
- 1 -

Technical Report TR03-007

Department of Computer Science
Univ. of North Carolina at Chapel Hill

SPQR: Use of a First-Order Theorem Prover
for Flexibly Finding Design Patterns in

Source Code

Jason McC. Smith and David Stotts

Department of Computer Science
 University of North Carolina
Chapel Hill, NC 27599-3175

smithja@cs.unc.edu
stotts@cs.unc.edu

March 21, 2003

SPQR: Use of a First-Order Theorem Prover for Flexibly
Finding Design Patterns in Source Code

Jason McC. Smith
University of North Carolina at Chapel Hill

Sitterson Hall CB #3175
Chapel Hill, NC 27599-3175

smithja@cs.unc.edu

David Stotts
University of North Carolina at Chapel Hill

Sitterson Hall CB #3175
Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

ABSTRACT
Previous approaches to discovering design patterns in source
code have suffered from a need to enumerate static descrip-
tions of structural and behavioural relationships, resulting
in a finite library of variations on pattern implementation.
Our approach, System for Pattern Query and Recognition,
or SPQR, differs in that we do not seek statically to en-
code each pattern and each variant that we wish to find.
Rather, we encode in a formal denotational semantics a
small number of fundamental OO concepts (elemental de-
sign patterns), encode the rules by which these concepts are
combined to form patterns (reliance operators), and encode
the structural/behavioral relationships among components
of objects and classes (rho-calculus). We then use a logi-
cal inference system to reveal large numbers of patterns and
their variations from this small number of definitions. Our
system finds patterns that were not explicitly defined, but
instead are inferred dynamically during code analysis by a
theorem prover, providing practical tool support for software
construction, comprehension, maintenance, and refactoring.
We describe our approach in this paper with a concrete ex-
ample to drive the discussion, accompanied by formal treat-
ment of the foundational topics.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—design languages, object-oriented languages; D.3.3
[Programming Languages]: Language Constructs and
Features—patterns; F.4.1 [Mathematical Logic]: [lambda
calculus and related systems]; D.2.11 [Software Engineer-
ing]: Software Architecture—patterns; D.2.7 [Software En-
gineering]: Distribution, Maintenance, Enhancement—re-
structuring, reverse engineering, and reengineering ; D.3.1
[Programming Languages]: Formal Definition and The-
ory

General Terms
design, languages, measurement, theory

Keywords
design patterns, elemental design patterns, sigma calculus,
rho calculus, pattern decomposition, pattern identification,
refactoring, education

1. INTRODUCTION

Practical tool support consistently lags behind the develop-
ment of important abstractions and theoretical concepts in
programming languages. One current successful abstraction
in widespread use is the design pattern, an approach de-
scribing portions of systems that designers can learn from,
modify, apply, and understand as a single conceptual item
[17]. Design patterns are generally, if informally, defined as
common solutions to common problems which are of sig-
nificant complexity to require an explicit discussion of the
scope of the problem and the proposed solution. Much of the
popular literature on design patterns is dedicated to these
larger, more complex patterns, providing practitioners with
increasingly powerful constructs with which to work.

Design patterns, however, are at such a level of abstraction
that they have so far proven resistant to tool support. The
myriad variations with which any one design pattern may
be implemented makes them difficult to describe succinctly
or find in source code. We have discovered a class of pat-
terns that are small enough to find easily but composable
in ways that can be expressed in the rules of a logical in-
ference system. We term them Elemental Design Patterns
(EDPs), and they are the base concepts on which more com-
plex design patterns are built. Because they comprise the
constructs which are used repeatedly within more common
patterns to solve the same problems, such as abstraction of
interface and delegation of implementation, they exhibit in-
teresting properties for partially bridging the gap between
source code in everyday use and the higher-level abstrac-
tions of the larger patterns. Higher-level patterns are thus
described in the language of elemental patterns, which fills
an apparent missing link in the abstraction chain.

The formally expressible and informally amorphous halves
of design patterns also present an interesting set of problems
for the theorist due to their dual nature [2]. The concepts
contained in patterns are those that the professional com-
munity has deemed important and noteworthy, and they
are ultimately expressed as source code that is reducible to
a mathematically formal notation. The core concepts them-
selves have evaded such formalization to date. We show here
that such a formalization is possible, and in addition that
it can meet certain essential criteria. We also show how
our formalization leads to useful and direct tool support for
the developer with a need for extracting patterns from an
existing system.

We assert that such a formal solution should be implemen-
tation language independent, much as design patterns are,
if it is truly to capture universal concepts of programming
methodology. We further assert that a formal denotation for
pattern concepts should be a larger part of the formal se-
mantics literature. Patterns are built on the theory and con-
cepts of object-oriented programming, as surely as object-
oriented approaches are built on procedural theory.

We begin with describing our driving problem and provide
a concrete example system. We then discuss related work in
the fields of pattern decomposition and automated pattern
extraction, leading into an introduction of our EDPs. We
show how these EDPs can be formally expressed in a version
of the sigma (ς) calculus [1], that we have extended with re-
liance operators to form the ρ-calculus. We illustrate our
method with a chain of pattern composition from our EDPs
to the Decorator pattern. We then show how to derive an
instance of Decorator from our example scenario using au-
tomatable reduction rules that are processed by a theorem
prover. We conclude with a discussion of future research di-
rections, and provide detailed discussions of the formalisms
involved.

2. PROBLEM SCENARIO
At Widgets, Inc., there are many teams working on the
next Killer Widget application. Each is responsible for a
well-defined and segmented section of the app, but they are
encouraged to share code and classes where possible. As
is often normal in such situations, teams have write access
only for their own code - they are responsible for it, and all
changes must be cleared through regular code reviews. All
other teams may inspect the code, but may not change it.
Suggestions can be made to the team in charge, to be consid-
ered at the next review, but no one likes their time wasted,
and internal changes take priority during such reviews.

Three main phases of development by three different teams
have taken place on a core library used by the application,
resulting in a conceptually unclear system, shown in Figure
1. The first phase involved the File system having a Mea-
suredFile metric gathering suite wrapped around it. Sec-
ondly, multiple file handling was added by the FilePile ab-
straction, and lastly, a bug fix was added in the FilePile-
Fixed class to work around an implementation error that
become ubiquitously assumed. A review of the design is
called for the next development cycle.

What insight into the behaviour of the codebase would help
both the new engineers and the review board? Hidden pat-
terns exist within the architecture which encapsulate the
intent of the larger system, would facilitate the comprehen-
sion of the novice developers, and help point the architects
towards a useful refactoring of the system. We will use this
as our driving example.

3. RELATED WORK
The decomposition and analysis of patterns is an established
idea, and the concept of creating a hierarchy of related pat-
terns has been in the literature almost as long as patterns
themselves [11, 24, 35, 43]. The few researchers who have
attempted to provide a formal basis for patterns have most
commonly done so from a desire to perform refactoring of

File

op1()

FilePile

op1()

MeasuredFile

op2()FileFAT

op1()

FilePileFixed

op1()

FileHFS

op1()

....... file

files

file.op1()

Measurer

op2()

.......

for each file in files
 file.op2()

FilePile::op1()
....

Figure 1: Killer Widget

existing code, while others have attempted the more prag-
matic approach of identifying core components of existing
patterns in use. Additionally, there is ongoing philosophical
interest in the very nature of coding abstractions, such as
patterns and their relationships.

3.1 Refactoring approaches
Attempts to formalize refactoring [16] exist, and have met
with fairly good success to date[12, 28, 31]. The primary mo-
tivation is to facilitate tool support for, and validation of,
the transformation of code from one form to another while
preserving behaviour. This is an important step in the main-
tenance and alteration of existing systems, and patterns are
seen as the logical next abstraction upon which they should
operate. Such techniques include fragments, as developed
by Florijn, Meijers, and van Winsen [15], Eden’s work on

LePuS [13], and Ó Cinnéide’s work in transformation and
refactoring of patterns in code [29] through the application
of minipatterns. These approaches have one missing piece:
appropriate flexibility of implementation.

3.2 Structural analyses
An analysis of the ‘Gang of Four’ (GoF) patterns [17] reveals
many shared structural and behavioural elements, such as
the similarities between Composite and Visitor [17]. Rela-
tionships between patterns, such as inclusion or similarity,
have been investigated by various practitioners, and a num-
ber of meaningful examples of underlying structures have
been described [5, 11, 35, 41, 42, 43].

Objectifier: The Objectifier pattern [43] is one such exam-
ple of a core piece of structure and behaviour shared between
many more complex patterns. Its Intent is to:

Objectify similar behaviour in additional classes,
so that clients can vary such behaviour indepen-
dently from other behaviour, thus supporting var-
iation-oriented design. Instances from those classes
represent behaviour or properties, but not con-
crete objects from the real world (similar to reifi-
cation).

Zimmer uses Objectifier as a ‘basic pattern’ in the construc-
tion of several other GoF patterns, such as Builder, Ob-
server, Bridge, Strategy, State, Command and Iterator. It

Client
ref Objectifier

OperationA()
OperationB()

ConcreteObjectifierB

OperationA()
OperationB()

ConcreteObjectifierA

OperationA()
OperationB()

Figure 2: Objectifier

Initiator

makeRequest()

Handler

handleRequest()

Terminator

handleRequest()

Recurser

handleRequest()
preHandleRequest()
postHandleRequest()

handler

successor

*

this.preHandleRequest();
successor.handleRequest();
this.postHandleRequest();

/* handle the request */

handler.handleRequest()

Figure 3: Object Recursion

is a simple yet elegantly powerful structural concept that is
used repeatedly in other patterns.

Object Recursion: Woolf takes Objectifier one step fur-
ther, adding a behavioural component, and naming it Object
Recursion [42]. The class diagram in Figure 3 is extremely
similar to Objectifier, with an important difference, namely
the behaviour in the leaf subclasses of Handler. Exclusive
of this method behaviour, however, it seems to be an ap-
plication of Objectifier in a more specific use. Note that
Woolf compares Object Recursion to the relevant GoF pat-
terns and deduces that: Iterator, Composite and Decorator
can, in many instances, be seen as containing an instance of
Object Recursion; Chain of Responsibility and Interpreter
do contain Object Recursion as a primary component.

3.3 Conceptual relationships
Taken together, the above instances of analyzed pattern
findings comprise two parts of a larger chain: Object Recur-
sion contains an instance of Objectifier, and both in turn are
used by larger patterns. This indicates that there are mean-
ingful relationships between patterns, yet past work has
shown that there are more primary forces at work. Buschmann’s
variants [8], Coplien and others’ idioms [4, 11, 26], and
Pree’s metapatterns [34] all support this viewpoint. Shull,
Melo and Basili’s BACKDOOR’s [38] dependency on rela-
tionships is exemplary of the normal static treatment that
arises. It will become evident that these relationships be-
tween concepts are a core piece which grant great flexibility
to the practitioner implementing patterns in design, through
constructs we term isotopes, which will be treated in Section
5.4. A related, but type-based approach that works instead
on UML expressed class designs, is Egyed’s UML/Analyzer

Object Element EDPs
CreateObject AbstractInterface
Retrieve

Type Relation EDPs
Inheritance

Method Invocation EDPs
Redirect Delegate
Recursion Conglomeration
ExtendMethod RevertMethod
RedirectInFamily DelegateInFamily
RedirectedRecursion RedirectInLimitedFamily
DelegateInLimitedFamily DelegatedConglomeration

Figure 4: Elemental Design Patterns

system [14] which uses abstraction inferences to help guide
engineers in code discovery.

4. THE EDP CATALOG
In this paper we present our sixteen identified EDPs, in
Figure 4, with a discussion of their generation and traits in
Section 11.1. We do not claim that this list covers all the
possible permutations of interactions, but that these are the
core catalog of EDPs upon which others will be built. These
EDPs can be found in complete detail as design pattern
presentations in [39].

At first glance, these EDPs seem unlikely to be very use-
ful, as they appear to be positively primitive... and they
are. These are the core primitives that underlie the con-
struction of patterns in general. According to Alexander
[2] patterns are descriptions of relationships between enti-
ties, and method invocations and typing are the processes
through which objects interact. We believe that we have
captured the elemental components of object oriented lan-
guages, and the base relationships used in the vast majority
of software engineering. If patterns are the frameworks on
which we create large understandable systems, then these
are the nuts and bolts that comprise the frameworks.

5. FORMALIZATION
Source code is, at its root, a mathematical symbolic lan-
guage with well formed reduction rules. We strive to find
an appropriately formal analogue for the formal side of pat-
terns. A full, rigid formalization of objects, methods, and
fields would only be another form of source code, invariant
under some transformation from the actual implementation.
This defeats the purpose of patterns. We must find another
aspect of patterns to encode as well, in order to preserve
their flexibility.

5.1 Sigma calculus
Desired traits of a formalization language include that it
be mathematically sound, consist of simple reduction rules,
have enough expressive power to encode directly object-
oriented concepts, and have the ability to encode flexibly
relationships between code constructs. The sigma calculus
[1] is our choice for a formal basis, given the above require-
ments. It is a formal denotational semantics that deals with
objects as primary components of abstraction, and has been

shown to have a highly powerful expressiveness for various
language constructs.

Sigma calculus is not without its drawbacks, however. Not
only is it extremely unwieldly, but also it suffers from a com-
plete rigidity of form, and does not offer any room for in-
terpretation of the implementation description. This lack of
adaptiveness means that there would be an explosion of def-
initions for even a simple pattern, each of which conformed
to a single particular implementation. This breaks the dis-
tinction that patterns are implementation independent de-
scriptions, as well as creating an excessively large library of
possible pattern forms to search for in source code.

We will only need describe a small subset of ς-calculus for
the purposes of this paper. Specifically, we will need the
concepts of type definition, object typing, and type sub-
sumption (inheritance). A type T is defined by T ≡ [...],
where the contents of the brackets are method and field def-
initions. An object O is shown to be of type T by O : T . If
type T ′ is a subtype of type T , such as it would be under
inheritnace, then T ′ <: T .

5.2 Reliance operators: the rho calculus
It is fortunate then, that ς-calculus is simple to extend. We
propose a new set of rules and operators within ς-calculus to
support directly relationships and reliances between objects,
methods and fields.

These reliance operators, as we have termed them (the word
‘relationship’ is already overloaded in the current literature,
and only expresses part of what we are attempting to deliver;
likewise the word ‘dependency’ has many complementary
definitions already in use), are direct, quantifiable expres-
sions of whether one element (an object, method, or field),
in any way relies or depends on the existence of another for
its own definition or execution, and to what extent it does
so.

This approach provides more detail than the formal descrip-
tion provided by other notation systems such as UML how-
ever, as the calculus comprised of ς-calculus and the reliance
operators, or rho calculus encodes entire paths of reliances
in a concise notation. All the reliances and relationships in
the UML graphing system are encoded within the element
that is under scrutiny, reducing the need for extended, and
generally recursive, analysis for each element when needed.

See Section 11.4 for a formal treatment of the ρ-calculus and
its definition. Informally, the reliance operator < has three
forms: a method invocation reliance (<µ), a field access
reliance (<φ), and a generalized reliance (<γ). The <µ has
an optional annotation to indicate a similarity association
(+) , or a dissimilarity association (−), as defined below and
discussed in detail in Section 11.1.1.

5.3 Example: RedirectInFamily
Consider the class diagram for the structure of the EDP
RedirectInFamily [40], in Figure 5. Taken literally, it
specifies that a class wishes to invoke a ‘similar’ method
(where similarity is evaluated based on the signature types
of the methods, as hinted at by Beck’s Intention Revealing
Message best practice pattern [4]: equivalent signature are

FamilyHead

operation()

Redirecter

operation()

target

target.operation();

Figure 5: RedirectInFamily class structure

‘similar’, inequivalent signatures are ‘dissimilar’) to the one
currently being executed, and it wishes to do so on an object
of its parent-class’ type. This sort of open-ended structural
recursion is a part of many patterns.

If we take the Participants specification of RedirectInFamily,
we find that:

• FamilyHead defines the interface, contains a method
to be possibly overridden.

• Redirecter uses interface of FamilyHead through inher-
itance, redirects internal behaviour back to an instance
of FamilyHead to gain polymorphic behaviour over an
amorphous object structure.

We can express each of these requirements in ς-calculus:

FamilyHead ≡ [operation : A] (1)

Redirecter <: FamilyHead (2)

Redirecter ≡ [target : FamilyHead,

operation : A = ς(xi){target.operation}]
(3)

r : Redirecter (4)

fh : FamilyHead (5)

r.target = fh (6)

This is a concrete implementation of the RedirectInFamily
structure, but it fails to capture the reliance of the method
Redirecter.operation on the behaviour of the called method
FamilyHead.operation. It also has an overly restrictive re-
quirement concerning r’s ownership of target when com-
pared to many coded uses of this pattern. So, we introduce
our reliance operators to produce a ρ-calculus definition:

r.operation <µ+ r.target.operation (7)

r <φ r.target (8)

We can reduce two areas of indirection...

r.target = fh, r.operation <µ+ r.target.operation

r.operation <µ+ fh.operation
(9)

r <φ r.target, r.target = fh

r <φ fh
(10)

FamilyHead

operation()

Redirecter

operation()

mediary

mediary.operation2();

Mediary

operation2()

object

object.operation();

Figure 6: RedirectInFamily Isotope

...and now we can produce a set of clauses to represent
RedirectInFamily:

Redirecter <: FamilyHead,
r : Redirecter,
fh : FamilyHead,
r.operation <µ fh.operation,
r <φ fh

RedirectInFamily(Redirecter,
FamilyHead, operation)

(11)

5.4 Isotopes
Conventional wisdom holds that formalization of patterns
in a mathematical notation will inevitably destroy the flex-
ibility and elegance of patterns. An interesting side effect
of expressing our EDPs in the ρ-calculus, however, is an in-
creased flexibility in expression of code while conforming to
the core concept of a pattern. We term variations of code
expression that conform to the concepts and roles of an EDP
isotopes.

Consider now Figure 6, which, at first glance, does not look
much like our original specification. We have introduced
a new class to the system, and our static criteria that the
subclass’ method invoke the superclass’ instance has been
replaced by a new calling chain. In fact, this construction
looks quite similar to the transitional state while applying
Martin Fowler’s Move Method refactoring [16].

We claim that this is precisely an example of a variation
of RedirectInFamily when viewed as a series of formal
constructs, as in Equations 12 through 20.

Redirecter <: FamilyHead (12)

r : Redirecter (13)

fh : FamilyHead (14)

r.mediary = m (15)

m.object = fh (16)

r.operation <µ− r.mediary.operation2 (17)

m.operation2 <µ− m.object.operation (18)

r.operation <φ r.mediary (19)

m.operation <φ m.object (20)

If we start reducing this equation set, we find that we can
perform an equality operation on Equations 15 and 17:

r.operation <µ− r.mediary.operation2,
r.mediary = m

r.operation <µ− m.operation2
(21)

We can now reduce this chain under transitivity with Equa-
tion 18:

r.operation <µ− m.operation2,
m.operation2 <µ− m.object.operation

r.operation <µ+ m.object.operation
(22)

r.operation <µ+ m.object.operation, m.object = fh

r.operation <µ+ fh.operation
(23)

Likewise, we can take Equations 15, 16, 19 and 20:

r.operation <φ r.mediary,
m.operation <φ m.object,

r.mediary = m,
m.object = fh

r <φ fh
(24)

If we now take Equations 12, 13, 14, 23, and 24 we find
that we have satisfied the clause requirements set in our
original definition of RedirectInFamily, as per Equation
11. This alternate structure is an example of an isotope
of the RedirectInFamily pattern and required no adap-
tation of our existing rule. Our single rule takes the place
of an enumeration of static pattern definitions. The con-
cepts of object relationships and reliance are the key. It is
worth noting that, while this may superficially seem to be
equivalent to the common definition of variant, as defined
by Buschmann [8], there is a key difference: encapsulation.
Isotopes may differ from strict pattern structure in their
implementation, but they provide fulfillment of the various
roles required by the pattern and the relationships between
those roles are kept intact. From the view of an external call-
ing body, the pattern is precisely the same no matter which
isotope is used. Variants are not interchangeable without
retooling the surrounding code, but isotopes are. This is
an essential requirement of isotopes, and precisely why we
chose the term. This flexibility in internal representation
grants the implementation of the system a great degree of
latitude, while still conforming to the abstractions given by
design patterns.

6. RECONSTRUCT KNOWN PATTERNS
We can now demonstrate an example of using EDPs to ex-
press larger and well known design patterns. We begin with
AbstractInterface, a simple EDP, and build our way up
to Decorator, visiting two other established patterns along
the way.

6.1 AbstractInterface
AbstractInterface ensures that the method in a base class
is truly abstract, forcing subclasses to override and provide
their own implementations. The ρ-calculus definition can be

given by simply using the trait construct of ς-calculus:

A ≡ [new : [li : A → Bi
i ∈ 1...n], operation : A → B]

AbstractInterface(A, operation)
(25)

6.2 Objectifier
Objectifier is simply a class structure applying the Inher-
itance EDP to an instance of AbstractInterface pattern,
where the AbstractInterface applies to all methods in a
class. This is equivalent to what Woolf calls an Abstract
Class pattern. Referring back to Figure 2 from our earlier
discussion in Section 3.2, we can see that the core concept
is to create a family of subclasses with a common abstract
ancestor. We can express this in ρ-calculus as:

Objectifier : [li : Bi
i∈1...n],

AbstractInterface(Objectifier, li
i∈1...n),

ConcreteObjectifierj <: Objectiferj∈1...m,
Client : [obj : Objectifier]

Objectifier(Objectifier
ConcreteObjectifierj

j∈1...m, Client)

(26)

6.3 Object Recursion
We briefly described Object Recursion in section 3.2, and
gave its class structure in Figure 3. We now show that this
is a melding of the Objectifier and RedirectInFamily
patterns, as illustrated in Figure 7. The annotations indi-
cate which roles of which patterns the various components
of ObjectRecursion play. A formal EDP representation is
given in Equation 27.

Objectifier(Handler, Recurseri
i∈1...m, Initiator),

Objectifier(Handler, Terminatorj
j∈1...n,

Initiator),
init <µ obj.handleRequest,
init : Initiator,
obj : Handler,
RedirectInFamily(Recurser, Handler,

handleRequest),
!RedirectInFamily(Terminator, Handler,

handleRequest)

ObjectRecursion(Handler, Recurseri
i∈1...m,

T erminatorj
j∈1...n, Initiator)

(27)

6.4 ExtendMethod
The ExtendMethod EDP is used to extend, not replace,
the functionality of an existing method in a superclass. Fig-
ure 8 shows the structure of the pattern, illustrating the use
of super, formalized in Equation 28.

OriginalBehaviour : [li : Bi
i∈1...m, operation : Bm+1],

ExtendedBehaviour <: OriginalBehaviour,
eb : ExtendedBehaviour,
eb.operation <µ+ super.operation

ExtendMethod(OriginalBehaviour,
ExtendedBehaviour, operation)

(28)

6.5 Decorator

Initiator

makeRequest()

Handler

handleRequest()

Terminator

handleRequest()

Recurser

handleRequest()
preHandleRequest()
postHandleRequest()

handler

successor

*

this.preHandleRequest();
successor.handleRequest();
this.postHandleRequest();

/* handle the request */

handler.handleRequest()

Objectifier:ConcreteObjectifierA
Objectifier:ConcreteObjectifierB
RedirectInFamily:Redirecter

Objectifier:Objectifier
RedirectInFamily:FamilyHead

Objectifier:Client

Figure 7: Object Recursion, annotated to show roles

OriginalBehaviour

Operation()

ExtendedBehaviour

Operation() added behaviour...
OriginalBehaviour::Operation();
added behaviour...

Figure 8: ExtendMethod

Now we can produce a pattern directly from the GoF text,
the Decorator pattern. Figure 9 is the standard class
diagram for Decorator annotated to show how the EDP
ExtendMethod and ObjectRecursion pattern interact.
Again, we provide a formal definition in Equation 29, al-
though only for the method extension version (the field ex-
tension version is similar but unnecessary for our purposes
here). The keyword any indicates that any object of any
class may take this role, as long as it conforms to the defi-
nition of ObjectRecursion.

We have created a formally sound definition of a description
of how to solve a problem of software architecture design.
This definition is now subject to formal analysis, discovery,
and metrics. Following our example of pattern composition,
this definition can be used as a building block for larger,
even more intricate patterns that are incrementally compre-
hensible. At the same time, we believe we have retained the
flexibility of implementation that patterns demand. Also,
we believe that we have retained the conceptual semantics
of the pattern by intelligently and diligently making precise
choices at each stage of the composition. Furthermore, by
building this approach on an existing denotational seman-
tics for object oriented programming we continue to be able
to process the same system at an extremely low level. Co-
hesion and coupling analysis[6, 19, 21, 22, 36], slice metrics
production[23, 32], and other traditional code analysis tech-

Component

operation()

ConcreteDecoratorB

operation()
addedBehaviour()

ConcreteDecoratorA

operation()

ConcreteComponent

operation()

Decorator

operation()

component

component.operation()

Decorator::operation();
addedBehaviour();

ExtendMethod:OriginalBehaviour
ObjectRecursion:Recurser

ExtendMethod:ExtendedBehaviour

Object Recursion:Terminator

Object Recursion:Handler

Figure 9: Decorator annotated to show EDP roles

niques[10, 12, 33] are still completely possible within the
ρ-calculus. We have provided the link between patterns, as
conceptual entity descriptions, to the formal semantics re-
quired and used by compilers and other traditional tools,
without losing the flexibility of implementation required by
the patterns. We do not, however, see an explicit need al-
ways to resort to the full ρ-calculus for all analyses. One
of the key contributions of this system is that the practi-
tioner can choose on which level to operate, and perform
the analyses and tasks which are suitable without losing the
flexibility of integrating other layers of analysis at a later
date. Most importantly, we have created a system which
enables the analysis of existing source code to extract the
architecture, expressed as design patterns.

7. A PRACTICAL EXAMPLE
So how does this help our intrepid engineers at Widget, Inc?
Let us start with their source code, salient features of which
are shown as pseudo-C++ in Figure 10, and assume that
the Killer Widget compiler system can produce a diagnostic
parse tree, as the GNU gcc system does. A syntactic analy-
sis of the parse tree and translation into ρ-calculus gives us
a large body of facts about the system, a very few of which
are given in Equations 30 through 45.

We can quickly see that our AbstractInterface rule is
fulfilled for class File, method op1 by Equation 30. Fur-
thermore, File and FileP ile fulfill the requirements of the
Objectifier pattern, assuming, as we will here assert, that

ObjectRecursion(Component, Decoratori
i∈1...m,

ConcreteComponentj
j∈1...n,any),

ExtendMethod(Decorator,
ConcreteDecoratorBk

k∈1...o, operationk∈1...o
k),

Decorator(Component, Decoratori
i∈1...m,

ConcreteComponentj
j∈1...n,

ConcreteDecoratorBk
k∈1...o,

ConcreteDecoratorAl
l∈1...p,

operationk∈1...o+p
k)

(29)

class File {

virtual void op1();

};

class MeasuredFile {

File* file;

void op2() { file.op1(); };

};

class FileFAT : File {

void op1();

};

class FilePile : File {

MeasuredFile* mfile;

void op1() { foreach file in mfile:

file.op2(); };

};

class FilePileFixed : FilePile {

void op1() { FilePile::op1();

fixTheProblem(); };

};

Figure 10: Killer Widget pseudo-code

File ≡ [op1 : File → []] (30)

FileFAT <: File (31)

fp : FileP ile (32)

FileP ile <: File (33)

fp.op1 <µ− fp.mfile.op2 (34)

fp.mfile = mf (35)

mf : MeasuredF ile (36)

mf.file <φ f (37)

f : File (38)

mf.op2 <φ mf.file (39)

mf.op2 <µ− mf.file.op1 (40)

mf.file = f (41)

fpf : FileP ileF ixed (42)

FileP ileF ixed <: FileP ile (43)

fp.op1 <µ+ super.op1 (44)

fp.op1 <φ fp.mfile (45)

Figure 11: Killer Widget as ρ-calculus

the remainder of File’s methods are likewise abstract.

File : [op1 : []],
AbstractInterface(File.op1),
F ileP ile <: File,
mfile <φ file,
file : File

Objectifier(File, F ileP ile, MeasuredF ile)
(46)

Objectifier(File, F ileFAT, MeasuredF ile) and analogous
instances of Objectifier for the other concrete subclasses of
the File class, can be similarly derived.

Finding an instance of RedirectInFamily is a bit more
complex and requires the use of our isotopes. Following the
example in Section 5.4, however, it becomes straight forward
to derive RedirectInFamily:

FileP ile <: File,
fp : FileP ile,
f : File,
fp.op1 <µ− fp.mfile.op2,
fp.mfile = mf,
mf.op2 <µ− mf.file.op2,
mf.file = f,
fp.op1 <φ fp.mfile,
mf.op2 <φ mf.file

RedirectInFamily(FileP ile, F ile, op1)
(47)

It can also be shown that one simply cannot derive the fact
RedirectInFamily(FileFAT, File, op1). We now see that
ObjectRecursion derives cleanly from Equations 46 and
47 and their analogues, in Equation 48.

Objectifier(File, F ileP ile, MeasuredF ile),
Objectifier(File, F ileFAT, MeasuredF ile),
mf : MeasuredF ile,
mf <µ file.op1,
file : File,
RedirectInFamily(FileP ile, F ile, op1),
!RedirectInFamily(FileFAT, F ile, op1)

ObjectRecursion(File, F ileP ile,
F ileFAT, MeasuredF ile)

(48)

ExtendMethod is a simple derivation as well:

FileP ile ≡ [op1 : any],
F ileP ileF iled <: FileP ile,
fpf : FileP ileF ixed,
fpf.op1 <µ+ super.op1

ExtendMethod(FileP ile, F ileP ileF ixed, op1)
(49)

Finally, we arrive at the uncovering of a full Decorator
pattern:

ObjectRecursion(File, F ileP ile, F ileFAT,
MeasuredF ile),

ExtendMethod(FileP ile, F ileP ileF ixed, op1),

Decorator(File, F ileP ile, F ileFAT,
F ileP ileF ixed, op1)

(50)

Similarly, we can uncover the latent Composite pattern in
the architecture. Both GoF pattern implementations are an-
notated in Figure 12. The intermediate patterns have been

File

op1()

FilePile

op1()

MeasuredFile

op2()FileFAT

op1()

FilePileFixed

op1()

FileHFS

op1()

....... file

files

file.op1()

Measurer

op2()

.......

for each file in files
 file.op2()

FilePile::op1()
....

Decorator::Component
Composite::Component

Decorator::ConcreteComponent
Composite::Leaf

Decorator:ConcreteDecorator

Decorator::Decorator
Composite::Composite

Decorator::support
Composite::Client
Composite::support

Figure 12: Discovered pattern roles

left out for clarity, as have finer granularity relationships.
The annotations indicate which classes fulfill which roles in
the pattern descriptions, such as Pattern::Role. Note that a
single class can fulfill more than one role in more than one
pattern.

At this point the review team at Widgets, Inc. can quickly
see that there are areas that could use some conceptual
cleaning, have been given pointers as to where the problem
lies, and have also been shown which classes and methods
are required for each pattern to continue working. This last
point may direct the team to start refactoring in a mean-
ingful and well-defined manner.

The revealed patterns are, to be honest, not hard to spot
in this small example. Real life, however, tends to leave us
with a lack of sufficient documentation, and even reverse en-
gineering tools that extract architectural diagrams are not
going to explicitly reveal the hidden patterns in a system of
several hundred classes. In the cases where pattern recogni-
tion does occur, it frequently relies on the implementation
of patterns to be an exact match to some predefined tem-
plate. Isotopes remove this restriction, instead letting the
relationships in the code reduce to reliance paths in a natu-
ral way. This formalized method is useful precisely because
it is can be made automatic, deriving from syntactic analy-
sis of the parse tree of the original source code a system of
facts about the architecture, and then using theorem solving
systems such as OTTER, to produce explicit illustrations of
pattern implementation.

8. AUTOMATION OF APPROACH - SPQR
The above mechanism for design pattern extraction, as with
many formal methods, is cumbersome for manual use. An
engineer would find such a task about as useful as manual
compilation of source code to assembler. Analogously, this
approach was designed to be incorporated into an automatic
toolset that performs the analysis directly on source code,
much as a compiler.

Source Code

gcctree2oml

oml2otter

Object XML

gcc

gcc Tree

OTTER

EDP Catalog Rho Calculus

Found Patterns

Figure 13: SPQR Outline

This toolset, the System for Pattern Query and Recogni-
tion, is comprised of several components, shown in Figure
13. First, source code is analyzed for particular syntactic
constructs that correspond to the ρ-calculus concepts we
are interested in. It turns out that the ubiquitous gcc has
the ability to emit an abstract syntax tree suitable for such
analysis. Our first tool, gcctree2oml, reads this tree file and
produces an XML representation of the object structures.
We chose an intermediary step so that various back ends
could be used to input source semantics to SPQR. A second
tool, oml2rho then reads a file of this format and produces
an input file to the automated theorem prover, in the cur-
rent package we are using Argonne National Laboratory’s
OTTER. OTTER finds instances of design patterns by in-
ference based on the rules outlined in this paper, and a re-
port is compiled that can be used for further analysis, such
as the production of UML diagrams.

The Killer Widget example has been successfully analyzed
and the salient Decorator pattern was found using the OT-
TER ATP and the generated ρ-calculus rule set shown in
Figure 14. Note the distinct similarity to our initial set
of facts shown in Equations 30 through 45. The inputs
to OTTER include the set of facts of the system under
consideration, the necessary elements of ρ-calculus encoded
as OTTER rules, and the design patterns of interest, in-
cluding the EDPs, similarly encoded. For example, the
RedirectInFamily pattern is shown encoded in Figure 15,
illustrating the correspondence to our ρ-calculus definition
in Equation 11. Our preliminary results indicate that scal-
ing to larger systems in production code will be effective.

It is important to note that this is an application of our as-
sertion that, by providing a rich formal foundation for this
analysis, a practitioner can choose the level of detail in which
to work. The gcctree2oml tool could, if we chose, do a raw
conversion of the abstract syntax tree to pure ς-calculus,
with all instances of ρ-calculus reliance operators being de-
rived from basic principles. We find that it is, however, in
many cases much faster to perform what static analysis we

%%% Current environment

list(sos).

File declares op1.

FileFAT inh File.

fp : FilePile.

FilePile inh File.

(fp dot op1) relmd ((fp dot mfile) dot op2).

fp.mfile = mf.

mf : MeasuredFile.

(mf dot file) relf f.

f : File.

(mf dot op2) relf (mf dot file).

(mf dot op1) relmd (file dot op1).

(mf dot file) = f.

fpf : FilePileFixed.

FilePileFixed inh FilePile.

(fp dot op1) relms ((fp dot super) dot op1).

(fp dot op1) relf ((fp dot m) dot file).

end_of_list.

Figure 14: Killer Widget as OTTER Input

all Redirecter FamilyHead r fh operation (

(Redirecter inh FamilyHead) &

(r : Redirecter) &

(fh : FamilyHead) &

((r dot operation) relm (fh dot operation)) &

(r relf fh) ->

(RedirectInFamily(Redirecter, FamilyHead,

operation))

).

Figure 15: RedirectInFamily as OTTER input

can to directly generate ρ-calculus. This results in a proof
system that is not only simpler and more efficient, but eas-
ier for a human to read and follow if desired. If, however,
a more formal and first principles approach were desired, it
could easily be accomodated.

9. FUTURE WORK
Several branches of future research are natural advances
to build on the foundation we have outlined here. They
cover continued source code analysis and comprehension as-
sistance, cued support for re-factoring, education of best
practices in object oriented programming, and guiding the
selection of future language design.

9.1 EDPs as language design hints
While some will see the EDPs as truly primitive, we would
point out that the development of programming languages
has been a reflection of directly supporting features, con-
cepts, and idioms that practioners of the previous genera-
tions of languages found to be useful. Cohesion and coupling
analysis of procedural systems gave rise to many object ori-
ented concepts, and each common OO language today has
features that make concrete one or more EDPs. EDPs can
therefore be seen as a path for incremental additions to fu-
ture languages, providing a clue to which features program-
mers will find useful based precisely on what concepts they
currently use, but must construct from simpler forms.

9.1.1 Delegation
A recent and highly touted example of such a language con-
struct is the delegate feature found in C#[27]. This is an
explicit support for delegating calls directly as a language
feature. It is in many ways equivalent to the decades old
Smalltalk and Objective-C’s selectors, but has a more def-
inite syntax which restricts its functionality, but enhances
ease of use. It is, as one would expect, an example of the
Delegation EDP realized as a specific language construct,
and demonstrates how the EDPs may help guide future lan-
guage designers. Patterns are explicitly those solutions that
have been found to be useful, common, and necessary in
many cases, and are therefore a natural set of behaviours
and structures for which languages provide support.

9.1.2 ExtendMethod
Most languages have some support for this EDP, through
the use of either static dispatch, as in C++, or an explicit
keyword, such as Java and Smalltalk’s super. Others, such
as BETA[25], offer an alternative approach, deferring por-
tions of their implementation to their children through the
inner construct. Explicitly stating ‘extension’ as a charac-
teristic of a method, as with Java’s concept of extends for
inheritance, however, seems to be absent. This could prove
to be useful to the implementers of a future generation of
code analysis tools and compilers.

9.1.3 AbstractInterface
The AbstractInterface EDP is, admittedly, one of the
simplest in the collection. Every OO language supports
this in some form, whether it is an explicit programmer-
created construct, such as C++’s pure virtual methods, or
an implicit dynamic behaviour such as Smalltalk’s excep-
tion throwing for an unimplemented method. It should be

noted though that the above are either composite constructs
(virtual foo() = 0; in C++) or a non construct runtime be-
haviour (Smalltalk), and as such are learned through inter-
action with the relationships between language features. In
each of the cases, the functionality is not directly obvious in
the language description, nor is it necessarily obvious to the
student learning OO programming, and more importantly,
OO design. Future languages may benefit from a more ex-
plicit construct.

9.2 Educational uses of EDPs
We believe the EDPs provide a path for educators to guide
students to learning OO design from first principles, demon-
strating best practices for even the smallest of problems.
Note that the core EDPs require only the concepts of classes,
objects, methods (and method invocation), and data fields.
Everything else is built off of these most basic OO constructs
which map directly to the core of UML class diagrams. The
new student needs only to understand these extremely basic
ideas to begin using the EDPs as a well formed approach to
learning the larger and more complex design patterns. As an
added benefit, the student will be exposed to concepts that
may not be directly obvious in the language in which they
are currently working. These concepts are language inde-
pendent, however, and should be transportable throughout
the nascent engineer’s career.

This transmission of best practices is one of the core mo-
tivations behind design patterns, but even the simplest of
the canon requires some non-trivial amount of design under-
standing to be truly useful to the implementer. By reducing
the scope of the design pattern being studied, one can re-
duce the background necessary by the reader, and, therefore,
make the reduced pattern more accessible to a wider audi-
ence, increasing the distribution of the information. This
parallels the suggestions put forth by Goldberg in 1994[18].
We are putting this into practice, incorporating the EDPs
into the 2003-04 curriculum for software engineering at the
University of North Carolina at Chapel Hill, to investigate
the effectiveness of such an approach.

9.3 Semi-automated support for refactoring
Refactoring is not likely to ever be, in our opinion, a fully au-
tomatable process. At some point the human engineer must
make decisions about the architecture in question, and guide
the transformation of code from one design to another. Sev-
eral key pieces, however, may benefit from the work outlined
in this paper. Our isotope example in Section 5.4 indicates
that it may be possible to support verification of Fowler’s
refactoring transforms through use of the ρ-calculus, as well
as various other approaches currently in use[16, 31, 28]. Ó
Cinnéide’s minitransformations likewise could be formally
verified and applied not only to existing patterns, but also
perhaps to code that is not yet considered pattern-ready, as
key relationships are deduced from a formal analysis[29, 30].
Furthermore, we believe the fragments-based systems such
as LePuS can now be integrated back into the larger domain
of denotational semantics.

9.4 Comprehension of code
Finally, we revisit the original motivation for this research,
to reduce the time and effort required for an engineer to

comprehend a system’s architecture well enough to guide
the maintenance and modification thereof. We believe that
the approach outlined in the paper, along with the full cata-
log of EDPs and ρ-calculus, can form a formal basis for some
very powerful source code analysis tools such as Choices[37],
or KT[7], that operate on a higher level of abstraction than
just “class, object and method interactions”[37]. Discovery
of patterns in an architecture should be become much more
possible than it is today, and we expect that the discovery
of unintended pattern uses should prove enlightening to en-
gineers. In addition, the flexibility inherent in the ρ-calculus
will provide some interesting possibilities for the identifica-
tion of new variations of existing patterns.

10. CONCLUSION
We have presented a System for Pattern Query and Recog-
nition (SPQR), a toolset for the support of a suite of simple
design patterns, the elemental design patterns and matching
formalizations in the ρ-calculus for composition into larger,
more useful and abstract design patterns as usually found
in software architecture. These EDPs were identified ini-
tially through inspection of the existing literature on design
patterns, establishing which solutions appeared repeatedly
within the same contexts, mirroring the development of the
more traditional design patterns. Further, they are formally
describable in the ρ-calculus, a notation that builds upon
the ς-calculus, but adds the key concept of reliance to the
base notation. These extensions, the reliance operators pro-
vide a large degree of flexibility to formally stating the rela-
tionships embodied in design patterns as isotopes, without
locking them into any one particular implementation.

These contributions will allow for new approaches to ana-
lyzing software systems, education regarding design patterns
and best practices in object-oriented architecture, and may
help guide future language design by indicating which design
elements are most commonly used by software architects.

11. FORMAL FOUNDATIONS
We present in this section more complete discussions of the
generation of our elemental design patterns, and a formal
presentation of the ρ-calculus.

11.1 Examination of design patterns
Our first task was to examine the existing canon of design
pattern literature, and a natural place to start is the ubiq-
uitous Gang of Four text[17]. Instead of a purely structural
inspection, we chose to attempt to identify common con-
cepts used in the patterns. A first cut of analysis resulted
in eight identified probable core concepts:

AbstractInterface An extremely simple concept - you wish
to enforce polymorphic behaviour by requiring all sub-
classes to implement a method. Equivalent to Woolf’s
Abstract Class pattern[41], but on the method level.
Used in most patterns in the GoF group, with the ex-
ception of Singleton, Facade, and Memento.

DelegatedImplementation Another ubiquitous solution,
moving the implementation of a method to another
object, possibly polymorphic. Used in most patterns,
a method analog to the C++ pimpl idiom[11].

ExtendMethod A subclass overrides the superclass’ im-
plementation of a method, but then explicitly calls the
superclass’ implementation internally. It extends, not
replaces, the parent’s behaviour. Used in Decorator.

Retrieval Retrieves an expected particular type of object
from a method call. Used in Singleton, Builder, Fac-
tory Method.

Iteration A runtime behaviour indicating repeated step-
ping through a data structure. May or may not be
possible to create an appropriate pattern-expressed de-
scription, but it would be highly useful in such patterns
as Iterator and Composite.

Invariance Encapsulate the concept that parts of a hier-
archy or behaviour do not change. Used by Strategy
and Template Method.

AggregateAlgorithm Demonstrate how to build a more
complex algorithm out of parts that do change poly-
morphically. Used in Template Method.

CreateObject Encapsulates creation of an object, extremely
similar to Ó Cinnéide’s Encapsulate Construction mini-
pattern[29]. Used in most Creational Patterns.

Of these, AbstractInterface, DelegatedImplementation and
Retrieval could be considered simplistic, while Iteration and
Invariance are, on the face of things, extremely difficult.

11.1.1 Method calls
On inspection, five of these possible patterns are centered
around some form of method invocation. This led us to in-
vestigate what the critical forms of method calling truly are,
and whether they could provide insights towards producing
a comprehensive collection of EDPs. We assume, for the
sake of this investigation, a dynamically bound language en-
vironment, and make no assumptions regarding features of
implementation languages. Categorizing the various forms
of method calls in the GoF patterns can be summarized as
in Table 1, grouped according to four criteria:

Assume that an object a of type A has a method f that
the program is currently executing. This method then in-
ternally calls another method, g, on some object, b, of type
B. The columns represent, respectively, how a references b,
the relationship between A and B, if any, the relationship
between the types of f and g, whether or not g is an abstract
method, and the patterns that this calling style is used in.
Note that this is all typing information that is available at
the time of method invocation, since we are only inspecting
the types of the objects a and b and the methods f and g.
Polymorphic behaviour may or may not take part, but we
are not attempting a runtime analysis. This is strictly an
analysis based on the point of view of the calling code.

If we eliminate the ownership attribute, we find that the ta-
ble vastly simplifies, as well as reducing the information to
strictly type information. In a dynamic language, the con-
cept of ownership begins to break down, reducing the ques-
tion of access by pointer or access by reference to a matter of
implementation semantics in many cases. By reducing that
conceptual baggage in this particular case, we are free to

Ownership Obj Type Method Type Abstract Used In
N/A self diff Y Template Method, Factory Method
N/A super diff Adapter (class)
N/A super same Decorator
held parent same Y Decorator
held parent same Composite, Interpreter,

Chain of Responsibility
ptr sibling same Proxy
ptr/held none none Y Builder, Abstract Factory,

Strategy, Visitor
held none none Y State
held none none Bridge
ptr none none Adapter (object), Observer,

Command, Memento
N/A Mediator, Flyweight

Table 1: Method calling styles in Gang of Four patterns

reintroduce such traits later. Similarly, other method invo-
cation attributes could be assigned, but do not fit within our
typing framework for classification. For instance, the con-
cept of constructing an object at some point in the pattern
is used in the Creational Patterns: Prototype, Singleton,
Factory Method, Abstract Factory, and Builder, as well as
others such as Iterator and Flyweight. This reflects our Cre-
ateObject component, but we can place it aside for now to
concentrate on the typing variations of method calls.

At this time, we can reorganize Table 1 slightly, removing
the Mediator and Flyweight entry on the last line, as no
typing attributable method invocations occur within those
patterns. The result, shown in Table 2, is a list of eight
method calling styles. Note that four of these are simply
variations on whether the called method is abstract or not.
By identifying this as an instance of the AbstractInterface
component from above, we can simplify this list further to
our final collection of the six primary method invocation
styles in the GoF text, shown in Table 3. We will demon-
strate later how to reincorporate AbstractInterface to re-
build the calling styles used in the original patterns.

A glance at the first column reveals that it can be split into
two larger groups, those which call a method on the same
object instance (a = b) and those which call a method on
another object (a 6= b).

The method calls involved in the GoF patterns now can be
classified by three orthogonal properties:

• The relationship of the target object instance to the
calling object instance

• The relationship of the target object’s type to the call-
ing object’s type

• The relationship between the method signatures of the
caller and callee

This last item recurs often in our analysis, and once it is re-
alized that it is the application of Beck’s Intention Revealing
Message best practice pattern [4], it becomes obvious that
this is an important concept we dub similarity.

11.2 Method call EDPs
The first axis in the above list is simply a dichotomy between
Self and Other.1 The second describes the relationship
between A and B, if any, and the third compares the types
(consisting of a function mapping type, F and G, where
F = X → Y for a method taking an object of type X and
returning an object of type Y) of f and g, simply as another
dichotomy of equivalence.

It is illustrative at this point to attempt creation of a com-
prehensive listing of the various permutations of these axes,
and see where our identified invocation styles fall into place.
For the possible relationships between A and B, we have
started with our list items of ‘Parent’, where A <: B,2 ‘Sib-
ling’ where A <: C and B <: C for some type C, and ‘Un-
related’ as a collective bin for all other type relations at this
point. To these we add ‘Same’, or A = B, as an obvious
simple type relation between the objects.3

11.2.1 Initial list
We start by filling in the invocation styles from our final list
from the GoF patterns, mapping them to our six categories
in Table 3:

1. Self (a = b)

(a) Self (A = B, or a = this)

i. Same (F = G). .

ii. Different (F 6= G) Conglomeration[1]

(b) Super (A <: B, or a = super)

i. Same (F = G) ExtendMethod[3]

ii. Different (F 6= G) RevertMethod[2]

2. Other (a 6= b)

(a) Unrelated

i. Same (F = G)Redirect[6]

1Child is another possibility here, and a call to Same maps
to BETA’s inner, for example.
2The notation is taken from Abadi and Cardelli’s sigma cal-
culus[1]. A <: B reads ‘A is a subtype of B’
3Child is possible here as an addition as well, although we
do not do so at this time.

Obj Type Method Type Abstract Used In
self diff Y Template Method, Factory Method
super diff Adapter (class)
super same Decorator
parent same Y Decorator
parent same Composite, Interpreter,

Chain of Responsibility
sibling same Proxy
none none Y Builder, Abstract Factory,

Strategy, Visitor, State
none none Adapter (object), Observer,

Command, Memento, Bridge

Table 2: Reduced method calling styles in Gang of Four patterns

Obj Type Method Type Used In
1 self diff Template Method, Factory Method
2 super diff Adapter (class)
3 super same Decorator
4 parent same Composite, Interpreter,

Chain of Responsibility,
Decorator

5 sibling same Proxy
6 none none Builder, Abstract Factory,

Strategy, Visitor, State,
Adapter (object), Observer,
Command, Memento, Bridge

Table 3: Final method calling styles in Gang of Four patterns

ii. Different (F 6= G) Delegate[6]

(b) Same (A = B)

i. Same (F = G). .

ii. Different (F 6= G) .

(c) Parent (A <: B)

i. Same (F = G) RedirectInFamily[4]

ii. Different (F 6= G) .

(d) Sibling (A <: C, B <: C, A 6<: B)

i. Same (F = G) . . RedirectInLimitedFamily[5]

ii. Different (F 6= G) .

Each of these captures a concept as much as a syntax, as we
originally intended. Each expresses a direct and explicit way
to solve a common problem, providing a structural guide
as well as a conceptual abstraction. In this way they ful-
fill the requirements of a pattern, as generally defined, and
more importantly, given a broad enough context and min-
imalist constraints, fulfill Alexander’s original definition as
well as any decomposable pattern language can[2]. We will
treat these as meeting the definition of design patterns, and
present them as such.

The nomenclature we have selected is a reflection of the
intended uses of the various constructs, but requires some
defining:

Conglomeration Aggregating behaviour from methods of
Self . Used to encapsulate complex behaviours into
reusable portions within an object.

ExtendMethod A subclass wishes to extend the behaviour
of a superclass’ method instead of strictly replacing it.

RevertMethod A subclass wants not to use its own ver-
sion of a method for some reason, such as namespace
clash in the case of Adapter (class).

Redirect A method wishes to redirect some portion of its
functionality to an extremely similar method in an-
other object. We choose the term ‘redirect’ due to the
usual use of such a call, such as in the Adapter (object)
pattern.

Delegate A method simply delegates part of its behaviour
to another method in another object.

RedirectInFamily Redirection to a similar method, but
within one’s own inheritance family, including the pos-
sibility of polymorphically messaging an object of one’s
own type.

RedirectInLimitedFamily A special case of the above,
but limiting to a subset of the family tree, excluding
possibly messaging an object of one’s own type.

11.2.2 The full list
We can now begin to see where the remainder of the method
call EDPs will take us. Again, we will present the listing,
and briefly discuss each in turn.

1. Self (a = b)

(a) Self (a = this)

i. Same (F = G) Recursion

ii. Different (F 6= G)Conglomeration

(b) Super (a = super)

i. Same (F = G) ExtendMethod

ii. Different (F 6= G) RevertMethod

2. Other (a 6= b)

(a) Unrelated

i. Same (F = G) . Redirect

ii. Different (F 6= G)Delegate

(b) Same (A = B)

i. Same (F = G) RedirectedRecursion

ii. Different (F 6= G)DelegatedConglomeration

(c) Parent (A <: B)

i. Same (F = G).RedirectInFamily

ii. Different (F 6= G) DelegateInFamily

(d) Sibling (A <: C, B <: C, A 6<: B)

i. Same (F = G).RedirectInLimitedFamily

ii. Different (F 6= G) . DelegateInLimitedFamily

Recursion Quite obvious on examination, this is a con-
crete link between primitive language features and our
EDPs.

RedirectedRecursion A form of object level iteration.

DelegatedConglomeration Gathers behaviours from ex-
ternal instances of the current class.

DelegateInFamily Gathers related behaviours from the
local class structure.

DelegateInLimitedFamily Limits the behaviours selected
to a particular base definition.

11.3 Object Element EDPs
At this point we have a fairly comprehensive array of method/
object invocation relations, and can revisit our original list
of concepts culled from the GoF patterns. Of the origi-
nal eight, three are absorbed within our method invocations
list: DelegatedImplementation, ExtendMethod, and Aggre-
gateAlgorithm. Of the remaining five, two are some of the
more problematic EDPs to consider: Iteration, and Invari-
ance. These can be considered sufficiently difficult concepts
at this stage of the research that they are beyond the scope
of this paper.

Our remaining three EDPs, CreateObject, AbstractInter-
face, and Retrieve, deal with object creation, method im-
plementation, and object referencing, respectively. These
are core concepts of what objects and classes are and how
they are defined. CreateObject creates instances of classes,
AbstractInterface determines whether or not that instance
contains an implementation of a method, and Retrieve is the
mechanism by which external references to other objects are
placed in data fields. These are the elemental creational pat-
terns and they provide the construction of objects, methods,
and fields. Since these are the three basic physical elements

of object oriented programming[1], we feel that these are a
complete base core of EDPs for this classification.4

CreateObject Constructs an object of a particular type.

AbstractInterface Indicates that a method has not been
implemented by a class.

Retrieve Fetches objects from outside the current object,
initiating external references.

The method invocation EDPs from the previous section are
descriptions of how these object elements interact, defining
the relationships between them. One further relationship is
missing, however: that between types. Subtyping is a core
relationship in OO languages, usually expressed through an
inheritance relation between classes. Subclassing, however,
is not equivalent to subtyping[1], and should be noted as a
language construct extension to the core concepts of object-
oriented theory. Because of this, we introduce a typing re-
lation EDP, Inheritance, that creates a structural subtyp-
ing relationship between two classes. Not all languages di-
rectly support inheritance, it may be pointed out, instead
relying on dynamic subtyping analysis to determine appro-
priate typing relations, such as in Emerald[20], or cloning
mechanisms in prototype based languages such as Cecil[9]
or NewtonScript[3].

Inheritance Enforces a structural relationship for subtyp-
ing.

11.4 Rho Fragment
This section defines the rho fragment (∆ρ) of the ρ-calculus
which results when this fragment is added to the ς-calculus.
By defining this as a calculus fragment, we allow researchers
to add it to the proper mix of other fragments defined in [1]
to create the particular formal language they need to achieve
their goals.

11.4.1 Definitions
Let us define O as the set of all objects instantiated within
a given system. Then O ∈ O is some object in the system.
Similary, let M be the set of all method signatures within
the system. Then µ ∈ M is some method signature in the
system. O.µ is then the selection of some method signature
imposed on some object. We make no claim here that this
is a well-formed selection, and in fact we have no need to -
the underlying ς-calculus imposes that construct for us. τ
is some type in the set of all types T defined in the system
such that if O is of type τ , then O : τ .

O ∈ O, µ ∈ M, τ ∈ T

Let A be either an object O or a method selection O.µ.
Let A′ be another such set for distinct object and method

4Classes, prototypes, traits, selectors, and other aspects of
various object oriented languages are expressible using only
the three constructs identified.[1]

selections. (By convention, the base forms of the symbols
will appear on the left side of the reliance operator (relop),
and the prime forms will appear on the right hand side to
indicate distinct items.) x is a signifier that a particular
reliance operator may be one of our three variants: {µ, φ, γ}.
µ is a method selection reliance, φ is a field reliance, and γ
is a ‘generalized’ reliance where a reliance is known, but the
exact details are not. (It is analogous to more traditional

forms of coupling theory.)
±◦ is an operator trait indicator,

allowing for the three types of reliance specialization (+, −,
◦) to be abstracted in the following rules. The appearance of
this symbol indicates that any of the three may exist there.

A = {O,O.µ}

A′ = {O′,O′.µ′}

x = {µ, φ, γ}

±◦= {+,−, ◦}

The basic reliance operator symbol, <, was selected to be an
analogue to the inheritance/subsumption of types indicator
in sigma calculus, <:, which can be interpreted to mean a
reliance of type. Since the typing symbol is :, this leaves <
as a natural for the concept of ‘reliance on’. This, combined
with our three symbols from x above, gives rise to our three
reliance operators: <µ, <φ, <γ

11.4.2 Creation
We have three rules that create instances of our reliance
operators. First, we have the Method Invocation Relop rule,
which states that given a method µ invoked on object O, if
that method contains a method invocation call to another
objectO′, calling method µ′, then we have a method reliance
between the two, indicated by the µ form reliance operator
(<µ):

O.µ ≡ [µ = ς()O′.µ′]

O.µ <µ O′.µ′
(51)

We have a similar rule for deriving an instance of a field
reliance operator. This one states that if an object’s method
O.µ contains a reference to another object O′, then there is
a reliance between the two based on reference access of the
field, indicated by the φ form reliance operator (<φ). This
is the Method Field Relop rule:

O.µ ≡ [µ = ς()O′]

O.µ <φ O′ (52)

Similarly, if an objectO′ is referenced as an instance variable
data field of an object O, then we can use the Object Field
Relop rule:

O : τ, τ = [O′ : τ ′]

O <φ O′ (53)

11.4.3 Similarity Specializations
We can pin down further details of the relationships be-
tween the operands of the reliance operators by inspecting

the method signatures or the object types for µ and φ form
relops, respectively, reflecting the similarity trait found in
the EDP catalog.

If the method signatures on both sides of a µ form relop
match, then we have a similarity invocation, and append a
+ to the relop symbol to indicate this trait:

O.µ <µ O′.µ′, µ = µ′

O.µ <µ+ O′.µ′
(54)

If on the other hand we know for a fact that the two method
signatures do not match, then we have a dissimilarity invo-
cation, and we append a − to the relop:

O.µ <µ O′.µ′, µ 6= µ′

O.µ <µ− O′.µ′
(55)

We follow a similar approach with the inspection of the ob-
ject types of the operands in a φ form relop. If the two types
are equal, then we have a similarity reference:

A <φ O′,O : τ,O′ : τ ′, τ = τ ′

A <φ+ O′ (56)

And if the two types are known to be unequal, then we have
a dissimilarity reference:

A <φ O′,O : τ,O′ : τ ′, τ 6= τ ′

A <φ− O′ (57)

In both the µ and φ form relops, if the above information
is not known with certainty, then the relop remains unap-
pended in a more general form.

11.4.4 Transitivity
Transitivity is the process by which large chains of reliance
can be reduced to simple facts regarding the reliance of
widely separated objects in the system. The three forms
of relop all work in the same manner in these rules. The
specialization trait of the relop (±) is not taken into con-
sideration, and in fact can be discarded during the applica-
tion of these rules - appropriate traits can be re-derived as
needed.

Given two relop facts, such that the same object or method
invocation appears on the rhs of the first and the lhs of the
second, then the lhs of the first and rhs of the second are
involved in a reliance relationship as well. If the two relops
are of the same form, then the resultant relop will be the
same as well.

A <x A′, A′ <x′ A′′

A <x A′′ iff x = x′ (58)

If, however, the two relops are of different forms, then the
resultant relop is our most general form, γ. This indicates
that while a relationship exists, we can make no hard con-
nection according to our definitions of the µ or φ forms.
Note that this is the only point at which γ form relops are
created.

A <x A′, A′ <x′ A′′

A <γ A′′ iff x 6= x′ (59)

11.4.5 Generalizations
These are generalizations of relops, the opposite of the spe-
cialization rules earlier. Each of them generalizes out some

piece of information of the system that may be unnecessary
for clear definition of certain rules and situations. Infor-
mation is not lost to the system, however, as the original
statements remain.

The first two generalize the right hand side and left hand
sides of the relop, respectively, removing the method selec-
tion but retaining the object under consideration. They are
RHS Generalization and LHS Generalization.

A <
x
±
◦
O′.µ′

A <
x
±
◦
O′ (60)

O.µ <
x
±
◦

A′

O <
x
±
◦

A′ (61)

This is a Relop Generalization. It indicates that the most
general form of reliance (γ) can always be derived from a
more specialized form (µ, φ).

A <x A′

A <γ A′ (62)

Similarly, the Similarity Generalization states that any spe-
cialized similarity trait form of a relop implies that the more
general form is also valid.

(x = µ, φ)
A <x± A′

A <x A′ (63)

11.5 Objects vs. Types
It would seem natural to use types instead of actual objects
in the reliance operators, but there is a fundamental in-
compatibility between ∆ρ and subsumption of types which
makes this approach difficult for most practical applications
of our analysis technique. Instead, since we are directly an-
alyzing source code, we have the opportunity to use more
information regarding object instances than would be evi-
dent in class diagramming notations such as UML.

11.5.1 LHS Typing
Let us add a rule that allows an object to be replaced by its
type on the left hand side of <µ:

O.µ <µ O′.µ′,O : τ

τ.µ <µ O′.µ′

On the face of it, this seems reasonable. Assuredly the defi-
nition of the object type τ includes the same invocation call
to O′.µ′. If, however, we include type subsumption:

τ.µ <µ O′.µ′, τ ′ <: τ

τ ′.µ <µ O′.µ′

Now we have a problem, since τ ′.µ may in fact replace the
method body defined in τ with one that does not include
the call to O′.µ′. We have no way of asserting that the above
is true.

A similar problem appears with <φ created with Method
Field Reliance:

O.µ <φ O′,O : τ

τ.µ <φ O′

Here again this seems self-consistent. But once we find that
after adding type subsumption:

τ.µ <φ O′, τ ′ <: τ

τ ′.µ <φ O′

we arrive at the same problem. The method body of τ ′.µ
may eliminate the reference to the object, if for instance, it
was a local variable.

Any occurrence of µ on the left hand side is incompatible
with subsumption. If we look at the Object Field Reliance
created instances of <φ, we find no problem:

O <φ O′,O : τ

τ <φ O′

τ <φ O′, τ ′ <: τ

τ ′ <φ O′

Since method/field extraction is prohibited in the ς-calculus,
we can be assured that any subtypes of τ will still include
the reference we found in τ . A subtype cannot remove refer-
ences defined in a supertype. It may hide them from external
access, ignore them, or otherwise make them less than use-
ful, but it cannot outright delete them, so our final inference
holds.

LHS Generalization combined with left hand side type re-
placement is fundamentally unsound when combined with
the type subsumption (∆<:) fragment from ς-calculus.

11.5.2 RHS Typing
RHS Generalization is not type-unsafe under subsumption,
but instead leads to a natural expression of polymorphism.

Consider a fact of the formO.µ <µ O′.µ′ and perform a right
hand side object-to-type replacement and then subsumption
of types:

O.µ <µ O′.µ′,O′ : τ ′

O.µ <µ τ ′.µ′

O.µ <µ τ ′.µ′, τ ′′ <: τ ′

O.µ <µ τ ′′.µ′

What we find is that this is a possible reliance; it is an exam-
ple of polymorphism, and it may be an inferable fact, but it
also may never occur. It is interesting that we have come to
a state that is not directly contradictable, yet not directly
verifiable.

Right hand side type replacement is sound under subsump-
tion and appears to provide a basis for polymorphic analy-
sis, but in our experience this can be handled more easily
through other means.

12. ACKNOWLEDGMENTS
The authors would like to acknowledge the contributions of
our readers, and the financial support of EPA Project #
R82 - 795901 - 3.

13. REFERENCES
[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects.

Springer-Verlag New York, Inc., 1996.

[2] Christopher W. Alexander. Notes on the Synthesis of
Form. Oxford Univ Press, 1964. Fifteenth printing,
1999.

[3] Apple. The NewtonScript programming language.
Apple Computer, Inc., 1993.

[4] Kent Beck. Smalltalk Best Practice Patterns. Prentice
Hall, 1997.

[5] Jan Bosch. Design patterns as language constructs.
Journal of Object Oriented Programming, 1(2):18–52,
May 1998.

[6] L.C. Briand and J.W. Daly. A unified framework for
cohesion measurement in object-oriented systems. In
Proc. of the Fourth Conf. on METRICS’97, pages
43–53, November 1997.

[7] Kyle Brown. Design reverse-engineering and
automated design pattern detection in smalltalk.
Master’s thesis, North Carolina State University, 2000.

[8] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, and Michael Stal. Pattern-Oriented
System Architecture: A System of Patterns. John
Wiley & Sons, 1996.

[9] Craig Chambers. The cecil language: Specification
and rationale. Technical Report TR-93-03-05,
University of Washington, 1993.

[10] Shyam R. Chidamber and Chris F. Kemerer. A
metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493,
June 1994. cohesion/LCOM.

[11] James Coplien. C++ idioms. In Proceedings of the
Third European Conference on Pattern Languages of
Programming and Computing, July 1998.

[12] Serge Demeyer, Stéphane Ducasse, and Oscar
Nierstrsz. Finding refactoring via change metrics. In
Proceedings of the conference on Object-oriented
programming, systems, languages, and applications,
pages 166–177. ACM Press, nov 2000.

[13] Amnon H. Eden. Precise Specification of Design
Patterns and Tool Support in their Application. PhD
thesis, Tel Aviv University, Tel Aviv, Israel, 1999.
Dissertation Draft.

[14] Alexander Egyed. Automated abstraction of class
diagrams. ACM Transactions on Software Engineering
and Methodology, 11(4):449–491, October 2002.

[15] G. Florijn, M. Meijers, and P. van Winsen. Tool
support for object-oriented patterns. In M. Askit and
S. Matsuoka, editors, Proc. of the 11th European
Conf. on Object Oriented Programming - ECOOP’97.
Springer-Verlag, Berlin, 1997.

[16] Martin Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Addison Wesley,
1995.

[18] Adele Goldberg. What should we teach? In Addendum
to the proceedings of the 10th annual conference on
Object-oriented programming systems, languages, and
applications (Addendum), pages 30–37. ACM Press,
1995.

[19] Martin Hitz and Behzad Montazeri. Measuring
coupling and cohesion in object-oriented systems. In
Proceedings of ISACC’95, pages 10–21, Insitut für
Angewandte Informatik und Informationssysteme, Uni
versity of Vienna, Rathaustraße 1914, A-1010 Vienna,
Austria, 1995.

[20] Eric Jul, Rajendra K. Raj, Ewan D. Tempero,
Henry M. Levy, Andrew P. Black, and Norman M.
Hutchinson. Emerald: A general-purpose
programming language. Software Practice and
Experience, 21(1):91–118, January 1991.

[21] Byung-Kyoo Kang and James M. Bieman.
Design-level cohesion measures: Derivation,
comparison, and applications. In Proc. 20th Intl.
Computer Software and Applications Conf.
(COMPSAC’96), pages 92–97, August 1996.

[22] Byung-Kyoo Kang and James M. Bieman. Using
design cohesion to visualize, quantify and restructure
software. In Eighth Int’l Conf. Software Eng. and
Knowledge Eng., SEKE ’96, June 1996.

[23] Sakari Karstu. An examination of the behavior of
slice-based cohesion measures. Master’s thesis,
Minnesota Technological University, 2999.

[24] Bent Bruun Kristensen. Complex associations:
abstractions in object-oriented modeling. In Proc of
the ninth annual conference on Object-oriented
programming systems, language, and applications,
pages 272–286. ACM Press, 1994.

[25] O. L. Madsen, B. Møller-Pederson, and K. Nygaard.
Object-oriented Programming in the BETA language.
Addison-Wesley, 1993.

[26] Scott Meyers. Effective C++. Addison-Wesley, 1992.

[27] Microsoft Corporation, editor. Microsoft Visual C#
.NET Language Reference. Microsoft Press, 2002.

[28] Ivan Moore. Automatic inheritance hierarchy
restructuring and method refactoring. In Proc. of the
eleventh annual conference on Object-oriented
programming systems, languages, and applications,
pages 235–250. ACM Press, 1996.

[29] Mel Ó Cinnéide. Automated Application of Design
Patterns: A Refactoring Approach. Ph.D. dissertation,
University of Dublin, Trinity College, 2001.

[30] Mel Ó Cinnéide and Paddy Nixon. Program
restructuring to introduce design patterns. In
Proceedings of the Workshop on Experiences in
Object-Oriented Re-Engineering, European Conference
on Object-Oriented Programming, Brussels, July 1998.

[31] William F. Opdyke and Ralph E. Johnson. Creating
abstract superclasses by refactoring. In Proc. of the
Conf. on 1993 ACM Computer Science, page 66, 1993.
Feb 16-18, 1993.

[32] Linda M. Ott. Using slice profiles and metrics during
software maintenance. In Proceedings of the 10th
Annual Software Reliability Symposium, Denver, June
25-26, 1992, June 1992.

[33] Linda M. Ott and Jefferey J. Thuss. Slice based
metrics for estimating cohesion. In Proceedings of the
IEEE-CS International Software Metrics Symposium,
Baltimore, May 21-22 1993, May 1993.

[34] Wolfgang Pree. Design Patterns for Object-Oriented
Software Development. Addison-Wesley, 1994.

[35] Dirk Riehle. Composite design patterns. In
Proceedings of the 1997 ACM SIGPLAN conference
on Object-oriented programming systems, languages
and applications, pages 218–228. ACM Press, 1997.

[36] M. H. Samadzadeh and S. J. Khan. Stability, coupling
and cohesion of object-oriented software systems. In
Proc. 22nd Ann. ACM Computer Science Conf. on
Scaling Up, pages 312–319, March 1994. Mar 8-10,
1994.

[37] Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell.
Architecture-oriented visualization. In Proc. of the
eleventh annual conference on Object-oriented
programming systems, languages, and applications,
pages 389–405. ACM Press, 1996.

[38] Forrest Shull, Walcelio L. Melo, and Victor R. Basili.
An inductive method for discovering design patterns
from object-oriented software systems. Technical
Report CS-TR-3597, University of Maryland, 1996.

[39] Jason McC. Smith. An elemental design pattern
catalog. Technical Report TR-02-040, Univ. of North
Carolina, 2002.

[40] Jason McC. Smith and David Stotts. Elemental design
patterns: A link between architecture and object
semantics. Technical Report TR-02-011, Univ. of
North Carolina, 2002.

[41] Bobby Woolf. The abstract class pattern. In Neil
Harrison, Brian Foote, and Hans Rohnert, editors,
Pattern Languages of Program Design 4.
Addison-Wesley, 1998.

[42] Bobby Woolf. The object recursion pattern. In Neil
Harrison, Brian Foote, and Hans Rohnert, editors,
Pattern Languages of Program Design 4.
Addison-Wesley, 1998.

[43] Walter Zimmer. Relationships between design
patterns. In James O. Coplien and Douglas C.
Schmidt, editors, Pattern Languages of Program
Design, pages 345–364. Addison-Wesley, 1995.

