1. For the sequences in Table 2, withnc = 3, nr =
3, the prefixSpan algorithms works in the following steps.

Step 1: Find length-1 sequential patterns.Since all the attributes
appear in all the rows. The result of this step is that each of{a, b, c, d}
has a support count 6.

Step 2: Partition the search space by prefix.The set of sequential
patterns is partitioned into four subsets, one for each distinct length-1
pattern,{a},{b},{c},{d}.

Step 3: Find sequential patterns for each subset.The sequential
patterns can be mined by constructing projected databases and mining
each recursively.

prefix projected frequent
a− (c), b, (cd)b
b− (ac), (d)a, (a), ca
c− (bd)a, dab, dba, a, (d)b cda : 4
d− b(ac), a, ab, ba, bca, b dba : 4

Table 3: Projected database and sequential patterns

The mining process starting from projecting each sequence into sub-
sets with prefixa−, b−, c− andd−. The projected databases are listed
in the second column of Table 3. The above procedure is applied re-
cursively until there is no more frequent pattern.

To speed up this procedure, two strategies, namely bi-level projec-
tion and pseudo projection, are used to minimize the number of pro-
jected databases and to record only the sequence ID and position num-
ber instead of physically keeping all the projected database.

Due to the unique characteristics of the sequences in our problem,
we propose two additional optimization strategies.

4.2.1 Position Matrix and pseudo Projection
There is an unique characteristic of our input sequences:every length-

1 pattern appears once and exactly once in each sequence.Based on
this observation, we can decide whether one element precedes another
element by simply checking their positions in aposition matrixin-
stead of scanning the sequence. Table 4 shows the position matrix of
sequences in Table 2.

a b c d
1 3 2 4 1
2 4 2 1 3
3 4 3 1 2
4 3 4 1 2
5 4 2 3 1
6 1 4 2 3

Table 4: Position Matrix

Therefore, if we want to further projectc−’s projected database on
cd−, we need to check whetherd’s position is afterc’s in every se-
quence inc−’s projected database. For example, in sequence 2,d’s
position is 3, which is afterc’s position 2. So, sequence 2 will be in
cd−’s projected database.

By maintaining the position matrix, we only need to record the se-
quence IDs in the projected databases. The performance of is improved
since the projection of a sequence can now be done in constant time.

4.2.2 Pruning With Parameternc

An additional difference between the u-Cluster model and the se-
quential pattern mining problem is that we have a parameternc, which
is the minimum number of columns of a u-Cluster. No subsequence
with length less thannc will be useful to generate u-Cluster. There-
fore, we can also use the position of the element and the length of the
original sequence to eliminate short subsequences as early as possi-
ble. Let the length of a prefixpre be lpre, the length of the original
sequence bel, and the current projection elementx’s position bepx.
(pre) + x is not a candidate subsequence iflpre + 1 + (l− px) < nc.
When the prefix is not long andx’s position is close to the end of the
sequence, no projected subsequence will be long enough to meetnc.
For example, for sequence 4 in Table 2, when we first project it on
elementa, we found out that the length of the projected subsequence



is going to be belownc = 3. Hence, this projection of sequence 3 will
not be performed After using this pruning, the projected database in
Table 3 shrinks. The pruned database is showed in Table 5.

projected
a− (cd)b
b− (ac), (d)a, ca
c− (bd)a, dab, dba, (d)b
d− b(ac), ab, ba, bca,

Table 5: Pruned database

However, in the above example, we notice that to get cluster({1,
4, 5}, {d, b, a}). All three rows are first projected ond. And then,
all of them will project through another nodeb, althoughd andb are
adjacent. The main cost of depth-first approach is on computing pro-
jection. If we can save the number of projecting operations by group-
ing the rows sharing same projection nodes together, we can save a
lot of projection time. Let’s consider an extreme example. Suppose
we have 10 entirely identical sequences with 10 elements each, if we
apply the prefixSpan algorithm, we have the following computation.
For length-1 patterns, we need to project each sequence onto each el-
ement, which is10 × 10 projections. For length-2 patterns, we need
10× 9 + 10× 8 + 10× 7 + 10× 6 + ...... + 10 projections. The pro-
jection time grows exponentially as we proceed, even though there is
just one simple big cluster! To attack this inefficiency, in the following
subsection, we introduce a novel UPC-Tree structure which is much
more compact and effective for mining u-Cluster.

4.3 UPC-Tree
Before we define UPC-Tree formally, we first give the following

example.

EXAMPLE 4.2. For the sequences in Table 2, withnc = 3, nr =
3, the UPC-Tree algorithm works in the following steps.

Step 1: Create root -1 and insert all the sequences into the tree.
This is showed in Figure 6 (1). Notice that same prefix falls on same
branch of the tree. The sequence ID is stored in the leaves. The current
root is−1 and the current depth is 0.

Step 2: For each child of the root, insert suffixes in its subtree to
the root’s child that has a matching label.In Figure 6 (2),C is a child
of the root−1. In this subtree, the suffix subtree starting atD (for
sequence3, 4) is inserted into the root−1’s child D. Each insertion
is illustrated by a dotted line connecting the two involved nodes, with
the arrow pointing to thedestination nodein Figure 6. The sequence
IDs associated with the suffixes are combined with existing IDs in the
destination node. In the case where a suffix is too short to satisfycur-
rent depth+ length of the suffix> nc, the suffix will not be inserted.
For example,BA in sequence3 is also a suffix, it is not to be inserted
because thedepth 0 + length ofBA < nc.

Step3: Prune current root’s children.If the number of rows fall in
a subtree is smaller thannr, the subtree will be deleted because no
further development can generate a cluster with more thannr rows.
For example, subtree leading from−1B in Figure 6 (2) is deleted in
Figure 6 (3) since there are only two sequences falling in this subtree.

Step4: Repeat Step2-Step5 for the root’s first child recursively until
there is no child node left.For example,C is the first child of root-1.
Therefore, the same procedure in step2 is applied toC first. The suf-
fixes ofC ’s subtreeD, such asBA andAB are inserted intoC ’s sub-
treeB andA respectively. Since there was less than three sequences
fall on C ’s subtreesA andB, the branches−1CA− and−1CB− are
deleted. Following the same procedure, we developC ’s only subtree
−1CD−, which is shown in Figure 6(4).

Step5: Repeat Step2-Step5 for the root’s next siblings recursively.
For example, after finishing−1C−’s subtree development, the next
subtree to develop is−1C−’s sibling −1D−. −1DB’s suffix AC
is inserted to subtree−1DA. However, both subtrees are deleted be-
cause they do not have enough support count.
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Figure 6: UPC-Tree for Table 2

DEFINITION 4.1. UPC-tree (Up Pattern Clustering tree). An UPC-



Tree is a tree structure defined below.
1. It consists of one root labeled as ”-1”, a set of subtrees as the chil-
dren of the root;
2. Each node in the subtrees consists of four entries: entry value, a
link to its first children node, a link to its nearest sibling node, and a
link list of all the rows that share the same path leading from root to
this node but do not have longer subsequences passing this node. In
another word, the sequence IDs are only recorded at the nodes which
marked the end of a subsequence.

Algorithm UPC-Tree(S, nr, nc)
Input: S: The sequence set from preprocessing of original Matrix,nr: minimal

number of rows,nc: minimal number of columns
Output: All the subsequence with frequency count≥ nr and length≥ nc
(∗ Main program to develop the hello∗)
1. Create the root of an UPC-Tree,T , and label it as ”-1”.
2. for each sequences in S
3. do insertSequence(s, T )
4. growTree(T ) recursively;
5. return .

Algorithm insertSequence(s,T)
Input: s[i..n]: the sequence to be inserted,T : the root of UPC-Tree
Output: T : tree with the path corresponding tos
(∗ Insert a sequence into the root of a tree∗)
1. if i = n,
2. then insert theID of s into N ’s IDlist.
3. return
4. else ifT has a childN such thatN.value = s[i].value,
5. then insertSequence(s[i + 1..n]); N);
6. else create a new nodeN .
7. if T ’s first child 6= nil
8. then the last sibling’s next sibling←N .
9. else T’s first child←N .
10. insertSequence(s[i + 1..n]); N)
11. return

Algorithm growTree(T,nc,nr ,depth)
Input: T : the root of the initiated tree,nc andnr
Output: u-Cluster existed inT
(∗ Grow patterns based on originalT ∗)
1. if T = nil
2. return ;
3. Tchild←T ’s first child;
4. for any sub-treesubT of T
5. do insertSubTree(subT , T );
6. pruneTreeNode(T );
7. growTree(Tchild, nc, nr, depth + 1);
8. growTree(T ’s next sibling,nc, nr, depth);
9. return .

Analysis of UPC-Tree construction.Only one scan of the en-
tire data matrix is needed during the construction of the UPC-Tree.
For each row, we sort it into a sequence of similarity groups. Then we
insert the sequences into the UPC-Tree. As a result, rows that have the
same prefixes will share the same paths from root to the end of pre-
fixes. To save memory, the row number associated with each path is
only recorded at the node corresponding to the end of the sequence. To
find the u-Cluster using the UPC-Tree, subsequences are developed by
adding suffixes of each sub-tree as the tree’s children, via a pre-order
traversal of the UPC-Tree.

LEMMA 4.1. Given a matrix M, a similarity grouping threshold,
the initiated UPC-Tree contains all the information of matrix M.

Rationale: Based on the UPC-Tree construction process, each row
in the matrix is mapped onto one path in the UPC-Tree. The row IDs
and the order of the columns are completely stored in the initiated
UPC-Tree.

4.3.1 Mining u-Cluster Using UPC-Tree

LEMMA 4.2. The developed UPC-Tree on a set of sequences con-
tains all subsequences hidden in the initial UPC-Tree.

Rationale: Given any sequenceS = x1x2x3x4 . . . xn, we want to
show that all of the subsequences of S will be found in a path start-
ing from root. Through the initiation of UPC-Tree, we know that
S will exist in the UPC-Tree. Then given any subsequenceSS =
xixj . . . xs, (i ≥ 1, s ≤ n), we can obtainSS by the following
steps. First, at nodexi, if i = 1, then insert suffixxixi+1 . . . xn.
Now in the subtree ofxi, we can find nodexj because it will be
along the pathxixi+1 . . . xn that is inserted in the first step. Simi-
larly, we insert the suffixxj . . . xn starting fromxj . Now we get the
pathxixjxj+1 . . . xn. By repeating the same procedure until we in-
sert the suffix starting withxs, we get the pathxixj . . . xs. Since we
insert all the suffixes in the UPC-Tree, the UPC-Tree contains all the
subsequences presented in the original UPC-Tree.

Rows in a u-Cluster share the same set of columns, which share
the same path in the UPC-Tree. We can conclude that the UPC-Tree
contains all the clusters. This leads to the following lemma.

LEMMA 4.3. The developed UPC-Tree on a set of sequences con-
tains all potential u-Clusters. The columns in these clusters are on the
paths leading from the root to any tree node with depth no less thannc
and row support count in its subtree no less thannr .

4.3.2 Pruning UPC-Tree
Without any pruning, the whole UPC-Tree fits well into memory

when we have a small matrix (15 columns by 3000 rows). However, for
large matrix, some pruning strategies have to be employed to minimize
the size of the UPC-Tree. There are two pruning techniques used in our
implementation. One strategy is to prune the suffixes with the to-be
subsequence shorter thannc; the other is to prune the subtrees where
the row support count is belownr.

LEMMA 4.4. For a nodeN in UPC-Tree with depthd, and for a
suffix S with length l in its sub-tree, ifd + l < nc (the minimum
columns required for a cluster), this suffixS will not be useful in form-
ing any u-Cluster cluster.

Rationale: The length of the pathL we can get by combining the
path from root toN andS is d + l. Based on Lemma 4.3,L will not
form any cluster. Therefore, suffix S needs not to be inserted. In our
implementation, we check depth of the node at which the end of the
suffix is inserted. If the depth is smaller thannc, the row IDs recorded
in this node will be deleted.

4.4 Improvement with Collapsing Node
The major cost of UPC-Tree development is to concatenate suf-

fix trees. To minimize the cost incurred by dynamically allocating
memory, we introduced a more compact u-Cluster structure, in which
single-path tree can collapse into one node.

Figure 7 shows the procedure to construct collapsed u-Cluster struc-
ture for the same problem as in Example 4.2. All collapsed nodes are
denoted by rectangles. There are two scenarios when collapsed node
needs to be split.

• The collapsed node will split if a new branch has to be inserted
in the middle of path.For example, in Figure 7, sequence 1
(DBAC) is collapsed into one node when the tree is initiated.
In the development of depth 2, since the subsequenceDAB in
sequence 4 will be inserted into pathDBAC, and the only com-
mon prefix they have isD, a new branchAB has to be added
in D’s sub-tree. The original node which containsDBAC will
split into two nodes which containD andBAC respectively.
BAC will become a sub-tree ofD.

• The collapsed node will split if the inserted branch is a con-
tiguous portion of the single path in the collapsed node.For
example, in Figure 7, when the subsequenceDBA in sequence
3 is inserted intoDBAC of sequence 1,DBA is a portion of
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Figure 7: Collapsing UPC-Tree for Table 2

DBAC, DBAC is split into two partsDBA andC. The num-
ber 3 is stored at the end ofDBA to record sequence ID cor-
rectly.

Compared with the original UPC-Tree, the collapsed UPC-Tree oc-
cupies much less space and takes much less time. For example, at
depth 0, the original tree needs 15 nodes, while the collapsed tree only
needs 5. At depth 1, the original tree needs 21 nodes, but collapsed one
needs only 12. In addition, with collapsed UPC-Tree, inserting suffix
of single-path tree is avoided.

The single-path is compacted into one collapsed node already. The
u-Cluster can be identified immediately.

4.5 Addition Feature: δ-pCluster
According to Lemma 3.1,δ-pCluster can be a special case of u-

Cluster ifδ ≥ δp

2
. Therefore, our algorithm for mining u-Cluster can

also be used to findδ-pCluster. Some experiments along this direction
is presented in Section 5.

4.6 Additional Feature: Extension of Grouping
Technique

Based on Definition 3.1, We can generate different similarity groups
if we starts from different pivot attributes. For example, If we have
an object[0.5, 1, 1.5, 2] with the similarity threshold asδ = 100%.
We can group them either as(AB)(CD) or asA(BCD). Now have
objects 2 and 3 with attribute values[1, 2, 4, 5] and [9, 4, 5, 6], re-
spectively. Their corresponding group sequences are(AB)(CD) and
(BCD)A. If we setnc = 3 andnr = 2, the cluster we can get is
(AB)(CD) if we group object 1 as(AB)(CD). However, if we use
A(BCD), the cluster will be(BCD). And both are valid clusters.
To find them, we propose an alternative grouping approach. We put
all (possibly overlapping) similar groups in one sequence. For exam-
ple, in the above example, object 1 becomesA(AB)(BCD)(CD).
Then, we can find all sequential patterns of these three objects, which

are(AB)(CD) and(BCD). Since we introduce some redundancy,
when one attribute appears more than once in a final cluster, we only
keep one by removing all duplicates.

5. EXPERIMENTS
We experimented our u-Cluster algorithm with two real data sets.

The algorithm was implemented in C and executed on a Linux machine
with a 700 MHz CPU and 2G main memory. We also implemented the
optimized prefixSpan algorithm for comparison. The following tests
are organized into three categories. First, we study the sensitivity of u-
Cluster to various parameters. Secondly, we evaluate the performance
of UPC-Tree and compare it with the prefixSpan algorithm. At last,
we show two promising patterns found in the drug activity data set.

5.1 Data Sets
We experiment our u-Cluster algorithm with two real data sets.

Gene Expression Data
Gene expression data are generated by DNA chips and other microar-
ray techniques. The yeast microarray contains expression levels of
2,884 genes under 17 conditions [21]. The data set is presented as a
matrix. Each row corresponds to a gene and each column represents
a condition under which the gene is developed. Each entry represents
the relative abundance of the mRNA of a gene under a specific con-
dition. The entry value, derived by scaling and logarithm from the
original relative abundance, is in the range of 0 and 600. Biologists
are interested in finding a subset of genes showing strikingly similar
up-regulation or down-regulation under a subset of conditions [9].

Drug Activity Data
Drug activity data is also a matrix with 10000 rows and 30 columns.
Each row corresponds to a chemical compound and each column rep-
resents a descriptor/feature of the compound. The value of each entry
varies from 0 to 1000.

5.2 Model Sensitivity Analysis
In this section, We evaluate how the similarity thresholdδ andδp

can influence the number of clusters and their sizes. We use the yeast
data set in this set of experiments. The minimum number of rows is set
to be 30 and the minimum number of columns is 10. We varyδp from
∞ to 5. Figure 8 (a) shows the number the clusters generated and (b)
presents the maximum cluster size.

u-Clusters are generated whenδp is infinity. As δ increases, the
total number of clusters begins to increase, which implies that more
columns are grouped together and that more rows are sharing the same
subsequences. However, when the similarity threshold is larger than
100%, the total number of clusters decreases. This is because the over-
lapped clusters generated by smallδ begin to merge into bigger clusters
whendelta increases. Since long subsequence of columns has higher
chance to fall on a single path, and consequently, smaller enclosed sub-
sequences will not be counted, the total number of clusters decreases.
Figure 8(b) shows that the maximum size of the u-Cluster increases
dramatically in this case.

As δp decreases, large clusters tends to split into smaller ones and
the total number of clusters increases. The size of each cluster be-
comes smaller. When more clusters with size smaller thannc×nr are
eliminated, the total number of clusters restricted byδp drops below
the number of u-Clusters.

5.3 Scalability
We evaluate the performance of the u-Cluster algorithm as we in-

crease the number of objects and the number of columns in the data
set. The response time of the UPC-Tree is mostly determined by the
size of the tree. Figure 9 shows the response time of the drug activity
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data set. As we know, the columns and the rows of the matrix carry
the same significance in the u-Cluster model, which is symmetrically
defined in Formula 2. Although the algorithm is not entirely symmet-
ric in the sense that it chooses to project column-pairs first, the curves
in Figure 9 demonstrate similar trends.

For experiments in Figure 9(a), the number of columns is 30. The
minimal number of columns of the embedded u-Cluster is 9, and the
minimal number of rows is set to0.01N , whereN is the number of
rows of the drug activity data. The mining algorithm is invoked with
δ = 0.2, nc = 9, andnr = 0.01N . Data sets used in Figure 9(b)
are taken from the drug activity data with the number of rows fixed as
1000. The mining algorithm is invoked withδ = 0.2, nc = 0.66C,
andnr = 30.

Figure 10 presents the performance comparison between the pre-
fixSpan algorithm and the UPC-Tree algorithm. In this experiment, we
use the drug activity data to see the performance with different number
of rows. The parameter setting for this set of experiment is the follow-
ing: nc = 9, nr = 0.01N , δ = 0.2. The number of columns is set
to be 20. We can observe that the UPC-Tree algorithm can constantly
outperform the prefixSpan algorithm and the advantage becomes more
substantial with larger data set.

Next, we study the impact of the parameters (δ, nc, andnr) towards
the response time. The results are shown in Figure 11. The size of
matrix is 27 × 3776. Whennc andnr are fixed, the response time
prolongs when the similarity threshold increases. This is because the
size of the clusters increase as we relax the similarity threshold. There-
fore, the UPC-Tree has to spend more time to construct a deeper tree.
When similarity threshold is fixed, it takes longer time to construct the
UPC-Tree asnc decreases. This is showed in Figure 11. According to
the pruning techniques we discuss in Lemma 4.4, a fewer number of
subsequences can be eliminated when using smallernc. As a result, a
larger tree is constructed, which consumes more time. A similar effect
can be observed with respect tonr from Figure 11(b).

5.4 Results from Real Data
We apply the u-Cluster algorithm on the drug activity data set. With

parametersnc = 10, nr = 30, δ = 20, some interesting clusters
are reported. Two of them are showed in Figure 12. They present
a series of consistent patterns under a subset of features. From both
figures, we can observe that the patterns cannot be captured by neither
the traditional distance measure nor the strict shifting/ scaling factors.

6. CONCLUSIONS
In this paper, we proposed a new model called u-Cluster to capture

the consistent tendency clusters exhibited by a subset of dimensions in
high dimensional space. In many applications including collaborative
filtering and DNA array analysis, although the distance (e.g., measured
by Euclidean distance or cosine distance) among the objects may not
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be close, they can still manifest consistent ’up’ pattern over a permu-
tation of a subset of dimensions. To address this issue, we introduce a
new model called u-Cluster to model tendency among a set of objects.
We proposed a compact tree structure, namely UPC-Tree, and devised
a depth-first algorithm that can efficiently and effectively discover all
u-Clusters with a user-specified minimum size.

7. REFERENCES
[1] J. Ayres, J. E. Gehrke, T. Yiu, and J. Flannick. Sequential PAttern Mining

Using Bitmaps. InSIGKDD, July 2002.
[2] R. C. Agarwal, C. C. Aggarwal, and V. Parsad. Depth .rst generation of

long patterns. InSIGKDD, 2000.
[3] C. C. Aggarwal, C. Procopiuc, J. Wolf, P. S. Yu, and J. S. Park. Fast

algorithms for projected clustering. InSIGMOD, 1999.
[4] C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in

high dimensional spaces. InSIGMOD, pages 70-81, 2000.
[5] R. Agrawal and R. Srikant. Mining sequential patterns. InICDE, 3-14,

Mar. 1995.
[6] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Authomatic

subspace clustering of high dimensional data for data mining applications.
In SIGMOD, 1998.

[7] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest
neighbors meaningful. InProc. of the Int. Conf. Database Theories, pages
217-235, 1999.

[8] C. H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering
for mining numerical data. InSIGKDD, pages 84-93, 1999.

[9] Y. Cheng and G. Church. Biclustering of expression data. InProc. of 8th
International Conference on Intelligent System for Molecular Biology,
2000.

[10] P. Dhaeseleer, S. Liang, and R. Somogyi. Gene expression analysis and
genetic network modeling. InPaci.c Symposium on Biocomputing, 1999.

[11] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-bsed algorithm for
discovering clusters in large spatial databases with noise. InSIGKDD,
pages 226-231, 1996.

[12] D. H. Fisher. Knowledge acquisition via incremental conceptual
clustering. InMachine Learning, 1987.

[13] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic
Press, 1990. 12] H. V. Jagadish, J. Madar, and R. Ng. Semantic
compression and pattern extraction with fascicles. InVLDB, pages
186-196, 1999.

[14] H.V.Jagadish, J.Madar, and R. Ng. Semantic compression and pttern
extraction with fasicicles. InVLDB, pages 186-196, 1999.

[15] R. S. Michalski and R. E. Stepp. Learning from observation: conceptual
clustering. InMachine Learning: An Arti.cial Intelligence Approach, pages
331-363, 1983.

[16] F. Murtagh. A survey of recent hierarchical clustering algorithms. InThe
Computer Journal, 1983.

[17] H. Nagesh, S. Goil, and A. Choudhary. Ma.a: E.cient and scalable
subspace clustering for very large data sets. Technical Report 9906-010,
Northwestern University, 1999.

[18] R. T. Ng and J. Han. E.cient and e.ective clustering methods for spatial
data mining. InVLDB, 1994. 1995.

[19] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen U. Dayal, and M.-C.
Hsu. PrefixSpan mining sequential patterns e.ciently by prefix projected
pattern growth. InICDE 2001, pages 215-226, Apr. 2001.

[20] R.Srikant and R.Agrawal. Mining sequential patterns: Generalizations
and performance improvements. InEDBT ′96, pages 3-17, Mar. 1996.

[21] S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church. Yeast
micro data set. Inhttp://arep.med.harvard.edu/biclustering/yeast.matrix,
2000.

[22] H. Wang, W. Wang, J. Yang, and P. Yu. Clustering by pattern similarity
in large data sets, inSIGMOD, pp. 394-405, 2002.

[23] J. Yang, W. Wang, H. Wang, and P. S. Yu.δ-clusters: Capturing subspace
correlation in a large data set. InICDE, pages 517-528, 2002.

[24] J. Yang, W. Wang, P. Yu, and J. Han. Mining long sequential patterns in a
noisy environment. InSIGMOD,pp.406-417, 2002.

[25] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data
clustering method for very large databases. InSIGMOD, pages 103114,
1996.

[26] M. J. Zaki, S. Parthasarathy, M.Orihara, and W. Li. Parallel algorithm for
discovery of association rules. InDMKD, 343-374, 1997.

[27] M.J.Zaki.Efficient enumeration of frequent sequences. InCIKM, 68-75,
Nov.1998.


