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ABSTRACT clustering

Clustering is the process of grouping a set of objects into classes O%Aostdcll:_steripgrqqels, includin%_those proposeddfor SUbS?ace.dus'
similar objects. Until recently, the concept of similarity is based on di{€"N9. define similarities among objects via some distance functions.
tances, e.g Euclidean distance and cosine distance. Our previous i€ Well-known distance functions include Euclidean distance, Man-
on 6-cllljster andi-pCluster designed new similarity models to captur attan distance, and cosine distance. However, distance functions ar
subspace coherency exhibited in data and focused on shifting pattdlfjs@/ways adequate in capturing correlations among objects. In fact,
or scaling patterns. Along the same general direction, we proposétg’ng correlations may still exist among a set of obje_cts even if th_ey
more flexible yet powerful clustering model, namely u-Cluster (UR"e far apart from each other if measured by some distance function.

pattern Cluster). Under this model, two objects are similar in a subé@t]éght of thisl observstion, thé-p(;lu_Tte_r modek: [2231 waz_introducef:d
of dimensions if there exist a permutation of these dimensions, anW(\;N Iscover clusters Y pgttt_ern_ similarity (rather than |s‘_[ance) from
data sets. A major limitation of th&pCluster model is that it

which both objects exhibit a consistent 'up’ pattern. For instance, fﬁl o ith ict shifi - i #
DNA microarray analysis, the expression levels of two genes can rg%y considers either strict shifting patterns or strict scaling patterns

synchronously in response to a sequence of environment stimuli. A ich is St”_l insufficien_t in many cases. In this paper, we investigate
though the magnitude of their expression levels might not be close #h'°'e flexible clustering model, u-Cluster, which is able to capture
the amount by which they rise might not be equivalent, the 'up’ pa he gen_eral tendency of objects across a subset of dimensions in a higt
terns that they exhibit can be consistent. Discovery of such clusters§fiensional space.

genes is essential in revealing significant connections in gene regula-

tory networks. In addition, E-Commerce applications such as collabo- 0 T - rawdami
rative filtering and stock analysis can also benefit from this model for %o 2 fawdaias

identifying customer groups that have consistent trends in interests or 8o DN B
activities (purchasing, browsing, etc). We also devise an efficient algo- : i o
rithm that takes advantage of fast sequential pattern mining to detect

such clusters. Its efficiency and effectiveness have been demonstrated
through experiments on several real data sets.

Value

1. INTRODUCTION

Modern technology provides efficient methods for data collection.
However, raw data is rarely of direct benefit for higher level analy-
sis. As a method to aim the analysis of large databases, clustering has
been studied extensively in many areas including statistics, machine
learning and pattern recognition.

Recent efforts in data mining have focused on methods for efficient ) ) .
and effective cluster analysis in large databases. Much active researdiigure 1 shows a set of 3 objects with 10 columns (attributes). No
has been devoted to improve the scalability of clustering methods fYious patternis visible. If we pick the set of colur{bsc, e, g, 1} as
especially to attack the curse of dimensionality. Clustering in high dP Figure 2, we can observe the following tenderttie values of these
mensional spaces is often problematic as theoretical results questicFfdmns obey the same relative ord&his tendency can be observed
the meaning of closest matching in high dimensional spaces. Recgf@ly if we rearrange the columns in ascending order of their values:
work has focused on discovering clusters embedded in some subsgaéel € b- All three objects exhibit consistent 'up’ pattern as showed

of the high-dimensional space. This problem is knowrsalsspace N Figurg 3 However, this type of pattgrns may be revealed neither by

any traditional distance-based clustering model nor bystp€luster
model, because of the restricted definition of similarity employed by
this model. In thej-pCluster model, object 3 might be identified as an
outlier to the cluster containing objects 1 and 2 because it cannot be
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Figure 1: Raw data: 3 objects and 10 columns
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ent affinities. Therefore, the relative order of the ratings play a
more important role than the absolute value of each rating. In the
future, if the first and second viewers rate two movies as (2,6)
and (4,5), respectively, we may have certain confidence that the
third viewer may also favor the second movie over the first one.

IR o 1.2 Challenges

30f N This observation motivated us to propose a more flexible model to
20¢ x - characterize the general tendency and to discover clusters of objects
10f that preserve coherent tendencies. To achieve this goal, we need tc
o . ‘ : | tackle two major challenges.

e
Column Number

Figure 2: A shifting pattern and an outlier by é-pCluster
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Figure 3: The “outlier” shows consistent “up” pattern

Huge number of potential tendencidéwe have N attributes,
there areN! different permutations of (subsets of) attributes,
each of which may exhibit some tendency. Data sets used in
DNA array analysis or collaborative filtering can have hundreds
of attributes. This results in a huge number of candidates of var-
ious lengths, which poses a significant challenge to the pattern
discovery.

Massive Cluster SizeCompared withy-pCluster, which has a
more restrictive similarity function, the clusters under our model
tend to have a much larger size along the directions of both at-
tributes and objects. As a result, scalability with respect to the
size of cluster (rather than the volume of the data) becomes more
important than ever.

Our Contributions

Our objective is to cluster objects that exhibit same tendency along a

subset of dimensions, which includes thpCluster model as a special
case. Our contributions include that:

Discovery of clusters in data sets based on tendencies is of great
importance because of its potential for actionable insights. °

e DNA microarray analysisMicro-array is one of the latest break-
throughs in experimental molecular biology. It provides a pow- e
erful tool by which the expression patterns of thousands of genes
can be monitored simultaneously and is already producing huge
amount of valuable data. Analysis of such data is becoming
one of the major bottlenecks in the utilization of the technol-
ogy. The gene expression data are organized as matrixes—table$®
where rows represent genes, columns represent various samples
such as tissues or experimental conditions, and numbers in each
cell characterize the expression level of the particular gene in the
particular sample. Investigators show that more often than not,

if several genes contribute to a disease, it is possible to identify

a subset of conditions, under which these genes show a cohe

We propose a hew clustering model, namely u-Cluster, to cap-
ture general tendencies exhibited by the objects.

The u-Cluster model is a generalization of existing subspace
clustering models. It has a wide variety of applications, includ-
ing DNA array analysis and collaborative filtering, where ten-
dency along a set of attributes carries significant meaning.

In addition to utilizing the techniques of sequential pattern min-
ing, we also design an efficient and effective tree structure UPC-
Tree to mine u-Cluster. Compared with one of fastest sequen-
tial pattern mining algorithms, prefixSpan, the UPC-Tree based
algorithm delivers a shorter response time in most cases, espe-
cially when the data is pattern-rich.

I nﬁ
tendency. Since a gene’s expression level may vary substir- Paper Layout
tially due to its sensitivity to systematic settings, the direction The remainder of the paper is organized as follows. Section 2 dis-
of movement (up or down) in response to condition change @sisses some related work. Section 3 defines the model proposed in th
often considered more important than its actual value. Discopaper. Section 4 presents the two algorithms in detail. An extensive
ering clusters of genes sharing coherent tendency is essengi@iformance study is reported in Section 5. Section 6 concludes the
in revealing the significant connections in gene regulatory neggaper.
works[8]

E-commerce Recommendation systems and target marketir%- RELATED WORK

are important applications in the E-commerce area. In these gp- .

plications, sets of customers/clients with similar behavior nezl SUbSpace ClUSte“ng

to be identified so that we can predict customers’ interest andClustering in high dimensional space is often problematic as theo-
make proper recommendation for future marketing. The followetical results [7] questioned the meaning of closest matching in high
ing is an example. Three viewers rate four movies ("DareDevillimensional spaces. Recent research work [23, 24, 3, 4, 6, 8, 14] has
"The hours”, "Chicago”, "Lord of rings, the two towers”) asfocused on discovering clusters embedded in the subspaces of a higt
(1,4,7,10), (5,6,7,8) and (3,4,9,10), where 1 is the lowest and @ilnensional data set. This problem is known as subspace clustering.
is the highest. Although the rates given by each viewer differ iBased on the measure of similarity, there are two categories of cluster-
both their values and their scales it is clear that they have coherg model.
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e Distance based clusteringIn this category, one of the well
known subspace clustering algorithms is CLIQUE [6]. CLIQUE
is a density and grid based clustering method. It discretizes the
data space into non-overlapping rectangular cells by partition-
ing each dimension to a fixed number of bins of equal length.
A bin is dense if the fraction of total data points contained in
the bin is greater than a threshold. The algorithm finds dense

Ratings
= N w N [5)) [} ~ =) )
N ]
.

cells in lower dimensional spaces and merge them to form clus- - Ry
ters in higher dimensional spaces. The PROCLUS [3] and the S
ORCLUS [4] algorithms find projected clusters based on repre- — R
sentative cluster centers in a set of cluster dimensions. Another oL " . !

interesting approach, Fascicles [14], finds subsets of data that Movies
share similar values in a subset of dimensions.

L . ) . Figure 5: Four movie ratings for movies A, B, C, D
e Pattern similarity based clustering he first algorithm proposed

in this category is bicluster model [9] by Cheng et al. The algo-
rithm tries to measure the coherence of the genes and the condi-
tions in a sub-matrix of a DNA array. Yang et al [23] proposed a There are several limitations of thiepCluster model. In many
move-based algorithm to find biclusters in a more efficient wagpplications, only allowing shifting or scaling patterns is too restric-
However, as pointed out in [22], the bicluster model has twive. Figure 4 (a) shows four objedts;, Oz, Os andO4. Clustering
drawbacks: (1) A bicluster may contain some true outliers. (2) By shifting patterns©; and O, can form aj-pCluster andDs and
requires the number of clusters as an input parameter. Recently, forms another. However, if we consider the scaling pattern, Fig-
o-pCluster is introduced by Wang et al [22] to cluster objectgre 4 (b) shows thaD, and O3 will be in a cluster withoutO; and
exhibiting shifting patterns in a data set in a very efficient way;. Obviously, by restricting itself to simple shifting or scaling pat-
Let O be a subset of objects in the databaSeq D), and let7  terns,§-pCluster may miss many more valuable clusters. This limi-
be a subset of attributeg (C .A). The pair(O, 7) specifies a tation is inherent to the model dtpCluster, which cannot be solved
sub-matrix. Giverr,y € O, anda, b € 7, pScore ofthe2 x 2 through relaxing the thresholi?. For example, in Figure 5, three
matrix is defined as: dotted lines represent ratings given by three individuals for four differ-
doa  dub ent movie$ A, B, C, D}. They areR;:[5,6,7,8], R2:[3,4, 5, 6] and
pScore ({ do doy D = |(dea —dab) — (dya —dys)| (1)  Rs:[1,4,5,10]. According to the definition 0pScore, whend? = 1,
’ R, and R, form a shifting pattern wittpScore = 0. But R3 is not
(O, T) forms a pCluster if, for ang x 2 submatrixX in (O, T), part of tht_e patterngScore > 1) even_thougH_%g shares the same ten-
pScore is less than some threshald. dengy (with a she_lrper slope)._ qut interestingly, they shar_e consistent
opinions by ranking the movies in the ordép, B, C, A]. This sug-
gests that, even though people may provide different rates to a movie,

300 —— the order or tendency of the rates plays a more important role than the
~ o actual rates. In this example, if we want to grollp, R> and R; as

il T a cluster, we need to increase the threshold to 6. However, this may

o s . e include R4:[10,9,8, 7] (pScore = 6) in the 5-pCluster, even ifR4

shows a tendency completely opposite to the other three.

150 + Lo

100 2.2 Sequential Pattern Mining

Sl Since it was first introduced in [5], sequential pattern mining has
been studied extensively. Conventional sequential pattern mining finds
frequent subsequences in the database based on exact match. There &
two classes of algorithms. On one hand, the breadth-first search meth-
ods (e.g., GSP [20] and SPADE [26]) are based on the Apriori princi-
ple [5] and conduct level-by-level candidate-generation-and-tests. On
the other hand, the depth-first search methods (e.g., PrefixSpan [19]
| and SPAM [1]) grow long patterns from short ones by constructing
projected databases. Some variations of the depth-first search meth
ods mine sequential patterns with vertical format [27]. However,there
is some non-trivial cost of projecting databases. Every subsequence
in the projected database has be scanned once again even when the
share the same prefix.

In this paper, a compact tree structure UPC-Tree for sequential pat-
tern mining will be constructed. The UPC-Tree is a prefix-tree struc-
ture storing crucial information about frequent subsequences. It cor-
05! . : : ' responds to “UP Pattern Clusters” under the u-Cluster model. In ad-
Attributes dition, the structure can become more light-weighted by collapsing
(b) Applying a logarithmic transformation to the original data  adjacent nodes under certain circumstances A depth-first traversal of

) m ) the tree is sufficient to generate frequent subsequences by recursively
Figure 4: Shifting and scaling patterns concatenating legible suffixes with the existing frequent prefixes and
by grouping sequences sharing the same prefix.
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3. MODEL Suppose we have two movie ratingsando, for movies(A, B, C,
In this section, we define the u-Cluster model for mining objects thét: £). The ratings are (1, 4, 4.5, 8, 10) and (2, 5, 7, 4.5, 9), respec-

exhibit tendency on a set of attributes. tively. According to Definition 3.3, the corresponding sequence of
. groups foroy is A(BC)DE, and foroz is A(DB)CE. SinceABCE
3.1 Notations is a common subsequence of them, we say éhaind o, form a u-
D A set of objects Cluster on the attributes sets ABC'E.
A Attributes of objects irD
(O, T) A sub-matrix of the data set, whe@ C D, 7 C A LEMMA 3.1. Let (O, 77) be ad-pCluster, where” is the user
z,y,... ObjectsinD defined _threshold foﬁ;pCIuster. (OP,7?) is also |dent|f|ed asau-
a,b,... Attributes in.A Cluster if tr;e value difference between any two attributes of an object
dso  Value of objectz on attributea is at least?;.
1) User-specified similarity group threshold

oP User-specified shifting threshold
ne,nr  User-specified minimum # of column and
minimum # of rows of a model

PROOF Given any two objects andy (z,y C O), we first sort
attribute values ofr for all attributes in7" in non-descending order.
Without loss of generality, assume that we have two attributeasdb

3.2 Definitions and Problem Statement (a,b C T)whered., < dzp. If dya > dys and any two attributes of
Let D be a set of objects, where each object is associated with a @8Piect differ in value by at leasf , we have

of attributes4. We are interested in subsets of objects that exhibit a 5P 5P

coherent tendency on a subset of attributeg of (doa = dap) < =73 (dya —dyp) > 55 (5)

DEFINITION 3.1. Let o be an object in the databaséd,i,d.2, The absolute difference between them, whichSgore defined ind-
...,don) be the attribute values in a non-decreasing order, n be thec|uster, is
number of attributes andl be the user specified threshold. We say that
oissimilar on attributes, i + 1, ...,i +j, (n >4 > 0,n > j > 0), if [(dea — dub) — (dya — dyp)| > 67 (6)

(do(ity) — doi) < G(8,doi) (2 However, because,y C O anda,b C 7, (OP,T?) forms aé-

we call the set of attribute§, s + 1,...,4 + j) a similar group. At- pCluster. We should have
tribute d,; is called apivot point. |(dea — dap) — (dya — dyp)| < 6. @)

The intuition behind this definition is that, if the difference betweeRyow, we get a contradiction between Equations 6 and 7. Therefore,
Ehe \{alues of two attributes is not significant, we regard them tq B&ir hypothesis ofl,, > d, is incorrect. So, we havé,, < dyp
equivalent” in value and group them together. There are multiplgheny,, < d,,, and hencel, y}, {a, b}) forms a u-Cluster.
ways to define the grouping functigi{d, d,;). One way is to define it Similarly, we can prove that any two objects © and any two at-
as the average difference between every pair of attributes whose valyggites c 7 can form a u-Cluster. Thus, for any two objects, they
are closest. form a u-Cluster on all attributeS 7. Since there is only one unique
(do2 — do1) + (doz — do2) + -+ + (don — do(n—1)) order of attributesC 7" such that all objects. O show the “UP” pat-

n—1 tern. We conclude thdtD, T') is also a u-Cluster. [
©)

This definition is independent af,; and is usually used when each In above discussion, we assume that the threshold of group similar-
attribute has a finite domain and its value is evenly distributed withity is set to 0. In this case, if the difference between any two attributes
its domain. The previous example on movie rating belongs to this caséan object is smaller than the thresh(ﬁgél, it will be included in
When the value of each attribute may follow a skew distribution, Equa-pCluster, but it will not be able to present in u-Cluster. To accom-
tion 4 is a better choice. The gene expression data often belongs to thiate this in u-Cluster, we can set= % Then, anys-pCluster
scenario. For the sake of simplicity in explanation, we use Equatiorwdll be included in a u-Cluster.
in the remainder of this paper, unless otherwise specified. In the following sections, since the input data is a matrix, we refer

G(5, dor) = 6 X dos. @) to objects as rows and attributes as columns.

For example, suppose we have the rating of five moies3, C, D,  Problem Statementiven a cluster thresholéi a minimal num-
E) from someone, which is (1, 4, 4.5, 8, 10)4l&= 0.2, 4 and 4.5 are ber of columnsc, and a minimal number of rowsr, the goal is to
considered equivalent to each other. The rating are divided into fdisid all (maximum) submatrice®, 7') such that©, T) is a u-Cluster
groups{{1}, {4,4.5}, {8}, {10}}. according to Definition 3.3, an@| > nr, |T| > ne.

DEFINITION 3.2. Let o be an object in the database, arig,1)

(go2)---(gor) be a sequence of similar groups®by Equation2and 4, ALGORITHM
in non-descending order of their valuesshows an '"UP’ pattern on an . . .
ordered list of attributes , as, ..., a; if a1, as, ..., a; is @ subsequence In this section, we present our algorithm to generate u-Clusters,
0f (go1 ) (go2)---(gor) o T R which consists of three steps: (1) preprocess the data into sequence

) ) ] of similarity groups; (2) find sequential patterns; and (3) generate a
Inthe above exampl¢/, 4, 4.5, 8, 10) is the rating for moviesA, B, y-Cluster for each sequential pattern. Since the second step is the mos
C, D, E). After we apply the group similarity, we are able to transtime consuming portion of the algorithm, we propose and evaluate two
form the original rating to the sequeneg BC)DE. ABDE, AE,  gjternative methods. The first method is to utilize the prefixSpan algo-
and(BC)E show 'UP’ patterns. rithm and introduce several optimization strategies; whereas the sec-

DEFINITION 3.3. let© be a subset of objects in the databagec  ©nd (and a more efficient) method is to use a novel compact structure
D. LetT be a subset of attributed. (O, T) forms a u-Cluster if there UPC-Tree to organize the sequences and to guide the pattern gener
exists a permutation of attributes i1, on which every object if?  ation. Compared with prefixSpan, UPC-Tree is more compact and
shows the “UP” pattern. sequences can be projected simultaneously instead of always scanne

G(8) =6 x



sequentially as in prefixSpan. In addition, single path subtrees in UPCStep 3 Find sequential patterns for each subsdthe sequential
Tree will not be examined further to detect embedded subsequengegterns can be mined by constructing projected databases and minin
However,the prefixSpan algorithm is not able to look forward and takeach recursively.

advantage of this special case.

. prefi¥ projected frequent
4.1 Preprocessing a— | (¢),b, (cd)b
The first step in our algorithm is preprocessing. First, for each row, b— (ac), (d)a, (a), ca
we sort all the entry values in the non-decreasing order. Secondly, we c— [ (bd)a, dab,dba,a,(d)b | cda: 4
organize each sorted row into a sequence of similarity groups. The d—_| b(ac),a,ab,ba, bea, b dba : 4

resulted sequences for all rows will be taken as the input of the second

step — sequential pattern generation. Let's look at the raw data in Table 3: Projected database and sequential pattermns

Table 1.
a b C d The mining process starting from projecting each sequence into sub-
1 2392 | 284 2108 | 228 sets with prefixa—, b—, c— andd—. The projected databases are listed
2 201 281 120 208 in the second column of Table 3. The above procedure is applied re-
3 401 292 109 238 cursively until there is no more frequent pattern.
4 280 318 37 215 To speed up this procedure, two strategies, namely bi-level projec-
5 2857 | 285 2576 | 226 tion and pseudo projection, are used to minimize the number of pro-
6 48 290 224 228 jected databases and to record only the sequence ID and position num
ber instead of physically keeping all the projected database.
Due to the unique characteristics of the sequences in our problem,
Table 1: Raw Data Set we propose two additional optimization strategies.

If we set the threshold for group similarity to be 0.1, the sequence#.2.1  Position Matrix and pseudo Projection
are shown in Table 2. Attributes in each “()” are in the same similarity There is an unique characteristic of our input sequereeary length-
group. Since order does not matter for these attributes, we use thgattern appears once and exactly once in each sequdased on
alphabetical order. For example, for the objécthe sorted order of this observation, we can decide whether one element precedes anothe
attributes is[228 : d,284 : b,4108 : ¢,4392 : a]. a andc can be element by simply checking their positions inpasition matrixin-
grouped together sinek392 — 4108 < 4108 x 0.1 (Equation 4). stead of scanning the sequence. Table 4 shows the position matrix of
sequences in Table 2.

sequence

1 db(ac) a b c d
2 c(bd)a 1 3 (2 [4 |1
3 cdba 2 4 2 1 |3
4 cdab 3 4 13 |1 [2
5 dbca 4 314 |1 [2
6 a(cd)b 5 4 2 [3 [1

6 1 [4 [2 [3

Table 2: Sequences after Preprocessing
Table 4: Position Matrix
In this way, we turn a clustering problem into sequential pattern
mining problem. Our task in the next step is to find all the frequent Therefore, if we want to further projeet-'s projected database on

subsequences embedded in these sequences. cd—, we need to check whethdfs position is afterc’s in every se-
L . guence inc—'s projected database. For example, in sequences2,
4.2 Optimization of PrefixSpan position is 3, which is aftee’s position 2. So, sequence 2 will be in

PrefixSpan [19] and SPAM [1] are among the fastest sequentfi—'S Projected database. _
pattern mining algorithms proposed recently. SPAM uses a verticalBy maintaining the position matrix, we only need to record the se-
bitmap representation of the database. Because of the size limitags{gnce IDs inthe projected databases. The performance of is improvec
of the sequence that a bitmap(64 bits) can store, we cannot use #&e the projection of a sequence can now be done in constant time.
approach for our purpose. . .

The general idea of prefixSpan is to project the sequence datab‘a}l'sze'2 '_D_r“”'”g With Parameter
based on the frequent prefixes because any frequent subsequence ¢ additional difference between the u-Cluster model and the se-
always be found by growing a frequent prefix. The following is aﬁuentlal pattern mining problem is that we have a parametawhich

example. is the minimum number of columns of a u-Cluster. No subsequence
with length less thamc will be useful to generate u-Cluster. There-

ExAMPLE 4.1. For the sequences in Table 2, witlk = 3, nr = fore, we can also use the position of the element and the length of the

3, the prefixSpan algorithms works in the following steps. original sequence to eliminate short subsequences as early as poss

ble. Let the length of a prefixre bel,,., the length of the original
Step 1 Find length-1 sequential patternsSince all the attributes sequence bé and the current projection elemeris position bep,.
appear in all the rows. The result of this step is that eadob, ¢, d}  (pre) + z is not a candidate subsequencgif + 1+ (I — p.) < ne.
has a support count 6. When the prefix is not long ands position is close to the end of the
Step 2 Partition the search space by prefiXhe set of sequential sequence, no projected subsequence will be long enough tonmeet
patterns is partitioned into four subsets, one for each distinct lengthi=ar example, for sequence 4 in Table 2, when we first project it on
pattern{a},{b},{c}.{d}. elementa, we found out that the length of the projected subsequence



is going to be below:.c = 3. Hence, this projection of sequence 3 will Step5 Repeat Step2-Step5 for the root’s next siblings recursively.
not be performed After using this pruning, the projected databaseFRar example, after finishing-1C—'s subtree development, the next
Table 3 shrinks. The pruned database is showed in Table 5. subtree to develop is-1C—’s sibling —1D—. —1DB’s suffix AC

is inserted to subtree 1D A. However, both subtrees are deleted be-
projected cause they do not have enough support count.

a—| (cd)b

b—| (ac), (d)a,ca

c—| (bd)a, dab, dba, (d)b
d—| b(ac), ab, ba, bea,

Table 5: Pruned database

However, in the above example, we notice that to get clugter
4,5}, {d,b,a}). All three rows are first projected afi And then,
all of them will project through another node althoughd andb are
adjacent. The main cost of depth-first approach is on computing pro-
jection. If we can save the number of projecting operations by group-
ing the rows sharing same projection nodes together, we can save a
lot of projection time. Let’s consider an extreme example. Suppose
we have 10 entirely identical sequences with 10 elements each, if we
apply the prefixSpan algorithm, we have the following computation.

For length-1 patterns, we need to project each sequence onto each el-/

ement, which isl0 x 10 projections. For length-2 patterns, we need
10x9+10x8+10XT7+10X 6+ ...... + 10 projections. The pro-
jection time grows exponentially as we proceed, even though there is
just one simple big cluster! To attack this inefficiency, in the following
subsection, we introduce a novel UPC-Tree structure which is much
more compact and effective for mining u-Cluster.

4.3 UPC-Tree

Before we define UPC-Tree formally, we first give the following
example.

ExamMPLE 4.2. For the sequences in Table 2, witle = 3, nr =
3, the UPC-Tree algorithm works in the following steps.

Step 1 Create root -1 and insert all the sequences into the tree.
This is showed in Figure 6 (1). Notice that same prefix falls on same
branch of the tree. The sequence ID is stored in the leaves. The current
root is—1 and the current depth is 0.

Step 2 For each child of the root, insert suffixes in its subtree to
the root’s child that has a matching labeh Figure 6 (2),C is a child
of the root—1. In this subtree, the suffix subtree starting/at(for
sequence, 4) is inserted into the root-1's child D. Each insertion
is illustrated by a dotted line connecting the two involved nodes, with
the arrow pointing to thelestination nodén Figure 6. The sequence
IDs associated with the suffixes are combined with existing IDs in the
destination node. In the case where a suffix is too short to saiisfy
rent depth+ length of the suffix> nc, the suffix will not be inserted.

For example BA in sequenc8 is also a suffix, it is not to be inserted
because thdepth 0 + length oBA < nc.

Step3 Prune current root’s childrenlf the number of rows fall in
a subtree is smaller thamr, the subtree will be deleted because no
further development can generate a cluster with more tharows.

For example, subtree leading froml B in Figure 6 (2) is deleted in
Figure 6 (3) since there are only two sequences falling in this subtree.

Step4 Repeat Step2-Step5 for the root’s first child recursively until
there is no child node left-or example(' is the first child of root-1.
Therefore, the same procedure in step2 is applied fost. The suf-
fixes of C’s subtreeD, such asBA and AB are inserted int@"s sub-
tree B and A respectively. Since there was less than three sequences
fall on C's subtreesA and B, the branches-1CA— and—1C' B— are
deleted. Following the same procedure, we devéléponly subtree
—1C'D—, which is shown in Figure 6(4).

2. InsertSuffix+PruneTree at depth 0

A:23 «-._..y‘_B:A
P

B4+ A3

4. InsertSuffix+PruneTree at depth 2
-1
Cc

|

D
A:2|,3

I|D:4

5. Final Cluster.

Figure 6: UPC-Tree for Table 2

DEFINITION 4.1. UPC-tree (Up Pattern Clustering tree). An UPC-



Tree is a tree structure defined below. ) Rationale: Given any sequencg = x1x2x3x4 . . . Tn, We wWant to
1. It consists of one root labeled as -1, a set of subtrees as the chihow that all of the subsequences of S will be found in a path start-
dren of the root; ing from root. Through the initiation of UPC-Tree, we know that

2. Each node in the subtrees consists of four entries: entry valuegaj| exist in the UPC-Tree. Then given any subsequefice —
link to its first children node, a link to its nearest sibling node, and a4 (i > 1,5 < n), we can obtainSs by the following
link list of all the rows that share the same path leading from root tot’ ].“F'S’t 0 ’d .y T L then insert suffixe.z.
this node but do not have longer subsequences passing this node> §PS: ISt at noag;, itz = 1, then NSert Sullxw; i1 . . . Tn.

another word, the sequence IDs are only recorded at the nodes whiW in the subtree ofr;, we can find noder; because it will be

marked the end of a subsequence. along the pathe;x;+1 ...z, that is inserted in the first step. Simi-
larly, we insert the suffix:; ...z, starting fromz;. Now we get the
Algorithm UPC-TredS, nr, nc) pathz;x;z;+1...x,. By repeating the same procedure until we in-

Input: S: The sequence set from preprocessing of original Matrbaninimal  sert the suffix starting witk:;, we get the path;z; . .. z5. Since we

OutpT:i:mAb”e{hcg ;%‘gggéhgqr:g'emvaltﬂlﬁggﬁéﬁéﬁgjﬁi and length> nc insert all the suffixes in the UPC-Tree, the UPC-Tree contains all the

(* Main program to develop the hellg subsequences presented in the original UPC-Tree.
1. Create the root of an UPC-TreE, and label it as "-1". Rows in a u-Cluster share the same set of columns, which share
2. for each sequencein S the same path in the UPC-Tree. We can conclude that the UPC-Tree
3. doinsertSequence(T) . . .
4. growTree() recursively: contains all the clusters. This leads to the following lemma.
5. return.

o LEMMA 4.3. The developed UPC-Tree on a set of sequences con-
Algorithm insertSequen¢sT) . tains all potential u-Clusters. The columns in these clusters are on the
Input: s[i..n]: the sequence to be insertéd, the root of UPC-Tree paths leading from the root to any tree node with depth no lessithan

Output: T': tree with the path corresponding 0o

(+ Insert a sequence into the root of a tige and row support count in its subtree no less than.

2 " then insert thel D of s into Ns IDlist. 4.3.2 Pruning UPC-Tree

2: else rﬁtjﬂ”ﬁas a child such that\'value — s[i].value Without any pruning, the whole UPC-Tree fits well into memory

5. then insertSequence(s[i + 1..n]); N); ' when we have a small matrix (15 columns by 3000 rows). However, for
6. else create a new nodd/. large matrix, some pruning strategies have to be employed to minimize
;- if t{}:g'{ﬁgﬁgg?gfbm < next sibling_ the size of the UPC-Tree. There are two pruning techniques used in our
9 else T's first child gN_ g implementation. One strategy is to prune the suffixes with the to-be
10. insertSequence(s[i + 1..n]); N) subsequence shorter than; the other is to prune the subtrees where
11. return the row support count is belowr.

Algorithm growTreqT ,nc,nr,depth) LEMMA 4.4. For a nodeN in UPC-Tree with depthi, and for a
Input: T the root of the initiated treeyc andnr suffix S with length! in its sub-tree, ifd + I < nc (the minimum

Output: u-Cluster existed iff”

(+ Grow patterns based on origirEl+) columns required for a cluster), this suffixwill not be useful in form-

1. if T = nil ing any u-Cluster cluster.

2. return;

3. Tepitg <T's first child; Rationale: The length of the patli, we can get by combining the

4. for any sub-treesubT" of T path from root taN andS is d + . Based on Lemma 4.3, will not

g' pruﬂgﬁggﬁﬁg%@e‘“bf 7 form any cluster. Therefore, suffix S needs not to be inserted. In our
7 growTreel i, ne, nr, depth + 1); implementation, we check depth of the node at which the end of the
8. growTree{ s next sibling,nc, nr, depth); suffix is inserted. If the depth is smaller than, the row IDs recorded

9. retum. in this node will be deleted.

4.4 Improvement with Collapsing Node

The major cost of UPC-Tree development is to concatenate suf-
trees. To minimize the cost incurred by dynamically allocating

Analysis of UPC-Tree constructiotnly one scan of the en-
tire data matrix is needed during the construction of the UPC-Trq&
For each row, we sort it into a sequence of similarity groups. Then emory, we introduced a more compact u-Cluster structure, in which
insert the sequences into the UPC-Tree. As a result, rows that have %Ie-path tree can collapse into one node

same prefixes will share the same paths from root to the end of pre_Figure 7 shows the procedure to construct collapsed u-Cluster struc-

fixes. To save memory, the row numper associated with each paﬂﬁfﬁe for the same problem as in Example 4.2. All collapsed nodes are
only recorded at the node corresponding to the end of the sequenceaig

g . oted by rectangles. There are two scenarios when collapsed nod
find the u-Cluster using the UPC-Tree, subsequences are develope y g b

ds to be split.
adding suffixes of each sub-tree as the tree’s children, via a pre-order P
traversal of the UPC-Tree. e The collapsed node will split if a new branch has to be inserted
] ) o ] in the middle of path.For example, in Figure 7, sequence 1
LEMMA 4.1. Given a matrix M, a similarity grouping threshold, (DBAC) is collapsed into one node when the tree is initiated.

the initiated UPC-Tree contains all the information of matrix M. In the development of depth 2, since the subsequénde3 in

. . sequence 4 will be inserted into pdthB AC, and the only com-
Rationale: Based on the UPC-Tree construction process, each row mon prefix they have i, a new branchdB has to be added

in the matrix is mapped onto one path in the UPC-Tree. The row IDS 4 p’s sub-tree. The original node which contaibs3 AC' will
and the order of the columns are completely stored in the initiated split into two nodes which contai® and BAC' respectively.
UPC-Tree. BAC will become a sub-tree db.

4.3.1 Mining u-Cluster Using UPC-Tree e The collapsed node will split if the inserted branch is a con-
tiguous portion of the single path in the collapsed nodar

LEMMA 4.2. The developed UPC-Tree on a set of sequences con- example, in Figure 7, when the subsequeideA in sequence
tains all subsequences hidden in the initial UPC-Tree. 3isinserted intab BAC of sequence 1DBA is a portion of



are(AB)(CD) and(BCD). Since we introduce some redundancy,
when one attribute appears more than once in a final cluster, we only
keep one by removing all duplicates.

5. EXPERIMENTS

We experimented our u-Cluster algorithm with two real data sets.
The algorithm was implemented in C and executed on a Linux machine
with a 700 MHz CPU and 2G main memory. We also implemented the
optimized prefixSpan algorithm for comparison. The following tests
are organized into three categories. First, we study the sensitivity of u-
Cluster to various parameters. Secondly, we evaluate the performance
of UPC-Tree and compare it with the prefixSpan algorithm. At last,
we show two promising patterns found in the drug activity data set.

5.1 Data Sets

We experiment our u-Cluster algorithm with two real data sets.

Gene Expression Data

Gene expression data are generated by DNA chips and other microar-
ray techniques. The yeast microarray contains expression levels of
2,884 genes under 17 conditions [21]. The data set is presented as «
matrix. Each row corresponds to a gene and each column represent:
a condition under which the gene is developed. Each entry represents
the relative abundance of the mRNA of a gene under a specific con-
dition. The entry value, derived by scaling and logarithm from the

3. InsertSuffix+PruneTree at depth 2 : original relative abundance, is in the range of 0 and 600. Biologists
are interested in finding a subset of genes showing strikingly similar
Figure 7: Collapsing UPC-Tree for Table 2 up-regulation or down-regulation under a subset of conditions [9].
Drug Activity Data

DBAC, DBAC is splitinto two partsD BA andC. The num- Drug activity data is also a matrix with 10000 rows and 30 columns.
ber 3 is stored at the end @B A to record sequence ID cor- Each row corresponds to a chemical compound and each column rep-
rectly. resents a descriptor/feature of the compound. The value of each entry
varies from 0 to 1000.
Compared with the original UPC-Tree, the collapsed UPC-Tree oc- . .

cupies much less space and takes much less time. For exampld?@ Model Sensitivity Analysis

depth 0, the original tree needs 15 nodes, while the collapsed tree onlyh this section, We evaluate how the similarity threshéldnd 67

needs 5. At depth 1, the original tree needs 21 nodes, but collapsed e influence the number of clusters and their sizes. We use the yeas

needs only 12. In addition, with collapsed UPC-Tree, inserting suffifata set in this set of experiments. The minimum number of rows is set

of single_-path tree _is avoided. _ to be 30 and the minimum number of columns is 10. We v&rfrom
The single-path is compacted into one collapsed node already. Theto 5. Figure 8 (a) shows the number the clusters generated and (b)
u-Cluster can be identified immediately. presents the maximum cluster size.

.. . u-Clusters are generated whéh is infinity. As § increases, the
4.5 Addition Feature: 5'pC|USter total number of clusters begins to increase, which implies that more
According to Lemma 3.1¢-pCluster can be a special case of ucolumns are grouped together and that more rows are sharing the sam
Cluster if§ > 2. Therefore, our algorithm for mining u-Cluster cansubsequences. However, when the similarity threshold is larger than
also be used to find-pCluster. Some experiments along this direction00%, the total number of clusters decreases. This is because the over
is presented in Section 5. lapped clusters generated by snaadlegin to merge into bigger clusters
" . . . whendelta increases. Since long subsequence of columns has higher
4.6 AddItI_Ona| Feature: Extension of Grouplng chance to fall on a single path, and consequently, smaller enclosed sub
Technlque sequences will not be counted, the total number of clusters decreases
Based on Definition 3.1, We can generate different similarity groufgggure 8(b) shows that the maximum size of the u-Cluster increases
if we starts from different pivot attributes. For example, If we havdramatically in this case.
an object[0.5, 1, 1.5, 2] with the similarity threshold ag§ = 100%. As 6P decreases, large clusters tends to split into smaller ones and
We can group them either 21 B)(C'D) or asA(BCD). Now have the total number of clusters increases. The size of each cluster be-
objects 2 and 3 with attribute valugs, 2,4,5] and [9,4,5,6], re- comes smaller. When more clusters with size smaller thaxinr are
spectively. Their corresponding group sequenceg.ai@)(C D) and eliminated, the total number of clusters restrictediBydrops below
(BCD)A. If we setnc = 3 andnr = 2, the cluster we can get is the number of u-Clusters.
(AB)(CD) if we group object 1 a$AB)(CD). However, if we use -
A(BCD), the cluster will be(BC'D). And both are valid clusters. 5.3 Scalab”'ty
To find them, we propose an alternative grouping approach. We pulWe evaluate the performance of the u-Cluster algorithm as we in-
all (possibly overlapping) similar groups in one sequence. For exanrease the number of objects and the number of columns in the data
ple, in the above example, object 1 becomsiB)(BCD)(CD). set. The response time of the UPC-Tree is mostly determined by the
Then, we can find all sequential patterns of these three objects, whiire of the tree. Figure 9 shows the response time of the drug activity
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data set. As we know, the columns and the rows of the matrix carry
the same significance in the u-Cluster model, which is symmetrically
defined in Formula 2. Although the algorithm is not entirely symmet-
ric in the sense that it chooses to project column-pairs first, the curves
in Figure 9 demonstrate similar trends.

For experiments in Figure 9(a), the number of columns is 30. The
minimal number of columns of the embedded u-Cluster is 9, and the
minimal number of rows is set 10.01N, whereN is the number of
rows of the drug activity data. The mining algorithm is invoked with
6 = 0.2,nc =9, andnr = 0.0LN. Data sets used in Figure 9(b)
are taken from the drug activity data with the number of rows fixed as
1000. The mining algorithm is invoked with = 0.2, nc = 0.66C,
andnr = 30.

Figure 10 presents the performance comparison between the pre-
fixSpan algorithm and the UPC-Tree algorithm. In this experiment, we
use the drug activity data to see the performance with different number
of rows. The parameter setting for this set of experiment is the follow-
ing: nc = 9, nr = 0.01N, § = 0.2. The number of columns is set
to be 20. We can observe that the UPC-Tree algorithm can constantly
outperform the prefixSpan algorithm and the advantage becomes more
substantial with larger data set.

Next, we study the impact of the paramete¥si{c, andnr) towards
the response time. The results are shown in Figure 11. The size of
matrix is 27 x 3776. Whennc andnr are fixed, the response time
prolongs when the similarity threshold increases. This is because the
size of the clusters increase as we relax the similarity threshold. There-
fore, the UPC-Tree has to spend more time to construct a deeper tree
When similarity threshold is fixed, it takes longer time to construct the
UPC-Tree asic decreases. This is showed in Figure 11. According to
the pruning techniques we discuss in Lemma 4.4, a fewer number of
subsequences can be eliminated when using smalles a result, a
larger tree is constructed, which consumes more time. A similar effect
can be observed with respectito from Figure 11(b).

5.4 Results from Real Data

We apply the u-Cluster algorithm on the drug activity data set. With
parametersic = 10, nr = 30, § = 20, some interesting clusters
are reported. Two of them are showed in Figure 12. They present
a series of consistent patterns under a subset of features. From bott
figures, we can observe that the patterns cannot be captured by neithe
the traditional distance measure nor the strict shifting/ scaling factors.

6. CONCLUSIONS

In this paper, we proposed a new model called u-Cluster to capture
the consistent tendency clusters exhibited by a subset of dimensions ir
high dimensional space. In many applications including collaborative
filtering and DNA array analysis, although the distance (e.g., measured
by Euclidean distance or cosine distance) among the objects may not
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be close, they can still manifest consistent 'up’ pattern over a permu-
tation of a subset of dimensions. To address this issue, we introduce &
new model called u-Cluster to model tendency among a set of objects.
We proposed a compact tree structure, namely UPC-Tree, and devise(
a depth-first algorithm that can efficiently and effectively discover all
u-Clusters with a user-specified minimum size.
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