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Abstract

An environment is characterized by spatial locality of
queries and information when it is likely that users in
close geographic proximity query for similar data. In-
formation exhibits spatial locality when it is coupled
to a real-world place. For example, play reviews are
most relevant in a theater; and users in a Dental school
may be particularly interested in web sites on related
subjects. The prevalence of such spatial locality is re-
lated directly to the feasibility of deploying location-
dependent services. Intuition suggests that a high de-
gree of spatial locality of information exists because
people often gather to exchange information. As such,
we expect that appropriate location-dependent services
may harness the spatial locality effectively.

The web is not primarily a location-dependent ser-
vice, but it provides a ready testbed to study the preva-
lence of spatial locality and mobile users. This paper
results from a three-week study of spatial locality phe-
nomena among mobile web users on a major university
campus using the 802.11 [11] wireless infrastructure. We
show that users are often near other users with simi-
lar interests. In addition, we categorize the urls and
present a classification of the wireless information as
a function of the location from which it was accessed.
We also model the associations of wireless users to ac-
cess points. Finally, we discuss the implications on the
feasibility of location-dependent services and potential
improvements of the wireless access using caching mech-
anisms.

1 Introduction

Wireless devices are becoming smaller, more user
friendly, and more pervasive. They are not only car-
ried by people, but are integrated into stationary ob-
jects. These devices can be part of data-centric, mobile
ad hoc (i.e., constructed without an infrastructure) and
sensor networks; they collect, measure, process, query,

and relay information. Mobile users access news, traffic
or weather reports, maps, video files, games, and infor-
mation related to events in close geographic proximity.
At the same time, handheld devices have limited energy
and memory, and relatively low communication band-
width. In addition, users may need to discover informa-
tion while mobile in a dynamic environment. In that
case, prefetching the data prior to the disconnection of
the device would not be possible. Based on their depen-
dency on an infrastructure, we can classify the mobile
data access into three categories, namely via an infras-
tructure of base stations (e.g., via an ieee 802.11 [11]
deployment of APs), information servers (e.g., infosta-
tions [10]), and peer-to-peer (e.g., 7ds [14]).

The peer-to-peer approach introduces a new
paradigm of information sharing and cooperation
among mobile devices not necessarily connected to the
Internet. The devices collaborate in a self-organizing
manner without the need of an infrastructure. 7ds is
a system that uses this mechanism. The wireless data
access to the Internet via base stations is characterized
by frequent disconnection and low bit rates. When a
wireless infrastructure to the Internet is available, it
operates as a proxy and forwards user queries to the
Internet. However, when a host experiences loss of
connectivity, 7ds attempts to acquire the data from
peers within its wireless coverage by broadcasting a
query. Due to the highly dynamic environment, the
system does not try to establish permanent caching
or service-discovery mechanisms. Instead, it exploits
the transient aspect of information dissemination, and
the spatial locality of queries and information. An
environment is characterized by spatial locality of
queries and information when it is likely users in close
geographic proximity to query for similar data.

Papadopouli et al. showed via simulation that in set-
tings with high spatial locality of information, these
peer-to-peer systems can enhance the information ac-
cess by reducing the average delay to receive the data
and increasing the probability of discovering the data.
This study seeks to examine the feasibility of such
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systems; if a client could retrieve objects from others
nearby, how often would that be helpful? An ideal ap-
proach to this question requires that we compare the
information requirements of users to the information
availability from those nearby; we approximate this by
correlating mobile users’ requests for web objects with
their location, and with the request history of other
users nearby at the time of the request. Because there
are many web sites on any common topic, we also com-
pare the categories of information which are requested.
We further examine the overall popularity distributions
of objects requested by mobile users. Finally, we exam-
ine patterns of mobility among wireless users to provide
intuition on the movement behavior. We study these is-
sues by recording the HTTP requests and movement of
mobile users on a university campus over a three-week
period.

We differ from previous similar efforts by focusing on
the activity of individual clients rather than on the en-
tire population of mobile clients. Unlike previous stud-
ies of wireless networks, we explore the effects of spatial
locality of information by studying the information re-
quirements of mobile clients. And instead of using sim-
ulation to model user mobility and data dissemination
patterns, we examine the behavior of real clients moving
in a real wireless network.

We show that there is opportunity for improving ad-
hoc peer-to-peer systems and wireless data prefetching
systems by focusing resources on maximizing data avail-
ability over short time periods, and minimizing the ex-
tended storage of data when it has not been recently
requested. We find that there is a significant correla-
tion in the general interests of users who are near one
another: among requests for objects known to be in a
specific category, 22% of requests by mobile users are for
information in the same category that another nearby
user has requested within the past hour. Also, most mo-
bile users (55%) are relatively stationary, visiting only
a single access point each day.

Section 2 of this paper describes previous related re-
search; Section 3 explains our techniques for acquiring
the data for this study; section 4 describes our study of
spatial locality and web objects; section 5 gives findings
on popularity distributions for objects and categories;
finally, section 6 provides insight about the movement
of users on the campus.

2 Related work

Previous projects, such as 7ds and via [14, 7], moti-
vate the idea of exploiting user mobility for location-
dependent data propagation. They built a foundation
of architectural and theoretical feasibility of such sys-

tems, and we further examine the feasibility in the con-
text of such object distribution system in the context of
web objects and mobile wireless users.

Collaborative caching among conventional non-
mobile clients has been analyzed by Duska et al. [8]
They find the benefit of such caching to be lim-
ited by the diversity of clients’ requests and the non-
cacheability of many objects. Intuition leads some to
believe that the overlap between clients’ requests may
be greater among mobile users, and we examine this hy-
pothesis. Further, we consider only an ideal cache, in
which objects have an arbitrary useful lifetime, as we
envision a day when web objects – like printed matter
– are informative indefinitely.

There have been other studies of client mobility and
access patterns. Bhattacharya and Sajal [5] performed
a similar study of client mobility patterns using a pcs
network, and propose a prediction mechanism based on
Markov states. Kotz and Essien [12] characterized Dart-
mouth’s wireless network, examining global traffic and
access-point (AP) utilization. Balachandran et al. per-
formed similar measurements in a three-day conference
setting, also focusing on the offered network load, and
global AP utilization [4]. We build on the work in these
papers by considering traffic, but we direct our atten-
tion to web traffic. Instead of looking at global patterns
of mobility, we focus efforts on modeling an individual
user. And unlike any of these studies, we examine the
spatial locality of information.

3 Data acquisition

Three sets of data were used to perform this study:
traces of mobile client’s web requests, categorization
data for well-known web sites, and logs of 802.11 mac
events generated by wireless access points in the cam-
pus.

3.1 Definitions

The campus is populated by people who have devices
which communicate with the campus wireless network;
each such device is called a client. The campus has
many Access Points, or APs, each of which is a non-
moving bridge between the conventional campus net-
work and the wireless network. Each AP has a coverage
area determined by radio propagation properties around
the AP; a client communicates via the network by es-
tablishing a session with an AP; we say synonymously
that such a client visits the AP. The session ends when
the client notifies the AP of its departure, or the AP
detects that the client is inactive.
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3.2 Campus wireless network

The University of North Carolina at Chapel Hill be-
gan deployment of an ieee 802.11 [11] network in 1999.
Wireless access is available in many residence halls, aca-
demic buildings, the medical school, and in some off-
campus administrative buildings. The campus uses pri-
marily Cisco Aironet 350 802.11 access points [1], al-
though some areas on campus are serviced by older APs
from other manufacturers.

We observed 6,709 distinct mobile users during the
period January 24 through March 6, 2003. Of these,
2,494 were observed to make HTTP requests during the
tracing period February 6-24, 2003.

3.3 HTTP traces

The bulk of the campus wireless network has a single
aggregation point which connects to a gateway router.
This router provides connectivity between the wireless
network and the wired links – including all of the cam-
pus computing infrastructure, and the Internet. We
connected to a monitor port on the gateway router, let-
ting us monitor all of the traffic that passed between
the wireless network and conventional wired networks.

This tap link was connected to a FreeBSD monitor-
ing system. We used the tracing tool tcpdump to collect
all tcp packets which have payloads that begin with the
ascii string “get” followed by a space. The full frame
was collected as a potential HTTP [9] request. We did
not restrict our collection only the standard HTTP port
so that we could record HTTP requests sent to servers
on non-standard ports, which includes many common
peer-to-peer file-sharing applications.

The packet trace was then processed to extract the
HTTP GET requests contained therein. From each
packet, we keep these items:

• The time of the packet’s receipt (with one-second
resolution),

• The hostname specified in the request’s Host
header [9],

• The Request-URI, (e.g., /mobicom/2003/)

• The hardware mac address of the mobile 802.11
client.

If all of these items were not available in a packet, then
we did not include the recorded packet in our recorded
requests. 6,319,272 requests were traced and included
in analysis.

By recording the traffic before it had passed through
an IP router, we were able to capture the original mac
header as generated by the 802.11 clients for transmis-
sion to the gateway router.

To avoid violating our users’ expectations of privacy,
we do not store the hostname, path, and client mac
address directly. See Section 3.6 for details on the tech-
niques used to ensure privacy is maintained.

3.4 Category information

We were interested in measuring instances of correla-
tion between clients or places and queries for informa-
tion. Information on a particular topic may appear on
many web sites and at many urls, so if we measure
only cases where clients request exactly the same web
objects, then we would miss many cases where they are
requesting web objects that are substantially similar.
For example, two clients near one another may consis-
tently access sites which have current news, but they
may access different news sites. We sought to measure
this correlation.

Further, we expect that users may be flexible in the
source of their information in the absence of access to
the ideal source. Consider by comparison a person in a
coffee shop: he may prefer the Wall-Street Journal, but
may settle for the New York Times because a copy is
available. The same user with a mobile device may be
flexible in the source of his information. Categorization
lets us see past the precise object identified by a url to
identify the nature of information which is requested.

To do so, we attempted to categorize each request
which was observed. We used the complete Open Di-
rectory Project (odp) database [2], a human-edited
index of web sites and categories, as of February 1,
2003. The odp organizes sites into a hierarchy of cat-
egories; the top-level categories include “News”, “So-
ciety”, “Home”, “Arts”, “Kids and Teens”, etc. Each
of these top-level categories contains both web sites and
other sub-categories; e.g., the “News” category contains
sub-categories “Media”, “Weather” and also popular
news sites.

The odp database that we used indexed 3,181,773 dif-
ferent sites. The odp categories can reveal much about
the sites that were accessed; to protect the privacy of
our campus users, we did we chose not to include the
full detail of the odp in our data. Thus, we chose to
limit the depth of category detail to three levels of the
odp; for example, this includes News: Weather: Air
Quality. The names of longer categories were truncated
to three levels; for example, all sites in the odp category
Regional: North America: United States: Government:
Executive Branch were considered to be in the category
Regional: North America: United States instead. This
technique yields 6,851 distinct three-deep categories.

The odp only lists the url for the top-level page for a
site; most sites have numerous objects referenced from
that page. For each recorded request, we truncated the
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virgule-separated path elements from the end of the re-
quest until we found a match, or had removed all of the
path elements without finding a match.

For example, if a request for
“http://www.acm.org/sigmobile/confs/” was
recorded, then we would attempt to find an ex-
act match for this url in the odp. If one could
not be found, then we would look for a match for
“http://www.acm.org/sigmobile/”. This entry is
present in the odp under the category Computers:
Computer Science: Organizations: ACM: Special Inter-
est Groups. However, since we are recorded only three
levels of depth from the odp, we would record that
this request was matched to the category Computers:
Computer Science: Organizations. 29% of all recorded
requests were matched to one or more categories
using this procedure. Many sites appeared in several
categories; if the site appeared in fewer than eight
categories, then we included it in each of those. This
left a few sites which appeared in a suspiciously large
number of semantically diverse categories; in these
cases, we considered the url not to be categorized at
all.

3.5 Access-point logs

The campus primarily uses Cisco Aironet 350 802.11
access points (APs) to provide the wireless network ser-
vice [1]. These APs can generate log messages for 802.11
mac level events, which indicate when a user enters the
range of the AP (i.e., associates with it) or leaves its
range (i.e., disassociates from it). The majority of APs
on campus were configured to send this data via syslog
to a server in our department. The messages sent by
the APs are detailed by Kotz and Essien [12].

We recorded 731,866 useful mac events, and recorded
mobility among 5,479 802.11 clients. 1,460 users were
active among 193 APs on an average day during the
trace period.

3.6 Privacy assurances

To avoid disclosure of the identity of individual users,
and of the sites that a user is visiting, we store and use
sha1 [13] hashes of the client’s mac address, the request
hostname, and the requested path. The mac address
uniquely identifies an 802.11 network device; we assume
it to be coupled to a specific computer. Two requests
are considered to be from the same client if they were
generated by clients which have the same hashed mac
address, and two requests are considered to be for the
same url if they have the same hashed hostname and
the same hashed requested path.

4 Spatial locality and web ob-

jects

Four principle methods of analysis are described here:

HTTP request rate over time

Same-client repeated request is a get request for
a url which was made by a client which had re-
quested the same url at some time in the past.

Same-AP repeated request is a request for a url
made by a client within an AP such that the same
url had been requested in the same AP at some
time in the past, possibly by a different client.

AP-coresident-client repeated request is a re-
quest for a url made by a client within an AP’s
area, such that another client that is present in the
AP’s area at the time of the request has requested
the url at some time in the past. The other client
may have been elsewhere when it requested the
page first.

AP-coresident-client repeated category is a re-
quest for an object which is known to be in some
category such that another user that is present in
the AP’s area at the time of the request has re-
quested an object of the same category at some
time in the past.

Repeated requests and correlations among other users
are not represented for the first four days of the trace,
as these may include significant startup correlation phe-
nomenon akin to compulsory cache misses.

4.1 HTTP request rate

Wireless users’ HTTP requests were recorded from
2:31pm, Thursday, February 6, 2003 through 2:51pm,
Monday, February 24. During this interval, 6,319,272
HTTP get requests were recorded successfully for use
in this analysis.

Figure 1 confirms similar traces of network traffic,
displaying daily patterns of activity which tend to peak
toward midnight. Web use on the wireless network de-
creases considerably on the weekends (February 8-9, 15-
16, and 22-23).

4.2 Same-client repeated requests

Same-Client Repeated Requests are those cases where
a single client is observed to request an object which it
has requested in the past. The cause could be any of
these:
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Figure 1: Recorded HTTP Requests.
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Subsequent request. A user intentionally requests
an object which they have requested in the past,
but which could not be satisfied by the browser
cache. Such a request would represent genuine on-
going interest by some user.

Automatic reloads. Many popular pages (e.g.,
headline-news sites) cause the browser to re-load
the page periodically 1. While the page is dis-
played, the browser will periodically re-request it.
Such requests could also be considered indicative
of continued interest by the user.

Packet retransmissions. The first packet containing
the request was not known by the client to have
reached its destination, so tcp specifies that the
client will retransmit the packet. We would record
both requests as distinct requests. We expect that
such retransmissions are rare: The primary source
of retransmissions is packets dropped in the queues
of congested routers. The get request typically
occurs in the first packet of the tcp session; at that
stage in tcp, the client only has a single packet in
the network, so it is minimally subject to drops due
to congestion.

This study is subject to the effects of browser caching;
if the requested object is in the browser’s cache, then
no HTTP request will be generated. Some, but not all,
browsers follow HTTP’s specification for determining
the freshness of a cached object.

This measure does not account for the location of the
client. Because we did not have complete information
about all APs in the wireless area, we could not always

1This is accomplished by the meta html tag included in the

head Section of a specified with HTTP-EQUIV=”Refresh”.

Figure 2: Same-client repeated requests.
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be certain of the location of a client when its requests
were observed.

Figure 2 shows the variation of same-client repeated
requests over time as a fraction of all requests observed
in the hour. Figures 3 and 4 show the frequency of
repeated requests. These graphs can be interpreted as
answering: what fraction of all requests were requests
for an object which had been requested by the same
client h hours in the past, where h is the horizontal axis?
For example, over 35% of all requests were for objects
which had been requested by the same user within the
past hour; this suggests that as many as 35% of all re-
quests would be unnecessary if every object on the web
had a cache lifetime of at least an hour, assuming that
all browsers observe the HTTP standard for caching.

Figure 3 introduces an unsurprising trend present in
all of the long-range frequency-domain visualizations
shown: 24-hour cycles.

4.3 Same-AP repeated requests

When an object is requested multiple times within the
same AP’s area, then those are called same-AP repeated
requests. This measure does not account for the client
which makes the request; i.e., the repetition can occur
because of a single client’s activity within a single AP’s
area, or because of several clients requesting the same
object.

Figure 5 shows the variation in such same-AP re-
peated requests with respect to time. Figures 6 and 7
show the fraction of requests for objects which had been
requested within the past h hours, where h is the hori-
zontal axis. The overall information presented describes
the overall probability of all requests where the AP of
the requesting client was known. The APs of several
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Figure 3: Same-client repeated requests over 12 hours;
each bin represents four hours.
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Figure 4: Same-client repeated requests.
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Figure 5: Repeated requests within a single AP.
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Figure 6: AP-client repeated requests over 12 hours.
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other buildings were sampled, and their representative
descriptions are shown. A significant number of ob-
served requests were available for each location shown.

4.4 AP-coresident-client correlations

At the heart of measuring spatial locality effects among
mobile web users is this: how often are users who are
interested in the same things near one another? We
answer this question in two ways: by examining object
correlations among the objects requested, and correla-
tions among the categories for requested objects.

In general, such correlations occur when a client in an
AP’s area requests an object which is related to an object
which has been requested at some time in the past by
another client in the same AP’s area at the time that
the new request is made. Requests are considered to be
related when they are for the same object (i.e., the same
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Figure 7: AP-client repeated requests.
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url), or for the same category. These two methods of
comparison are describe below.

4.4.1 Same-URL requests

An AP-coresident-client same-url repeated request is
said to occur when a client in an AP’s area requests an
object which has been requested at some time in the
past by another user who is in the same AP’s area at
the time that the new request is made. Note that this
other user, who requested the object in the past, may
have requested the object while at a different location.
This indicates that two different users have requested
the same object, but were near one another at time of
the second request. Figure 8 shows the relative occur-
rences of this over the course of the trace. Figures 9 and
10 present the proportion of such requests with respect
to time since the earlier requester requested the object.
If a client requests an object while in the AP with two
or more other clients which have also requested the ob-
ject in the past, then the latest of the earlier requests is
used to establish the interval between requests.

We observe that over 7% of all requests are for objects
which have been requested by a nearby user within the
last hour. Furthermore, this proportion varies widely;
at some locations on the campus, over 20% of all re-
quests were for such objects.

4.4.2 Related-category requests

Our goal was to detect instances that users had related
information needs. For most topics, there are several
web sites that contain information about the topic, and
each web site may include several pages, and each page
may contain several objects. Thus, even when nearby

Figure 8: AP-coresident-client correlated requests.
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Figure 9: AP-coresident-client correlated requests over
12 hours.
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Figure 10: AP-coresident-client correlated requests.
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Figure 11: AP-coresident-client correlated category in-
terests.
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Figure 12: AP-coresident-client correlated category in-
terests.
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clients are interested in the same things, instances of
overlapping requests for objects may be relatively rare.

As described in Section 3.4, we attempted to associate
each request to one or more categories; approximately
28% of all requests could be matched to at least one cat-
egory. Then we analyzed to see how often AP-coresident
users were interested in the same categories. Figures 11
and 12 reveal that 22% of all requests for objects known
to be in a category were made while the client was in
the same AP with another client which had requested
an object in that same category three-deep within the
last hour.

Rank Requests Category

1 362,690 Reference: Education: Colleges and Universities

2 196,473 Regional: North America: United States

3 86,700 Computers: Internet: Searching

4 67,694 Business: Major Companies: Publicly Traded

5 63,239 Arts: Television: Networks

6 53,484 Business: Arts and Entertainment: Media Conglomerates

7 48,900 Sports: Resources: News and Media

8 28,106 Regional: Europe: United Kingdom

9 25,690 Health: Dentistry: Education

10 23,151 News

11 22,386 News: Newspapers: Regional

12 22,246 Recreation: Travel: Consolidators

13 19,611 Computers: Internet: On the Web

14 17,641 Arts: Television: News

15 16,197 Reference: Libraries: Library and Information Science

16 15,473 Computers: Software: Internet

17 15,051 Reference: Dictionaries: World Languages

18 11,945 Computers: Internet: Access Providers

19 11,921 Arts: Music: Styles

20 11,762 Shopping: Varied Merchandise: Major Retailers

21 11,542 News: Breaking News

22 11,431 Computers: Software: Operating Systems

23 10,443 Society: Law: Legal Information

24 10,314 Computers: Internet: Web Design and Development

25 10,119 Science: Social Sciences: Communication

Figure 13: Top Categories

5 Object and category popular-

ity

This section describes the popularity distributions of re-
quests for objects, and of requests for categories. Figure
13 shows the top 25 categories. Note the sharp decline
in the number of requests with rank. The university’s
site is included in the Reference: Education: Colleges
and Universities category, which constitutes the most-
popular category. The category Regional: North Amer-
ica: United States encloses a large number of general-
interest sites; after that there is a slower decrease in the
number of requests for the categories.

Sites for entertainment and news and the related cat-
egories constitute a substantial proportion of the most
common categorized requests. Specialized categories
like Reference: Libraries: Library and Information Sci-
ence and Health: Dentistry: Education appear high in
ranking, likely due to the nature of the studied popula-
tion.

5.1 Ranking distribution

The Zipf distribution describes of occurrence of some
event P as a function of the rank i when the rank is de-
termined by the frequency of occurrence as a power-law
function Pi ∝ i−α with the exponent α close to unity; Pi

is the probability of the ith-ranked event occurring [6].
The url rank distribution Figure 14 has the parameter
α as 0.85 (denoted as ‘a’ in figures) [6]. The rank distri-
bution of the servers, shown in Figure 15, has a Zipf-like
distribution with α as 1.0. Many of the highly-ranked
urls belong to the same highly-ranked web server.

While the url graph catches up with the Zipf distri-
bution the web server graph then dips. This indicates
that these are the highly-ranked servers which host a
few highly-ranked urls to them. The web server graph
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Figure 14: URL Distribution; a = α.
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Figure 15: Web Server Distribution; a = α.
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Figure 16: Category Distribution; a = α.

Figure 17: Descriptive statistics for the average daily
number of APs and clients.

APs Clients
µ 193.3 1310.48
σ 24.63 491.91

C.I.95% 193.3± 10.53 1310.48± 210.39

and the url graph now follow nearly the same pattern
when the web server graph falls of smoothly deviating
from the straight Zipf line. There can be varied reasons
for this fall. One of the factors can be that, for the
low-ranked web servers, the number of requests falls off
much more rapidly. This can be attributed to the fact
that the higher-ranked servers had certain urls that
were low ranked. We observed 1,941,520 distinct URLs
in 2,530 different categories, residing on 58,486 distinct
web servers.

The category rank distribution shown in Figure 16
matches the web server graph more. This is because
grouping together the urls is a kind of discrete clas-
sification. The category graph is a bit jumpy where it
sways and catches up again with the Zipf with α = 1.0.
One of the reasons for the jumps is that that a url can
be categorized into more than one category, so some cat-
egories can show correlated increase. Then there is the
same smooth drop as with the web server Figure 15 but
this time it is more pronounced. The large number of
un-categorized requests contributes to the fall as one of
the reasons that these urls were not classified is that
the categories do not cover the entire url space and
there are some urls which do not fit into the defined
categories.

6 Mobility patterns

This section discusses the patterns of mobility among
users on the campus. We show here which AP areas
have the most distinct clients, how many clients visit
many AP areas, and how many clients have long ses-
sions.

Figure 17 presents the mean, standard deviation, and
the 95% confidence interval for the average number of
APs and clients observed to be active each day our trace.

6.1 Access-point visits

In order to investigate which APs are visited by the
most clients, we measure the number of different clients
that start sessions with an AP during each hour. Fig-
ure 18 illustrates the number of distinct clients which
start sessions during each hour; on average, 2.39 dis-
tinct clients start sessions with each AP in the noon
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Figure 18: Number of new sessions at selected locations
versus time of day.

Figure 19: Example of a client’s mobility pattern. exits
indicates the client’s departure from the network.
Time 10:58 11:25 11:57 12:20 17:20 17:25

AP 1 2 1 exits 3 exits

hour. The APs located in Hinton James dorm, More-
head Planetarium, and Peabody Hall (where the School
of Education is located) are indicative of the major
trends that appear in our results. Results for these APs
and the mean of all the APs are shown in Figure 18.

6.2 Mobility of clients

We also study the number of different clients who visit
different APs during time intervals of different length.
We consider (separately) non-overlapping time intervals
of 20 minutes, 1 hour, 3 hours, 6 hours, 12 hours and
24 hours. We count the number of distinct APs that
a client visits during the chosen time interval. If there
are multiple time intervals of the same length within a
day, the number of clients is averaged for those time
intervals.

As an illustrative example, consider a time interval of
12 hours starting at midnight, and the mobility pattern
shown in Figure 19. This client is recorded as having
visited two distinct APs in the first 12 hour interval:
AP 1 and AP 2. Since we assume that all the clients
are disconnected at the beginning of each time interval,
this client is recorded as having visited only one distinct
AP in the second 12 hour interval: AP 3. Therefore, on
average, this client visits 1.5 distinct APs in a 12 hour
period this day.

The results of this procedure for each day, for all of

Figure 20: Number of distinct clients who visit a se-
lected number of different access points during time in-
tervals of different length
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Figure 21: Average total and daily percent of distinct
clients that visit a specified number of APs in a day

APs ≥ 2 ≥ 3 ≥ 5 ≥ 15

µclients 637.8 355.7 113.2 4.9
µdaily% 45.0 23.8 7.2 0.3
σclients 336.0 226.6 85.9 4.1
σdaily% 10.4 9.6 4.3 0.21
|C.I.95%|

2
143.7 96.9 36.7 1.75

|C.I.95%|
2 daily%

4.4 4.12 1.8 0.09

the clients are shown in Figure 20. We show that, on
average, 113.24 clients visit five or more APs in one
day. In contrast, only 4.9 clients visit 15 or more APs
in a day. In general, fewer clients have longer sessions.
Figure 21 details these results.

6.3 Session durations in access points

In this section we measure the number of different
clients that remain connected to the access point for
a given length of time. For this measurement we con-
sider all of a client’s sessions during a day. If a client
has at least one session of at-least a given duration with
an AP, we add that client to that AP’s list of clients for
that session duration. At the end of each day we count
the number of unique clients in each of the AP’s session
duration lists.

Not surprisingly, the average number of clients that
remain connected to an AP for a given time is lower
for longer lasting sessions than for shorter lasting ses-
sions. We find that on average, an AP has 8.55 distinct
clients during the course of the day who have at least
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Figure 22: Clients with at least one AP session of the
specified duration.

one session of five minutes or more. We also find that
on average, an AP only has 2.26 distinct clients per day
who have at least one session that lasts 2 hours or more.
The standard deviations and 95% confidence intervals
are σ = 14.16, C.I.95% = 8.55 ± 1.92 and σ = 4.00,
C.I.95% = 2.26 ± 0.53, respectively. We find that cer-
tain buildings are representative of some of the major
trends we see in our trace. Those buildings are: Tri
Sigma House (a student residential area) represents an
area where many clients are likely to remain for a longer
period of time than they would in a class room. The
Kenan Football Center represents areas with a small
number of clients, and Berry Hill Hall (Biomedical En-
gineering building) represents an area in between. Their
results are shown in Figure 22 along with the mean of
all the APs in our trace.

7 Conclusions and future work

We examined the web requests and movement patterns
of clients on the campus of a major university. We
find that each client frequently requests objects which
it has requested within the past hour, and occasion-
ally requests objects which had been requested by other
nearby users within the past hour. After this initial pe-
riod, there is relatively little direct correlation among
nearby users’ requests for the same web objects. This
suggests that the benefits of pre-fetching or caching for
other clients are real, albeit short lived.

There is a significant correlation among the cate-
gories of information requested by nearby mobile users,
with 22% of categorized requests being for categories for
which another nearby user has requested information
within the past hour. This suggests that systems which

offer substantially similar data in the absence of access
to the requested data may provide significant utility.
However, since less than 8% of

Overall object, web server, and category popularity
among our population of mobile users is modeled well
as a Zipf function. This suggests that the findings of
results on a single web server [3] extend in principle to
the general population of web sites.

Finally, our results show that 45% of the clients on a
given day visit more than one AP, and only 24% visit
two APs. Also, the average AP had 8.55 clients per day
with at least one 5 minute session, but only 3.9 clients
who had at least one 1 hour session. The average AP in
an academic building has more clients initiate a session
in the middle of the day than late at night, whereas an
average AP in a residential building has the most visits
around midnight.

This work points to some clear open problems. We
are working currently to develop a model predicting visi-
tor patterns; existing techniques such as those described
by Bhattacharya and Das [5] appear to require signifi-
cant extension to perform well for mobile 802.11 users
on a campus. To this end, we are investigating the use of
a weighted difference between the observed steady-state
probability vector and a Markov-chain based predictor.
We are also considering computing a diffeomorphism,
or a space warp, between these two vectors and mea-
sure the energy of that warp. We are also interested in
determining if the clients session durations follow any
known distribution.

The peer-to-peer caching systems which motivated
this study initially, such as 7ds, require that objects
be cacheable. Stale objects should not be distributed,
but many popular objects on the web are not cacheable
by the HTTP standard [8]. It appears that content
providers use cacheability to force reloads of their pages
for reasons other than document freshness; e.g., they
wish to count readers, or to distribute new advertise-
ments. This use of the cacheability mechanisms works
well enough in fully-connected environments, but is a
limiting factor for weakly-connected systems as we de-
scribe here. We intend to address this issue of cacheabil-
ity; ideally, an object should be cached only for its true
useful lifetime, while content providers receive the feed-
back they need. Our intuition about conventional com-
munication media suggests that the useful lifetime of an
object is arbitrarily long, though a measure of its fresh-
ness is always required. (This is the reason that every
page of a newspaper includes the date of publication.)

We have noted that the web is not the ideal testbed
for the measurement of location-dependent services. We
are currently implementing several systems, including a
collaborative note-sharing system for use in presenta-
tions and also a location-sensitive map-editing system.

11



We will perform measurements of the spatial locality
effects with these applications deployed.
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